Software VCS2-Config With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship" | 1 | SOFT | WARE "VCS2-CONFIG" | 3 | |-----|-------|---|----| | 1.1 | SOF | TWARE INSTALLATION | 3 | | 1.2 | OPE | ERATION | 3 | | | 1.2.1 | Selecting communication interface | 3 | | | 1.2.2 | Sensor configuration | 6 | | | 1.2.3 | Teaching In Colors | | | | 1.2.4 | Color processing | 20 | | | 1.2.5 | Service | 23 | | 2 | COM | MUNICATION PROTOCOL AND COMMAND REFERENCE | 25 | | 2.1 | Pro | OTOCOL STRUCTURE | 25 | | | 2.1.1 | Burst Mode | 26 | | | 2.1.2 | Fixed point notation | 27 | | 2.2 | Con | MMAND REFERENCE | 28 | | | 2.2.1 | System Identification | | | | 2.2.2 | Communication | 29 | | | 2.2.3 | Data Acquisition | 30 | | | 2.2.4 | Sensor Correction | 32 | | | 2.2.5 | Color Transformation | | | | 2.2.6 | Color Table, Color Recognition/Classification | | | | 2.2.7 | Output Encoding | | | | 2.2.8 | Flash Operations and Parameters | | | 3 | LABV | IEW [®] VIS | 39 | | 3.1 | STR | UCTURE OF COMMAND VIS | 39 | | 3.2 | OPE | EN RESOURCE VI AND CLOSE RESOURCE VI | 39 | | 3.3 | B EXA | AMPLE | 40 | | 4 | DLL F | FUNCTION LIBRARY | 42 | | 4.1 | INT | RODUCTION | 42 | | 4.2 | | RARY FUNCTIONS. | | | | 4.2.1 | Library | | | | 4.2.2 | USB Library | | | | 4.2.3 | Devices | | | 4.3 | FILE | ES | | | 4 4 | | DITIREMENTS | | # Software "VCS2-Config" The sensors can be extensively configured by PC software. Therefore software tools are shipped with the sensors for individually adjusting the sensors to any operational environment. The software functions are as follows: - Sensor parameter configuration (signal gain, scanning frequency, processing mode etc.) - Color sampling ("Teach In") procedure - Color processing (Recognition and classification) - Displaying of color values The function is described in detail in the following sections. ### 1.1 Software installation The software requires the following minimum system parameters: - PC with 300 MHz CPU - 40 MB free hard disc space - Mouse - RS232 interface - USB interface for sensors with USB option - CD-ROM drive - VGA graphic with minimum resolution 800x600 - MS Windows® OS (WIN98, WIN ME, WIN2000, WIN XP) For installation insert the CD-ROM in the CD-ROM drive and follow the installation instruction on the screen. Or, alternatively, start the program "SETUP.EXE" from the folder [CD drive]:\VCS2-CONFIG. # 1.2 Operation # 1.2.1 Selecting communication interface The sensor system can be connected via RS232 or USB1 to the computer. Which interface is going to be used has to be selected right after starting the program (Figure 1). #### SERIAL CONNECTION The configuration of the serial interface is placed on the left hand side. The communication port can be chosen in the field "SELECT COM PORT" (Figure 1). With "ADDRESS" the corresponding sensor address can be chosen if several sensors are connected to the serial port (refer to "SENSOR ADDRESS" below in section "SERVICE"). The software is limited to the COM ports 1 to 9. Subject to change 22-3061-11 - 3 - ¹ Only available for sensors with USB port. Figure 1: Selecting the RS232 interface port By default the communication port is configured as follows: Baud rate: 28800 Data bits: 8 Parity: no Stop bits: 1 Flow control: no Figure 2: Start window Status and error information are displayed in the text box "STATUS SERIAL" below the button "GET ID". Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 ### USB CONNECTION² The program can be started via USB on the right hand side when a USB interface is available. The number of detected devices is shown in the field "DEVICES DETECTED". The desired USB device can be chosen with the switch in the field "SELECT USB DEVICES" (Figure 3). Figure 3: Selecting the desired USB device #### **SERVICE** With this switch within the field "SERVICE" a service tool is started, which allows certain special hardware functions and settings. The function are described in Section 1.2.5 (P. 23). _ Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 5 - ² Only available for sensors with USB port. ## 1.2.2 Sensor configuration The parameter window appears (Figure 4) after choosing a connection at the start of the program. The parameter window can always be found under the tab "SENSOR PARAMETERS" (in the upper area of the program window). The sensor parameters are read out and displayed in the program window. Figure 4: Window for sensor parameter configuration ### COLOR OBJECT TYPE At first the type of object that is going to be measured has to be selected in the field "COLOR OBJECT TYPE" (Figure 5). The adjustment "ACQUISITION OFF" turns the signal acquisition of the sensor off. For self shining objects, such as lamps, LEDs etc. choose the "ACTIVE" mode, for non selfshining objects, also called "Body Colors" choose the "PASSIVE" Mode". The latter are socalled body colors and are illuminated by a light source from the sensor system. Otherwise the light source is switched off. Figure 5: Selecting the object type There are 4 additional "EXT." modes, that are intended to be used with an external trigger source to be provided on the "TRG 1" input. With this modes the sensor can be synchronized with an external frequency. The modes with the "INV." addition invert the TRG 1 signal. Subject to change 22-3061-11 - 6 - For self-shining objects an ambient light compensation can be realized. For non-self-shining objects a "Master-Slave" operation can be realized in that way that one sensor is switched to the "PASSIVE" mode and all other sensors are adjusted to the "PASSIVE EXT" (or "PASSIVE EXT. INV.") mode. The master-slave operation is particularly useful for avoiding light interfering effects if several sensor are used in close proximity. Additionally differential a signal processing with to sensors is possible. # INTENSITY³ With the intensity regulator the brightness of the built-in light source can be adjusted. #### SIGNAL GAIN The amplification gain (out of 4 gains) of the color signals from the primary color sensor can be selected in the field "SIGNAL GAIN" (Figure 6). Figure 6: Selecting signal amplification gain #### AUTO SET GAIN³ The amplification gain and illumination intensity can be automatically adjusted when the switch in the "AUTO SET GAIN" field is set on. The signal range will be set to approx. 90% of the entire range. #### Hint Before successfully applying the function "AUTO SET GAIN" it has to be verified that the sensor system has been put in its operating point and the distance between sensor and objects has been fixed. It is recommended that a white colored object or an object with the highest signal amplitude (brightest object to be measured) is to be used for adjusting the signal amplification gain and further to prevent from overdrive. ### COLOR SPACE MODE The color space which will be used throughout the color measurement is selected in the field "COLOR SPACE MODE". Depending on the light control setting, one of the following color spaces shown in Table 1 can be selected. Figure 7 shows the selection field in the field "COLOR SPACE MODE". Figure 7: Color space modes Table 1: Color spaces depending on the two types PASSIVE and ACTIVE | PASSIVE (Body colors) | ACTIVE (Self-shining) | |-----------------------|-----------------------| | XYZ | XYZ | ³ Only available for sensors with USB port. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 7 - | xyY | xyY | |--------|--------| | L*a*b* | u'v'L* | | L*u*v* | | | Lab99 | | #### Hint 1: Due to the limited hardware accuracy of the sensor and the used non-standard illumination source (white light LED), the obtained color values in the corresponding color spaces are not colorimetrical accurate! #### Hint 2: The ranges of the color values in the parameterization software differ from the common ranges for color values! Table 2 shows the range of the color values for the several color space modes of the software in comparison to the common ranges. The visible range of the color diagrams is pre-defined to a suitable value. To fit the color diagram scales to the desired range, the axes can be adjusted by simply editing the numbers on the corresponding axes. Table 2: Axis scaling for the parameterization software | Color space | common range | program range | Multiple | |-------------|----------------|----------------|----------| | XYZ | X: 0100 | X: 0100 | 1 | | | Y: 0100 | Y: 0100 | 1 | | | Z: 0100 | Z: 0100 | 1 | | xyY | x: 01 | x: 0100 | 100 | | | y: 01 | y: 0100 | 100 | | | Y: 0100 | Y: 0100 | 1 | | L*a*b* | L*: 0100 | L*: 0100 | 1 | | | a*: -500+500 | a*: -500+500 | 1 | | | b*: -200+200 | b*: -200+200 | 1 | | L*u*v* | L*: 0100 | L*: 0100 | 1 | | | u*: -1300+1300 | u*: -1300+1300 | 1 | | | v*: -1300+1300 | v*: -1300+1300 | 1 | | u'v'L | L: 0100 | L: 0100 | 1 | | | u': 01 | u': 0100 | 100 | | | v': 01 | v': 0100 | 100 | | DIN99 | L: 0100 | L: 0100 | 1 | | | a: -500+500 | a: -500+500 | 1 | | | b: -200+200 | b: -200+200 | 1 | #### REFERENCE WHITE For storing a color value as reference white the actual sensor signals can be sampled in by clicking on the button "SAMPLE" in the field "REFERENCE WHITE". The signal settings should have set with the GAIN and INTESITY function before sampling the reference white. It is also recommended to use a white colored object for reference. The function "AUTO SET GAIN" can simplify adjusting the signal range. The button "DEFAULT" sets the color values for reference white to 100. Subject to change 22-3061-11 - 8 - The color values for reference white can also be manually manipulated by clicking on the number and than editing. #### Hint 1: The reference
