FACTORY AUTOMATION

P g
'_ \

JAVASCRIPT

PROGRAMMING GUIDE

MAH120/ MAH200 / MAH300/
MAC335

I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

. JAVASCRIPT PROGRAMMING GUIDE

With regard to the supply of products, the current issue of the following document is ap-
plicable: The General Terms of Delivery for Products and Services of the Electrical In-
dustry, published by the Central Association of the Electrical Industry (Zentralverband
Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the

supplementary clause: "Expanded reservation of proprietorship"

I3 PEPPERL+FUCHS

© 2006 Pepperl+Fuchs GmbH
All Rights Reserved.

The software described in this manual may only be used in accordance with the terms of its license
agreement.

No part of this publication may be reproduced in any form or by any means without written
permission from Pepperl+Fuchs GmbH. This includes electronic or mechanical means such as
photocopying or recording in information storage and retrieval systems.

NO WARRANTY. This technical documentation is provided AS-IS. Further, the documentation does
not represent a commitment on the part of Pepperl+Fuchs GmbH. Pepperl+Fuchs GmbH does not
warrant that it is accurate, complete or error free. Any use of the technical documentation is at the risk
of the user. Pepperl+Fuchs GmbH reserves the right to make changes in specifications and other
information contained in this document without prior notice, and the reader should in all cases consult
Pepperl+Fuchs GmbH to determine whether any such changes have been made. Pepperl+Fuchs
GmbH shall not be liable for technical or editorial errors or omissions contained herein; nor for
incidental or consequential damages resulting from the furnishing, performance, or use of this
material. Pepperl+Fuchs GmbH does not assume any product liability arising out of or in connection
with the application or use of any product or application described herein.

http://www.pepperl-fuchs.com

I3 PEPPERL+FUCHS 3

Table of Contents

R o oo 18 [ox 4 o] o USSR 8
1.1 L o To (U ot g =T Tod] o] o] o RS 9
1.2 DocumMENt OFrganiZationc.ccveieiieie ittt re et sre e 9
13 Document and Coding CONVENTIONSccciiiiiiriiieieisise et 10
14 Related DOCUMIBNTSoiiiiiiiieiee ettt sttt sttt e st sbe e seesreenbe e 10
15 REIATE ULIHITIES. ...c.eivieiieeieiise et 10

2 Programming ENVIFONMENT.........ccciiiiiiiecie e 11
2.1 JAVASCIIPE RESOUICES ...ttt bbb 11
2.2 T Lo USRS 11
2.3 SHMUIATON ...ttt sttt re e et e e esbe et e et sreeneenee e 11
2.4 MAH300 CodeViewer Application (only MAH300).........cccooviiiiinieiiece e 11
25 SBOUNTTY ..tttk bt bttt bt bbbt b bbbt b e 12
2.6 =1 010 To o [T TS 12

3 Programming CONCEPLS......c.ccvueerieeiieiieiieeieesteeseestee e e e 13
3.1 ST 10 o] 1T 1 RSSO 13
3.2 The MAH300 gui Object (0nly MAH300)ccociiieici e 14

3.2.1 Softkey IMPIEMENTALION........cciiieieieccce e s b e b beebe e e e e e e e e e re e 14
I 0] 111 T TP PSP PR P PR P PP PR 15
Bi2.3 IMIBIUS ..tttk R R R R R R R R Rt bRt n e r e e nn e r e 16
K S - PSPPSR 17
3.3 EVENT HANAIELS ... bbbt 18
3.3.1 Decode EVENE HANAIEEcouiiiiieeiiiie ettt bbbt sn e 18
3.3.2 Key EVENE HANAIING. ..ot et bbbt sb e e 19
3.3.3 COMMEANG EXECULION. ...ttt bbbttt bbb n bbb e e 20
34 I3V 4] o To] I =Tt o 11 o SR 20
3.4.1 Transform Data by SYMDOIOQY.......ccceiiiiiviieiieiice et sre e e 22
3.4.2 Evaluate Data FOMMALcccoiiiieieieccce ettt sttt er e ne et nne e e 22
3.4.3 DEECE FOIMAL EITOIS ...viiiie ettt sttt sttt sb ettt e st et et e e nbeebeeteaneas 23
3.4.4 Letthe barcode imager Process the DECOUEcooviriiiiiiniiiree e 23
345 1gNOTE the DECOGEc.ee ittt b et e bbbt b e bt et e e et e e ebe b 23
3.4.6 Determine the Orientation Of the DECOTEcceiuiiiiiiiiiie e 24
3.5 HOSt COMMUINICALION.......eiiiiieciee sttt te st srearaenaenne s 25
3.6 Data in barcode imager Local STOragecccovvviieriie i 25
3.7 Reader ConfigUIration..........cccocviiiie et 26

