Results of the
IEC 61508
Functional Safety Assessment

Project:
HiC2841 & HiC2842

Customer:
Pepperl+Fuchs GmbH
Mannheim
Germany

Contract No.: P+F 0905-35R1-C
Report No.: P+F 0905-35R1-C R011
Version 1, Revision 1, September 2010

Audun Opem, Peter Söderblom
Management summary

The Functional Safety Assessment of the Pepperl+Fuchs GmbH, performed by exida Certification S.A. consisted of the following activities:

- *exida* Certification S.A. assessed the setup of the development process used by Pepperl+Fuchs GmbH for development projects against the relevant requirements of IEC 61508 parts 1 and 2.

 Subject to this assessment were the Functional Safety Planning activities, the tailoring of the Verification and Validation activities and the realization of the technical safety aspects using the HiC2841 & HiC2842 development project.

- *exida* Certification S.A. audited the development process by a detailed development audit which investigated the compliance with IEC 61508 of the processes, procedures and techniques as implemented for the Pepperl+Fuchs GmbH HiC2841 & HiC2842 development. The investigation was executed using subsets of the IEC 61508 requirements tailored to the work scope of the development team.

- *exida* Certification S.A. assessed the Safety Case prepared by Pepperl+Fuchs GmbH against the technical requirements of IEC 61508.

The result of the Functional Safety Assessment can be summarized by the following statements:

The audited Pepperl+Fuchs GmbH development process tailored and implemented by the HiC2841 & HiC2842 Hardware development project, complies with the relevant safety management requirements of IEC 61508 SIL 2.

The assessment of the FMEDA, which was performed according to IEC 61508, has shown that the HiC2841 & HiC2842 has a PFD_{AVG} / PFH within the allowed range for SIL 2 (HFT = 0) according to table 2 of IEC 61508-1 and a Safe Failure Fraction (SFF) of > 89%.

This means that the HiC2841 & HiC2842 with Hardware version 05-5796B is capable for use in SIL 2 applications in low or high demand mode, when properly designed into a Safety Instrumented Function per the requirements in the Safety Manual.

Assessor
Audun Opem

Assessor
Peter Söderblom

Review
Dipl.-Ing. (FH) Peter Müller
Content

Management summary .. 2
1 Purpose and Scope ... 4
 1.1 Tools and Methods used for the assessment .. 4
2 Project Description ... 5
 2.1 Description of the Functional Safety Management System .. 5
 2.2 Description of the System ... 5
3 Project management .. 7
 3.1 Assessment of the development process .. 7
 3.2 Roles of the parties involved .. 8
4 Results of the Functional Safety Assessment .. 9
 4.1 Technical aspects of the HiC2841 & HiC2842 .. 9
 4.2 Functional Safety Management .. 11
 4.2.1 Safety Life Cycle ... 11
 4.2.2 FSM planning ... 11
 4.2.3 Documentation .. 12
 4.2.4 Training and competence recording ... 12
 4.2.5 Configuration Management .. 12
 4.3 Safety Requirement Specification ... 12
 4.3.1 Safety Requirement Specification and traceability into design 13
 4.4 Change and modification management ... 13
 4.4.1 Change and modification procedure .. 13
 4.5 Hardware Design ... 13
 4.5.1 Hardware architecture design .. 14
 4.5.2 Hardware Design / Probabilistic properties ... 14
 4.6 Verification & Validation ... 15
 4.6.1 HW related V&V activities .. 15
 4.7 Safety Manual .. 16
 4.7.1 Operation, installation and maintenance requirements 16
5 Agreement for future assessment .. 17
6 Reference documents .. 18
7 Status of the document .. 19
 7.1 Releases ... 19
1 Purpose and Scope

This document describes the results of the Full Functional Safety Assessment according to IEC 61508 of the product development processes according to the safety lifecycle phase 9 of IEC 61508-1. The purpose of the assessment was to investigate the compliance of:

- the HiC2841 & HiC2842 with the technical IEC 61508-2 requirements for SIL 2 and the derived product safety property requirements
and

- the HiC2841 & HiC2842 development processes, procedures and techniques as implemented for the safety-related deliveries with the managerial IEC 61508-1 and -2 requirements for SIL 2.

It was not the purpose to assess the fulfillment of the statement of conformance from Pepperl+Fuchs GmbH for the following European Directives;

- EMC Directive
- Pressure Directive
- Low Voltage Directive
- ATEX Directive

The correct execution of all activities that lead to the statement of Conformance to these European Directives is in the responsibility of Pepperl+Fuchs GmbH and builds a basis for the certification.