white is crucial for color measurements and displaying and therefore has to be resampled at any time when the signal settings, such as gain (AUTO SET GAIN) or light intensity (LIGHT CONTROL - INTENSITY), have changed. #### Hint 2: The reference white is required for proper displaying the color on the monitor and **not needed** for further signal processing in the color spaces XYZ and xyY. On the other hand, the reference white is needed for a correct color transformation into the color spaces L*a*b*, L*u*v* and Lab99. Therefore sampling of real sensor values is recommended for the color spaces L*a*b*, L*u*v* and Lab99. However the sensor works acceptable even though a reference white has not been sampled as long as the color values do not exceed the pre-defined reference white. In general the sensor works fairly well when using the default ("DEFAULT") reference white. ### PROCESSING MODE The sensor system provides up to 5 different signal processing modes. The desired mode can be selected in the field "PROCESSING MODE" by the menu shown in Figure 8. Figure 8: Processing modes Table 3 shows all processing modes and their description in detail. Table 3: Processing modes and description | Processing mode | Description | |-----------------|--| | CLASSIFY | The actual measured color value is being classified among presampled color values. A classification is always done independently | | | if the colors match or not. As an example shows, if there is only one | | | color RED stored, all colors will be later classified as RED. Figure 9 shows the classification of the actual color value Cm to the stored | | | color C3 because the distance between Cm and C3 is the smallest | | CHECK ODLI | one. | | CHECK SPH. | In the mode CHECK SPH. (spherical) it is to be checked if a | | | measured color is within a spherical tolerance room. If the measured | | | color is within such a spherical room, the check is successful (color | | | recognized), otherwise the check was unsuccessful (color not | | | recognized). | | | Figure 10 shows spherical tolerances and a measured color Cm that | | | is within the tolerance C3 and hence was recognized as the color C3. | | CHECK CYL. | The mode CHECK CYL. (cylindrical) provides a method for | | | assigning cylindrical tolerance spaces. Tolerance parameters can be | | | configured separately for color and brightness. The measurement | | | principle is shown in Figure 11. Two tolerance parameters (color | | | and brightness tolerance) are necessary. This mode can not be | | | applied in the XYZ color space because there is no coordinate for | Subject to change 22-3061-11 - 9 - | Processing mode | Description | |-----------------|-------------| | | brightness. | Figure 9: Color classification principle Figure 10: Color space with spherical tolerances Figure 11: Color space with cylindrical tolerances #### RESULT FORMAT The user defines in the field "RESULT FORMAT" how the results of the color checking or classification are represented at the outputs of the color sensor. Figure 12 shows the 6 possible output formats and Table 4 shows their descriptions in detail. Figure 12: Color processing result formats at the sensor outputs Table 4: Output formats for color checking and classification | Selection | Description | | | |------------------------|--|--|--| | OFF | The outputs keep their last result and are switched off. | | | | ONE HOT | This is a "1-out-of-N" encoding. Each color value in the internal color | | | | | table (please refer to sect. 1.2.3, subsect. "COLOR TABLE") is directly | | | | | assigned to one output signal. Thus there are as many colors possible as | | | | | sensor outputs are available. | | | | ONE HOT INV. | Refer to "ONE HOT", but output signals are inverted | | | | BINARY | The result is encoded binary and thus 2^n (n = number of sensor outputs) | | | | | states are possible. The index 255 is used as "Not recognized" or "Out | | | | | of tolerance" in the CHECK mode. | | | | BINARY INV. | Refer to "BINARY", but output signals are inverted | | | | DEVIATION ⁴ | If no matching color can be found, this result format indicates the color- | | | | | deviation from the first entry of the color-table. The meaning of the | | | | | different output ports is shown in Table 5. | | | | | This mode is only available with the color-space-modes L*a*b* or | | | | | LAB99 and processing mode CHECK CYL. | | | ⁴ The deviation encoding is only available for sensors with 8 output ports. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 _ Table 5: Deviation-mode signal assignment | Ausgang | Anzeigensegment | |---------|--| | OUT'0 | 1 = color detected, $0 = $ No color detected | | OUT1 | Darker | | OUT2 | Brighter | | OUT3 | Deviation to red | | OUT4 | Deviation to green | | OUT5 | Deviation to yellow | | OUT6 | Deviation to blue | | OUT7 | Not used | RUNNING MODE The output ports of the sensor system can be used continuously or triggered ("EXTERN TRG." mode). The selection can be made in the field "RUNNING MODE" (Figure 13). When continuously used ("CONTINOUOS"), the outputs are always updated as fast as the current adjusted response time. When the "EXTERN TRG." mode was selected, the outputs are updated when a rising edge at the input TRG 0 is detected and remain then in this state until the next rising edge occurs. Figure 13: Output signals running mode Additionally the sensor supports two different sequential modes. This makes it possible to detect a color sequence defined by the color table in a trigger based mode or in a time based mode. The triggered sequence mode ("TRG. SEQU.") compares the actual result with an entry in the color table (please refer to sect. 1.2.3, subsect. "COLOR TABLE") after each appearing trigger on TRG 0. It starts with entry 0 and goes on after every successful comparison (correct color) to the next entry. If a detected color does not match its table entry, or the time between two trigger events is too long (timeout) the sequence will reset to entry 0. The adjustment of the timeout can be done in the field "SEQUENCE TIMEOUT" (Figure 14) Figure 14: Timer configuration for triggered color sequence You can use this mode to recognize a color series of objects with undetermined object distance and appearance time (e.g. to trigger on colored objects on an assembly line that appear in the same order but undetermined in time). The time based sequence mode ("TIMED SEQU.") works like the triggered sequence mode in principle, but only the beginning of a new sequence has to be indicated by a trigger event on TRG 0. After that the sensor automatically compares the colors after a programmable time (interval). In case a color does not match its corresponding table entry, the sequence will reset to Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 entry 0. The adjustment of the timer interval can be done in the field "SEQUENCE INTERVAL" (Figure 15). Figure 15: Interval configuration for timed color sequence Use this mode to recognize a color series of equidistant spaced and timed objects (e.g. a rotating wire with color stripes). A third sequence mode is chosen by activating "SELF TRIGG SEQ". For this mode no external trigger is required. The sequence starts by detecting a first color. If every color of the color table is recognized in the right order, the sequence is finished