L O F- T o =] =] (=] (o= 27

4.1 GUI (ONTY MAHSB00) ...ttt 27
O O R /1< 1 o OO OSSPSR 27
4111 11T o SOOI 27
4112 CONTIIM Lt bbbt b et sb etk b e et sb e et e nbe e ebe b e 28
4113 BNADIERETTESN ... s 28
4114 1 (0] 1 1o SRRSO 29
4115 SENAKBY ...ttt bbbt bbb bbb bbbt 30

4 I3 PEPPERL+FUCHS

4.1.1.6 SENATEXE .ottt b bbbttt s bt s b bRt bR bt b et nennenen 30
4117 <] (o | TP PR PR PRRTR 30
4118] 10 OO TTPTTRSPRO 31
4119 K] TV o PO SO SUERSTRRO 31
41000 SNOWIMENUc.viiiitiieiictt ettt b bbbttt e sttt e enes 32
4.1.1.11 SNOWSUDMENU.....ccuiiiiiictie ettt ettt ettt e et e st s te e s be e s beeresneesaeesreenbeenes 32

A L1002 SPIASN.cceieic bbb 33
4.1.1.13 translateDigitTOCUSIOM ...cuiiuiiiiiieiee sttt bbbt e e sae e 33
O S (0] 1= ¢ TSSOSO PSRRI 34
4121 INPUEMIOUE ...ttt bbbttt b ekt b et b e et e e e b et sbesbe b e 34
4122 Y ettt bt bR bt R bbbt b et et b e 35
4.1.2.3 LET SO KEY .. e e re e 35
4124 L]0 0 RS0 LG V2SS 35
4125 SEAEUSTEXE .tttk b bbb e bbbttt s e e n b r e n b ene s 36
N N © o] [T iSSP 36
4131 [0 LU =01 36
4132 GUILETIT .o bbb 37
4133 GUILFOIIN Lt b et b e bt b e bbb ne et be et b e 38
4134 GUILTMAGE. ..ttt bttt b etk b e et eb e et benn b nr e 39
4135 GUILLADBL ..ottt ettt e et e et sr e b e 40
4.1.3.6 GUIIMIBIU <.ttt bttt s h bbbt h et e e eb e e b e s bt eb e e bt e e e b sbeebesbe b 40
4.1.3.7 GUIIMIBNUITEIM ... e bbb bbbt e s e s nbe b b 41
4138 QUIIMURTLINEEGIT ...ttt ettt sae et e 41
4.1.3.9 [0 U TT o U= (o] TSSO 42
41300 QUILSOTEKEY ettt bbb e s 43
T o (1 T " S 44
e T 7o U T oo o] =1 U« o] o S 45
4.1.4 Predefined SOTtKEY ODJECLS ...viiiieicie et nne 47
4141 DACKSOTIKEY ...ttt bbb e sbe e 47
41472 CANCEISOTLKEY ...t et b e bbb 47
4143 OKSOTIKBY ..ttt bbbttt b e b e bbb e et e st nnenbe b b 47
4144 SEIBCISOTIKEY ...t bbbttt sb e bbb b b 47
4.1.5 Form and Menu Common IMEtNOUS...........cceiieiiiie st e 48
4151 ET o) 1= Lo (o] 1)1 {0) ISR 48
4,15.2 [S1EC 0L 0L [(o1 g1 (0] TSRS 48
4.15.3 SELACHIVECHIIA(CONTION) ...t b e nne s 48
4.1.6 Form and Menu COmMON PrOPEITIES.......cuiviierierere e stestese e ee st se sttt ena e see e sresresresnens 49
4.1.6.1 (072 01 €T SRS 49
4.1.6.2 (0] 01 OSSR 49
4.2 =T Lo L] USSP PSRN 50
O R /11 1 o T [OOSR TSP 50
4211 0T OSSOSO 50
4,212 [0 1=) £ L0 L T=] 1] Lo OSSPSR 50
4.2.1.3 ProCeSSCOMMEANGcviieiriiiecti et re et e ettt e st et e beebe e e e e e beseesbesbeebeeseensesaesresbesrenneas 51
4214 =10 L] 11 oSS 51
4.2.15 LT TS o] 51
4.2.1.6 SAVESBILINGS .. e veivreteereesie et e e st s ettt e e e et e st et st e st e re s et e et R Re e R e e Rt ene et e nenrenrenrenne s 52
4.2.1.7 =11 1S o] Y7 o SN 52
4218 SEHINEEIVAL ... e e bbbt st re s 52
4219 ClEANINTEIVAL ... e s te e be e s sbe e s beebeenbesaeesraens 53
4.2.1.10 SEITIMEOUL. ...cuviiieciicti ettt ettt st s b et e et e et e s b e s be e s b e e beesbeeseesbeesbeesbeebeenbeenresneesreenns 53
I B R o] -V I 11T | SO USOSO ORI 54
4.2.1.12 ShIftIISTOUNICOUE. ... ettt bbbt se b e b enas 54
O T Y 41 (= T=1 1 oo [OOSR 54
I =] (0] =Y TSRS 55
4221 ONBAtteryLEeVEICNANGEecveieee et b e e sne s 55
4222 ONCOMIMANG ...ttt sb e ettt e b et e e b e et e st e s e e beseeseebesee e ebeseesenbeneas 55
4223 ONCOMMEANAFINISNviiiicc et sbe e 56
4224 ONDIBCOUE. ...ttt ettt ettt et b ettt b e et b e bbb et be et e b e r e b e 57
I3 PEPPERL+FUCHS 5