It was not the purpose of the assessment / audits to investigate Company quality management system versus ISO 9001 and ISO 9000-3 respectively.

The assessment has been carried out based on the quality procedures and scope definitions of exida Certification S.A.

1.1 Tools and Methods used for the assessment.

This assessment was carried by using the exida Certification assessment documents, templates and checklists which are derived from the Safety Case DB tool. The expectations for a positive judgment of the assessor are documented within this tool.

The assessment was based on a set of document templates, e.g. for the document review & assessment comments and the assessment plan.
2 Project Description

2.1 Description of the Functional Safety Management System

The functional safety management system is implemented by the use of the functional safety management plan contained in the V&V plan [D1], the P+F Development process [D2] and the related planning documents, which describes the activities in detail. The V&V plan shows the implementation of a safety life cycle model which adopts the V-model as described in IEC 61508.

The related planning documents are mainly the configuration management plan, the test plan and a set of templates and guidelines.

Evidence for the fulfilment of the detailed requirements have been collected in a FSM Justification report section in the V&V plan[D1], which was subject to the assessment.

2.2 Description of the System

The HiC2841 can be described as a:

- Switch amplifier providing power to a Namur sensor in hazardous areas and converting the sensors supply current into a digital output signal (passive transistor output). The output is configurable as normal or inverted mode.

- There is a second output which can either be configured to follow Output 1 or as a diagnostic output which indicates when a Short Circuit / Open Circuit or over voltage condition is present in the loop.
The HiC2842 can be described as a:

- Switch amplifier providing power to two Namur sensors in hazardous areas and converting the sensors supply current into two separate digital output signals (passive transistor output). The outputs are configurable as normal or inverted mode.
3 Project management

3.1 Assessment of the development process

The development audit was closely driven by subsets of the IEC 61508 requirements. That means that the Functional Safety Management related requirements were grouped together according their related objectives. The detailed answers to the requirements, i.e. the justification reports, (Design description [D4] - technical requirements and V&V Plan [D1] – process requirements) were subject to the assessment. This assessment of the justification reports was supplemented by the prior review of documents.

The assessment was planned by exida Certification S.A. [R3] and agreed with Pepperl+Fuchs GmbH.

The following IEC 61508 objectives were subject to detailed auditing at Pepperl+Fuchs GmbH:

- FSM planning, including
 - Safety Life Cycle definition
 - Scope of the FSM activities
 - Documentation
 - Activities and Responsibilities (Training and competence)
 - Configuration management
- Safety Requirement Specification
- Change and modification management
- Hardware architecture design - process, techniques and documentation
- Hardware design / probabilistic
- Hardware and system related V&V activities including documentation, verification
 - Integration and fault insertion test strategy
- System Validation
- Hardware-related operation, installation and maintenance requirements

The project teams, not individuals were audited.

The development audit was performed in Mannheim 27.01.2010 and in a net meeting 12.02.2010.
3.2 Roles of the parties involved

Pepperl+Fuchs GmbH

Represents the designer of the safety related HiC2841 & HiC2842 and the investigated organization. The following teams / responsible persons were audited:

- Project Management
- System Architect
- Safety Manager
- Safety Coordinator
- Safety Coordinator

exida Certification S.A.

Set up and structure of the assessment and audit process, extracted the requirements for the assessment and audit from the IEC 61508 standard and guided through the audit.

The activities were done by exida Certification S.A. as an independent organization. The assessment was performed by Audun Opem and Peter Söderblom who were not involved in the execution of the audited activities.
4 Results of the Functional Safety Assessment

exida Certification S.A. assessed the development process used by Pepperl+Fuchs GmbH for this development project against the objectives of IEC 61508 parts 1 and 2. The results of the pre-assessment are documented in [R1]. All objectives have been successfully considered in the Pepperl+Fuchs GmbH development processes for the HIC2841 & HIC2842 development.

exida Certification S.A. assessed the safety case prepared by Pepperl+Fuchs GmbH, including a set of documents, against the functional safety management requirements of IEC 61508. This was done by a pre-review of the completeness of the related requirements and then a spot inspection of certain requirements, before the development audit. The safety case demonstrated the fulfillment of the functional safety management requirements of IEC 61508-1 and 2.

The detailed development audit (see [R2]) investigated the compliance with IEC 61508 of the processes, procedures and techniques as implemented for the Pepperl+Fuchs GmbH HIC2841 & HIC2842.

The investigation was executed using subsets of the IEC 61508 requirements tailored to the work scope of the development team.

