



FACTORY AUTOMATION

# IQT-18GM-R4-V1-Y911215 IQT-FP-R4-V1-Y911204

# MANUAL



With regards to the delivery of products, the current issue of the following document is applicable:

The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

| Contents                                                                 |     |
|--------------------------------------------------------------------------|-----|
| Declaration of conformity<br>Symbols Used                                | 1   |
| Symbols Used                                                             | 2   |
| Safety                                                                   | 3   |
| Intended use                                                             | 3   |
| General safety instructions                                              | 3   |
| Product description<br>Product family<br>Read/write heads                | 4   |
| Product family                                                           | 4   |
| Read/write heads                                                         | 4   |
| Tags                                                                     | 4   |
| Tags<br>Handhelds                                                        | 5   |
| Accessories                                                              | - 5 |
| Connection cables for power and serial communication                     | 5   |
| Converter                                                                | 6   |
| Installation                                                             | 7   |
| Storage and transport                                                    | 7   |
| Unpacking                                                                | 7   |
| Device connection                                                        | 7   |
| Power supply/RS-485 serial connections                                   | - 7 |
| Ground connection<br>Instructions for connecting communication interface | 8   |
| Instructions for connecting communication interface                      | 8   |
| Connection                                                               | 10  |
| Connection                                                               | 10  |
| Device settings                                                          | 10  |
| Operation through the communications interface                           | 11  |
| Operation through the communications interface<br>Protocol with checksum | 12  |
| Commands                                                                 | 14  |
| General information about serial interface                               | 14  |
| Command examples                                                         | 14  |
| Command examples<br>Command types<br>Single mode                         | 16  |
| Single mode                                                              | 16  |
| Enhanced mode                                                            | 16  |
| Command overview                                                         |     |
| System commands<br>Fixed code (read only)                                | 19  |
| Fixed code (read only)                                                   | 22  |
| Reading data                                                             | 23  |
| Writing data<br>Special command codes                                    | 24  |
| Special command codes                                                    | 26  |
| Legend                                                                   | 27  |
| Error/status messages                                                    | 28  |
| Troubleshooting                                                          | 29  |
| Technical data                                                           |     |
| Dimensions                                                               | 30  |
| General data                                                             |     |
| Read/write range                                                         | 33  |
| Read/write range in air                                                  | 33  |
| Read/write range on steel                                                |     |
| ASCII table                                                              | 34  |



## **Declaration of conformity**

The IDENT Control System was developed and manufactured compliant with applicable European and North American standards and guidelines.



A corresponding declaration of conformity may be requested from the manufacturer.

The manufacturer of the product, Pepperl+Fuchs GmbH in D-68307 Mannheim, has a certified quality assurance program in accordance with ISO 9001.







## Symbols Used



This symbol warns of a danger.

Failure to observe this warning may result in personal injury or death, or property damage or destruction.



This symbol warns of a possible fault.

Failure to observe the instructions given in this warning may result in the device and any facilities or systems connected to it developing a fault or even failing completely.



This symbol draws your attention to important information.



## Safety

## Intended use

The IQT-... serial read heads are designed to be stand-alone. Only one read head can be connected to the RS-485 line at a time. The serial connection should be shielded and grounded at both the read head and the cabinet. Proper wiring must be used.



Protection of operating personnel and the system is not ensured if the module is not used in accordance with its intended purpose.

Warning

The IQT-... read heads may only be operated by trained professionals in accordance with these operating instructions.

## **General safety instructions**

Any use other than that described in these instructions endangers the safety and functionality of the device and the connected systems.

Only a qualified electrical technician may connect and perform maintenance on the live device.

If malfunctions cannot be eliminated, take the device out of service and secure it from accidental use.

Only the manufacturer can make repairs to the device. Interventions in and modifications to the device are not permissible and render the warranty null and void.

The responsibility for the adherence to local safety standards lies with the operator.



## **Product description**

## **Product family**

#### Read/write heads

Read head housing styles range from an 18 mm cylindrical to an 80 mm x 80 mm flat pack. Regardless of housing style, the programming steps are identical for all IQT-... heads.





IQT-18GM-R4-V1-Y911215

IQT-FP-R4-V1-Y911204

#### Tags

13.56 MHz frequency range (inductive)

Tags in this frequency range offer a significantly higher read rate than tags in 125- and 250-kHz systems. Since this is a non-proprietary system, costeffective tags are available from many third-party manufacturers. The 13.56 MHz technology also makes so-called smart labels possible (tags as stick-on foil with a printed optical barcode).

Available tags have a 64 bit ROM and 896 bits (IQC21-...), 256 bits(IQC31-...), 2048 bits (IQC22-...), or 7936 bits (IQC24-...) of freely programmable memory.







#### Handhelds

For process control (read/write functionality, initialization of tags), a mobile read/write device is available.



IQT1-HH20

### Accessories

### Connection cables for power and serial communication

These dual ended cables can be used without modification for both power and communication. If desired, the male end can be cut off and the read head can be hard-wired back in the main panel.