4,225 (o] 1B =Toto o (=Y N 1 (<Y o) SO SOSRN 58

42.2.6 [0 0] [| [T 59
4.2.2.7 (0] 0] 1= o o) ST 60
4.2.2.8 [oF L] 4 Y RSP 60
4229 1= 60
B.2.2.10 GFBBM etttk E Rt R R Rt et 61
N R 1111 o 1= TR 61
A R 10 o T TR 61
O R T o7 o] =T TR 61
N ol o= 1 {0 | 1o o OSSOV UR U 61
A L T ¢ V- 1 (0 LV AN LT o IR 61
At 1 T o V=11 1 (o [62
O A <Y 1o [o o R 62
O S TS0 1 LV VoAV T £ o] 62

4.3 K (0] o - USSR 62
43.1 1Y 1= £ T 0 3R 62
4311 APPENT ettt b bbb bR E e bbbt bbb et bt s 62
43.1.2 (<] 2]I 63
4313 L1010 1T £ AT 63
4314 L TRT0 [N T=D e TR 64
4315 =T 1o [T 64
43.1.6 4 SRR 64
4.3.1.7 [0 0] [0 T SRS 65
43.1.8 1T (< 65

T = (0] o 1= TSP 66
4321 FUTINESS _PEICENT. ...ttt ettt bt 66
4322 ESFULLL ettt ettt et e et e et e ettt e et e et e st e e st estee st e esnee st e e nteesateeneaeennes 66

4.4 (o011 011 4 TSSO 66
o R |V, 11 o Lo 3R 66
4411 (o0 1141 To! AR P OO 66
4412 (o 1Yot 04 T<Tox TR 67
4413 1= [0 | ot =] 67
4414 1= [0 =« 67

O = (0] 1= TSP 68
4421 [OL0] 41Tt (=T [T 68

45 T [o1 T o LT 69
451 Dialog (Only MAH300)ccoiiiiieieeieie ettt sttt sttt b et bt naens 69
451.1 o1 [=] o RO 69
451.2 (010 01 T4 1 TR 70
4513 1 (0] 111] S PP OPRTR 70

T = (o Tot =TI O 11 1o 71
4521 R [=T o T ST 71

TR T © 1 U= (U T £ o] 72
4531 L0141 0= PR 72
453.2 L1101 [0 T L= 72
4533 010 OSSP P TSP PP TP PR PEPPTPRTPRTPTPRTPIN 73
4534 SELSTANADYIMIESSAGEeeeveeueeiie ittt ettt b et bbb b b e b e bt et e e e e e e e nbenbe e 73
Al MAH300 Simulator (only MAHS300)cccceviieiiiiieeeree e, 75
All Fa1S] =11 F= N Ao o [T 75
Al2. L LY [T T] SRS 75
N R o 1100 1 YA VA T4 T [0 Y 2R 75

N Y 1 1 P (o T A4 T Lo [0 TR 77
A2 INPUE IMIOGES ...t 78
A 3. FOrmat SPECITIEIS ...uioiiciie et 79