The result of the assessment shows that the HIC2841 & HIC2842 with Hardware version 05-5796B is capable for use in SIL 2 applications in low or high demand mode, when properly designed into a Safety Instrumented Function per the requirements in the Safety Manual.

Some areas of improvement were nevertheless identified. The recommended improvements given are generally required to formally show the compliance to IEC 61508. However, Pepperl+Fuchs GmbH was able to demonstrate with respect to the size of the project (limited number of people) and the specific complexity of the product that the objectives of the related areas have been successfully met. More details can be found in the chapter below.

4.1 Technical aspects of the HIC2841 & HIC2842

The device HIC2841 & HIC2842 can be used as interface between Namur sensors located in hazardous areas and digital inputs e.g. a PLC.

For HIC2841 & HIC2842:

The current input signal is compared with a fixed limit value and the Output 1 is controlled accordingly. Also the signal LED is indicating the output state. The line fault detection can be configured by the DIP switch S2 (HIC2842 - S4) to block the output in non-conducting state. With DIP switch S1 (HIC2842 - S3) the output mode can be inverted. This means the End-user can decide whether a low or a high input current leads to a conducting respectively non-conducting output.

The safe state is a de-energized / not conducting output.

This is a single channel Type A (HFT=0) system with low complexity and with built-in Short Circuit and Open Loop detection in HW. The line fault detection (DIP switch S2 / S4) is mandatory for HIC284* when used as a part of a safety instrumented function.

There is also an under-voltage detection included but this is considered as a part of the safety function.
The two channels of HiC2842 is not intended to be used in a single safety instrumented function, e.g. to increase the hardware fault tolerance.

The two channels can be used in two separate and independent safety instrumented functions.

For HiC2841 only:
The DIP switch S3 can be used to configure Output 2 to:

- Follow Output 1 and thus be suitable as a second safety related output or
- Indicate if a loop fault is present and thus, NOT be suitable for safety related functions.
4.2 Functional Safety Management.

Objectives of the Functional Safety Management
The main objectives of the related IEC 61508 requirements are to:

- Structure, in a systematic manner, the phases in the overall safety lifecycle that shall be considered in order to achieve the required functional safety of the E/E/PE safety-related systems.

- Structure, in a systematic manner, the phases in the E/E/PES safety lifecycle that shall be considered in order to achieve the required functional safety of the E/E/PE safety-related systems.

- Specify the management and technical activities during the overall, E/E/PES and software safety lifecycle phases which are necessary for the achievement of the required functional safety of the E/E/PE safety-related systems.

- Specify the responsibilities of the persons, departments and organizations responsible for each overall, E/E/PES and software safety lifecycle phase or for activities within each phase.

- Specify the necessary information to be documented in order that the management of functional safety, verification and the functional safety assessment activities can be effectively performed.

- Document key information relevant to the functional safety of the E/E/PE safety-related systems throughout the overall safety lifecycle.

- Select a suitable set of tools, for the required safety integrity level, over the whole safety lifecycle which assists verification, validation, assessment and modification.

4.2.1 Safety Life Cycle

The development process as described in the V&V plan [D1] and in the P+F Development process [D2] is structured such that all relevant phases of the overall Safety Life Cycle are identified and that different phases are defined with the necessary activities, inputs and outputs.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.2.2 FSM planning

The V&V plan [D1] and the P+F Development process [D2] defines the different development phases together with the corresponding input and output documents, related templates and guidelines. All major activities related to specification, design, implementation, verification and validation are defined and planned in these process documents.

The different roles and responsibilities of the project members are defined. Furthermore the V&V plan [D1] is also used for tracking of the safety activities in the project.
The modification procedures for both the development project and after product release are also described in the V&V plan [D1] and referred by the P+F development process [D2].

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.2.3 Documentation

A set of templates and guidelines which controls the common layout of documents together with basic properties as document name or number, revision and approval identification exists and is part of the normal quality system of Pepperl+Fuchs GmbH.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.2.4 Training and competence recording

The competence tracking for the project members is contained within the V&V plan [D1]. In addition to the extensive experience in safety and non-safety HW development, the safety competence within the project is also ensured by a separate safety support group including external safety experts which were available throughout the project.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.2.5 Configuration Management

The handling of configurations is described in the V&V plan [D1]. This includes responsibilities for the activities, the items to be under version control and the defined tools and methods for this.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.3 Safety Requirement Specification

Objectives of the Safety Requirement Specification

The main objective of the related IEC 61508 requirements is to:

- Specify the requirements for each E/E/PE safety-related system, in terms of the required safety functions and the required safety integrity, in order to achieve the required functional safety.
4.3.1 Safety Requirement Specification and traceability into design

The responsibility of the SRS is covered by the Requirements Profile [D3] and supported by the Design Specification [D4]. The requirements Profile contains a background for the project together with a description of the intended use and targeted application areas. Each requirement has an allocation to the responsible person, an identity which both identifies the type of requirement and the safety relevance. The used requirement identity supports requirements traceability both to the Design Specification [D4] and to the V&V Test Specification [D11] (validation test specification).

