
IC-KP-B12-V45
Implementation to a
SIMATIC S-7 400 PLC

FACTORY AUTOMATION

MANUAL

With regard to the supply of products, the current issue of the following document is applicable: The
General Terms of Delivery for Products and Services of the Electrical Industry, published by the

Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie
(ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation

of proprietorship"

IC-KP-B12-V45

IC-KP-B12-V45
Contents

 20
11

-0
1

3

1 Safety... 4
1.1 Symbols relevant to safety ...4
1.2 Intended use..4
1.3 General notes on safety..4
1.4 Contact protection..5

2 Installation... 6
2.1 Equipment and devices ...6
2.2 Configuration and Installation...6
2.3 Configuration of the PLC..7

3 Commands.. 12
3.1 Types of Commands ..12
3.2 Command Cycle ..12
3.3 Command Structure...13
3.4 Execution of the Initialization..14
3.5 Execution Single Command...15
3.6 Execution Enhanced Command ..16
3.7 Execution Special Command...17
3.8 Execution Error Analysis ..18

4 Used Modules and Functionality 19
5 Organization Block OB 1.. 21
6 Function Block "IDENTControl“ 22

6.1 Procedure Start-UP-Sequence ..23
6.2 Procedure Initialization...25
6.3 Procedure Timeout Control..28
6.4 Procedure Variable Transformation IN- to STAT-Variables30
6.5 Procedure Read Data ..32
6.6 Procedure Command Allocation of Head 1..34
6.7 Procedure Command Execution of Head 1..37
6.8 Procedure Restart Routine...39
6.9 Procedure Analysis of Function FC 50 ...41
6.10 Procedure Analysis of Function FC 60 ...43
6.11 Analysis of Input Data Fields..45

7 Appendix ... 47
7.1 Listing of Parameter ...47

7.1.1 Input Parameter (IN-Parameter)..47
7.1.2 Pass Parameter (IN-OUT-Parameter) ...47
7.1.3 Static Parameter (STAT-Parameter)...48

7.2 Command List ...50
7.3 Code/Data Carrier..51

IC-KP-B12-V45
Safety
 20
11

-0
1

1 Safety
1.1 Symbols relevant to safety

1.2 Intended use
The IDENTControl IC-KP-B12-V45 is a control interface including an Ethernet
interface for identification systems. The device can be used as a control cabinet
module or for field applications. Besides the Ethernet connection, suitable
inductive R/W heads, microwave antennas or trigger sensors can be connected.
Wiring suitable for the system design must be used.

1.3 General notes on safety
Only instructed specialist staff may operate the device in accordance with the
operating manual.
Independent interventions and separate modifications are dangerous and will
void the warranty and exclude the manufacturer from any liability. If serious faults
occur, stop using the device. Secure the device against inadvertent operation. In
the event of repairs, send the device to Pepperl+Fuchs.
The connection of the device and maintenance work when live may only be
carried out by a qualified electrical specialist.
The operating company bears responsibility for observing locally applicable
safety regulations.
Store the not used device in the original packaging. This offers the device optimal
protection against impact and moisture.
Ensure that the ambient conditions comply with regulations.

Danger!
This symbol indicates a warning about a possible danger.
In case of ignoring the consequences may range from personal injury to death.

Warning!
This symbol indicates a warning about a possible fault or danger.
In the event the warning is ignored, the consequences may course personal injury
or heaviest property damage.

Caution!
This symbol warns of a possible fault.
In case of ignoring the devices and any connected facilities or systems may be
interrupted or fail completely.
4

IC-KP-B12-V45
Safety
 20
11

-0
1

1.4 Contact protection
Our housings are manufactured using components made partly or completely
from metal to improve noise immunity.

Note!
Disposal
Electronic waste is hazardous waste. When disposing of the equipment, observe
the current statutory requirements in the respective country of use, as well as local
regulations.

Read head IDENTControl
Compact

Danger!
Electric shock
The metallic housing components are connected to ground to protect against
dangerous voltages that may occur in the event of a fault in the SELV power
supply!
5

IC-KP-B12-V45
Installation
 20
11

-0
1

2 Installation
2.1 Equipment and devices

In the following table you can find all components which are necessary to connect
the identification system IDENTControl IC-KP-B6 to SIMATIC S7-400 PLC with
Ethernet interface.

The equipment is an extract of the test composition explained in this manual. The
commissioning of the IDENTControl IC-KP-B12-V15 can also be execute by other
PLC devices with the same functionality. You can get information of the installation
of the PLC devices out of the manuals of the PLC.

2.2 Configuration and Installation
Following graphic shows the installation of the hardware equipment.

Figure 2.1: Installation of the hardware equipment

Equipment Manufacturers name
Simatic S-7 400 power supply PS 407 4A
Simatic S-7 400 CPU CPU-412-2
Simatic S-7 400 communication processor CP 443-1
Control interface unit IDENTControl IC-KP-B12-V45
4 x read / write heads IQH-18GM-V1
4 x connection cable read / write heads V1-G-0,6M-PUR-V1-W
Network cable V45-G-10M-V45-G
Data carrier IQC21-58
1 x connection cable IDENTControl V1-G-2M-PUR

Table 2.1: Used hardware equipment

PLC IDENTControl

Network cable

Connection cable

Read-/
write
head

Data carrier

Ind.

Ind.

Ind.

Ind.
6

IC-KP-B12-V45
Installation
 20
11

-0
1

Installation
1. Firstly connect the cables of the read/write heads to the associated females of

the IDENTControl.
2. Consider the distance between two heads because the heads influence eacht

other.
3. Take the accurate distance out of the data sheet of the head.
4. Consider that the data carriers are located in the detection range of the

read/write heads. But take also care that there is only one carrier inside the
detection range of the head.

5. Afterwards connect the IDENTControl to the power supply 20…30 VDC.
6. Finally establish a communication access between IDENTControl and PLC by

the Ethernet Network cable.

2.3 Configuration of the PLC
In this chapter the description of the Hardware configuration takes place inside
the Software “SIMATIC Manager“.
The configuration is shown with an example.
Adjust the parameters of the operational environment for their specific
configuration.
Set the parameters directly on the control panel buttons of the IDENTControl.
To parameterize the IDENTControl see the "Manual IC-KP-B12-V45" on
www.pepperl-fuchs.com.
Consider that there are already set default parameters in the delivery status of the
IDENTControl. You can get this default setting out of the "Manual IC-KP-B12-
V45", too.
The following table is a list of the example's setted parameter.

Note!
You don't get more information about the build-up of the different PLC equipment.
For more information about the commissioning see the manual "PLC S7-400
Installation guide". For more information about the installation of the IDENTControl
see the "Manual IC-KP-B12-V45" on www.pepperl-fuchs.com.

Parameter Value
IP address IDENTControl 172.16.11.25
IP address S7-400 PLC 172.16.11.26
Net mask 255.255.0.0
IP address Router 172.16.11.222

Table 2.2: Parameter of hardware configuration
7

IC-KP-B12-V45
Installation
 20
11

-0
1

Commissioning PLC
1. For commissioning the IDENTControl you have to start a new project.
2. After the start of the new project the components of the PLC have to involve

into the Hardware Configuration.
3. Firstly the SIMATIK 400 Station has to be implementing.

Figure 2.2: Integration SIMATIC400 station

4. Afterwards the hardware configuration is called up by double click on the
symbol “Hardware”.

5. Afterwards the hardware configuration is called up by double click on the
symbol “Hardware”. Insert the required components rack, power supply, CPU
as soon as communication processor into the hardware configuration.

 The following picture shows the involvement of the hardware components.

Figure 2.3: Hardware configuration

6. In the next step the attributes of the communication interface of the
communication processor CP443-1 must be defined. For this you must open
the attributes window of the CP443-1. The window opens by double click of
the associated symbol in the picture above.

7. In the window the active attributes are shown. To change the active attributes
you must click the button "Attributes“.

 A window opens. In this window the parameter of the Ethernet interface of
the communication CP adjusted.
8

IC-KP-B12-V45
Installation
 20
11

-0
1

Figure 2.4: Adjustment Ethernet interface PLC

8. The appropriate IP address and the subnet mask must be defined.
9. The net gateway must be defined. The gateway is realized by a Router and

the appropriate label must be selected.
10. The address of the Router has to insert in the intended field.
11. The subnet have to be networked. The new adjusted parameters memorised

by the button “OK”.
12. The IDENTControl has to be connected to the communication network. The

connection is realised by the assortment "Other Station“. The insertion of the
“Other Station” can either made inside the SIMATIC-Manager or inside the net
configuration NetPro.