6 I3 PEPPERL+FUCHS

Table of Tables

Table 1 — Key to Event Handler Mappingcccovveiieieiieie et esis et snee e 19
Table 2 — Keypad INPUE MOUES........ccuiiieieeieeie ettt eesnee st saeeneesneenneas 78

FIQUIE 1 — IMAHSB00 ...ttt bttt b ettt 8
Figure 2 — Hello World AppliCAtioNccvoiiiiiicce e 14
Figure 3 — The Standard GUI DiSPlaycoueiiiiiiieiiiie e s 14
Figure 4 — FOrm DemO DiSPlaycoviiiiiieieiiee e e 16
Figure 5 — Menu DemO DiSPIaY.........ccviiiiieiieiecie e nae e ns 17
Figure 6 — Sub Menu Demo DISPIAYccviiiriiiieiieiieie e 17
Figure 7 — MAH300 KEYPAUceeiieiieiiiie ettt e e e sae e nnes 19
Figure 8 — gui.alert EXamPIe.......ooi oo 27
Figure 9 — gui.Confirm EXAMPIEccooiiiieiiec e 28
Figure 10 — gUI.Prompt EXAMPIEcouiiiiiieieie e 29
Figure 11 — BULEON DEMOc.eeiieieciiceee ettt sne e neenne e enneees 37
Figure 12 -- Input Modes EXAMPIE ..o s 38
Figure 13 — gUI.SEPArator LINES........ccveiieiieieeriesieseeseeiesiee e e e e e saessae e esaeaneesneesseeneennes 43
Figure 14 — UL TEXt EXAMPIE ..ot s 44
Figure 15 — Toggle NOt SEIECIEAcveeieiie e 46
Figure 16 — T0ggIe SEIECIEAoceiiieeiee et 46
Figure 17 — Alert EXamMPIe......c.o oottt 69
Figure 18 — Confirm EXAMPIEooiiiiiiiiie et 70
Figure 19 — Prompt EXQMPIEccoiieiiiiie ettt ae e nns 71
Figure 20 — EdITOr DISPIAYcoveeieiieiieiiee ettt et 76
Figure 21 — MAH300 Simulator DiSPlay..........ccveieiiieiieie e 77

I3 PEPPERL+FUCHS 7

[]

1 Introduction

Identification systems are used for object identification in logistics and provide the first step
in cost optimization and quality improvement: automating production processes, reducing
throughput times, quality control, and flexible in project planning and production.

Figure 1 - MAH300

Pepperl+Fuchs’handhelds offer the ultimate in user comfort. All handhelds can be easily
programmed via JavaScript and optimally matched to your application requirements.

The MAH series enables reliable detection of all standard 1D and 2D codes. Simply connect
the handhelds to a PC or controller via RS 232, USB, or Bluetooth.

AT A GLANCE
Reads all standard 1D and 2D codes

Simple operation
— Vision Configurator:
ONE operating software for all camerabased code readers
— Parameterization using control codes replaces external PC
— Intuitive operation
— Bidirectional communication

Reliable detection with

— Laser pointer
— Visual and acoustic event message
— Vibration event message in loud and noise-sensitive environments

Flexible adaptability due to JavaScript functionality.

8 I3 PEPPERL+FUCHS

The MAH300 provides with its integrated display and keypad the highest level of user
comfort.

With the MAH300 you can use the whole potential of JavaScript. In this way the display and
keypad can be individually programmed to match your requirements.

Therefore you find some examples and descriptions regarding the JavaScript programming
orientated on the example of the MAH300.

1.1 Product Description

This manual describes the application programming interface for the barcode imager. It is
assumed the reader will have programming skills and familiarity with the JavaScript
language.

e Barcode imager reads code data and can be programmed to transmit code data over a
selected communications link or to store code data in barcode imager memory (batch
mode).

e The programming environment provides interfaces to:

— Read and manipulate data in barcode imager memory.

— Display information on MAH300 display screen.

— Retrieve data from barcode imager hardware or MAH300 key pad.
— Retrieve data from or MAH300 key pad.

— Access data sent by host.

— Transmit data to a host computer via communications link.

— Select type of communications link.

— Set, change, and retrieve barcode imager configuration settings.

1.2 Document Organization

This document is organized as follows:

e Section 1, Introduction: gives a product description and describes how to use this
document.

e Section 2, Programming Environment: identifies tools used to create and load
application software into barcode imager.

e Section 3, Programming Concepts: discusses how to accomplish various operations
on the barcode imager using P+F's application programming interface.

e Section 4, Class Reference: presents classes, objects, methods, properties, and
constructors that support application programs.

e Glossary

e Appendices

I3 PEPPERL+FUCHS

1.3 Document and Coding Conventions

This document employs the following conventions to aid in readability:

e Words that are part of the application development description use the
Courier New font.

e P+F examples use the bold Courier New font.

e Variable names that must be supplied by the programmer are Courier New font
and are enclosed in relational signs, for example, <variable_name>.