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.4 Change and modification management

Objectives of change and modification management
The main objective of the related IEC 61508 requirements is to:

- Ensure that the required safety integrity is maintained after corrections, enhancements or adaptations to the E/E/PE safety-related systems.

4.4.1 Change and modification procedure

A modification procedure is defined in the V&V plan [D1]. This is implemented for product changes starting with formal validation tests as there is no integration test planned for this type of product. The defined modification procedure, containing a procedure for Impact Analysis including checklists, in combination with the generic development model fulfils the objectives of IEC 61508.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.5 Hardware Design

Objectives of hardware design
The main objectives of the related IEC 61508 requirements are to:

- Create E/E/PE safety-related systems conforming to the specification for the E/E/PES safety requirements (comprising the specification for the E/E/PES safety functions requirements and the specification for the E/E/PES safety integrity requirements).

- Ensure that the design and implementation of the E/E/PE safety-related systems meets the specified safety functions and safety integrity requirements.

Objectives of hardware design / probabilistic properties
The main objective of the related IEC 61508 requirements is to:

- Ensure that the design and implementation of the E/E/PE safety-related systems meets the specified safety functions and safety integrity requirements.
4.5.1 Hardware architecture design

The HW architecture is described by the Design Specification [D4]. The hardware design follows the rules of modularization, the use of well known components and de-rating.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.5.2 Hardware Design / Probabilistic properties

The detailed HW design is partly described by the Design Specification [D4] and by the circuit diagram / Bill of Material [D6]. An FMEDA Report [D5] is documenting the probabilistic calculations for the applicable configurations of the device. The assumptions of the FMEDA are confirmed by a documented Fault Insertion Test [D7].

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.5.2.1 FMEDA - HiC2841 & HiC2842:

The Safe Failure Fraction was confirmed additionally by the Fault insertion tests. The PFH and PFD_{AVG} listed below shows SIL 2 capability.

Inverse mode configuration:

Table 1 Failure rates according to IEC 61508

<table>
<thead>
<tr>
<th>λ_s</th>
<th>λ_{dd}</th>
<th>λ_{du}</th>
<th>SFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.5 FIT</td>
<td>0 FIT</td>
<td>28.5 FIT</td>
<td>89.5%</td>
</tr>
</tbody>
</table>

Table 2 PFD_{AVG} values

| PFH = 2.85E-08 | PFD_{AVG} = 1.25E-04 |

1 Note that the S category includes failures that do not cause a spurious trip
4.5.2.2 FMEDA - HiC2841 & HiC2842:
The Safe Failure Fraction was confirmed additionally by the Fault insertion tests. The PFH and PFD$_{AVG}$ listed below shows SIL 2 capability.

Normal mode configuration:

Table 3 Failure rates according to IEC 61508

<table>
<thead>
<tr>
<th>λ_s^2</th>
<th>λ_{dd}</th>
<th>λ_{du}</th>
<th>SFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>246,7 FIT</td>
<td>0 FIT</td>
<td>25,3 FIT</td>
<td>90,7%</td>
</tr>
</tbody>
</table>

Table 4 PFD$_{AVG}$ values

| T[Proof] = 1 year | PFH = 2,53E-08 | PFD$_{AVG}$ = 1,11E-04 |

4.6 Verification & Validation

Objectives of HW related verification & validation activities

The main objectives of the related IEC 61508 requirements are to:

- Demonstrate, for each phase of the overall, E/E/PES and software safety lifecycles (by review, analysis and/or tests), that the outputs meet in all respects the objectives and requirements specified for the phase.
- Test and evaluate the outputs of a given phase to ensure correctness and consistency with respect to the products and standards provided as input to that phase.
- Integrate and test the E/E/PE safety-related systems.
- Ensure that the design and implementation of the E/E/PE safety-related systems meets the specified safety functions and safety integrity requirements.
- Plan the validation of the safety of the E/E/PE safety-related systems.
- Validate that the E/E/PE safety-related systems meet, in all respects, the requirements for safety in terms of the required safety functions and the safety integrity.