#### Connector cables

| Standard accessories                                  | Description           |
|-------------------------------------------------------|-----------------------|
| Length 2 m (straight socket, right-angled connector)  | V1-G-2M-PUR ABG-V1-W  |
| Length 3 m (straight socket, right-angled connector)  | V1-G-3M-PUR ABG-V1-W  |
| Length 5 m (straight socket, right-angled connector)  | V1-G-5M-PUR ABG-V1-W  |
| Length 10 m (straight socket, right-angled connector) | V1-G-10M-PUR ABG-V1-W |
| Length 15 m (straight socket, right-angled connector) | V1-G-15M-PUR ABG-V1-W |
| Length 20 m (straight socket, right-angled connector) | V1-G-20M-PUR ABG-V1-W |
| Configurable socket, shielded                         | V1-G-IVH              |



| Special order cables                                  | Description           |
|-------------------------------------------------------|-----------------------|
| Length 12 m (straight socket, right-angled connector) | V1-G-12M-PUR ABG-V1-W |
| Length 30 m (straight socket, right-angled connector) | V1-G-30M-PUR ABG-V1-W |
| Length 40 m (straight socket, right-angled connector) | V1-G-40M-PUR ABG-V1-W |
| Length 50 m (straight socket, right-angled connector) | V1-G-50M-PUR ABG-V1-W |
| Length 70 m (straight socket, right-angled connector) | V1-G-70M-PUR ABG-V1-W |
| Length 80 m (straight socket, right-angled connector) | V1-G-80M-PUR ABG-V1-W |

#### Converter

This optional converter, Pepperl+Fuchs part number ICZ-R4-R2, is used to convert the RS-485 signal from the read head to an RS-232 signal for use back to a PC or PLC.



ICZ-R4-R2



# Installation

### Storage and transport

When the device is stored and/or transported, the device must be packaged and prevented from moving and protected from humidity.

The original packaging provides the optimum protection.

## Unpacking

Take note that the contents are not damaged. In case of damage, inform the post office or delivery agent and notify the supplier.

Check the scope of delivery against your order and the delivery documents.

Keep the original packaging in case the device must be stored or shipped at a later date.

If you have any questions, please contact Pepperl+Fuchs.

## **Device connection**

Plug connectors make installation simple and easy.

#### Power supply/RS-485 serial connections

Connection is made using an M12 plug connector. On the housing there is a plug with the following pin layout:



IQT wiring diagram

For the appropriate connection cable, see "Connection cables for power and serial communication"" on page 5.



#### **Ground connection**

All read heads should be grounded using the grounding screw (only included with the IQT-FP-...) or directly with a metal bracket. The cable should be grounded at both ends.



Principle of the ground connection

We recommend using a conductor of at least 12 AWG in size for the ground wire.

#### Instructions for connecting communication interface

The baud rate is configured using a serial command. The following options are available:

1200, 2400, 4800, 9600, 19200, 38400 bps

When delivered from the factory, 9600 baud is configured.

The device works with the following fixed parameters:

- 8 data bits
- 1 start bit
- 1 stop bit
- no parity



The RS-485 interface is connected using a 4-pin M12 connector. The shielding of the cable must be attached to the connector.



Pinout of the M12 connector for RS-485



Example of connection of RS-485 interface to PC

Transmission rates, line lengths, and line types

The maximum cable length between the control unit and the computer depends on the data rate and the level of interference. The value given here is only a suggestion.

| Standard | Max. cable length |
|----------|-------------------|
| RS-485   | 1200 mm           |



## Commissioning



Before commissioning, make sure that no risk can occur to the installation in which the device is installed, e.g., due to uncontrolled processes.

## Connection

Before commissioning, verify that all connections are correct.



After the power supply is connected, the green LED must light up.

## **Device settings**



Devices must be configured before connecting them to the interface.

Before commissioning, some parameters may have to be configured. All parameters are non-volatile. They will remain intact even after a power cycle. Non-volatile parameters

| Parameters       | Factory setting | Range                                   |
|------------------|-----------------|-----------------------------------------|
| Read/write head  |                 |                                         |
| Tag type         | 20              | 20 31                                   |
| RS-485 interface |                 |                                         |
| Baud rate        | 9600            | 1200, 2400, 4800,<br>9600, 19200, 38400 |
| Timeout          | 1 (100 ms)      | 0 100                                   |

Configure the read/write station using the system commands described in the "System commands" table on page 17.





## Operation through the communications interface

The commissioning of the IQT-... read head is described below using the serial RS-485 interface, a PC, and a model number IPC21 tag. All the steps below assume that the IQT-... read head is in the factory delivered state. The factory setting of the transmission rate is 9600 baud with a 100 ms timeout. The data carrier type is preset as "20" (tag type independent). Check whether you have connected an RS-485 interface. The transmission rate (baud rate) is selected through the software (see "Instructions for connecting communication interface" on page 8). The following transmission rates are available:

1200, 2400, 4800, 9600, 19200, 38400 bps

When delivered from the factory, 9600 baud is configured. The device works with the following fixed parameters:

- 8 data bits
- 1 start bit
- 1 stop bit
- no parity

First operating step

On the PC, open the terminal program (e.g. Hyperterminal or the command entry window of the "RFID control," software which can be downloaded from our web page, **www.pepperl-fuchs.com**).