successfully. If the time adjusted in the field "SEQUENCE TIMEOUT" to detect the next valid color of the color table is exceeded an error signal occurs. The same is for detecting the wrong color sequence order. The coding of the states shows Table 6. This mode requires the "CHECK SPH" or "CHECK CYL" mode. Each state of the sequence detection is treated like an ordinary result of a single color detection and is encoded accordingly. The appearance of the sequence state on the output port can be adjusted by setting the proper "RESULT FORMAT" mode. The following modes are detected: **Table 6: Sequence Encoding** | State | Description | |-------|--------------------------------------| | OFF | Waiting for start | | 0 | Sequence active | | 1 | Sequence finished successfully | | 2 | Wrong color detected | | 3 | Trigger Timeout (triggered sequence) | | 4 | Trigger too early (timed sequence) | #### **AVERAGING** In the field "AVERAGING" values in the range of 1...65535 for averaging the sensor signals can be adjusted. Large averaging values are recommended for pure signal quality. Keep in mind that large averaging values reduce the response time of the sensor (Table 7). #### SCAN FREQUENCY The scanning frequency of the sensor system in kHz can be defined in the field "SCAN FREQUENCY" (Figure 16). Figure 16: Sensor system scanning frequency Subject to change 22-3061-11 - 13 - - 14 - Please notice the following relationship. If the scanning frequency is chosen to be low, the power consumption of the sensor is low too (Illuminant will get darker). But if a high scanning frequency is chosen, the power consumption rises (due to the increasing light intensity). #### Hint 1: The chosen frequency has also influence on the system's ambient light compensation properties. In the case of artificial ambient light (modulated mainly at 100 Hz) a frequency greater than 1 kHz is recommended in order to achieve good compensation properties. #### Hint 2: Due to hardware limitations higher frequencies for higher signal gain settings (SIGNAL GAIN⁵ > 5) are not available. Table 7: Examples of dependency of response time on adjusted FREQUENCY and AVERAGING values | FREQUENCY | AVERAGING | Response time | |-----------|-----------|---------------| | 1kHz | 1 | 1ms | | 10kHz | 10 | 1ms | | 1kHz | 100 | 100ms | | 10kHz | 10000 | 1000ms | #### SIGNAL MONITOR The current sampled signals
from the primary sensor are displayed in the graph "SIGNAL MONITOR" as raw data. Their description is shown in the following Table 8. Table 8: Description of the signals in the sensor signal monitor | Signal color | Description | |--------------|---| | Light red | Raw data of the red signal (bright phase) | | Light green | Raw data of the green signal (bright phase) | | Light blue | Raw data of the blue signal (bright phase) | | Dark red | Raw data of the red signal (dark phase) | | Dark green | Raw data of the green signal (dark phase) | | Dark blue | Raw data of the blue signal (dark phase) | The three color bars red, green and blue, displayed underneath the sensor signal monitor show the differential signals of the raw data. In the self-shining mode the signals are identical to the signals in the bright phase. On the right hand side a color sample is displayed that is being continuously calculated from the actual three color signals. #### Hint 1: The signal data from the dark phase are zero in the self-shining mode and thus not visible. If the signal data from the dark phase of body colors (passive mode) are very small, they are also not visible. Moreover the signal amplitudes from the bright and dark phase can possibly overlap and hence only one color is able to be seen at the same time. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 ⁵ The SIGNAL GAIN option is only available for VCS210 sensors. #### Hint 2: The color sample on the right hand side of the three color bars reproduces a sound color which is similar to the measured object after setting a good reference white. However the color can be incorrect and not 100% identical and shall merely serve as orientation, e.g. during the color sampling process ("Teach-in") or when displaying tolerance boundaries in color diagrams. #### COLOR GROUPING In the right lower window region a switch is located to activate or deactivate the color grouping function (Figure 17). Figure 17: Activating and deactivating of color grouping function With this function arbitrary colors of the color table can be pooled to groups. In this way complex class or tolerance boundaries can be realized. After activating the function in the color table an additional column appears to indicate the group index. Colors with the same group index are mapped to the same sensor output correspondingly to the adjusted "RESULT FORMAT" mode. #### SAVE PARAMETERS There are two switches in the field "SAVE PARAMETERS" for saving the current parameter settings. The switch "TO SENSOR" stores all parameters into the built-in nonvolatile Flash-memory of the sensor. The parameters will remain in the Flash-memory after power down. The switch "TO FILE" stores all parameters on a memory drive of a computer that is connected to the sensor system. #### LOAD PARAMETERS The switch "FROM FILE" in the field "LOAD PARAMETERS" loads a parameter set into the sensor system. #### Hint: After starting the software the parameters are automatically loaded from the built-in Flashmemory into the sensor system. Subject to change 22-3061-11 - 15 - # 1.2.3 Teaching In Colors The so-called "Teach-in" procedure for sampling and storing colors into the color table is done in the tab "TEACHING IN COLORS" of the program window (Figure 18). #### COLOR SPACE MODE The currently selected color mode is shown in the field "COLOR SPACE MODE" in the left hand upper area of the program window. Figure 18: Acquire color sample program window #### PROCESSING MODE The currently selected processing mode is shown in the field "PROCESSING MODE" below the field "COLOR SPACE MODE". #### CURRENT VALUES This field shows the current sensor data (color coordinates) as they are transformed within the current selected color space. Beneath these values the current color is shown as a visible color sample (a valid reference white is the basic precondition for proper color representation). ### COLOR TABLE The color table is located on the right hand upper area of the program window. Its function is to store colors for recognition or classification. On the left hand side buttons for sampling and erasing colors are located. The button "TEACH IN" stores the current color space values into the next free row of the color table. For overwriting a row of the color table the PC cursor must be set into the corresponding row. After that the button "TEACH IN" has to be pressed. Subject to change 22-3061-11 - 16 - The button "CLEAR ROW" clears all color values of one row that has been selected by a mouse click. The then remaining data rows move up. The button "CLEAR TABLE" clears all entries in the color table. #### EXPORT TABLE The button "EXPORT TABLE" stores the current contents of the color table into a comma separated spreadsheet file (.csv) onto the disk of the PC. The file can easily be processed with common spreadsheet software. #### AXIS SCALING With this selection switch 3 scaling methods can be chosen (Figure 19). Figure 19: Scaling options "MANUAL" allows manually editing of the diagram axes (by marking and editing the numbers on the axes). "DEFAULT" resets the axes to default values. The setting "AUTO" activates an auto scaling of the axes. # PROJECTION PLANE The X and Y axes of the color diagram on the right hand side can be selected in field "PROJECTION PLANE" in order to display the desired color plane out of all three possible 2dimensional planes of the 3-dimensional color space. All colors and tolerances can be completely viewed by this projection plane. To fit the color diagram scales to the desired range, the axes can be adjusted by editing the numbers on the axes. Figure 20: Selecting a 2-dimensional plane out of the 3-dimensional color space All values stored in the color table (except the row index) can be manually modified. By clicking on a table row the input mode becomes active and numbers can be simply modified by using the keyboard. By entering the RETURN key or clicking on another area within the program window the modified values will be stored into the color table. There is a scroll bar on the right hand side at the table for scrolling the table up and down. The used table columns depend on the selected processing mode (PROCESSING MODE) and the activated grouping function. Variants are shown in Figure 21, Figure 22, Figure 23 and Figure 24. Subject to change 22-3061-11 - 17 - | COLOR TABLE | | | | | | | | |-------------|-------|-------|------|--|--|-----|---| | | a* | b* | L* | | | GRP | 1 | | 0 | 0,2 | 0,4 | 99,9 | | | 0 | | | 1 | -4,3 | -22,3 | 80,6 | | | 1 | | | 2 | -29,0 | -17,4 | 79,8 | | | 2 | | | 3 | -27,5 | 25,8 | 70,4 | | | 3 | | | 4 | 0,9 | 57,0 | 90,0 | | | 4 | | | 4