The barcode imager JavaScript library uses the following naming conventions:

e identifiers: mixed-case with a capital letter where words join (soCalledCamelCase);
acronyms and other initialisms are capitalized like words, e.g., nasaSpaceShuttle,
httpServer, codeXml

variables and properties: initial lower case

classes (i.e., constructors): initial capital

functions: initial lower case

unit of measure: suffix to name, separated from name by underscore, using correct
case when it’s significant, e.g., offset_pixels, width_mm, power_ MW,
powerRatio_dB

1.4 Related Documents

MAH300, MAH200, MAH120, MAC335 — User Manuals
Document Number #189945, #200930, and #204646

Reader-Host Interface Specification Client Version

1.5 Related Utilities

Reader Download Utility— Downloads JavaScript applications and data files from a host PC
to the reader. Valid communication modes are USB Downloader, USB Virtual Com, and
RS 232.

Vision Configurator — Provides a user interface to configure the reader.

USB Virtual Com Driver - Software driver that creates a virtual COM port for a USB-cabled
reader so it can be used by a computer program that requires input from a serial device.

File Uploader — Utility to transfer files from the reader to the host PC. Valid communication
modes are RS 232(115 Baud), USB Downloader mode, and USB Virtual Com.

10 I3 PEPPERL+FUCHS

2 Programming Environment

Pepperl+Fuchs provides an environment for programming, testing, and loading barcode
imager applications. JavaScript was selected as the programming language and P+F
implemented a barcode imager resident JavaScript engine.

Pepperl+Fuchs provides a computer resident simulator and bundled editor for developing of
barcode imager JavaScripts, which can be downloaded to the barcode imager.

2.1 JavaScript Resources

This document is not a JavaScript manual. The following sources provide JavaScript
reference books and online documents.

e JavaScript: The Complete Reference, Second Edition
by Thomas Powell, et al.

e JavaScript Demystified (Demystified)
by James Keogh.

e JavaScript (TM) in 10 Simple Steps or Less
by Arman Danesh.

e http://javascript.internet.com/
e http://www.javascript.com/

2.2 Editor

You can use your favorite editing product to create and modify JavaScript code. Turn off any
smart quote options in the editor. Smart quotes are not valid in JavaScripts.

In addition, P+F has bundled a freeware editor (SciTE) with the barcode imager JavaScript
Engine (JSE) Simulator. See A 1.

2.3 Simulator

P+F provides a Windows PC based simulator for JSE. See A 1 for more information.

2.4 MAH300 CodeViewer Application (only MAH300)

The MAH300 CodeViewer Application runs as a JavaScript application on the MAH300.
The menu driven application has features for changing MAH300 configuration settings and
for defining the applications that run on the MAH300. JavaScript Developers can make use
of the following keywords in the CodeViewer Application:

Title - Displays the title of the JavaScript rather than the file name in CodeViewer’s
‘Application” menu. Add a comment to your script formatted as $Title: <title of
script>$ to implement.

I3 PEPPERL+FUCHS 11

http://www.amazon.com/exec/obidos/tg/detail/-/0072253576/qid=1122917483/sr=1-13/ref=sr_1_13/104-6194777-9419951?v=glance&s=books�
http://www.amazon.com/exec/obidos/tg/detail/-/007226134X/qid=1122917552/sr=1-32/ref=sr_1_32/104-6194777-9419951?v=glance&s=books�
http://www.amazon.com/exec/obidos/tg/detail/-/B0002F1C2I/qid=1122917676/sr=1-80/ref=sr_1_80/104-6194777-9419951?v=glance&s=books�
http://javascript.internet.com/�
http://www.javascript.com/�

Revision - Displays the revision of the JavaScript from the CodeViewer’s
‘Application/<script>" submenu. Add a comment to your script formatted as $Revision:
<revision of script>$toimplement.

2.5 Security

P+F supplies an encryption utility for license protection.

e Each barcode imager contains a unique reader ID.

e Selected features of the barcode imager are protected by license.

e P+F provides a license file that activates protected features purchased by the
customer.

e Alicense file is required for each barcode imager licensed to use protected features.

e Third party software licenses may also be protected using the encryption utility.