13. Inside the net configuration the item "Other Station“ have to be insert in the
field of the communication members. The item can name accorded to the
IDENTControl "IC-KP-B12-V45“.

 Thereby following view accrued.

Figure 2.5: Integrating IDENTControl inside netconfiguration NetPro

14. By double click to the symbol “IC-KP-B12” you reach inside the menu to
adjust the communication.

15. With the slider “Interface” you can define the interface of the IDENTControl.
For this you must select with the button "New" the interface type "Industrial
Ethernet“.
9

IC-KP-B12-V45
Installation
 20
11

-0
1

 Afterwards a window opens where the IP address of IDENTControl and
Router can be defined. For the adjustment it applies to consider that the
Ethernet subnet with the button “New” is connected.

Figure 2.6: Adjustment of Ethernet interface IDENTControl

16. The attributes of the net are active by click on the button "OK“.
17. Inside the net configuration the new network connection is to insert in the

connection table of the CPU. The connection table is inside the net
configuration NetPro under the field of the communication members.

Figure 2.7: Net configuration with connection table

18. By click to the right on the first line of the connection table you reach inside a
menu selection. Here you must chose the selection "Insert new
connection“and click on the symbol.

 Afterwards following window opens.
10

IC-KP-B12-V45
Installation
 20
11

-0
1

Figure 2.8: Communication members

19. Adjust the members of communication.
20. A member of the communication network is “Other Station“ or “IC-KP-B12-

V45“.
21. The connection type is "TCP-Connection“.
22. The adjusted parameters are accepted by click on the button "Accepting“.

 Than a window “Attributes TCP-Connection” opens. With the slider
“general“ the activated communication number is shown.

23. Open the slider "Address“.

Figure 2.9: Adjustment port number

24. The port numbers of the communication members must be defined. The
IDENTControl have got two different port numbers 10000 and 10001. If you
chose port 10000 the length of a telegram is 34 Byte. And if you select port
10001 the telegram length is 66 Bytes.

 Now the hardware configuration is finished.
11

IC-KP-B12-V45
Commands
 20
11

-0
1

3 Commands
3.1 Types of Commands

There are two types of commands of the IDENTControl executed by the PLC
program. You can differentiate between a single command and an enhanced
command.
Single command
If there is a code/data carrier in the detection range of the read/write head, the
command execution will only take place once.
If there isn't any code/data carrier in the detection range of the read/write head,
the command execution will be retried by the PLC program until the command is
completely executed or the maximum number of retries is exceeded.

Enhanced command
The command execution, which is necessary for different applications, will be
retried by the PLC program until the process will be canceled by a Quit command.

3.2 Command Cycle
The PLC program transmit command parametres which are necessary for the
execution of a command to the IDENTControl.
The IDENTControl accepts this command and sends a status response (FF)h
back to the PLC.
The status response signalize that the IDENTControl is accepting and editing the
command.
Afterwards the IDENTControl transmits the command to the specific read/write
head and waits for a response of the head.
The response of the head passes to the PLC by the IDENTControl.
Received files will be evaluated within the PLC and made available to the user.
The IDENTControl transfers replies to the PLC during the implementation of an
enhanced-command as long as the command will be canceled.

Note!
The maximum number of retries has to be set by the user in order to prevent a
hangup of the read/write head caused by the continuing command execution.
12

IC-KP-B12-V45
Commands
 20
11

-0
1

3.3 Command Structure
Before the IDENTControl can execute a command you have to transmit the
command parameter to the IDENTControl. The command parameters are
structured byte by byte and form a command telegram. The number of transmitted
parameters and the command code is different but the command structure is
always the same. The following chart shows the structure of the command
telegram of a single read data command. This telegram will be transmitting by the
PLC to the IDENTControl and cause the import of Data.

The first two Bytes of the telegram comprised the length of the telegram. This is
realized by the parameters #Head_X.OutData.TelegrammLengthHigh and
#Head_X.- OutData.TelegrammLengthLow. Inside the parameter
#Head_X.OutData.CommandCode is the command identification number of the
command which is to be executed by the IDENTControl. For execution of a Single
Read Data command the command identification number is binary coded
(10000)b. A detailed description of the different command identifications is inside
the manual “IDENTControl IC.KP-B6” or in the command list in the addendum of
this manual. With the parameter #Head_X.OutData.Channel two different
command attributes were transmitted. By the high nipple the number of read/write
data blocks is defined. The number of the data blocks is inside the variable
#Head_X.WordNum and is transferred inside the FB into this parameter. The
data blocks have got a double word format and a size of 4 Bytes. The maximal
number of transmitted data blocks depends on the port definition inside the
Hardware configuration. By the definition of port 10000 you can maximal transmit
7 data blocks. In this example the definition port 10001 is used. So you can
maximal transmit 15 data blocks. Inside the low nipple is the information on which
head the command has to be executed. The following chart list the different
channel codes to respond the different heads.

Byte Contents / Variable Bit Allocation
0 #Head_X.OutData.TelegrammLengthHigh 0 0 0 0 0 0 0 0
1 #Head_X.OutData.TelegrammLengthLow 0 1 0 0 0 0 1 0
2 #Head_X.OutData.CommandCode 0 0 0 1 0 0 0 0
3 #Head_X.OutData.Channel Number data words Channel number
4 #Head_X.OutData.Wordadr_High Start address high Byte
5 #Head_X.OutData.Wordadr_Low Start address low Byte
6..65 #Head_X.OutData.DW 1 ... DW 15 unused

Table 3.1: Structure telegram single read data command

Read / Write Head

Coding

dez dual
1 2 (0010)
2 4 (0100)
13

IC-KP-B12-V45
Commands
 20
11

-0
1

By the coding of the channel you consider that the LSB is the Toggle bit. But if the
communication between IDENTControl and PLC is realized by TCP/IP the Toggle
bit is not used. The parameters #Head_X.OutData.Wordadr_High and
#Head_X.OutData.Wordadr_ Low define a start address. Starting from that the
data blocks can read or write. So you can respond different memory areas on the
data carrier. The parameters #Head_X.OutData.DW1...DW15 contained the
data. But by the execution of the Single Write command this parameters are not
used. The IDENTControl responds after the acceptation of the command
telegram with a response telegram. The structure of the response telegram is
shown in following table.

The response telegram send back the first four Bytes of the command telegram.
Also the response telegram contained a status message. The status message
gives information about the execution of the command. With the help of the Event
counter the number of command events can determine. The Event counter will be
increment on every command event. A command event is for example a status
change from 00h to FFh. The other parameter of the response telegram contains
the import data. The number of import data depends on the parameterization
inside the Hardware configuration.

3.4 Execution of the Initialization
Initialization
1. At the beginning of the treatment of the function block initialize the read/write

heads.
2. Perform the initialization for each head in turn.

3 6 (0110)
4 8 (1000)

Table 3.2: Channel coding of the Read / Write heads

Byte Contents / Variable Bit Allocation
0 #Head_X.InData.TelegrammLengthHigh 0 0 0 0 0 0 0 0
1 #Head_X.InData.TelegrammLengthLow 0 1 0 0 0 0 1 0
2 #Head_X.InData.CommandCode 0 0 0 1 0 0 0 0
3 #Head_X.InData.Channel Number data words Channel number
4 #Head_X.InData.Status Status
5 #Head_X.InData.ExecutionCounter Event counter
6..(33)
65

#Head_X.InData.DW 1 ... DW (7) 15 00 ... FF

Table 3.3: Structure response telegram Single-Read-Data command

Read / Write Head

Coding

dez dual
14

IC-KP-B12-V45
Commands
 20
11

-0
1

 During the initialization routine a change tag command will be sent to the
IDENTControl. This command informs the head which tag he is talking to.

Based on the state response the functional block recognizes whether a read/write
head is connected to the appropriate channel.
If the initialization for one head is finished, the bit #Head_X.ExistTC or
#Head_X.NotExist will be set.
The bit #Head_X.ExistTC will be set, if a read/write head is connected to the
appropriate channel. Otherwise the bit #Head_X.NotExist is set.
During the execution of the initialization consider that the correct Tag ID has to be
assigned.