In the terminal program, set the interface configuration to 9600 baud, 8 data bits, no parity, 1 stop bit, and no protocol/handshake.

If you now switch the power supply to the device off and on again, after the power is restored the following message appears on the terminal:





This tells you that communications are working between the device and the terminal program and that the device is ready to operate. As a check, send the version command

VE#<CR>

from the terminal. This command should be typed into a text file and sent. Typing on the screen directly will fail because of the 100 ms serial timeout.

Depending on the device connected, you will receive a response with its name, part number, and a version message.

Example:

0 (C) P+F IDENT-KCR×LF> IQT-18GM-R4-V1-Y911215<CR><LF> #911215<CR><LF> 1830635(CR)(IF) 05.04.07 #<CR>



If you receive a different response, communication between your PC and the device is not working correctly (the software number and software date, however, may vary).

Check your installation and repeat the steps for commissioning.



The device ignores capitalization of the commands. That is, commands are not case sensitive. However, please note that all parameters follow the command without spaces.

Note

## Protocol with checksum

```
All commands are concluded with the characters
```

<CHCK> = "Checksum"

and

 $\langle ETX \rangle = "End of Text" (\langle ETX \rangle = 03h).$ 

These are used for data security in the serial transmission.

For simple operation from a standard terminal, the control unit can also accept a

#<CR>

instead of

‹CHCK›‹FTX›.



By using the checksum, you increase the data security on the interface.



12



The checksum is calculated using simple addition of all previous characters with no overflow.

Example of the calculation of the checksum:

For the message without the checksum

VE#<CR>

or

ve#<CR> the checksum should be calculated.

First, an ASCII table is used to look up the hexadecimal values for the characters "V" = 56h and "E" = 45h

or

"v" = 76h and "e" = 65h.

If these are added, the result is:

"V" = 56h plus "E" = 45h gives the sum 9Bh

or

"v" = 76h plus "e" = 65h gives the sum DBh.

The message with checksum is then

VE<9Bh><ETX>

or

ve<DBh><ETX>.

If a longer message is to be transmitted, there will probably be an overflow in the checksum. That is, the value obtained from the addition will no longer fit in one byte. The overflow is discarded.

To transmit the message

ER000702#<CR>

with a checksum, the following checksum results:

45h + 52h + 30h + 30h + 30h + 37h + 30h + 32h = 1C0h.

After the overflow is discard, the following message results with the checksum: ER000702<C0h><ETX>.

The device ignores capitalization of the commands. However, please note that different checksums result for upper- and lowercase letters. Also, do not send the ASCII characters "C0". It is the single ASCII character which has a hexadecimal value of C0. Many characters cannot be entered directly at the keyboard.



## Commands

## General information about serial interface

The RS-485 serial interface allows simple, fast connection of the IQT-... read head to a PC or PLC. No device address is used. Configuration is limited to setting the desired baud rate and serial timeout desired.

#### **Command examples**

1st example: Setting the tag type

When delivered, the tag type 20 is configured. This tag type is used when you want the read head to automatically determine the tag type. The 64 bit code is read first and the tag type is set accordingly. Because the code is read first, the response time is increased by at least 20 ms. To make the system as fast as possible, set the tag type exactly to the model number used (ex. IQC21 to 21). To do this, you send the command "change tag."



As a response you receive:



This shows that the read/write head has correctly received the command (status = '0'). You can find an overview of all status codes on page 28.



The data carrier type is stored in non-volatile memory.



2nd example: Writing 2 double words starting at address 7

Now place an IQC21 tag in front of the read/write head. Send the command "single write words" (for the syntax of this command, see "single write words" on page 24).



If the tag is in the detection range, then you receive the message

0#‹CR›.

Otherwise,

5#‹CR›

is returned to show that writing was not possible because the tag was outside the detection range (status = '5'). You can find an overview of all status codes on page 28.

The LED on the read/write head flashes green if the read command is activated and turns yellow if the command has been executed successfully.

3rd Example: Reading 2 double words starting at address 7

Send the read command "enhanced buffered read words" (for the syntax of this command see "enhanced buffered read words" on page 23).





If you bring a tag into the detection range, then the previously written data will be displayed, with the message



## **Command types**

When using commands, the two modes "Single mode" and "Enhanced mode" are differentiated.

#### Single mode

Each command is executed once, and an immediate response is returned. To use this command, the tag must stop over the read head before the command is sent by the control system.

#### Enhanced mode

Each command remains active until it is cancelled by the user, a new command is sent, or there is a power cycle. A response is sent when the tag shows up in front of the read head and also when it leaves the detection zone. These commands are typically used to read tags "on the fly."

#### **Command overview**

The commands listed are described in detail on the pages shown in the tables below.