5 | 8,1 | 36,5 | 81,1 | | | 5 | | | 6 | 22,4 | 8,9 | 60,7 | | | 6 | | | 7 | 35,4 | -31,2 | 63,7 | | | 7 | 7 | Figure 21: classify mode | COLOR TABLE | | | | | | | | | | |-------------|-------|-------|------|-----|--|-----|----|--|--| | | a* | b* | L* | TOL | | GRP | A. | | | | 0 | 0,2 | 0,4 | 99,9 | 4,0 | | 0 | | | | | 1 | -4,3 | -22,3 | 80,6 | 6,2 | | 1 | | | | | 2 | -29,0 | -17,4 | 79,8 | 7,9 | | 2 | | | | | 3 | -27,5 | 25,8 | 70,4 | 3,6 | | 3 | | | | | 4 | 0,9 | 57,0 | 90,0 | 5,4 | | 4 | | | | | 5 | 8,1 | 36,5 | 81,1 | 4,5 | | 5 | | | | | 6 | 22,4 | 8,9 | 60,7 | 3,9 | | 6 | | | | | 7 | 35,4 | -31,2 | 63,7 | 4,8 | | 7 | 7 | | | Figure 22: recognition with spherical tolerances | COLOR TABLE | | | | | | | | | | | |-------------|-------|-------|------|-------|------|-----|---|--|--|--| | | a* | ь* | L* | TO ab | TO L | GRP | 1 | | | | | 0 | 0,2 | 0,4 | 99,9 | 4,0 | 5,0 | 0 | | | | | | 1 | -4,3 | -22,3 | 80,6 | 6,2 | 3,5 | 1 | | | | | | 2 | -29,0 | -17,4 | 79,8 | 7,9 | 4,0 | 2 | | | | | | 3 | -27,5 | 25,8 | 70,4 | 3,6 | 4,4 | 3 | | | | | | 4 | 0,9 | 57,0 | 90,0 | 5,4 | 2,8 | 4 | | | | | | 5 | 8,1 | 36,5 | 81,1 | 4,5 | 6,0 | 5 | | | | | | 6 | 22,4 | 8,9 | 60,7 | 3,9 | 4,7 | 6 | | | | | | 7 | 35,4 | -31,2 | 63,7 | 4,8 | 7,2 | 7 | T | | | | Figure 23: recognition with cylindrical tolerances | COLOR TABLE | | | | | | | | | | |-------------|-------|-------|------|--|-----|---|--|--|--| | | a* | b* | L* | | GRP | | | | | | 0 | 0,2 | 0,4 | 99,9 | | 0 | | | | | | 1 | -4,3 | -22,3 | 80,6 | | 1 | | | | | | 2 | -29,0 | -17,4 | 79,8 | | 1 | | | | | | 3 | -27,5 | 25,8 | 70,4 | | 2 | | | | | | 4 | 0,9 | 57,0 | 90,0 | | 3 | | | | | | 5 | 8,1 | 36,5 | 81,1 | | 3 | | | | | | 6 | 22,4 | 8,9 | 60,7 | | 3 | | | | | | 7 | 35,4 | -31,2 | 63,7 | | 4 | T | | | | Figure 24: grouping of colors There are no tolerance target values needed in the classification mode. The recognition mode needs target values: one parameter, spherical radius (column TOL in Figure 22), is required for spherical tolerances and two parameters, color (column TO ab in Figure 23) and brightness (column TO L in Figure 23) tolerance, are required for cylindrical tolerances. The latter is favorable in applications where the color brightness plays a less important role than the actual color. If the TO L tolerance is hereby set to a high value the influence of the color brightness is correspondingly low. In the right column "GRP" a group index (0...255) can be assigned if the grouping function is activated. The assigned index is encoded according to the adjusted output format ("RESULT FORMAT"). Equal group index numbers activate the same sensor output. In this way different colors can be mapped to the same output. The color diagram is located in the right lower area of the program window. Figure 25: Color diagram with tolerance cylinders in the a*b* plane Figure 26: L*b* plane Figure 25 and Figure 26 show an example color diagram in the L*a*b* color space in the processing mode cylindrical tolerances. Subject to change 22-3061-11 - 18 - The sample colors in the right column of the color table correspond to the colors resulting from the color values/coordinates in each row. The displayed color complies with the real color only if a valid reference white was successfully sampled
before. The visible colors in the color table are also used for displaying the tolerance boundaries in the color diagram and hence support the user at defining the tolerance boundaries in the diagram. #### Hint 1: Despite the tolerance rooms/boundaries may overlap, the color inspection and classification is done always uniquely. The order of colors stored as rows in the color table does not affect in any way the color inspection. #### Hint 2: The tolerance parameters are used as ΔE -like units. Table 9 shows how the human color perception commonly recognizes color variations in the L*a*b* color space. Due to the dependencies of the obtained color values on the used illumination source and the accuracy of the sensor, the table only serves as a clue. Practical tolerance values must be find individually for the sensor. Table 9: Common values of human perception of color variations | color variation ΔE | human perception | |----------------------------|--| | <1 | very small color variation that can not be seen by the human eye | | 12 | small color variation that can be seen by trained human eye | | 23,5 | medium color variation that can be seen by average human eye | | 3,55 | considerable color variation | | >5 | high color variation | #### Hint 3: If the spherical tolerances processing mode is selected, the tolerance circles become ellipses in some projection planes due to different scaling of the diagram axes and is, however, merely a displaying effect. #### SAVE PARAMETERS The switch "TO SENSOR" stores all parameters into the built-in nonvolatile Flash-memory of the sensor. The parameters will remain in the Flash-memory after power down. The switch "TO FILE" stores all parameters on a memory drive of a computer that is connected to the sensor system. ### LOAD PARAMETERS The switch "FROM FILE" of the field "LOAD PARAMETERS" loads a parameter set into the sensor system. #### Hint: The buttons in the fields "SAVE PARAMETERS" and "LOAD PARAMETERS" are located in each program tab and perform all the same functionality. An entire parameter set is always stored or loaded. After starting the program all parameters are read out from the built-in Flash-memory and are displayed in the program. Subject to change 22-3061-11 - 19 - # 1.2.4 Color processing Figure 27 shows the program window for color recognition and classification which can be found under the tab "PROCESS COLORS". Figure 27: Color recognition and classification program window The window arrangement and operation is similar to the program window "TEACHING IN COLORS" except for the three buttons on the left hand side of the color table which are substituted by three number boxes. #### COLOR INDEX The color number of the recognized or classified color is shown in the field "COLOR INDEX" and represents the result of the entire sensor system's signal processing path. This number is the equivalent of the row number in the color table. If in the recognition (checking) processing mode the tolerance boundaries were exceeded, the color number becomes 255. In addition the result is also available at the sensor system's communication interface. #### COLOR DIST The Euclidean distance between the actual measured color and the recognized or classified (matched) color value is displayed in the field "COLOR DIST". If the cylindrical tolerance mode is selected the euclidean distance becomes a 2-dimensional distance vector (2-dimensional color vector). All other processing modes show a 3-dimensional euclidean distance vector. ### Hint: If in the processing modes "CHECK CYL" and "CHECK SHP" the tolerance room was exceeded or the color was not recognized (Index 255), the distance to the next closest color is calculated and shown in the field "COLOR DIST". Subject to change 22-3061-11 - 20 - #### LIGHTNESS DIST The field "LIGHTNESS DIST" shows the magnitude of the brightness distance in the cylindrical tolerances processing mode (equal to an "altitude difference" in the color space). Figure 28: Program window when tolerance was exceeded and color was not recognized The color distance values can be read out by the RS232 or USB interface. ### Hint: If in the processing mode "CHECK CYL" the tolerance room was exceeded or the color was not recognized, respectively, the brightness distance to the next closest color is calculated and displayed in the field "LIGHTNESS DIST". ### SENSOR OUTPUT⁶ This display signalizes the switching states of the sensor outputs corresponding to the "RESULT FORMAT" and "COLOR GROUPING" settings. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 21 - ⁶ The number of displayed outputs depends on the used sensor type. ### DEVIATION⁷ If the result format "DEVIATION" is selected, this display interprets the sensors outputs and displays the color-deviation in plain text. If one of the other result modes is selected, this display just shows whether a color is detected or not. Figure 29: Result format "DEVIATION" - Display of color-deviation ### AXSIS SCALING With this selection switch 3 scaling methods can be chosen (ref. to above section). - ⁷ Only usable for sensors with 8 outputs. # 1.2.5 Service With the switch within the field "SERVICE" at the startup-screen a service tool is started, which allows certain special hardware functions and settings. Figure 30 shows the program window. Figure 30: "SERVICE" program window #### GET SENSOR ID With "GET ID" the device serial number and version of the sensor firmware is read from the device and displayed on the right textbox. ### SENSOR ADDRESS With "GET ADDRESS" in the area of "SENSOR ADDRESS" the programmed address of the sensor is read out and displayed on the right textbox. Underneath this switch there is a field to set the particular sensor address (scope: 0...255). With "SET ADDRESS" the sensor is programmed to listen to the chosen address. #### BAUD RATE With the "SELECT BAUD RATE" switch, the sensor communication is reconfigured to the chosen baudrate. ### OFFSET CORRECTION Press this button to start a routine that ascertains and corrects the sensors offsets. Offsets are the sensors dark signals that are noticeable in the active mode for self-shining objects. For correct operation, the hole of the sensor light input must be darkened. ### LOAD FACTORY SETT. With the "LOAD FACTORY SETT." switch the factory settings are loaded into the RAM of the Sensor. Subject to change 22-3061-11 - 23 - #### EXT. TEACH BEHAVIOR There are different ways of using the running mode "EXT. TEACH". If the checkbox "AUTO INCREMENT" is activated, the new color will be added as new entry of the internal color-table. If it's disabled, the last valid color-value will be overwritten. The function "KEEP PREVIOUS TOLERANCES" is only useful with disabled "AUTO INCREMENT". It overwrites the color-values and keeps the old tolerance-values of the tableentry. If this checkbox is disabled, default tolerances are used. The button "SET" sends the new properties to the sensor. ### SET HYSTERESIS This function guarantees a stable operation of the sensor system. It is recommended to chose a high hysteresis value if the signal quality is poor in order to prevent the signal processing from instability ("flutter"). The value for hysteresis can be set by pressing "SET HYSTERESIS". The value adjusted in the field "HYSTERESIS VALUE" will be set. The value are percentages of the pre-defined tolerances in the color table (refer to sect. 3.2.3). #### OUTPUT BEHAVIOR This function sets a hold time for the sensor outputs. Using the running modes "CONTINOUS" and "EXT.TEACH" this function holds the output-values for the selected number of milliseconds. If this function is used with an external triggered mode and the checkbox "Fall off" is enabled, the results fall back after the expiration of the desired number of milliseconds. The max. adjustable time is 65535 ms. #### SAVE TO SENSOR With this switch the chosen settings will be stored in flash memory permanently. #### Hint If the program is ended without storing the settings to flash memory permanently, all information are lost after a restart. Subject to change 22-3061-11 - 24 - # 2 Communication protocol and command reference The sensors can be fully controlled via RS232 or USB⁸. All commands are also available as LabVIEW[®] VIs and DLL function library. All software is shipped with the sensor system. ### 2.1 Protocol structure There is a uniform protocol for sending and receiving data, respectively. The smallest communication unit is a byte (8 bits), however two bytes are always combined to one word and transferred together. #### Protocol structure | ID | LP | AD | RR | DH | DL |
СН | CL | |----|----|----|----|----|----|--------|----| | | | | | | | | | The high-order byte is followed by a low-order byte. After sending a command word and receiving by the sensor system, a status response including error codes is sent back after executing the command Table 10: Protocol Build-Up | Word | Byte | Name | Description | |------|------|------|---| | 0 | 0 | ID | Command ID, higher 8 Bit of word 0 | | 0 | 1 | LP | Payload Length in Words, lower 8 bit of word 0 | | 1 | 2 | AD | Programmable Sensor Address, higher 8 bit of word 1 | | 1 | 3 | RR | Reserved (always 0), lower 8 bit of word 1 | | | ••• | DH | Data, higher 8 bit | | | ••• | DL | Data, lower 8 bit | | N | ••• | СН | Frame checksum, higher 8 bit | | N | ••• | CL | Frame checksum, lower 8 bit | The Payload length is limited to 255 words. Bigger frames will lead to unpredictable behavior of the device. Every sensor can have an 8 bit wide address (AD). The sensor will only respond to commands with this exact address but always to commands with address '0'. This address can be set by command 0x11. The checksum is a simple addition of all transmitted 16 bit words including the header. After adding all values only the lower 16 Bit
will be taken. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 25 - ⁸ Only available for sensors with USB port. **Table 11: Response Codes** | Response | Data Value | Description | |----------|--------------|---------------------------------| | 0xF0 | dep. on com. | Commando executed correctly | | 0xF1 | 0x00-0x03 | Internal status | | | 0x04 | Frame: wrong checksum | | | 0x05 | Frame: wrong length | | | 0x06 | Frame: receive buffer not ready | | | 0x07 | Frame: unknown error (fatal) | | | 0x08 | Frame: timeout (1s) | | 0xF2 | 0x00 | Illegal command | | 0xF3 | 0x00 | Command not enabled | | 0xF4 | 0x00 | Invalid parameter | | 0xE0 | dep. on com. | Burst mode | If a frame is not transmitted completely within one second the sensor responds with a timeout code (0xF1, Payload: 0x08). # Command sequence example 1: Setting the light intensity to a value of 0x20: ,,2401 0000 0020 2421" System Response to that command: "F000 0000 F000" (no error) ### Command sequence example 2: Reading actual value of the light intensity: "2500 0000 2500" System Response to that command: "F001 0000 0020 F021" (no error) ### 2.1.1 Burst Mode For getting values from the sensor system as fast as possible without querying them, a burst mode has been implemented. When a burst mode is set by the burst mode command (0x12), this initial command is acknowledged as usual. After that, the system will send frames of the following structure continuously, until stopped by another burst mode command, switching the burst mode off again. #### **Burst Frame Structure** | ID | LP | AD | RR | ТН | TL | DH | DL |
СН | CL | |----|----|----|----|----|----|----|----|--------|----| | | | | | | | | | | | Table 12: Burst Frame Build-Up | Word | Byte | Name | Description | |------|------|------|---| | 0 | 0 | ID | Burst Mode response Code, always "0xE0" | | 0 | 1 | LP | Payload Length in Words, lower 8 bit of word 0 | | 1 | 2 | AD | Programmable Sensor Address, higher 8 bit of word 1 | | 1 | 3 | RR | Reserved (always 0), lower 8 bit of word 1 | | 2 | 4 | TH | Timing information, higher 8 Bit of word 2 | Subject to change 22-3061-11 - 26 - | 2 | 5 | TL | Timing information, lower 8 Bit of word 2 | |-----|-----|----|--| | ••• | ••• | DH | Begin of burst data. Format according to requested mode. | | | ••• | DL | Begin of burst data. Format according to requested mode. | | N | ••• | СН | Frame checksum, higher 8 bit | | N | | CL | Frame checksum, lower 8 bit | The burst frame has the same structure like all other frames. Directly after the header a timing counter (TH/TL) is inserted. This counter indicates the time between two successive burst frames in μ s. After that, the requested data follows as if it was the payload of the requested burst mode. Other commands received by the system during a burst will be accepted and acknowledged accordingly. ### Burst Mode Sequence example: Step 1: Enable Burst Mode (2F-Mode): "1201 0000 0001 1202". Response: "F000 0000 F000". ### Step 2: Receive Burst Frames "E00A 0000 22D2 **0112 00F9 0075 0EED 0F06 0F8A 0FFF 0FFF 0FFF** 62D6". The system will go on sending frames similar to the above. The delay between this and the last frame is 8.914ms (0x22D2). The bold values represent the payload as if requested by a 0x2F-command. ### Step 3: Stop Burst Mode: "1201 0000 0000 1201": Response (after the last burst-frame) "F000 0000 F000" # 2.1.2 Fixed point notation In many cases it is necessary to use a more precise numbering system than the 16-bit integer number. For this reason the sensor system uses a 32-bit fixed point format number which has the following structure: Table 13: Fixed-Point Format (two's complement) | Bit 31-21 | Bit 20-0 | | | |--------------|-----------------|--|--| | Integer part | Fractional part | | | This format has a range \pm 1024 with a resolution of 0.000 000 477. The representation corresponds to the two's complement. The conversion is described by the following formula: $$F_{fixed} = F_{real} \cdot 2^{21}$$ ### Conversion Example 1: From Float to Fixed Point a) Number: +1.123 Because the value is positive, the formula can be used directly. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 27 - $$1.123 \cdot 2^{21} = 2355101.696 \rightarrow 2355102 = 0x0023EF9E$$ ### b) Number: -1.123 Because the value is negative, the above result has to be converted to a negative two's complement value by inverting and adding "1": $$0x0023EF9E \rightarrow 0xFFDC1061 \rightarrow 0xFFDC1062$$ ### Conversion Example 2: From Fixed Point to Float # a) Number: 0x0023EF9E Because the most significant bit is "0", this is a positive value. Simple convert by using the above formula. $$\frac{0x0023EF9E}{2^{21}} = \frac{2355102}{2^{21}} = +1.123000$$ ### b) Number: 0xFFDC1062 Because the most significant bit is "1", this is a negative value. Before conversion, invert and add "1": $$0xFFDC1062 \rightarrow 0x0023EF9E = 2355102 \rightarrow -1.123000$$ ### Important: Please pay attention to the word order of the low and high word of the 32 bit number. First, the lower part (Bit 15-0) is transmitted, then the higher part (Bit 31-16). ### Communication Example: Setting Reference White to 0.9/0.8/0.75 (Command 0x42) $0.90 \rightarrow 0x001CCCCC$ $0.80 \rightarrow 0x00199999$ $0.75 \rightarrow 0x00180000$ -> "4206 0000 CCCC 001C 9999 0019 0000 0018 A6B8" ### 2.2 Command reference The following section describes all available commands. Data types other then 16 Bit integer (a word) and 32 Bit fixed point are described at the command description directly. The leading hex-number represents the command id, the rest of the header (for example the length) and the checksum have to be set appropriately to build a complete communication frame. # 2.2.1 System Identification ### 0x01: ID-String Response: ASCII-String with 16 Bit Character width Note: Because the communication is 16-Bit based, only the lower 8 Bit of each word contain ASCII code. The higher 8 Bit are always zero. #### 0x02: Device Production Date Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 28 - Response: 2 words Word 1: Year Word 2: Bit 15-8: Month Word 2: Bit 7-0: Day Note: The date is coded directly to hexadecimal numbers. A received date "2005 0608" shows for example that this device was build on the 8th of June in 2005. ### 0x03 : Device Feature Index Response: 1 word Bit 15-0: Device Feature Index #### 0x04: Device Hardware Revisions Response: 2 words Word 1: Bit 15-8: System Board Revision Word 1: Bit 7-0: Communication Board Revision Word 2: Bit 15-8: Sensor Board Revision Word 2: Bit 7-0: Connector Board Revision ### 0x05: Device Software Revision Response: 1 word Bit 15-8: Major Revision Bit 7-0: Minor Revision ### 0x06 : Device Unique Serial Number Response: 2 words Word 1: Device Unique Serial Number (high) Word 2: Device Unique Serial Number (low) #### 2.2.2 Communication ### 0x10: Set Baud Rate Send: 1 word 0: 9.600 1: 14.400 2: 28.800 (default) 3: 38.400 4: 57.600 5: 115.200 Note: As for all commands, the serial baudrate can be set with an USB command. ### 0x11: Set Sensor Address Send: 1 word Note: Values other than 0-255 are ignored. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 29 - ### 0x12: Set Serial Burst Mode Send: 1 word - 0: Burst Mode off - 1: Burst 2F - 2: Burst 3F - 3: Burst 4F - 4: Burst 5F - 5: Burst 6F #### Response: Word 0: difference between two burst packages in us Word 1: (and following) requested data Note: For more information about the burst mode feature please refer to chapter 2.1.1. ### 0x13: Set USB-Burst Mode9 like 0x12, only for USB # 2.2.3 Data Acquisition # 0x20: Set Acquisition Mode Send: 1 word - 0: no acquisition - 1: active light internal triggered - 2: passive light internal triggered - 3: active light external triggered - 4: passive light external triggered - 5: active light external triggered inverted - 6: passive light external triggered inverted ### 0x21: Read Acquisition Mode Response: 1 word (like 0x20) ### 0x22: Set Transimpedance Amplification¹⁰ Send: 1 word - 0: Amplification factor 1 - 1: Amplification factor 5 - 2: Amplification factor 25 - 3: Amplification factor 100 # 0x23: Read Transimpedance Amplification¹⁰ Response: 1 word (like 0x22) ### 0x24 : Set Illuminating Intensity¹⁰ ⁹ Only available for sensors with USB port. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 30 - ¹⁰ This function is only available for VCS210 sensors. Send: 1 word Note: Values other than 0-255 are ignored. 0x25: Read Illuminating Intensity¹¹ Response: 1 word (like 0x24) 0x26: Set Light Compensation Frequency Send: 1 word Note: This value represents the time between bright and dark sample phases. The value 0xFFFF represents a frequency of 100Hz, a value of 0x0270 a frequency of 10kHz. Values lower than 0x1D0 (>15kHz) may not give the expected results. ### 0x27: Read Light Compensation Frequency Response: 1 word (like 0x26) ## 0x28: Auto Gain Setup¹¹ Response: 2 words automatically found Gain Word 1: automatically found Intensity Word 2: ### 0x29: Set Averaging Cycles Send: 1 word ### 0x2A: Read Averaging Cycles Response: 1 word (like 0x29) ### 0x2D: Read Raw ADC Channels Response: 7 words Word 1: [X] Red Value Word 2: [Y] Green Value Word 3: [Z] Blue Value Word 4: Temperature Sensor Note: Ranges are 0x0000 - 0xFFF0. The values are 12 Bit, left justified. 0xFFF0 represents the darkest, 0x0000 the brightest intensity (inverted). ### 0x2F: Read Compensated ADC Channels Response: 9 words Word 1: [X] Comp. Red Value Word 2: [Y] Comp. Green Value Word 3: [Z] Comp. Blue Value Word 4: [X] Red Value (Phase I) Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 31 - ¹¹ This function is only available for VCS210 sensors. Word 5: [Y] Green Value (Phase I) Word 6: [Z] Blue Value (Phase I) Word 7: [X] Red Value (Phase II) [Y] Green Value (Phase II) Word 8: Word 9: [Z] Blue Value (Phase II) Light Phase / no compensation
Phase I: Phase II: Dark Phase Note: Ranges are 0x0000 - 0x0FFF. The values are averaged according to 0x29. 0x0000 represents the darkest, 0x0FFF the brightest value. ### 2.2.4 Sensor Correction # 0x30: Set Correction Matrix Mode Send: 1 word 0: Disabled 1 : Sensor Level Correction 2: Sensor Matrix Correction ### 0x31: Read Correction Matrix Mode Response: 1 word (like 0x30) #### 0x32 : Set Correction Matrix Send: 9 x Fixed Point Matrix formula: Xc = a00*R + a01*G + a02*BYc = a10*R + a11*G + a12*BZc = a20*R + a21*G + a22*B Send order: a00, a01, a02, a10, a11, a12, a20, a21, a22 Note: The values of the correction matrix are only limited within the range of the fixed point numbers, but to let the system perform reasonable color transformations, the result of each channel should be between 0.0-1.0. The settings can be verified by using command 0x3F. ### 0x33: Read Correction Matrix Response: 9 x Fixed Point (like 0x32) ### 0x3F: Read Corrected Channels Response: 3 x Fixed Point Fixed Point 1: Corrected X Channel Fixed Point 2: Corrected Y Channel Fixed Point 3: Corrected Z Channel Subject to change 22-3061-11 - 32 - ### 2.2.5 Color Transformation ### 0x40: Set Color Space Mode Send: 1 word 0: XYZ (raw) 1: xyY 2: L*u'v' 3: L*a*b* 4: $L^*u^*v^*$ 5: Lab99 ### 0x41: Read Color Space Mode Response: 1 word (like 0x40) #### 0x42: Write Reference White Send: 3 x Fixed Point Fixed Point 1: X reference Fixed Point 2: Y reference Fixed Point 3: Z reference Note: The values of the correction matrix are only limited within the range of the fixed point numbers, but to let the system perform reasonable color transformations, the result of each channel should be between 0.0-1.0. A more practical way is to use command 0x44 to set the reference white. ### 0x43: Read Reference White Response: 3 x Fixed Point (like 0x42) ### 0x44 : Set Reference White Response: 3 x Fixed Point (like 0x43) Note: This command takes the actual input light and sets this values as reference white. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 33 - #### 0x4F: Read Transformed Channels Response: 3 x Fixed Point Tabelle 1: Ranges in different Transformation Modes: | Mode | Read order | Range 1 | Range 2 | Range 3 | |------|---------------|---------|---------|---------| | 0 | X, Z, Y | 0-1 | 0-1 | 0-1 | | 1 | x, y, Y | 0-1 | 0-1 | 0-1 | | 2 | u', v', L* | 0-1 | 0-1 | 0-1 | | 3 | a*, b*, L* | +/- 5 | +/-2 | 0-1 | | 4 | u*, v*, L* | +/- 5 | +/- 5 | 0-1 | | 5 | a99, b99, L99 | +/-5 | +/-2 | 0-1 | # 2.2.6 Color Table, Color Recognition/Classification ### 0x50: Write Color Table Entry Send: 9 x Fixed Point Fixed Point 1: Entry number (integer as Fixed Point) Fixed Point 2: Value 1 Fixed Point 3: Value 2 Fixed Point 4: Value 3 Fixed Point 4: Tolerance 1 (Quadratic value of tolerance in spherical & cylindrical mode) Fixed Point 5: Tolerance 2 (only cylindrical mode, corresp. to lightness distance) Fixed Point 7: Raw Value 1 (X) Fixed Point 8: Raw Value 2 (Y) Fixed Point 9: Raw Value 3 (Z) Note: This command writes a complete entry to the 255 entries long color table. The first value is the index of this entry. The next three entries are the transformed color values of the color to be recognized. The two tolerances depend on the classification mode. Please see chapter 1.2.4 for more detailed information. The last three values are the corresponding raw values to the transformed values. A more practical way to create a new entry is to use command 0x56. ### 0x51: Read Color Table Entry Send Entry Number: 1 x Fixed Point ### Response: Fixed Point 1: Value 1 Fixed Point 2: Value 2 Fixed Point 3: Value 3 Fixed Point 4: Tolerance 1 (Quadratic value of tolerance in spherical & cylindrical mode) Fixed Point 5: Tolerance 2 (only cylindrical mode, corresp. to lightness distance) Fixed Point 6: Raw Value 1 (X) Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 34 - Fixed Point 7: Raw Value 2 (Y) Fixed Point 8: Raw Value 3 (Z) #### 0x52: Set Classification Mode Send: 1 Word Bit 15-8: Table size (number of valid entries) Bit 7-0: 0: no classification 1: spherical check (with radius check)2: cylindrical check (with radius check) 3: spherical classification (without radius check) #### 0x53: Read Classification Mode Response: 1 Word (like 0x52) ### 0x54 : Set Hysteresis Send: 1 Word Note: This command sets a classification hysteresis (in percent) to filter small disturbances within the color recognition. The value enlarges the radius of the actual recognized color and makes it more difficult to leave. ### 0x55: Read Hysteresis Response: 1 Word (like 0x54) ## 0x56 : Set Color Table Entry Response: 8 x Fixed Point Fixed Point 1: Value 1 Fixed Point 2: Value 2 Fixed Point 3: Value 3 Fixed Point 4: Tolerance 1 (Quadratic value of tolerance in spherical & cylindrical mode) Fixed Point 5: Tolerance 2 (only cylindrical mode, corresp. to lightness distance) Fixed Point 6: Raw Value 1 (X) Fixed Point 7: Raw Value 2 (Y) Fixed Point 8: Raw Value 3 (Z) Note: This command takes the actual light input as entry and auto-increments the table-size. Tolerances are set default to 4 units. #### 0x57: Set Tolerance-Defaults Send: 2x Fixed Point Fixed Point 1: Default value for Color-Tolerance = $(Value / 100)^2$ Fixed Point 2: Default value for Lightness-Distance = Value / 100 ### 0x58: Read Tolerance-Defaults Response: 2x Fixed Point Fixed Point 1: Default value for Color-Tolerance $= (\sqrt{\text{Value}}) * 100$ Fixed Point 2: Default value for Lightness-Distance $= \sqrt{\text{Value}} * 100$ Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 35 - #### 0x5F: Read Classified Value Response: 3 x Fixed Point Fixed Point 1: Index of recognized/classified color (closest color) Fixed Point 2: Quadratic value of distance 1 (spherical & cylindrical mode) Fixed Point 3: Value of Distance 2 (only cylindrical mode, corresp. to lightness distance) ## 2.2.7 Output Encoding 0x60: Set Encoding Style Send: 1 Word Bit 15-12: Output Mode 0 = [0000]: continuous 1 = [0001]: external triggered 2 = [0010]: trigger controlled sequence 3 = [0011]: timer controlled sequence 4 = [0100]: external triggered teach in 5 = [0101]: self triggered sequence Bit 11-8: Mapping Mode 0: no mapping (direct) 1: mapping enabled (use 0x62 to set entries) Bit 7: External Teach Mode: Auto increment enable 0: Auto increment disabled1: Auto increment enabled Bit 6: External Teach Mode: Keep previous tolerance values 0: Set default tolerances 1: Keep previous tolerances (only useful in combination with Bit 7) Bit 5: External Trigger Modes: Automatic fall-off enable 0: Automatic fall-off disabled1: Automatic fall-off enabled Bit 4: Encoding Polarity 0: not inverted outputs1: inverted outputs Bit 3-0: Encoding Mode 0 = [0000]: off (output pins remain unchanged) 1 = [0001]: direct 2 = [0010]: 1-hot 3 = [0011]: 7-segment 4 = [0100]: Deviation 0x61: Read Output Mode Response: 1 Word (like 0x60) 0x62: Set Encoding Map Entry Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 36 - Send: 2 Word Word 1: Table Entry (range 0..255) Word 2: Table Value (range 0..255) 0x63: Read Encoding Map Entry Send: 1 Word (Table Entry 0..255) Response: 1 Word (Table Value 0..255) 0x64 : Set Sequence Timeout Send: 1 Word Note: Sequence Timeout for triggered mode in ms. 0x65 : Read Sequence Timeout Response: 1 Word (like 0x64) 0x66 : Set Sequence Interval Send: 1 Word Note: Time between two automatic samples for timed mode in ms 0x67: Read Sequence Interval Response: 1 Word (like 0x66) 0x68: Set Output hold time Send: 1 Word Note: This command sets the time, for which the resulting output signal will be hold constant on the output pins, no matter how short time the detected color was in front of the sensor. The time is given in ms. 0x69: Read Output hold time Response: 1 Word (like 0x68) 0x6F: Read Encoded Output Response: 1 Word (like encoded output pins) # 2.2.8 Flash Operations and Parameters **0xA0**: Store Parameter store all parameter from RAM to Flash Note: Flash write operations can last up to seconds. The device must not be interrupted and power supply has to be stable during this time. Otherwise the flash may be corrupted and the device may start with an unknown or even a dangerous configuration. 0xA1: Read Parameter read stored parameter from Flash into RAM Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 37 - **0xA2 : Read Factory Settings** read factory defaults into RAM Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 38 - # LabVIEW[®] VIs All commands described in chapter 4 are implemented as LabVIEW VIs and are shipped with this color sensor system. The following VIs are saved as LabVIEW Version 6.1 libraries on CD: Table 14: LabVIEW libraries | Library | Description | |----------------|--| | libpcs_cmd.llb | Main library with all commands | | libtools.llb | Help library for libpcs_cmd. Internal, shared VIs. | | libft.llb | Help library for controlling the USB module. | | libpcs_com | general functions for communication | #### 3.1 Structure of command VIs All command VIs have the same standard structure (Figure 31). Figure 31: VI entity Resource Signal The Resource signal is a so-called cluster signal (Figure 32) and contains information and configuration about the communication interface. Figure 32: Resource Cluster-Signal The signal **UsbHandleIn** contains the handle for the USB communication. The **VISAIn** signal stores all information for the serial communication interface. The communication channel is selected by the signal **SERIAL** (TRUE: RS232, FALSE: USB). error Signal The error signal is a cluster signal and contains error information (Figure 33). Figure 33: error Cluster-Signal # 3.2 Open Resource VI and Close Resource VI There are VIs for opening and closing the communication channel. Subject to change 22-3061-11 - 39 - Figure 34: Figure 35: Open Resource VI The switch T - Serial / F - USB selects between RS232 or USB. With the selection switch SELECT COM PORT (IF SERIAL)