 The Tag ID is assigned to the variable #Head_X.TagType
The Tag ID is assigned to the variable #Head_X.TagType and specified by the
user. The indication of the Tag ID taken place inside the program in hexadecimal
form. The Tag ID of all tag useably you can see in the manual "IDENTControl IC-
KP-B12-V45“near to the description of the change tag command. It is to be
considered that the tag ID inside the manual is in ASCII form. The transformation
into hexadecimal form can be making with the help of the ASCII chart inside the
manual. The Tag ID can also get out of the addendum of this manual. After
successful finished execution of the initialisation of all heads a command can
execute by the IDENTControl.

3.5 Execution Single Command
A single command is executed by the IDENTControl for one time. For execution of
the command it is necessary to the command parameter of the head specific data
field inside the PLC to the IDENTControl. Before the out data field is sent to the
IDENTControl it has to assign with the associated command parameter and data.
To the command structure here is no more information. For more information see
the section “Command Structure”.
Before execution of a single command the user has to configure different IN
variables. The parameter #HeadXDataFixcode specifies whether an access to the
memory area (#HeadXDataFixcode = 0) or an access to the Fixcode
(#HeadXDataFixcode = 1) is executed. A single command is executed if the
variable #HeadXSingleEnhanced is not set. The command execution starts by
setting the variables #HeadXRead or #HeadXWrite. By setting on of these two
parameters the command assignment inside the function block is started.
Afterwards the out data field with the command parameters transferred to the
IDENTControl and executed. The IDENTControl sent after accepting of the
command telegram a status massage back to the PLC. The status massage is
used inside the function block to realize an error analysis. The exact meaning of
the specific status values is inside the manual “IDENTControl IC-KP-B12-V45”.
By the analysis of the status values specific status bits can be generated. On the
basis of the status bits you can get information about the execution status of the
executed command.
15

IC-KP-B12-V45
Commands
 20
11

-0
1

The status bit #Head_X.Busy point out that the command is executed by the head
at the moment. If the Bit is set, no other command can executed on this head. This
bit is reset inside the function block if a command execution is finished by the
IDENTControl.
The end of the command execution is identified by the status bit #Head_X.Done.
After finalization of the command execution of the IDENTControl the bit is
automatically set inside the function block. A new command execution is only
possible if the bit #Head_X.Busy is not set and the bit #Head_X.Done is set. If
there is no data carrier is inside the field of the head by execution of a command,
the status bit #Head_X.NoDataCarrier would set. Than the command execution is
automatically repeated by the IDENTControl. The maximum number of repetitions
is defined by the user with the help of the variable #RetrySingleCommand.
Maximum number applies for all heads.
If a Timeout existed by the command execution the bit #Head_X.TimeoutOccured
is set. A Timeout existed, if the command execution is not finished in the time
period defined by the IN-Variable #Timeout. This considered as an Error and the
bit #Head_X.Error is set.
The bit #Head_X.Error signalizes the occurrence of an error in the command
execution of the IDENTControl. Once the bit is set, the associated head is locked
for other command executions. The blockade can disabled by the IN-Variable
#QuitError- HeadX.
The import user data located inside the function block in the data field
#Head_X.InData.DW1…DW15. After finalization of the command execution the
import data can use.
The user data, which to be written on the data carrier are inside the data field
#Head_X.OutData.DW1… DW15. The user data can be defined the user and
have to be allocated before the start of the command execution. The settings,
which are necessary for the execution of a single command, can be seen in the
command list in the addendum.

3.6 Execution Enhanced Command
An Enhanced command is executed by the IDENTControl as long as the
command is abort by a quit command. By the execution of the enhanced
command the Reading / Writing as the data transmitted to the data carrier or the
data imported. In contrast to the single command the enhanced command
remains active after the Reading / Writing. After the data carrier leaves the field of
the head a "new“ one can be write or read by the head. But only one data carrier
can stay at the same time inside the field of the head.
For the execution of the Enhanced command different In-Parameter has to be
defined. Compared to the single command the parameter #HeadXDataFixcode
define whether an access to the memory area (#HeadXDataFixcode = 0) or the
Fixcode (#HeadXDataFixcode = 1). The variable #HeadXSingleEnhanced = 1
specifies the execution of an enhanced command. The variable has to be set
before beginning of the command execution. By setting the variables
#HeadXRead or #HeadXWrite the command execution is started.
16

IC-KP-B12-V45
Commands
 20
11

-0
1

The command already executed by the IDENTControl. This is signalized by the bit
#Head_X.Busy. The bit is set as long as the command is executed or aborts by an
error or quit command.
The bit #Head_X.Done signalizes by the execution of an enhanced command that
the Reading / Writing of a data carrier is finished. In contrast to a single command
this bit not signalizes the end of a command execution. If a data carrier leaves the
field of the head, the bit #Head_X.Done automatically reset but the command is
already active.
The execution of a new command is only then possible if the bit #Head_X.Busy is
reset and the bit #Head_X.Done is set. This condition is reached after the
execution of a quit command.
As the execution of a single command the user data which written to the data
carrier are inside the data field #Head_X.OutData.DW1… DW15. The Output data
have to be defined before the execution of an enhanced command is started. A
change of the output data has no influences of the execution of the enhanced
command.
The input data stored in the data field #Head_X.InData.DW1…DW15 of the data
block. The settings, which are necessary for the execution of an enhanced
command, can be seen in the command list in the addendum.

3.7 Execution Special Command
By using the Special command the user can parameterize a command single
handed. Primary the command is used to execute commands which are not
executable with the command list of the function block. But you can also execute
standard read / write commands with the help of a special command.
Before starting the execution of a special command the command parameter
have to transfer into a particularly data field (#Head_X.SpecialCommand) inside
the instanz data block. The command code of command which can be executed
have to assigned to the variable #Head_X.SpecialCommand.Code. The
assignment of the channel identification is not necessary for the execution of a
special command. An appropriate assignment is making automatically inside the
function block. During the execution of a read / write command the variable
#Head_X.SpecialCommand.Channel contains the number of transferred data
blocks. The number is inside the high nipple of this variable.
For the parameterization of a special commend there are further variables to use.
With the variables #Head_X.SpecialCommand.Parameter1… 6 you can assign
further command parameter.
More information you get out of the manual “IDENTControl IC-KP-B12-V45”. The
execution of a special command is started by setting the IN-Variable
#HeadXSpecialCommand. Afterwards the data field #Head_X.SpecialCommand
assigns to the output data field #Head_X.OutData and transmitted to the
IDENTControl. Following the transmitted command is executed. If an enhanced
command is executed with the help of a special command the command have to
abort by a quit command at the appropriate head.
17

IC-KP-B12-V45
Commands
 20
11

-0
1

With the help of the special command you can transmit commands to the
IDENTControl which are not executed by the heads. These command called
IDENTControl commands and they used to parameterize the IDENTControl. An
example for this command is the Set Multiplexed Mode command. As a special
command the parameter of the command is inside the data field
#Head_1.SpecialCommand. The commands are not executed by the heads, so
that is no channel identification is necessary. The execution of the IDENTControl
command starts by setting the INVariables #Head1SpecialCommand and
#IC_Command_on_Head1. Following the data field #Head_1.SpecialCommand
transferred to the output data field #Head_1.OutData and sends to the
IDENTControl and execute.

3.8 Execution Error Analysis
It can be possible that an error occur by the execution of a command. The function
block offers the possibility to analyse the occurred error. If an error occurred the
bit #Head_X.Error is set. Afterwards the associated head is disabled for any
command executions. To analyse the command error different parameter exist. In
the following table different parameters listed to analyse the error.
In der nachfolgenden Tabelle sind die verschiedenen Parameter zur
Fehlerauswertung aufgeführt.

The error locking of the head can enabled with the execution of a quit command.
The quit command starts by setting the IN-Variable #QuitErrorHeadX. By this
command all bits are reset which disable the command execution. Afterwards the
commands can execute if no error caused a new error locking.