#### System commands

| Command description | Abbreviation | Page |
|---------------------|--------------|------|
| Version             | VE           | 19   |
| Change tag          | СТ           | 19   |
| Quit                | QU           | 20   |
| Configure interface | CI           | 20   |
| Configuration store | CS           | 21   |
| Get state           | GS           | 21   |
| Reset               | RS           | 21   |

#### Standard read/write commands

Fixed code (read only)

| Command description            | Abbreviation | Page |
|--------------------------------|--------------|------|
| Single read fixcode            | SF           | 22   |
| Enhanced buffered read fixcode | EF           | 22   |

#### Reading data

| Command description          | Abbreviation | Page |
|------------------------------|--------------|------|
| Single read words            | SR           | 23   |
| Enhanced buffered read words | ER           | 23   |



#### Writing Data

| Command description            | Abbreviation | Page |
|--------------------------------|--------------|------|
| Single write words             | SW           | 24   |
| Single write words with lock   | SL           | 24   |
| Enhanced buffered write words  | EW           | 24   |
| Enhanced write words with lock | EL           | 25   |
| Fill datacarrier               | S#           | 25   |

#### Special command codes

| Command description   | Abbreviation | Page |
|-----------------------|--------------|------|
| Single inventory read | IV           | 26   |



### System commands

In the following descriptions, the commands are in bold text.

Text in < ... > is explanatory text for the command sequence.

The device ignores capitalization of the commands. That is, commands are not case sensitive. However, please note that all parameters follow the command without spaces.

version (VE):

| Command:  | VE <chck> <etx></etx></chck>                |
|-----------|---------------------------------------------|
| Response: | <status> (C)P+F IDENT-I</status>            |
|           | <model type=""></model>                     |
|           | # <part no=""></part>                       |
|           | <sw no=""></sw>                             |
|           | <sw date=""> <chck> <etx></etx></chck></sw> |

This command is used to transmit the model number and version information of the read head.

change tag (CT):

Command: Response: CT<TagType×CHCK×ETX> <Status×CHCK×ETX>

This command is used to program the exact tag type the read head will be communicating with. This setting is stored in non-volatile memory in the read head. The following tag types are supported

| Tag type | P+F name | Chip type                             | Access            | Bits       | Address<br>range |
|----------|----------|---------------------------------------|-------------------|------------|------------------|
| 20       | 20*      | Any ISO<br>15693-<br>compliant<br>tag | R/W fixed<br>code |            |                  |
| 21       | IQC21    | I-Code SLI<br>(Philips)               | R/W fixed<br>code | 896<br>64  | 01B h            |
| 22       | IQC22    | Tag-it HF-I<br>(TI)                   | R/W fixed<br>code | 2048<br>64 | 03F h            |
| 23       | IQC23    | my-D<br>(Infinion)                    | R/W fixed<br>code | 1792<br>64 | 037 h            |
| 24       | IQC24    | my-D<br>(Infinion)                    | R/W fixed<br>code | 7936<br>64 | 0F7 h            |
| 31       | IQC31    | Tag-it HF-I<br>(TI)                   | R/W fixed<br>code | 256<br>64  | 07 h             |

\*20 is not an actual data carrier type. In this mode, the read head determines the tag type by first reading the UID (fixed code) before each read or write operation.



#### Default tag type:



In an installation in which only one tag type is used, it is practical to set that tag type. This allows the tags to be detected more quickly.

quit (QU):

| Command:  | QU <chck><etx></etx></chck>         |
|-----------|-------------------------------------|
| Response: | <status×chck×etx></status×chck×etx> |

The command running is cancelled.

configure interface (CI):

| Command:  | <b>CI</b> <timeout>,<baud><chck><etx></etx></chck></baud></timeout> |
|-----------|---------------------------------------------------------------------|
| Response: | <status><chck><etx></etx></chck></status>                           |

This command is used to set the timeout and baud rate. The values are stored in non-volatile memory in the control unit.

| 0    |
|------|
| Л    |
| Note |

Device settings stored in non-volatile memory only become active after a reset.

The timeout specifies the time after which the device no longer waits for characters in a command. After the timeout expires, the user receives an error message. To disable the timeout, the time must be set to "0".

The number of data bits is always 8. Parity bits are never used.

The following settings are possible:

<Timeout>: "0" "1"... "100" (x 100 ms, timeout in 100 ms steps) <Baud>: 1200, 2400, 4800, 9600, 19200, 38400 A timeout of "1" (100 ms) and a baud rate of "9600" are the default values.



configuration store (CS):

| Command:  | <b>CS</b> <mode×chck×etx></mode×chck×etx> |
|-----------|-------------------------------------------|
| Response: | <status×chck×etx></status×chck×etx>       |

This command allows the last command sent to the read head to be stored in non-volatile memory in the IDENT Control. After the power supply is interrupted or the read head is reset, the read head will execute this command automatically.

<Mode>="1" activates the mode.

<Mode>="0" deactivates the mode.

By default, configuration store is not active.

get state (GS):

| Command:  | <b>GS</b> <chck><etx></etx></chck>                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| Response: | <pre><status>TT: <tagtype>, TO: <timeout> ms,<br/>BD: <baud>CHK&gt;<etx></etx></baud></timeout></tagtype></status></pre> |

This command reads all device settings stored in non-volatile memory in the device that will become active after the next reset.

reset (RS):

| Command:  | <b>RS</b> <chck><etx></etx></chck> |
|-----------|------------------------------------|
| Response: | 2 <chck><etx></etx></chck>         |

This command causes all running commands to be cancelled. The device settings are reread from non-volatile memory.



Device settings stored in non-volatile memory only become active after a reset.