4.6.1 HW related V&V activities

The V&V plan [D1] defines the required verification activities related to hardware and system including documentation, verification planning, test strategy and requirements tracking to validation test.

All applicable analysis steps as e.g. FMEDA [D5] and de-rating analysis [part of D4] were planned and verified to be successful. All relevant practical tests as e.g. fault insertion test [D13], EMC/Mechanical/Environmental tests [D14] and validation tests [D11] were planned and respectively, successfully executed [D7], [D15] and [D12].

2 Note that the SU category includes failures that do not cause a spurious trip
All specified safety requirements were tracked and successfully validated [D12]. The Validation Test specification [D11] contains the required description of the test, acceptance criteria and the documented result. Other applicable aspects as the used configuration and version are documented in order to enable a re-test of the product at a later stage.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.

4.7 Safety Manual

Objectives of the Safety Manual

The main objective of the related IEC 61508 requirements is to:

- Develop procedures to ensure that the required functional safety of the E/E/PE safety-related systems is maintained during operation and maintenance.

4.7.1 Operation, installation and maintenance requirements

The responsibility of P+F is to provide the end-users with a Safety Manual [D8], with all necessary product information in order to enable a correct and safe engineering of the product in a safety instrumented function. Additionally, the provided information enables the end-user to perform the required verification analysis steps of a safety instrumented function, e.g. SFF, PFD/PFH, proof test interval and procedure, etc. The Safety Manual partly also refers the data sheets which are available of the official web-site for details regarding environmental conditions and other approvals of the product.

Conclusion: The objectives of the standard are fulfilled by the Pepperl+Fuchs GmbH functional safety management system.
5 Agreement for future assessment

Areas of possible improvements have been identified during the assessment. However, these are not assessed to be in contradiction to an overall positive judgment of the subject.

Recommendations have been given by exida Certification S.A. to Pepperl+Fuchs GmbH as confidential information for the following lifecycle phases / sub-phases:

- Documentation
- Safety requirement specification
- Change and modification management
- HW related V&V activities
6 Reference documents

The services delivered by exida Certification S.A. were performed based on the following standards.

N1 IEC 61508-1:1998 Functional Safety of E/E/PES; General requirements
N2 IEC 61508-2:2000 Functional Safety of E/E/PES; Hardware requirements
N3 IEC 61508-3:1998 Functional Safety of E/E/PES; Software requirements

The assessment delivered by exida Certification S.A. was performed based on the audit of the following documents as provided by Pepperl+Fuchs GmbH.

D1 V&V plan FS-0020EA-22B, 22-Jan-2010
D2 P+F P02 Product Life Cycle P02-03 Development
D3 Requirements Profile FS-0020EA-28B, (DDE-1501E) 13-Jan-2010
D4 Design Specification – HiC2841 & HiC2842 DDE-1501E5, 12-Jan-2010
D6 Circuit Diagram / Bill of Material FS-0020EA-26C9, which is based on 01-8417A, 15-Jul-2009
D7 Fault Insertion Test results FS0020EA-26C6, 18-Feb-2010
D8 Safety Manual 221276/ DOCT-1877A 03/2010
D9 Data sheet(s) FS-0020EA-33_2, 15-Jan-2010 214234_ENG
D10 Development Process -
D11 V&V Test Specification FS-0020EA-29A, 04-Mar-2010
D12 V&V Test Results FS-0020EA-30A, 04-Mar-2010
D13 FMEDA / Fault Insertion Test (specification) FS-0020EA-26C5, 18-Feb-2010
D14 Test – Selection for product qualification PRDE-9934A, 15-Sep-2009
D15 Test report – Elektromechanical and Environmental PRDE-A301A, 11-Nov-2009

The supporting services delivered by exida Certification S.A. were documented by the following documents / databases.

R1 Assessment & Document Review comments R010 V0R8 P+F 0905-35R1C
R2 P+F 0905-35R1-C R011 Assessment report HiC2841 & HiC2842 (this document)
R3 P+F 0905-35C R009 Assessment plan - DDE-1501, V1R0 October 2009
R4 P+F 0905-35R1-C R004 Assessment Recommendations V3R1
7 Status of the document

7.1 Releases

Version History:
V0R1 Initial Report 22-Mar-2010
V1R0 Updated after review by P. Müller and P+F, 15-Apr-2010.
V1R1 Report harmonized for Pepperl+Fuchs 29-Sep-2010

Author: Audun Opem, Peter Söderblom

Review: V0R1 Peter Müller, exida Certification S.A.

Release status: Released