Parameter Meaning
#Head_X.Error Error command execution
#Head_X.InvalidResponse Invalid response of IDENTControl
#Head_X.TimeoutOccured Timeout exhausted
#Head_X.Error_FC_Recv Error execution FC 60
#Head_X.Error_FC_Send Error execution FC 50
#Head_X.RetVal_FC_Recv Error code FC 60
#Head_X.RetVal_FC_Send Error code FC 50
#Memory_Error_FC_Recv Error execution FC 60
#Memory_RetVal_FC_Recv Error code FC 60
#DynErrorTCPConnection Failure in the communication
#Error_FC_Recv Error execution FC 60
#Ret_Val_SFC20 Error code SFC 20

Table 3.4: Error Analysis
18

IC-KP-B12-V45
Used Modules and Functionality
 20
11

-0
1

4 Used Modules and Functionality
The connection of the IDENTControl to a PLC is realised by a function block. The
function block is user programmable and can optimize of associated application.
The data, which are necessary by the execution of the function block, are
memorized into an instanz data block. Also there are different other system
functions with different functionality necessary to realize the communication
between the IDENTControl and the PLC. Following table shows used blocks and
their functionality.

The correlations between the different blocks are shown in the following picture.

Block Type Function
OB1 Organization Block Cicely goes through by the operating

system.
FB 10
"IDENTControl"

Function Block Operate the communication between
the IDENTControl and the PLC.

DB 10
"InstDB"

Data Block Memorize local data.

FC 50
"AG_LSEND"

Function Sending of data over parameterized
Ethernet connection.

FC 60
"AG_LRECV"

Function Receiving of data over parameterized
Ethernet connection.

SFC 20
"BLKMOV"

System Function Coping of memory area.

SFB 5
"TOF"

System Function Block Realize release delay.

SFC 58
"WR_REC"

System Function Writing data block to device.

SFC 59 "RD_REC" System Function Reading data block from device.

Table 4.1: Used Blocks and Functionality
19

IC-KP-B12-V45
Used Modules and Functionality
 20
11

-0
1

Figure 4.1: Correlation of the Blocks

In this graphic you see the different blocks and the data flow exchange between
the IDENTControl and the PLC. The data fields which are appropriate to a head
are divided into an input and output data field. The sending of data to the
IDENTControl is realised by the function FC 50. This function transmits data over
a parameterized connection. Inside the function the SFC 58 is called. With the
help of the SFC 58 data transferred to the device. By sending data to
IDENTControl a release delay (SFB 5) is activated to check the response time of
the IDENTControl. The receiving of the data is realised by the system function FC
60. Inside the function the SFC 59 is called. The SFC 59 import data from a
parameterized device. The release delay is disabled as data import from the
IDENTControl. The import data memorised in the memory data field inside the
instanz data block. Afterwards the data analysed and copied by the system
function SFC 20 in the head specific input data fields.
20

IC-KP-B12-V45
Organization Block OB 1

 20
11

-0
1

21

5 Organization Block OB 1
The organization block OB 1 is cyclical passing through by the operating system.
The OB 1 is the interface between the operating system of the CPU and the user
program.
Firstly the data carrier identification is transferred into the instanz data block. The
assignment of the data carrier is neccessary for the initialisation routine and has to
assign before starting the initialisation. By the assignment of the carrier
identification must considered that the identification is in hexadecimal form. The
carrier identification is transferred to the variable #Head_X.TagType. The
assignment of the carrier identification is necessary for all connected heads.
Afterwards the number of transferred data block must be assign. The number of
transferred data blocks is depends on the hardware configuration. The user can
define the number within the given boarders. The assignment is transmitting into
the variable #Head_X.WordNum. You must consider that the number is fort he
time period of command execution is constantly.
In the next step the function block "IDENTControl“ and the associated data block
"InstDB“ is called. Both blocks are called with the function call "Call“. Example:
Call "IDENTControl“, "InstDB“
The function block is able for multiinstanz. Multiinstanz is that you can assign
different data blocks for the function block. So you can connect several
IDENTControl to the PLC with the help of on function block. For this you must call
the function block for several times.
Example: Call "IDENTControl“, "InstDB1“ Call "IDENTControl“, "InstDB2“

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6 Function Block "IDENTControl“
The function block “IDENTControl” has got the task to connect the identification
system IDENTControl to the PLC. The function block is user programmable.
Thereby the functionality of the function block can adjust to the application of the
customer. The function block is divided in several networks. Following chart
shows the several networks and the functionality.

Network Function
1 Start-Up-Sequence
2 Initialization Head 1
3 Initialization Head 2
4 Initialization Head 3
5 Initialization Head 4
6 Timeout Control
7 Transformation IN- to STAT-Variables
8 Import the response
9 Command Allocation Head 1
10 Command Allocation Head 2
11 Command Allocation Head 3
12 Command Allocation Head 4
13 Command Execution Head 1
14 Command Execution Head 2
15 Command Execution Head 3
16 Command Execution Head 4
17 Restart-Routine
18 Acceptation
19 Error-Routine
20 Analysis FC 50
21 Analysis FC 60
22 Analysis Input Data Fields

Table 6.1: Networks of the Function Block “IDENTControl”
22

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.1 Procedure Start-UP-Sequence

Figure 6.1: Program flow chart Start-Up-Sequence

The Start-Up-sequence of network one has the task to recognizes if the heads of
the IDENTControl are already initialised. With the help of the initialization the
function block checked which heads are connected to the IDENTControl.
23

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

At the beginning of the network the value of the telegram length (IN-variable
#TCP_Telegrammlength) transferred to the variable #Head_X.OutData.-
TelegrammLengthLow inside the out data field.
Secondly the bit #SetRestart is checked. The condition of a restart is fulfilled, if
the bit is set. Then the program jump to the point res in the network 19.
If there is no restart of the function block the bit #InitFinish is checked. The bit is
set, if the initialization is finished for all heads. In this way the program jumps to
point end into network 6 to the Timeout Control. Also there is a jump to point end if
the bit #Start is not set. The bit #Start signalize that a restart was done before.
In the next part the successful initialization finish of each channel is checked. For
this the bits #Head_X.Exist and #Head_X.NotExist are checked. If one of them is
set the initialization is finished. The head is connected to the IDENTControl if
#Head_X.Exist is set. There is no head connected to the IDENTControl if
#Head_X.NotExist is set. The check is doing for all heads. If the check for all
heads is finish the bit #InitFinish is set. This bit signalizes the successful ending of
the initialization of all heads. Afterwards the bit #Start reset.
Now the Start-Up-Sequence is finished and the initializations of each head
followed if they are not done in the cycles before.
24

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.2 Procedure Initialization

Figure 6.2: Program flow chart Initialization Head 1
25

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

The program part initialization is necessary to recognize if a head is connected to
a channel of the IDENTControl. Inside the Initialization the change tag command
is send to the IDENTControl on the appropriate channel. With this command the
carrier identification is transmitted to the IDENTControl. In the following the
initialization for channel 1 is described. The initialization for the other heads is
analogue.
In the first part of this network the initialization of channel 1 is checked. For it the
bits #Head_1.Exist and #Head_1.NotExist are checked. If one of them is set, the
initialisation of channel 1 is finished and the program jump to point ini2. At this
point there is the initialisation check of head 2.
If the initialisation is not finished successfully the bit #Head_1.SendOK is
checked. If this bit is set the change tag command is send to the IDENTControl in
the cycles before. Now the command no more does not have to be sending to the
IDENTControl so the program jumps to point rec1. With this jump the parameter
loading into the out data field and the sending to the IDENTControl is avoided.
Afterwards of the check of the status bits the command parameter of the change
tag command transferred into the out data field of head 1.
After the parameter transfer the status bits are set or reset. Setting #Head_1.Busy
signalize that a command is executed at channel 1 at the moment. By setting the
bit #Head_1.TimeoutActive the timeout control is prepared.
After transferring the command parameter and setting the status bits the
command is transmitted to the IDENTControl. The sending of the data via TCP/IP
is realized by the function FC 50. Before the function is called, the function has to
parameterize. The parameterization is doing by an ANY parameter. Afterwards the
function FC 50 is called. After a successful execution the bit #Done_FC_Send_1
and the program jumps to the point aus1 to the network 20. At this point an error
analysis is executed. After a successfully execution of the error analysis and no
error is recognize the program jump back to the point F501 in network 2.
If the function is already in progress the bit #Done_FC_Send_1 is not set and the
program jumps not to the error analysis. Instead the program jumps directly to
point F501. At point F501 the program checked the bit #Head_1.SendOK whether
the bit is set. The bit is set if the execution of the function FC 50 is successfully
finished and without errors. In this case the further processing of the program is at
point rec1. But if the bit #Head_1.SendOK is not set, the program jumps to the
timeout control in network 6.
After the successful sending of the command parameter to the IDENTControl the
import of the response followed. The import of the received data is realised by the
function FC 60.
Firstly the value 0 is transferred to the variable #FC_Recv_Call. With the help of
this variable the program realized the return to point F601 into this network. The
necessary parameterization is transferred into the ANY parameter. Afterwards the
function FC 60 is called. After a successfully execution of the function the bit
#NDR_FC_Recv is set and the program jumps to point aus5 into network 21. At
this place an error analysis for the function executes. After the correct execution of
the analysis and no error is detected the return to point F601 into network 2
following.
26