## Fixed code (read only)

Read only commands return a 64 bit unique number.

single read fixcode (SF):

| Command:  | SF <chck><etx></etx></chck>                   |
|-----------|-----------------------------------------------|
| Response: | <status×data×chck×etx></status×data×chck×etx> |

Exactly one attempt is made to read a fixed code.

The fixed code length is exactly 8 bytes long. The characters may be unprintable and are typically only evaluated by a PC/PLC program.

enhanced buffered read fixcode (EF):

| Command:  | EF <chck×etx></chck×etx>                      |
|-----------|-----------------------------------------------|
| Response: | <status×data×chck×etx></status×data×chck×etx> |

Continual attempts are made to read a fixed code. Only changed data are transmitted over the interface. That is, if a new tag is read or if a the same tag leaves and comes back into the detection range.

The status '5' is sent if the tag leaves the detection range.

The fixed code length is exactly 8 bytes long. The characters may be unprintable and are typically only evaluated by a PC/PLC program.



## **Reading data**

single read words (SR):

| Command:  | <b>SR</b> <wordaddr><wordnum>CHCK&gt;<etx></etx></wordnum></wordaddr> |
|-----------|-----------------------------------------------------------------------|
| Response: | <pre> «Status»Data»CHCK»ETX» </pre>                                   |

Exactly one attempt is made to read ‹WordNum> 32-bit words starting at address ‹WordAddr> (e.g., SR000001‹CHCK><EXT> to read 01 32-bit word at address 0000). All ‹WordAddr> and ‹WordNum> parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.

enhanced buffered read words (ER):

Command: **ER**<WordAddr>WordNum>CHCK>ETX> Response: <Status>Data>CHCK>ETX>

Continual attempts are made to read ‹WordNum› 32-bit words starting at address ‹WordAddr› (e.g., ER000001‹CHCK›<STX› to read 01 32-bit word at address 0000). Only changed data is transmitted over the interface. All ‹WordAddr› and ‹WordNum› parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.

The status '5' is sent when the tag leaves the detection range.



## Writing data

single write words (SW):

| Command:  | <b>SW</b> <wordaddr><wordnum>Data&gt;CHCK&gt;<etx></etx></wordnum></wordaddr> |
|-----------|-------------------------------------------------------------------------------|
| Response: | <status×chck×etx></status×chck×etx>                                           |

Exactly one attempt is made to write (WordNum) 32-bit words starting at address (WordAddr) (e.g., SW000001ABCD(CHCK) writes "abcd" to address 0 on the tag). Data is written in 4 byte blocks only and the string must be exactly the correct length to be executed. If the command is successful, then the data is written. All (WordAddr) and (WordNum) parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.

single write words with lock (SL):

| Command:  | SL <wordaddr>WordNum&gt;Data&gt;CHCK&gt;ETX&gt;</wordaddr> |
|-----------|------------------------------------------------------------|
| Response: | <status×chck×etx></status×chck×etx>                        |

Exactly one attempt is made to write (WordNum) 32-bit words starting at address <WordAddr>(e.g., SL000001ABCD<CHCK><ETX> writes "abcd" to address 0 on the tag). Data is written in 4 byte blocks only and the string must be exactly the correct length to be executed. If the command is successful, then the data is written and the registers are locked. All (WordAddr) and (WordNum) parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.



Data can never be changed again and the registers cannot be unlocked.

Note

enhanced buffered write words (EW):

| Command:  | <b>EW</b> <wordaddr><wordnum>Data&gt;CHCK&gt;<etx></etx></wordnum></wordaddr> |
|-----------|-------------------------------------------------------------------------------|
| Response: | <status×chck×etx></status×chck×etx>                                           |

Attempts are made to write (WordNum) 32-bit words starting at address WordAddr> until one is successful (e.g., EW000001ABCD<CHK>ETX> writes "abcd" to address 0 on the tag). After every successful write, the response is sent and then the device switches to continuous reading. The same tag is then read until it leaves the detection range or a new tag appears in the detection range. After this occurs, the command starts again with write attempts. All WordAddr> and WordNum> parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.

The status '05' is returned if the tag leaves the detection range or the tag is not yet in the detection range.



If two tags are introduced to the reading area, one immediately after the other, there is no status '05' sent between the two reads.

enhanced buffered write words with lock (EL):

| Command:  | EL <wordaddr><wordnum>Data&gt;CHCK&gt;ETX&gt;</wordnum></wordaddr> |
|-----------|--------------------------------------------------------------------|
| Response: | <status×chck×etx></status×chck×etx>                                |

Attempts are made to write ‹WordNum› 32-bit words starting at address ‹WordAddr› until one is successful (e.g., EL000001ABCD‹CHCK›<ETX› writes "abcd" to address 0 on the tag). After every successful write, the response is sent and the device switches to continuous reading. The same tag is then read until it leaves the detection range or a new tag appears in the detection range. Then the command starts again with write attempts. All ‹WordAddr› and ‹WordNum› parameters are in hexadecimal. To read 10 32-bit words, a length of 0A must be specified.

The status '05' is returned if the tag leaves the detection range or the tag is not yet in the detection range.