2.6 Debugging

The barcode imager contains a built-in error log that can be useful when debugging scripts.
To debug the script when an error has occurred on the reader, issue the ‘(command to the
reader; the reader responds by sending the error log to the communications port. The error log
may contain messages from the firmware that should be ignored. JavaScript errors in the log
can be identified by the format: filename:lineNumber. If there are many error codes in the
error log, you can issue the)’ command to clear the log and repeat the steps to create the
error, leaving only one entry in the log.

Example:
Error log returns:

X-ap/gerror-log. storage_init: fIMountVolume fail status 26,
formatting.storage formatFilesystem: status O.temp.js:3: .

TypeError: gui.aler is not a function. X-ap/dEOF.

This error log contains one firmware error and one JavaScript error. The JavaScript error
description begins with temp.js:3: and tells us that on line three of the temp.js file, gui.aler is
not recognized as a function. In this case, gui.alert has been misspelled (it is missing the t).

12 I3 PEPPERL+FUCHS

3 Programming Concepts

To help the developer create unique applications for the barcode imager, P+F provides an
easy to use, object oriented barcode imager JavaScript application programming interface.
The application developer can create complex business applications with simple prompts and
simple data entry through the MAH300 user interface features (keypad and display screen).

The features of the programming interface include:
Simplicity

A graphical user interface

Event handlers

Symbol decoding

Host communications

Local data storage
barcode imager configuration

In support of these features, the environment defines the following objects:

e Qgui

e reader
e storage
e comm

Using these objects and their methods and properties, you can create robust, interactive, and
sophisticated user applications.

P+F provides a MAH300 JavaScript Simulator (A 1) for testing scripts and a Download
Utility (section 1.5) for transferring scripts to the barcode imager.

A script can be made the default application using the configuration utility, or it may be run
from the configuration utility without making it the default.

Note: the default application supplied by P+F allows scripts to be run by host command or
configuration code scan; the command is “|run:scriptName.js” (using your own scriptName).

3.1 Simplicity

The “Hello World!” application is traditionally the first application presented in a
programming guide. It is an easy to code and understand application that illustrates how the
programming environment works.

In its simplest form the “Hello World!” application in the MAH300 environment sends text to
the display. With the following single line of code, you can display “Hello World!” in the
screen defined by the standard MAH300 gu1 object (section 4.1).

gui . show(new gui . Text("Hello World!"));

Execution of this script displays the image shown in Figure 2.

I3 PEPPERL+FUCHS 13

Hello World!

Figure 2 — Hello World Application

Note that in Figure 2, the text is displayed in a text box control with a scroll bar to the right as
defined by the MAH300 gu1i object.

3.2 The MAH300 gui Object (only MAH300)

The MAH300 application development environment defines a standard GUI display for
application software (Figure 3). The display supports simple prompts and data entry.

Status Bar
Display Area

LFt Key Rt Key

Figure 3 — The Standard GU1 Display

The standard display consists of a status bar, a display area, and labels for the left and right
software programmable keys (softkeys) at the top of the MAH300 key pad (see Figure 7).

The scroll bar on the right side of the screen indicates the relative position within the
displayed object as the operator scrolls through forms, menus, or text using the up and down
keys on the keypad. This scrolling feature allows the application to display objects larger than
the display area.

You can use the MAH300 features of the gui object (section 4.1) to develop form and menu
applications. Use the gui constructors to build forms and menus and the “show” methods to
display them.

3.2.1 Softkey Implementation

Softkeys are general purpose, programmable keys. If defined, the softkeys are always active
in that they are not associated with or dependent on any control in the GUI display. Pressing
the key always calls the event handler. The gui . showForm, gui . showMenu, and

gui . showSubmenu methods include softkey definitions appropriate for the
implementation.

14 I3 PEPPERL+FUCHS

The following example shows the basic approach to labeling the softkeys and implementing
their event handlers.

/1 define send-key functions used by common softkeys
function sendEnter() { gui.sendKey(qgui.key.enter); }
function sendEscape() { gui.sendKey(qgui.key.escape); }

/1l create sone common softkeys
var sel ect Sof t key new gui . Sof t key("Sel ect”, sendEnter);

var okSoftkey = new gui . Sof t key(" OK", sendEnter);
var backSoft key = new gui . Sof t key(" Back", sendEscape) ;
var cancel Soft key = new gui . Soft key(" Cancel ", sendEscape);

P+F provides equivalent definitions to the example above as a part of the MAH300
JavaScript Library gui object. These examples have been provided so you can use them to
create your own softkey definitions.