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

If the function is already in progress, the bit #NDR_FC_Recv is not set and the
program does not jump to the error analysis. Instead the program jumps directly to
point F601.
At point F601 the variable #Head_1.TimeoutActiv is reset. Afterwards the value 0
transferred to the variable #Analyse_Call. With the help of this variable the return
to point ana1 inside this network is realized. Than the program jumps to point lyse
into network 22. There the received data from the IDENTControl were analysed.
After the analysis of the received data the program returns to point ana1 into
network 2.
At this point the analysis of the status value executed. The response of the
IDENTControl contains a status value. With the analysis of the status value you
get information about the command execution of the IDENTControl. The status
value has got a length of one byte and contains in the variable
#Head_1.InData.Status. If the value of the status (06)h, then no head is connected
to the IDENTControl on this channel and the bit #Head_1.NotExist is set.
Because that no head is connected the status bits #Head_1.ExistTC and
#Head_1.Error are reset. Afterwards the bit #Head_1.Done is checked, whether
the bit is set. This bit signalizes, that new data can be analyse on head 1. Also the
bit #Head_1.NotExist is checked, whether it is not set. If the two conditions are
fulfilled a read write head is connected to channel 1 of the IDENTControl and the
bit #Head_1.ExistTC will be set. Finally the program jump to point end into
network 6 to the timeout control. After the processing of this part the initialization
of head 1 is finished. In the next cycle the initialisation of head 2 follows unless it is
not processing.
27

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.3 Procedure Timeout Control

Figure 6.3: Program flow chart Timeout Control

The Timeout Control has the task to check the maximal response time of the
IDENTControl. Another task is to display an error notice if the timeout exhausted.
In the following describes the Timeout Control for head 1. The other heads are
analogue.
28

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

Firstly the bit #Head_1.TimeoutActiv is checked whether it is set and the bit
#timeout1_ flag whether it is not set. The assignment result is transferred to the
variable #timeout1_start. If the condition is fulfilled, so the variable
#Head_1.TimeoutActiv is reset. Otherwise only the setting of
#Head_1.TimeoutActiv is checked. The assignment result transferred to the
variable #timeout1_flag. Afterwards the bits #timeout1_ start and #Head_1.Busy
are checked whether both bits are set. The result transferred to the variable
#timeout1_on.
In the next step the system function block SFB 5 is called. This function creates a
falling delay on output Q. The variable effects a rising edge on input IN thereby is a
rising edge on output Q (#timeout1_running). If a falling edge on input IN so exist
a falling edge on output Q after elapse the time PT #Timeout.
Next the bit #Head_1.Busy whether it is set and the bits #Head_1.ReceivedOK,
#timeout1_running and #timeout1_start whether they are not set. If the check is
successful, the timeout is exhausted and an error notice followed. Then the bits
#Head_1.TimeoutOccured, #Head_1.Error and #Head_1.Done are set. The bits
#Head_1.SglCommandActiv, #TransfToHead1, #Head_1.Busy and
#Head_1.TimeoutActiv are reset.
This network realizes a falling delay. The delay condition is defined whether the
bits #Head_1.TimeoutActiv and #timeout1_flag are not set. Another condition is
that the bit #Head_1.Busy has to be set. Both Head_1 bits are set when the
function FC 50 is called. The variable #timeout1_flag signalize that the timeout is
running at the moment and could not be extended.
29

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.4 Procedure Variable Transformation IN- to STAT-Variables

Figure 6.4: Program flow chart Transformation of variables

This part has the task to change the IN variables into static variables. This change
is necessary because the state of the IN variables can oscillate. A consequence
of it can be a start of a new command while the old command still executed.
Another disadvantage of the IN variables is, that they can not manipulated by the
function block.
30

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

Thus the command which started by the IN variable executed for the holy time the
IN variable is set. An answer of this problem is a flank control.
If a positive edge of the IN variable is detected the change into the corresponding
STAT variable following. The STAT variable is a local variable inside the function
block. The STAT variables have the advantage that they can manipulate inside the
function block. After the execution of a command the STAT variable is reset and a
new command can be started.
At first the variables #InitFinish and #Start are checked whether they are not set.
This condition is fulfilled when the initialisation of the heads is not finished and the
Restart routine was not implemented yet. Consequently the bit #Restart is set and
the program jump to the point end1 to the end of network 16. There the Restart
routine is started.
Otherwise the bit #InitFinish is checked. The user can initiate the restart of the
function block by reset this bit. If the initialization is not finished a jump to the
restart routine followed and the initialisation is added in the next program cycle.
If the initialisation already successful finished the change of the variables
followed. Subsequently the quit commands which are defined external changed.
Firstly the state of the cycle before is memorized into the value #SaveQuitHead1.
This variable is compared to the variable #Head1Quit. If the value of #Head1Quit
= 1 and #SaveQuitHead1 so a positive edge is detected and the bit #QuitHead1 is
set. The change of the other heads is analogue.
31

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.5 Procedure Read Data

Figure 6.5: Program flow chart Data Import

This network has the task to import data from the IDENTControl by using the
function FC 60. After a check whether new data could be import, the function will
be execute. Afterwards the data will be analyses.
At the beginning of the network the finish of a command send to the IDENTControl
is checked. When a command was sending to the IDENTControl the PLC can
read the command response. Also the execution of an enhanced command is
checked. If a enhanced command is active on one of the heads, the PLC can
always import new data from the IDENTcontrol. The import of the command
response will not be executed if an enhanced command is not active or the
command sending to the IDENTControl was not successfully. Afterwards the
program jumps to the point F605 at the end of this network.
32

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

After the analysis whether new data could be import the execution of the function
FC 60 follows.
Firstly the value 4 is transferred to the variable #FC_Recv_Call. With the help of
this variable the return out of the analysis in this network is realised. Afterwards
the required parameters transferred to an ANY parameter type. The import data
will be memorised in the memory data field. The beginning of the memory data
field is at address 642.0. The start address of the memory data field has to be
considering in the configuration of the ANY parameter type. After the configuration
of the ANY parameter type the execution of the FC 60 follows.
The variable #Memory_RetVal_FC_Recv contains a status value. At first the
variable is checked whether the TCP connection is interrupted. If the connection
is interrupted the value of #Memory_RetVal_FC_Recv is (8304)h. In this case the
bit #DynErrorTCPConnection will be set.
Afterwards the variable is checked whether the value is 0. The variable has got the
value 0 if the data import by the function. In this case the execution was free of
failure and the bit #DynErrorTCPConnection is reset.
By the execution of the function there is the possibility that no data exist at the
parameterised source address. This is signalised with the failure code (8180)h. In
this case new data could not import but the communication between PLC and
IDENTControl already existed and the bit #DynErrorTCPConnection is reset.
The end of the execution of the function FC 60 is signalising by the bit
#NDR_FC_Recv. The bit is set, if the execution of the function was successfully.
Afterwards the program jumps to point aus5 inside the network 21. At this point
the import data will be analyses. After the analysis the program returns to the point
F605.
If the function FC 60 is already in execution the bit #NDR_FC_Recv is not set. In
this case no data are imported and the jump to the analysis is not necessary. The
program handling continues at point F605.
At point F605 the program checked whether new data are existed to analyse. As
soon as new data exist at head X, the bit #Head_X.NewData will be set. The bit is
set in the analysis of the function FC 60 if the copying of the memory data field to
the specific input data fields of the heads was successfully. If new data exist on
one of the heads, the program jump to point lyse into the network 22. At this point
the input data of the heads will be analysed. An analysis is necessary if new data
are inside the head specific input data fields. The return out of the analysis is
realised by the variable #Analyse_Call. The value 4 is transferred to this variable
and the program jump to pint ana5 into network 9.
If no new data inside the input data fields of the heads the bit #Head_X.NewData
is not set. The analysis of the input data fields is not necessary. The program
jumps to point ana5 inside network 9. At this point the command allocation for
head 1 followed.
33

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.6 Procedure Command Allocation of Head 1