If two tags are introduced to the reading area, one immediately after the other, there is no status '05' sent between the two reads. Data is written in 4 byte blocks only and the string must be exactly the correct length to be executed. If the command is successful, the data is written and the registers are locked.



Data can never be changed again and the registers cannot be unlocked.

fill datacarrier (S#):

| Command:  | <b>S#</b> ‹WordAddr›‹WordNum›‹FillSign›‹CHCK›‹ETX› |
|-----------|----------------------------------------------------|
| Response: | <status><chck><etx></etx></chck></status>          |

The tag is written beginning with the given start address ‹WordAddr› with ‹WordNum› number of fill characters ‹Fill Sign›. The ‹WordNum› for this command is 4 characters long. This is required because of the high data capacity of tags. If the ‹WordNum› is left at "0000", then the entire tag from the start address to the end of its memory is filled. For example, if the command S#0000000A<CHCK×ETX› is sent, the entire tag is filled with the letter 'A'.



## Special command codes

single inventory read (IV):

| Command:  | IV <chck><etx></etx></chck>                                                           |
|-----------|---------------------------------------------------------------------------------------|
| Response: | <status>Data&gt;CHCK&gt;ETX&gt;<status>Data&gt;</status></status>                     |
|           | <pre><chck×etx> F000<tagsread×chck×etx< pre=""></tagsread×chck×etx<></chck×etx></pre> |

This command acts the same as the "single read fixcode" command except more than one tag can be read at one time and the command is terminated with a length indicator. This command only runs a single time and shuts off. Two tags are guaranteed to be read at the same time, but more are possible. This depends on tag size, placement, and mounting.



## Legend

| <baud></baud>           | : Baud rate: 2400, 4800, 9600, 19200, 38400 bps                                                                                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <chck></chck>           | : 1 byte ASCII, 8-bit checksum from addition of all characters                                                                 |
| without                 | overflow.                                                                                                                      |
| <cr></cr>               | : 1 ASCII character, 13d, carriage return                                                                                      |
| <data></data>           | : ‹WordNum› times 4 bytes. During communication of a word, the highest byte is sent first and the low byte last.               |
| <etx></etx>             | : 1 ASCII character, 03d, End of Text                                                                                          |
| <fill sign=""></fill>   | : 1 ASCII character, any character from 000d to 255d                                                                           |
| <lf></lf>               | : 1 ASCII character, 10d, Line feed                                                                                            |
| <mode></mode>           | : 1 ASCII character,                                                                                                           |
|                         | '0': configuration store off                                                                                                   |
|                         | '1': configuration store on, next command is stored                                                                            |
| <model type=""></model> | : Order code of product                                                                                                        |
| <part no=""></part>     | : Item number, 6 ASCII characters '0' through '9'                                                                              |
| <status></status>       | : 1 ASCII character (see table on page ?)                                                                                      |
| <sw no=""></sw>         | : Software number of application software                                                                                      |
| <sw date=""></sw>       | : Versions date of application software                                                                                        |
| <tagtype></tagtype>     | : 2 ASCII characters, example: '21' for IQC21                                                                                  |
| <timeout></timeout>     | : 1 to 3 ASCII characters                                                                                                      |
|                         | Timeout of interface in (0 100) x 100 ms; after this time is elapsed an error message is sent.                                 |
|                         | '0' deactivates the timeout                                                                                                    |
| <wordaddr></wordaddr>   | : 4 ASCII characters, starting word address in the tag, range from '0000' to 'FFFF' depending on tag type.                     |
| <wordnum></wordnum>     | : 2 ASCII characters, number of words to read or write, range from<br>'00' to '20' (128 bytes)                                 |
|                         | : 4ASCII characters, number of words to clear range from '0000' to<br>'FFFF' depending on the tag type used for the S# command |



## Error/status messages

| Status | Meaning                         |
|--------|---------------------------------|
| 0      | Command executed without errors |

#### Error message sent by the ID system

| Status | Meaning                                                                 |
|--------|-------------------------------------------------------------------------|
| 2      | Switch-on message, reset was executed                                   |
| 4      | Incorrect or incomplete command or parameter not in valid range         |
| 5      | No tag in detection range                                               |
| 6      | Hardware error<br>e.g., error on self-test or read/write head defective |
| 7      | Internal device error                                                   |
| 8      | Reserved                                                                |



## Troubleshooting

| No LEDs:                | Check power. 24 V must be applied to pins 1+ and 3-                                                                                                            |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED blinking green:     | Command is running on read/write head                                                                                                                          |
| LED amber:              | Command successful and tag remains in front of read head.                                                                                                      |
| Serial data corrupt:    | Check baud rate. default is 9600 but it can be changed via command. Try 19200 and 38400 and power cycle each time. Correct baud rate will show 22 on power up. |
| Response always 4:      | Not sending data fast enough. Put data in text file and<br>send text file. Checksum is wrong or one of the<br>command parameters is wrong.                     |
| Response starts with 5: | Place tag over read head and try again or you are trying to write to a memory cell that is locked.                                                             |