the used COM-Port for the RS232 can be selected. Via the selection switch SELECT BAUD RATE (IF SERIAL) the used baud rate can be chosen. With the control "SELECT USB DEVICE" the desired USB device can be chosen. Figure 36: Close Resource VI For closing the used comport the VI close resource is provided. # 3.3 Example Figure 37 shows a block diagram for combination of LabVIEW VIs with the command 0x2F (Read Compensated ADC Channels). Figure 37: Combination with the command 0x2F (Read Compensated ADC Channels) Subject to change 22-3061-11 - 40 - Figure 38: Front Panel of the example VI for the command 0x2F (Read Compensated ADC Channels) # 4 DLL Function Library #### 4.1 Introduction The function library **PCSLib** contains the functionality to communicate and configure the sensors. For the communication two PC devices are supported: serial interface (COM1, COM2, ...) and the USB interface. This document describe the library functions its usage and the delivered files. # 4.2 Library Functions Three function layer are supported: #### • PCS Library: Information (name, version number) about the PCSLib. #### • USB Library: Initializing of the USB-Library. #### • PCS Devices: Opening and closing of the interfaces and the communication. # 4.2.1 Library #### PCS_VersionString Delivers the **PCSLib** version string in the following format: "PCSLIB 1.3" ``` UCHAR* PCS_VersionString (void); ``` #### Parameters: - none - #### Return Value: string Pointer to the **PCSLib** version string. # 4.2.2 USB Library #### PCS initUSBLib This function loads the USB library and initializes its functions. It is required to call this function, before additional USB functions can be used. ``` ULONG PCS_initUSBLib (void); ``` #### **Parameters:** - none - #### Return Value: opening status 0 indicates the successful initialisation -1 if an error occurs Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 42 - #### PCS closeUSBLib This function closes the USB library and frees the allocated memory. ``` void PCS_closeUSBLib (void); ``` #### **Parameters:** - none - #### Return Value: - none - #### 4.2.3 Devices # PCS_getUSBDeviceNum Detects the number of sensors connected to the USB interface. ``` UCHAR PCS_getUSBDeviceNum (ULONG* num); ``` #### **Parameters:** num Pointer that contains the device number. # Return Value: Communication error PCSCS_OK if command successful, otherwise the return value is an error code. ## PCS_openDevice Opens a communication device (USB or RS232 interface) and initializes the internal device memory structure. Depending on the device type different configuration parameters are used. ``` UCHAR ``` #### **Parameters:** pcsdev Pointer to device structure to be initialized devtype Device type: PCSDT_USB, PCSDT_RS232 devnr Device number; depending on device type (USB or RS232 device) baud RS232 baud rate; default value: 28800 baud # Return Value: Communication error PCSCS_OK if command successful, otherwise the return value is an error code. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 43 - #### PCS_closeDevice Closes a previous opened communication device. void PCS_closeDevice (struct PCS_Device_def *pcsdev); **Parameters:** pcsdev Pointer to the device structure Return Value: - none - #### PCS_sendCommand This function sends a command via the opened communication interface to the sensor and delivers the response. **UCHAR** PCS_sendCommand (struct PCS_Device_def* pcsdev, UCHAR cmd, UCHAR devid, USHORT* txd, USHORT txd_len, USHORT* rxd, USHORT* rxd_len, UCHAR* responsecode); #### **Parameters:** pcsdev Pointer to the device structure cmd Code of the command to be send devid Device ID of the sensor for communication. 0x00 (default) for broadcasting. All sensors connected to the opened communication interface are addressed. txd Pointer to send message txd_len Length of send message rxd Pointer to receive message txd_len Length of receive message responsecode response code Return Value: Communication error PCSCS_OK if command successful, otherwise the return value is an error code. Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 #### Code Example: ``` #include "libpcs.h" USHORT x, y, z; UCHAR devid = 0x00; // device id USHORT msg_tx[PCS_MAXMESSAGESIZE]; // transmit command data USHORT msg_rx[PCS_MAXMESSAGESIZE]; // received command data USHORT msg_tx_len, msg_rx_len; // data length (rx, tx) // communication status UCHAR com_status; UCHAR responsecode; // protocol response code msg_tx_len = 0; com_status = PCS_sendCommand(pcsdev, PCSCC_ReadRawADCChannels, devid, msg_tx, msg_tx_len, msg_rx, &msg_rx_len, &responsecode); if (com_status != PCSCS_OK || responsecode != PCSRC_OK) printf("ReadRawADCChannels: communication error: %x, %x\n", com_status, responsecode); } else { x = msg_rx[0]; // value x y = msg_rx[1]; // value y z = msg_rx[2]; // value z ``` # 4.3 Files | File | Description | |-------------------------------|---| | libpcs.dll
libpcs.h | library and header file | | Makefile | Makefile to generate the example executables (in this case gcc with cygwin) | | acquisition.c acquisition.exe | shows the sensor color values in Lab color space | | benchmark.c
benchmark.exe | benchmark the USB and serial communication speed | | identify.c
identify.exe | reads the sensor identify string | PCSLib_en_x.y.pdf this documention # 4.4 Requirements - installed FTD2XX.DLL for USB communication - installed development environment | Revision | Remark | |----------|--| | 1.8 | Chap. 4: commands 0x44 & 0x56 added, command 0x51, 0x60 changed | | | Section 4.1 Description of the fixed point format corrected | | | program screen shots updated, table 7 changed | | 1.81 | Table 10, section 3.2.2 corrected | | 2.0 | Chap. 3: new screenshots of V2.0 implemented, new functions documented | | 2.01 | Section 4.8: Command 0x60 edited | | | Section 3.2.3: Hint 2 and table 12 edited | | | Section 3.2.2, Subsection "COLOR SPACE MODE": Hint added | | 2.02 | Section 3.2.2, Subsection "FREQUENCY": screenshot replaced, Hint 2 added | | 2.1 | Chap. 3: new screenshots of V2.1 implemented | | | Section 3.2.3 new function "EXPORT TABLE" documented | | 3.01 | Chap. 2: edited, Tab. 3 adapted, Sect. 2.2 added | | | Chap. 3: Sect. 3.2.2 Subsect.: "SERVICE" Command "LOAD FACTORY SETT." added, "COLOR OBJECT TYPE" edited, | | | "LIGHT CONTROL" replaced by "INTENSITY", "RUNNING MODE" edited, "HYSTERESIS" replaced by | | | "AVERAGING", "FREQUENCY" edited | | | Chap. 4: Sect. 4.1 Command sequence example added, Command 0x20 edited, commands 0x29 and 0x2A added, commands 0x54 and 0x55 corrected | | | Chap. 6: completely edited, additional specifications added | | 3.02 | Chap. 6: Completely edited, additional specifications added Chap. 3: Sect. 3.2.2 Subsect.: "COLOR SPACE MODE": Hint 2 added | | 3.03 | Chap. 2: Subsect.: "SERVICE": "SERVICE" edited | | 3.1 | Sect. 1.1.4 edited | | 3.1 | Chap. 2, Sect. 3.2.2, Subsect. "RESULT FORMAT and Subsect. "RUNNUNG MODE" edited, Subsect. "FREQUENCY" | | | Table 12 added, Fig. 28 added | | 3.11 | Sect. 2.1.3 Fig. 9 added | | 3.2 | Chap. 3: Sect. 3.2.2 Subsect.: "SERVICE" Commands "OFFSET CORRECTION", "SET HYSTERESIS" und "SET | | 5.2 | OUTPUT HOLD TIME" added | | | Chap. 2 edited. | | 3.3 | Chap. 3: new screen shots added, new functions "SCALING OPTION" and "SENSOR OUTPUT" added | | 3.31 | Corrected response codes in communication protocol (F1 ⇔ F2) | | 3.32 | specification in tab 25 changed, Sect. 4.2.7 command 0x63 edited | | 3.33 | Screenshots updated, specification adapted | | 3.4 | new screenshots added, Sect. 3.2.1 "SERIAL CONNECTION" field "ADDRESS" added, Sect. 4.1.9 Command 0x60 "self | | | triggered sequence" added | | 4.0 | old Chap. 1 "INTRODUCTION AND COLORIMETRIC BASICS", Chap. 2 "SENSOR HARDWARE" and Chap. 6 | | | "SPECIFICATION" removed. New Chap. 4 "DLL Function Library" added. | | 4.1 | New output-modes: Fall off, Deviation, Keep Tolerances, Auto Increment enable | | 4.2 | Screenshots updated; Function "SAMPLE" Sec. 1.2.3 edited | | 4.3 | new screenshots inserted | | 4.4 | New screenshots inserted | | 4.5 | Commands 0x57 and 0x58 inserted, Section 1.2.5 updated (Switch "KEY LOCK" insertewd) | | 4.6 | Chap. 2 7-sehm. mode removed | | 4.7 | new screen shots added | | 4.8 | New screenshots, Sec. 1.2.1 edited | Rev. 4.8 (2008-05-13) Subject to change 22-3061-11 - 46 - Date of issue # FACTORY AUTOMATION -**SENSING YOUR NEEDS** # **Worldwide Headquarters** Pepperl+Fuchs GmbH 68307 Mannheim · Germany Tel. +49 621 776-0 E-mail: info@de.pepperl-fuchs.com #### **USA Headquarters** Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1 330 4253555 E-mail: sales@us.pepperl-fuchs.com # **Asia Pacific Headquarters** Pepperl+Fuchs Pte Ltd. Company Registration No. 199003130E Singapore 139942 Tel. +65 67799091 E-mail: sales@sg.pepperl-fuchs.com # www.pepperl-fuchs.com