Figure 6.6: Program flow chart of Command Allocation of Head 1

In this part the command allocation for head 1 is exemplarily showed. A command
allocation for the other heads is analogue.
34

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

At first the head is checked whether head 1 is locked. There are different options
which caused a locking of a head. If an error occurs in the last command
execution of head 1 the head is locked for further commands until the head is
reset by setting the bit #Head_1.QuittError. The command allocation is also
blocked if there is no head connected to the corresponding channel. Another
possibility of head locking is that data already present in the out data field of the
head. This data are the command parameter of the command before but they are
not sending to the IDENTControl. Thus the executions of commends is successful
the command allocation is blocked until the command execution is finished. The
check whether the head is locked is realized by an OR combination. If one of the
conditions is complied the command allocation is locked and the program jumps
to point Hd2. At this point starts the check for the head 2.
Following the check of the head the command parameter allocate to the out data
field. But in the first step the program identify which command to be executed on
head 1.
Firstly is checked whether a quit command is executed on head 1. In addition the
setting of bit #QuitHead1 is checked. If no quit command is executed on head 1
the bit is not set. Thus a jump to point SCH1 followed. At this point there is a check
whether an Enhanced command is active.
If a quit command is to execute the bit #QuitHead1 is set and now the command
parameter must transfer into the out data field of head 1. After transferring the
command parameter the locking bits of head 1 are set. The bit #TransfToHeadX
signalize that the command parameter were loaded into the out data field. But the
sending of the command to the IDENTControl did not take place. Thus the
parameter of the quit command after the first command execution not transferred
in the out data field again, the bit #QuitHead1 is reset. Thus other commands can
start on head 1 after the execution of the quit command is finished. With the help
of the Reset of the bits #Head_1.EnhCommandActive and #Head_1.Busy the
program signalize that the command executed the quit command only for one
time and not permanently. After the parameter allocation of the quit command into
the out data field a jump to the command allocation of head 2 (Hd2) take place.
If no quit command is to execute on head 1 a jump to point SCH1 followed. At this
place firstly checked whether an Enhanced command is executed on head 1 or
other commands are in treatment. If one of these conditions is fulfilled the head is
locked for other command executions. In the program it is not possible to start an
other command on head 1 while an enhanced command is executed. Therefore
all start bits for other commands are reset. An exception forms here the quit
command. This command can allocate and execute while an enhanced command
is active. Thus the enhanced command will be abort. If an Enhanced command is
active a jump to command allocation of head 2 (Hd2) followed after reset of the
start bits. Afterwards the status of the import data of head 1 is checked. If the value
of the status is (FF)h and a single command is active at the same time a
command allocation is not necessary and the program jump to point Hd2
(command allocation of head 2). Afterwards checked which command is to
execute on head 1.
35

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

If the execution of a special command on head 1 is intend this is signalised by the
bit #SpecialCommandHead1. If the bit is set, the program jumps to point SH1. At
this point the command parameters, which defined by the user, transfer into the
out data field of head 1.
If a read command will be started on head 1 the bit #ReadHead1 is set and the
program jumps to point SRH1. At this point the command parameter of the single
read command transferred into the out data field of head 1.
During an intended execution of a write command the bit #WriteHead1 is set. In
this case, the program jumps to point SWH1. At this point according to the other
commands the parameters of the single write command transfer into the out data
field of head 1.
During the execution of an enhanced command it applies to note that it is to
differentiate between enhanced read and enhanced write command. If an
enhanced read command is to execute the bit #EnhReadHead1 is checked. If the
bit is set, the program jumps to point ERH1. Else the bit #EnhWriteHead1 is
checked. The bit is set, if an enhanced write command is to execute and the
program jump to point EWH1. With the help of this graduated inquiry it is possible
to check all commands and jump to the associated command parameter
allocation. But it is also possible to execute no command on channel 1 of the
IDENTControl. In this case all checked bits are not set and the program jump to
the command allocation of head 2 (Hd2).
36

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.7 Procedure Command Execution of Head 1

Figure 6.7: Program flow chart Command Execution Head 1

In this part the command execution of head 1 is describing exemplarily. The
procedure of the command execution of the heads 2, 3 and 4 is analogue.
Therefore in this part is no description of the command execution of the other
heads.
By a command execution understands the sending of the command parameters
which are allocated in the out data fields to the IDENTControl. The allocation of
the command parameters was described in the part before. The sending of the
command parameter is realised by the function FC 50. After the successful
transfer of the out data field the command is acknowledged by a status response.
Then the command is executed by the IDENTControl.
37

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

At the beginning of the command execution the out data fields of the heads are
checked whether new command parameters are inside. If new command
parameters inside the out data fields which are not send to the IDENTControl in
the cycle before the bit #TransfToHeadX is set. That is why the program checks all
these bits at the beginning of the network. If the bit #TransfToHead1 is set, the
program jumps to point exe1. At this point the command parameter transferred to
the IDENTControl and will be executed. Otherwise the bit #TransfToHead2 is
checked. The same procedure is doing with the other bits #TransfToHeadX. If
none of these bits are set, the program jumps to point res. In this case no new
command starts on the heads. At point res a restart routine will be started.
At point exe1 the destined command parameters of head 1 send to the
IDENTControl. Firstly different locking bits are set. The bit #Head_1.Busy
signalises that a command is executed at head 1 at the moment. With the help of
bit #Head_1.TimeoutActiv the timeout control is initialise. With the help of the
variable #Head1_exe you can differentiate the point of calling the FC 50. There
are two different points in the program where the function FC 50 is called for head
1. One point is the initialisation routine of head 1 and the other point is the
command execution of head 1. If the FC 50 is called inside the initialisation routine
the bit #Head1_exe is reset. But if the FC 50 is called inside the command
execution the bit #Head1_exe is set. With the help of this bit the program realise
the return to the point where the function was called. Afterwards different status
bits are reset at point exe1. Thereby the sending of the command parameter to
head 1 is enabled.
Afterwards the parameterization of the FC 50 followed. The parameterization is
realised by an ANY parameter type. With the help of the parameter the source
data field is defined. The source data field for the call of the FC 50 is the out data
field of head 1 #Head_1.OutData. The start address inside the data block of the
data field is 92.0. The allocation of the correct data field is necessary otherwise
the out data field with the command parameter are not sending to the
IDENTControl.
After the parameterization the call of the function FC 50 followed. Afterwards the
sending of the data is checked whether the execution is finished. Thus the bits
#Done_FC_Send_1 and #Head_1.Error_FC_Send are checked whether they are
set. If the bit #Done_FC_Send_1 is set the sending of the command parameter to
the IDENTControl was successful. But if an error occurred by the execution of the
function the bit #Head_1.Error_FC_Send is set. If one of the bits is set the
execution of the execution of the function is finished and the program jumps to
point aus1. At this point the analysis of the error followed or it if necessary a jump
to the data import routine followed. In this routine the response of the sending
command is import from the IDENTControl. If none of the status bits are set the
function is already in execution. That means that the out data field is transferred to
the IDENTControl at the moment. In this case the analysis of the execution of the
function is not necessary. Instead the program jumps to the Restart routine. At this
point a check followed whether a restart is to be executed and the function block is
finished. In the next program cycle of the function block the execution of the
function is checked again. Afterwards the program jumps to the correspondent
point inside the function block.
38

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

Now the command execution of head 1 is finished. After a successful finish of the
command execution and a successful finish of the analysis of the response the
execution of head 2 followed.