## **Technical data** Dimensions



IQT-18GM-R4-V1-Y911215 dimension drawing



IQT-FP-R4-V1-Y911204 dimension drawing



## **General data**

| eneral specifications           |                                                                                         |
|---------------------------------|-----------------------------------------------------------------------------------------|
| perating frequency              |                                                                                         |
| Jerating nequency               | 13.56 MHz                                                                               |
| ansfer rate                     | 26 kBit/s                                                                               |
| dicators/operating means        |                                                                                         |
| D green/yellow                  | green: power on<br>green flashing: read/write attempt performed<br>yellow: tag detected |
| ectrical specifications         |                                                                                         |
| ited operational voltage U      | 20 30 V DC, ripple 10% SS, PELV                                                         |
| ower consumption P <sub>o</sub> | <1.2 W                                                                                  |
| ıpply                           | From clean power source with 5 W slow blow fuse                                         |
| terface                         |                                                                                         |
| iysical                         | RS 485 point-to-point connection                                                        |
| otocol                          | ASCII                                                                                   |
| ansfer rate                     | 9600 Bit/s default, programmable 1200 Bit/s to 38400 Bit/s                              |
| ble length                      | <1200 m (3937.2 ft)                                                                     |
| nbient conditions               |                                                                                         |
| perating temperature            | -25 70 °C (-13 158 °F)                                                                  |
| orage temperature               | -40 85 °C (-40 185 °F)                                                                  |
| echanical specifications        |                                                                                         |
| otection class                  | IP67                                                                                    |
| onnection                       | plug connector M12 x 1                                                                  |
| aterial                         |                                                                                         |
| ousing                          | Crastin (PBT) face / Stainless steel housing                                            |
| capsulation compound            | CY 221/HY 2966                                                                          |
| stallation                      | not embeddable                                                                          |
| stance between two heads        | >80 mm                                                                                  |
| eight                           | approx. 40 g (1.3 oz)                                                                   |
| mpliance with standards and dir | octives                                                                                 |
| andard conformity               |                                                                                         |
| ectromagnetic compatibility     | EN 61326                                                                                |
|                                 |                                                                                         |



#### IQT-FP-R4-V1-Y911204

| General specifications        |                |                                                                                         |
|-------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Operating frequency           |                | 13.56 MHz                                                                               |
| Transfer rate                 |                | 26 kBit/s                                                                               |
| Indicators/operating means    |                |                                                                                         |
| LED green/yellow              |                | green: power on<br>green flashing: read/write attempt performed<br>yellow: tag detected |
| Electrical specifications     |                |                                                                                         |
| Rated operational voltage     | $U_{e}$        | 20 30 V DC, ripple 10% SS, PELV                                                         |
| Power consumption             | P <sub>0</sub> | <1.3 W                                                                                  |
| Supply                        |                | From clean power source with 5 W slow blow fuse                                         |
| Interface                     |                |                                                                                         |
| Physical                      |                | RS 485 point-to-point connection                                                        |
| Protocol                      |                | ASCII                                                                                   |
| Transfer rate                 |                | 9600 Bit/s default, programmable 1200 Bit/s to 38400 Bit/s                              |
| Cable length                  |                | <1200 m (3937.2 ft)                                                                     |
| Ambient conditions            |                |                                                                                         |
| Operating temperature         |                | -25 70 °C (-13 158 °F)                                                                  |
| Storage temperature           |                | -40 85 °C (-40 185 °F)                                                                  |
| Mechanical specifications     |                |                                                                                         |
| Protection class              |                | IP67                                                                                    |
| Connection                    |                | plug connector M12 x 1                                                                  |
| Material                      |                |                                                                                         |
| Housing                       |                | Crastin (PBT) housing/metal base                                                        |
| Lower section                 |                | aluminum die casting                                                                    |
| Encapsulation compound        |                | CY 221/HY 2966                                                                          |
| Installation                  |                | not embeddable                                                                          |
| Distance between two heads    |                | >150 mm                                                                                 |
| Weight                        |                | approx. 380 g (12.2oz)                                                                  |
| Compliance with standards and | directiv       | res                                                                                     |
| Standard conformity           |                |                                                                                         |
| Electromagnetic compatibility |                | EN 61326                                                                                |
|                               |                |                                                                                         |

32



## Read/write range Read/write range in air

Read/write range in air (13.56 MHz data carrier)

| Data carrier  | Reading range in mm    |                      |  |  |  |
|---------------|------------------------|----------------------|--|--|--|
|               | IQT-18GM-R4-V1-Y911215 | IQT-FP-R4-V1-Y911204 |  |  |  |
| IQC21-30P     | 0 35                   | 0 65                 |  |  |  |
| IQC21-50F-T10 | 0 69                   | 0126                 |  |  |  |
| IQC21-50P     | 0 55                   | 0 100                |  |  |  |
| IQC21-58      | 0 25                   | 0 65                 |  |  |  |
| IQC22-C1      | 0 70                   | 0 135                |  |  |  |
| IQC22-C4      | 0 35                   | 0 125                |  |  |  |
| IQC22-C5      | 0 45                   | 0 80                 |  |  |  |
| IQC22-22-T9   | 0 29                   | 0 54                 |  |  |  |
| IQC31-22-T9   | 0 29                   | 0 54                 |  |  |  |

#### Read/write range on steel



When mounting the data carrier on steel, the read and write range is decreased in comparison to mounting in air.