3.2.2 Forms

Use the gui . Form object (section 4.1.3.3) to define the forms for your application. Section
4.1.3 defines the form object and several constructors that you can use to create controls on
your application form.

The following code example demonstrates how to build and display a form. The event
handler functions are empty in the example. The application developer defines the processing
within the handlers.

/1 JavaScript Form Deno Script Docunent
/1 formevent handlers
function myFormOnOk(){/* processing code */}

function myFor mOnCancel (){/* processing code*/}

/1l create the form object
var nyForm = new gui . For n(myFor mOnGk, myFor nOnCancel) ;

/] create the edit control
var edit = new gui.Edit("");

/] create the | abel control
var | abel = new gui. Label ("Enpl oyee #:");

/1 position the controls on the form
nyFor m append(| abel) ;
nmyFor m append(edit);

/1 Specify a child to be active when the formis displayed
(optional)
nyForm set Acti veChild(edit);

/'l Create the caption that will appear on the status bar
nyForm caption = "form denon";

/1l show the form
gui . showrFor n{ nyForm ;

I3 PEPPERL+FUCHS 15

When the Form Demo Script runs, the MAH300 displays the following image:

form demo
Employee #:

Figure 4 — Form Demo Display

The operator keys an employee number into the edit control and presses the left softkey (OK)
to submit the entry to the application.

3.2.3 Menus

Use the gui -Menu object (section 4.1.3.6) to define the menus for your application. Use the
gui .Menultem constructor to define the controls in the menu. Each control has an
associated onCHl i ck property that defines the function to receive control when the MAH300
firmware detects an enter-key event.

The following code example demonstrates how to build and display menus and submenus.
The event handler functions are empty in the example. The application developer defines the
processing within the handlers.

/1 JavaScript Menu Deno Script Docunent

/1 menu event handl ers

function onTinmeCard(){/* processing code */
alert("TinmeCard");}

function onlnventory()

{

}

function onCapital (){alert("capital");}
function onStock(){alert("stock");}

gui . showSubMenu(subMenu, nyMenu);

/'l create nenu objects
var nyMenu = new gui . Menu();
var subMenu = new gui. Menu();

/'l create nmenu entries
var tinmeCardApp =
new gui . Menultem("Time Card", onTi nmeCard);
var inventoryApp =
new gui . Menul ten(" Il nventory", onlnventory);
var separator =
new gui . Separator (1, gui.separatorStyle.horizontalLine);
myMenu. caption = "nmenu deno";
subMenu. caption = "subMenu deno";

/] create subMenu entries
var capital =

new gui . Menulten("Capital", onCapital);
var stock =

16 I3 PEPPERL+FUCHS

new gui . Menul ten(" St ock", onStock);

/1 position the controls on the nenus
myMenu. append(separ at or) ;

myMenu. append(i nvent or yApp) ;

myMenu. append(ti meCar dApp) ;

subMenu. append(capital);
subMenu. append(st ock) ;

/1 Specify a child to be selected when the nmenu is displayed
(optional)

myMenu. set Acti veChi | d(i nvent or yApp) ;

subMenu. set ActiveChil d(capital);

/1l set the caption text for the status bar
myMenu. caption = "nmenu deno";

/'l show the nenu

gui . showvenu(nyMenu) ;

When the Menu Demo Script runs, the MAH300 displays the following image:

menu demo
Inventory

Figure 5 — Menu Demo Display
The Select softkey sends gui . softkey.enter to run the selected (highlighted)

application. In this example, the Inventory menu item (a submenu). The script then displays

the Inventory submenu shown in Figure 6.

subMenu demo
Capital

Figure 6 — Sub Menu Demo Display

3.2.4 Text

Use the gui . Text object (section 4.1.3.11) to show text in the display area of the gui

object. Do not use it as a text control within a menu or form. Text can exceed the capacity of
the display area. The operator can scroll through the data using the up and down arrow keys

on the MAH300 keypad.

I3 PEPPERL+FUCHS

17

3.3 Event Handlers

The barcode imager JavaScript environment is event-driven. The barcode imager firmware
waits for an event such as a pressed key. The application gains control of an event by setting
an object's event handler properties to functions. Events include:

e send and receive of communications packets

e decode operations

e pressed keys

e command execution

e change of reader mode (idle, standby, and power down)

An application gains control only when:

e The barcode imager application development environment defines an event handler
property.

e The application creates an event handler function and assigns it to the event handler
property.

e The event occurs and is not consumed.