6.8 Procedure Restart Routine

Figure 6.8: Program flow chart of the Restart routine

The task of the Restart routine is to put back the function block into a defined
basic state and to finish the function block. Subsequent the Restart routine is
described for head 1. The Restart routine for the other heads is analogue.
39

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

Firstly the bit #Restart is checked whether it is set. The bit is set, if a restart of the
function block is intended. If the bit is not set, the program jumps to point end2.
The point end2 is at the beginning of network 19. At this point all bits are reset,
which signalize an error status.
If the bit #Restart is set, all necessary status bits of head 1 are reset. The reset of
the status bits of the heads 2, 3 and 4 follows directly.
After the reset of the status bits of all heads the bit #Start is set. By setting this bit
the program checked the initialisation of the all heads inside the Start-Up-
Sequence in the next cycle. The reset of #Restart signalise that the function block
is in a defined basic state.
One part of the Restart routine is the acknowledgement of the error bits. This part
goes through if the bit #Restart is not set at the beginning of the Restart routine. If
the bit is not set the program directly jumps to the acknowledgement of the error
bits. The acknowledgement is also passing through if a restart was happen. As
soon as an error in the command execution of the heads is detected the specific
error bit #Head_X.Error is set. Thus the command execution on this head is
locked. The function block gives the user the possibility to unlock the error state of
the head. For this the user have to set the IN variable #QuitErrorHeadX. In the part
of the transformation of the variables these variables change to the STAT variable
#Head_X.QuitError. At the beginning of the acknowledgement part the program
checked the bits #Head_1.QuitError and #Head_1.Error. If both bits are set an
error in the command execution arose and the user will unlock the error state of
the head. After that the specific error and status bits are reset. The
acknowledgement of the error state follows directly.
Afterwards a part of the program follows which handle the error notices. The
acknowledgement sequence is passing through if the user will unlock the error
state of a head. If the error state is not unlocking the specific status bits have to
set. The status bits have the task to signalize the abort of a command by an error.
At first the bit #Head_1.Error is checked whether the bit is set. If the bit is set, the
bit #Head_1.Busy is reset by the program. This bit signalizes a current execution
of a command. Afterwards the bit #Head_1.Done is set. This bit signalizes the
end of a command execution on head 1. The reset of the status bits of the other
heads follows directly. Then the program jump to point endG. At this point the
function block is finished.
40

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.9 Procedure Analysis of Function FC 50

Figure 6.9: Program flow chart analysis FC 50 of head 1

The task of this program part is to analyse the execution of the FC 50. The FC 50
is called inside the function block on two different points. One point is the
initialisation and the other point is the command execution. Following the
execution of the FC 50 the program jumps to the analysis of the FC 50. With the
help of the analysis the program detect a failure in the execution of the FC 50. In
this case the out data field of the function block is not transferred to the
IDENTControl.
Following the analysis is exemplarily described for head 1. The analysis of the
other heads is analogue.
To the beginning of the analysis the variable #Head_1.Error_FC_Send is checked
whether it is set. If an error occurred in the execution of the FC 50 the program
jumps to point err1. At this point the failure bit #Head_1.Error_FC_Send is set. If
the execution of the FC 50 was successful the out data field of head 1 was
transferred to the IDENTControl. Thus the bit #Head_1.SendOK is set. Afterwards
the bit #Head_1.Error_FC_Recv is reset. The bit is reset at this place because the
import of the response followed after the sending of the out data field. Thus the
program avoid that the execution of the FC 50 is understand incorrect. Afterwards
the program jumps to point BE1. The point BE1 is passing through by the program
and not depends of a successful execution of the function FC 50. In this program
part the bit #TransfToHead1 is reset at first. Thus it is possible to allocate new
41

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

command parameter if no other locking bits are set. Afterwards the bit
#Head1_exe is checked. With the help of this bit the return out of the analysis is
realised. The bit is set, if the analysis is execute in consequence of the command
execution. Afterwards the program jumps to point ReDa into network 8. At this
point the import routine of the data is passing through. The bit #Head1_exe is not
set, if the analysis is execute in consequence of the initialisation. Thus the
program returns to point F501 inside the initialisation.
The analysis of the other heads followed directly.
42

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.10 Procedure Analysis of Function FC 60

Figure 6.10: Program flow chart analysis FC 60
43

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

The task of this program part is to analyse the execution of the FC 60. The FC 60
is called inside the program on two different points. One point is the initialisation
and the other is procedure where the data from the IDENTControl import. After the
execution of the FC 60 in the different program parts the program jump to the
analysis of the FC 60 into network 21. Firstly the execution of the FC 60 is
checked whether a error occurred in the execution. Therefore the variable
#Memory_RetVal_FC_Recv is checked whether it has a value. The program
jumps to er60 in this case. At point er60 the program executes an error handling.
But if the execution of the FC 60 was free of failure the head number of the import
data will be isolated. The head number of the import data will be allocated to the
variable #Received_Headnumber.
Afterwards on the base of the head number the memory data field copied into the
head specific in data field. Then the bit #Head_X.NewData is set. This bit
signalise that new data are inside the in data fields. The last step is the return to
the program part, where the analysis was called.
44

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

6.11 Analysis of Input Data Fields

Figure 6.11: Program flow chart Analysis Input Data Fields

This part of the program has the task to analyse the head specific in data fields.
The analysis of the in data fields is necessary as soon as new data copied from
the memory data field in the specific in data fields.
45

IC-KP-B12-V45
Function Block "IDENTControl“
 20
11

-0
1

At the beginning of the analysis the program detect in which in data fields new
data exist. If new data exist the bit #Head_1.NewData is set and the program jump
to the point where the analysis executes. At this point the analysis starts. Firstly
the command code of the out data field is compared to the command parameter
of the in data field. If both parameters not identical an error in the execution of the
IDENTControl occurred and the program jump to point err1. At this point the error
notices #Head_1.Error and #Head_1.InvalidResponse are set.
If both parameters are identical in the next step the status value of the import data
is checked. If the status has the value (FF)h, the IDENTControl received the send
command but the command is currently executed so that the import data are
invalid. That is why the bit #Head_1.NewData reset at point sff1. If the command
execution successfully finished by the IDENTControl the status has the value
(00)h.
The status of the import data has the value (05)h, if no data carrier was in front of
the head whiles the command execution. Thus the executions counter increment
and the command execution is repeated. If the maximal number of repetitions is
achieving the bit #Head_1.NoDataCarrier is set and the command execution is
not repeated. If the import data has got other value an error in the command
execution occurred and the failure notice #Head_1.Error is set.
Finally the program return to the point where the analysis of the in data fields was
called.
46

IC-KP-B12-V45
Appendix
 20
11

-0
1

7 Appendix
7.1 Listing of Parameter
7.1.1 Input Parameter (IN-Parameter)

7.1.2 Pass Parameter (IN-OUT-Parameter)

■ IDENT_Control_Address
Address of the IDENTControl inside the Ethernet network. The declaration refers to the
I/O addresses of the IDENTControl in the Hardware configuration

■ ID
Connection number

■ TCP_Telegramlength
Telegram length (Port 10000 -> 34 Byte; Port 10001 -> 66 Byte)

■ Timeout
Time slot for Timeout control

■ RetrySingleCommand
Number of maximal command repetitions

■ HeadXDataFixcode
HeadXDataFixcode = 0 -> access to Fixcode
HeadXDataFixcode = 1 -> execution of enhanced command

■ HeadXSingleEnhanced
HeadXSingleEnhanced = 0 -> execution of single command
HeadXSingleEnhanced = 1 -> execution of enhanced command

■ HeadXQuit
Start of a quit command to abort an enhanced command

■ HeadXRead
Start of a read command

■ HeadXWrite
Start of a write command

■ QuitErrorHeadX
Start a quit error command to unlock error locking

■ HeadXSpecialCommand
Start of a special command

■ IC_Command_on_Head1
Start of an IDENTControl command. An assignment of a channel is not necessary. The
command is not executing by the read / writes heads

■ InitFinish
End of the initialization of all heads

■ SetRestart
Start of the Restart routine
47

IC-KP-B12-V45
Appendix
 20
11

-0
1

7.1.3 Static Parameter (STAT-Parameter)
■ Head_X.InData

Head_X.InData is a structure of data which contained the response of the IDENTControl
if a command was sending. The structure consists of different elements of data types.

■ Head_X.InData.TelegrammLengthHigh
High Byte of telegram length

■ Head_X.InData.TelegrammLengthLow
Low Byte of telegram length (contains #TCP_Telegramlength)

■ Head_X.InData.CommandCode
Command code of the response telegram

■ Head_X.InData.Channel
The high nipple contained the number of read/write words. The low nipple
contains the channel identification.

■ Head_X.InData.Status
Status value of the command execution

■ Head_X.InData.ExecutionCounter
Event counter

■ Head_X.InData.DW1 … DW15
Data field of user data which are import front IDENTControl (1 data block = 4
Bytes).

■ Head_X.OutData
Head_X.OutData is also a structure of data. This structure contains the data, which send
to the IDENTControl to execute the defined command. The data field is divided into
element with different data types.