| Data carrier | Reading range in mm                         |      |  |  |  |  |
|--------------|---------------------------------------------|------|--|--|--|--|
|              | IQT-18GM-R4-V1-Y911215 IQT-FP-R4-V1-Y911204 |      |  |  |  |  |
| IQC21-58     | 0 35                                        | 0 70 |  |  |  |  |



## **ASCII** table

| hex | dec | ASCII |
|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|
| 00  | 0   | NUL   | 20  | 32  | Space | 40  | 64  | @     | 60  | 96  | "     |
| 01  | 1   | SOH   | 21  | 33  | !     | 41  | 65  | А     | 61  | 97  | а     |
| 02  | 2   | STX   | 22  | 34  | "     | 42  | 66  | В     | 62  | 98  | b     |
| 03  | 3   | ETX   | 23  | 35  | #     | 43  | 67  | C     | 63  | 99  | с     |
| 04  | 4   | EOT   | 24  | 36  | \$    | 44  | 68  | D     | 64  | 100 | d     |
| 05  | 5   | ENQ   | 25  | 37  | %     | 45  | 69  | E     | 65  | 101 | е     |
| 06  | 6   | ACK   | 26  | 38  | &     | 46  | 70  | F     | 66  | 102 | f     |
| 07  | 7   | BEL   | 27  | 39  | •     | 47  | 71  | G     | 67  | 103 | g     |
| 08  | 8   | BS    | 28  | 40  | (     | 48  | 72  | Н     | 68  | 104 | h     |
| 09  | 9   | HT    | 29  | 41  | )     | 49  | 73  | Ι     | 69  | 105 | i     |
| 0A  | 10  | LF    | 2A  | 42  | *     | 4A  | 74  | J     | 6A  | 106 | j     |
| 0B  | 11  | VT    | 2B  | 43  | +     | 4B  | 75  | К     | 6B  | 107 | k     |
| 0C  | 12  | FF    | 2C  | 44  | ,     | 4C  | 76  | L     | 6C  | 108 | l     |
| 0D  | 13  | CR    | 2D  | 45  | -     | 4D  | 77  | М     | 6D  | 109 | m     |
| 0E  | 14  | S0    | 2E  | 46  |       | 4E  | 78  | Ν     | 6E  | 110 | n     |
| 0F  | 15  | SI    | 2F  | 47  | /     | 4F  | 79  | 0     | 6F  | 111 | 0     |
| 10  | 16  | DLE   | 30  | 48  | 0     | 50  | 80  | Р     | 70  | 112 | р     |
| 11  | 17  | DC1   | 31  | 49  | 1     | 51  | 81  | Q     | 71  | 113 | q     |
| 12  | 18  | DC2   | 32  | 50  | 2     | 52  | 82  | R     | 72  | 114 | r     |
| 13  | 19  | DC3   | 33  | 51  | 3     | 53  | 83  | S     | 73  | 115 | S     |
| 14  | 20  | DC4   | 34  | 52  | 4     | 54  | 84  | Т     | 74  | 116 | t     |
| 15  | 21  | NAK   | 35  | 53  | 5     | 55  | 85  | U     | 75  | 117 | u     |
| 16  | 22  | SYN   | 36  | 54  | 6     | 56  | 86  | V     | 76  | 118 | v     |
| 17  | 23  | ETB   | 37  | 55  | 7     | 57  | 87  | W     | 77  | 119 | w     |
| 18  | 24  | CAN   | 38  | 56  | 8     | 58  | 88  | Х     | 78  | 120 | х     |
| 19  | 25  | EM    | 39  | 57  | 9     | 59  | 89  | Y     | 79  | 121 | у     |
| 1A  | 26  | SUB   | 3A  | 58  | :     | 5A  | 90  | Z     | 7A  | 122 | z     |
| 1B  | 27  | ESC   | 3B  | 59  | ;     | 5B  | 91  | [     | 7B  | 123 | {     |
| 1C  | 28  | FS    | 3C  | 60  | <     | 5C  | 92  | \     | 7C  | 124 | I     |
| 1D  | 29  | GS    | 3D  | 61  | =     | 5D  | 93  | ]     | 7D  | 125 | }     |
| 1E  | 30  | Rs    | 3E  | 62  | >     | 5E  | 94  | ^     | 7E  | 126 | ~     |
| 1F  | 31  | US    | 3F  | 63  | ?     | 5F  | 95  | _     | 7F  | 127 | DEL   |

 Subject to modifications without notice

 Pepperl+Fuchs Group
 USA: +1 330 486 0001

 www.pepperl-fuchs.com
 fa-info@us.pepperl-fuchs.com

34



# FACTORY AUTOMATION – SENSING YOUR NEEDS



#### **Worldwide Headquarters**

Pepperl+Fuchs GmbH 68307 Mannheim · Germany Tel. +49 621 776-0 E-mail: fa-info@de.pepperl-fuchs.com

#### **USA Headquarters**

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1 330 4253555 E-mail: fa-info@us.pepperl-fuchs.com

#### Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd. Company Registration No. 199003130E Singapore 139942 Tel. +65 67799091 E-mail: fa-info@sg.pepperl-fuchs.com

#### www.pepperl-fuchs.com