■ Head_X.OutData.TelegrammLengthHigh
High Byte of telegram length

■ Head_X.OutData.TelegrammLengthLow
Low Byte of telegram length

■ Head_X.OutData.CommandCode
Command code of execute command

■ Head_X.OutData.Channel
Channel identification

■ Head_X.OutData.Wordadr_High
High Byte of start address, where data read/write in the memory area; if
change tag command -> high Byte of Tag identification code

■ Head_X.OutData.Wordadr_Low
Low Byte of start address, where data read/write in the memory area; if change
tag command -> low Byte of Tag identification code

■ Head_X.OutData.DW1 … DW15
Data field of user data which are export to the IDENTControl (1 data block = 4
Byte)

■ Head_X.WordAddress
Start address for access of memory area

■ Head_X.TimeoutActiv
Timeout control is active

■ Head_X.InvalidResponse
Invalid response of the IDENTControl
48

IC-KP-B12-V45
Appendix
 20
11

-0
1

■ Head_X.QuitError
Unlock the failure locking on channel X

■ Head_X.NewData
New data are available for analysis on channel X

■ Head_X.NotExist
No read / write head is connected to the channel X

■ Head_X.ExistTC
Read / write head is connected to channel X

■ Head_X.Error
Error in the command execution of the IDENTControl

■ Head_X.TimeoutOccured
Time slot of the command response is passed

■ Head_X.ReceiveOK
Response of the IDENTControl received

■ Head_X.SendOK
Data field was send to the IDENTControl

■ Head_X.NoDataCarrier
No data carrier in front of the head

■ Head_X.Done
Enhanced command -> data read / write finish (command already active)
Single command -> command execution finished

■ Head_X.Busy
Command is in processing

■ Head_X.Error_FC_Recv
Error by the execution of the FC 60

■ Head_X.Error_FC_Send
Error by the execution of the FC 50

■ Head_X.EnhCommandActive
Enhanced command is active

■ Head_X.SglCommandActive
Single command is active

■ Head_X.WordNum
Number of transmitted user data blocks

■ Head_X.RetVal_FC_Recv
Contains an error value by the execution of the FC 60

■ Head_X.RetVal_FC_Send
Contains an error value by the execution of the FC 50

■ Head_X.SpecialCommand
This data field contains the parameter to execute a special command. With the help of
the special command you can execute commands which are no standard commands of
the function block. Before starting the execution of the special command the user have
to transfer the command parameter in this data field. This data field copied into the out
data field and transfer to the IDENTControl.

■ Head_X.SpecialCommand.Code
Command code
49

IC-KP-B12-V45
Appendix
 20
11

-0
1

7.2 Command List

■ Head_X.SpecialCommand.Channel
Channel identification and possibly the number of transferred user data blocks.

■ Head_X.SpecialCommand.Parameter1 …5
Other parameter of the command

■ Head_X.Memory
The memory data field contains data which sent from the IDENTControl to the PLC. All
data, which import from the IDENTControl stored in this data field, independently of the
channel. After the check of the channel identification the data copied into the specific in
data fields of the heads. The structure of the memory data field is the same like in data
fields of the channels.

Command Code Parametrisazion Execution
Single-
Read-

Fixcode
(01)h none #HeadXDataFixcode = 1

#HeadXRead = 1
#HeadXWrite = 0
#HeadXSingleEnhanced = 0

Enhanced-
Read-

Fixcode
(1D)h none #HeadXDataFixcode = 1

#HeadXRead = 1
#HeadXWrite = 0
#HeadXSingleEnhanced = 1

Single-
Read-Data

(10)h #HeadX.WordAddress
#HeadX.WordNum

#HeadXDataFixcode = 0
#HeadXRead = 1
#HeadXWrite = 0
#HeadXSingleEnhanced = 0

Enhanced-
Read-Data

(19)h #HeadX.WordAddress
#HeadX.WordNum

#HeadXDataFixcode = 0
#HeadXRead = 1
#HeadXWrite = 0
#HeadXSingleEnhanced = 1

Single-
Write-Data

(10)h #HeadX.WordAddress
#HeadX.WordNum
#HeadX.OutData.DW

#HeadXDataFixcode = 0
#HeadXRead = 0
#HeadXWrite = 1
#HeadXSingleEnhanced = 0

Enhanced-
Write-Data

(19)h #HeadXWordAddress
#HeadXWordNum
#HeadX.OutData.DW

#HeadXDataFixcode = 0
#HeadXRead = 0
#HeadXWrite = 1
#HeadXSingleEnhanced = 0

Special-
Command

(??)h #Head_X.SpecialCommand.Code
#Head_X.SpecialCommand.Channel
#Head_X.SpecialCommand.Parameter

#HeadXSpecialCommand = 1
#IC_Command_on_Head1 = 0

IDENT-
Control-

Command
(??)h #Head_1.SpecialCommand.Code

#Head_1.SpecialCommand.Parameter
#Head1SpecialCommand = 1
#IC_Command_on_Head1 = 1

QuitError-
Command

- - #QuitErrorHeadX

Quit-
Command

- - #HeadXQuit
50

IC-KP-B12-V45
Appendix
 20
11

-0
1

7.3 Code/Data Carrier
Typ #Head_X.TagType Access Memoryarea Fixcodelength
IPC02-.. W#16#3032 Read Fixcode - 5 Byte
IPC03-.. W#16#3033 Read Fixcode

Read Data
Write Data

116 Byte 4 Byte

IPC10-.. W#16#3130 Read Data
Write Data

12 Byte -

IPC11-.. W#16#3131 Read Data
Write Data

5 Byte -

IPC12-.. W#16#3132 Read Fixcode
Read Data
Write Data

8 kByte 4 Byte

IPC14-.. W#16#3134 Read Data
Write Data

5 Byte -

IQC20-.. W#16#3230 Read Fixcode
Read Data
Write Data

- 8 Byte

IQC21-.. W#16#3231 Read Fixcode
Read Data
Write Data

112 Byte 8 Byte

IQC22-.. W#16#3232 Read Fixcode
Read Data
Write Data

256 Byte 8 Byte

IDC-…1k W#16#3530 Read Fixcode
Read Data
Write Data

128 Byte 4 Byte

ICC-.. W#16#3532 Read Fixcode - 7 Byte
MVC-60 W#16#3630 Read Fixcode

Read Data
Write Data

- 8 kByte
51

Subject to modifications
Copyright PEPPERL+FUCHS • Printed in Germany

www.pepperl-fuchs.com

Worldwide Headquarters
Pepperl+Fuchs GmbH
68307 Mannheim · Germany
Tel. +49 621 776-0
E-mail: info@de.pepperl-fuchs.com

USA Headquarters
Pepperl+Fuchs Inc.
Twinsburg, Ohio 44087 · USA
Tel. +1 330 4253555
E-mail: sales@us.pepperl-fuchs.com

Asia Pacific Headquarters
Pepperl+Fuchs Pte Ltd.
Company Registration No. 199003130E
Singapore 139942
Tel. +65 67799091
E-mail: sales@sg.pepperl-fuchs.com

FACTORY AUTOMATION –
SENSING YOUR NEEDS

TDOCT1190A_ENG
01/2011

	1 Safety
	1.1 Symbols relevant to safety
	1.2 Intended use
	1.3 General notes on safety
	1.4 Contact protection

	2 Installation
	2.1 Equipment and devices
	2.2 Configuration and Installation
	2.3 Configuration of the PLC

	3 Commands
	3.1 Types of Commands
	3.2 Command Cycle
	3.3 Command Structure
	3.4 Execution of the Initialization
	3.5 Execution Single Command
	3.6 Execution Enhanced Command
	3.7 Execution Special Command
	3.8 Execution Error Analysis

	4 Used Modules and Functionality
	5 Organization Block OB 1
	6 Function Block "IDENTControl“
	6.1 Procedure Start-UP-Sequence
	6.2 Procedure Initialization
	6.3 Procedure Timeout Control
	6.4 Procedure Variable Transformation IN- to STAT-Variables
	6.5 Procedure Read Data
	6.6 Procedure Command Allocation of Head 1
	6.7 Procedure Command Execution of Head 1
	6.8 Procedure Restart Routine
	6.9 Procedure Analysis of Function FC 50
	6.10 Procedure Analysis of Function FC 60
	6.11 Analysis of Input Data Fields

	7 Appendix
	7.1 Listing of Parameter
	7.1.1 Input Parameter (IN-Parameter)
	7.1.2 Pass Parameter (IN-OUT-Parameter)
	7.1.3 Static Parameter (STAT-Parameter)

	7.2 Command List
	7.3 Code/Data Carrier