The application can disable an event handler by setting the event handler property to null.

3.3.1 Decode Event Handler

The reader object defines an event handler, onDecode. If set, the barcode imager calls
the specified event handler with the decode results as the only handler parameter. Section
4.2.2.4 discusses decode event handling.

Example:

var nunDecodes = O;
var nunmDecodesProcessed = O;

reader . onDecodeAt tenpt = function(count)

{

nunDecodes = count;
nunDecodesProcessed = 0O;

}

reader . onDecode = functi on(decode)
i f(++nunmDecodesProcessed < nunDecodes)
/'l process individual decode, save in variables, etc.

}

el se

/'l process the whol e set, using saved variables, etc.

}

Note: it is necessary to provide onDecodeAttempt only if you are interested in how
decodes were grouped in an attempt or want to provide feedback on an attempt with zero
decodes.

18 I3 PEPPERL+FUCHS

[

3.3.2 Key Event Handling

The CLEAR, enter, and software programmable keys (softkeys) have special event handling
capabilities in the MAH300 application development environment. The event handlers are
specified by various objects as constructor function parameters or as object properties.

Figure 7 contains a picture of the MAH300 keypad.

The relationships between objects, keys, and event handler specifications are presented in
Table 1. Three objects (Qui .Form, gui -.Menu, and gui . Text) have a constructor
parameter to define event handlers for any non-consumed key. The GUI objects are
documented in section 4.1.3.

¥

" MPEPPERL+FUCHS

anen |
o, blocks: 1

bptions
|

Left Softkey “Right Softkey
Enter Key —Escape Key
Figure 7 - MAH300 Keypad
Table 1 - Key to Event Handler Mapping
Key Object Event Handler Property
Enter — The blue key at the center | gui .Form onOk
of the arrow keys gui -Menu onOk
gui .Text onOk
gui .Button onClick
gui .Menultem onClick
CLEAR - bottom right key gui .Form onCancel
(Note: clear is consumed by gui .Menu onCancel
gui -Edit. A virtual Escape gui .Text onCancel
key, sent by cancelSoftkey
and backSoftkey, also
invokes onCancel and is not
consumed by gui .Edit))
Left softkey — upper left key gui onClick
Right softkey — upper right key gui onClick
Any non-consumed key gui.Form onKey
gui .Menu onKey
gui.Text onKey

I3 PEPPERL+FUCHS 19

3.3.3 Command Execution

The barcode imager application environment defines a number of commands that can be sent
to the barcode imager firmware from the host or by reading codes. The reader object
(section 4.2) defines an event handler, onCommand. If onCommand is set, the barcode
imager calls the specified event handler before execution of the command and passes the
command type and command data to the handler through the calling parameters. The event
handler can suppress or execute the received command by returning false or true
respectively.

To receive control after a command has been completed, code the onCommandFinish
(section 4.2.2.3) event handler.

3.4 Symbol Decoding

The principal use of the barcode imager is capturing, decoding, and processing one-
dimensional and two-dimensional bar codes. The barcode imager can read a wide range of
code types, or symbologies, and provide access to the data after decoding using the reader
object (section 4.2). The barcode imager decodes in response to:

e Pressing the read key on the key pad.
e A decode command from the reader . processCommand method.

The reader .onDecode property defines an event handler that allows the application to
access the decode.

To implement a decode event handler, the application defines a handler function and sets it as
the onDecode property of the reader object. Decode information is passed to the event
handler as the first argument to onDecode (the argument properties are described in section
4.2.2.4).

functi on onDecode(decode)
/'l Processing

reader . onDecode = onDecode;
There are four basic application options for processing a decode:

1. Process the data in the script, such as fill in form fields, and then consume the decode
by coding return null.

2. Let the data be further processed by the barcode imager firmware, typically for
sending and/or storing, by coding return decode.

3. Transform the data and let the barcode imager firmware process the changed data by
setting decode . data as necessary and coding return decode.

4. Invalidate the decode by coding return false. The barcode imager will act as
though the decode never occurred.

The following pseudo code presents an example of decode processing addressing the four
options. The example transforms decode data based on certain symbologies. Then the
example checks the format of the decode data to determine the next processing steps.

20 I3 PEPPERL+FUCHS

Subsections of this section discuss the processing steps in the following example.

Example:
functi on onDecode(decode)
{
dat a = decode. dat a;
i f (decode. synbol ogy == sone-speci al - synbol ogy)
data = transfornmed decode. dat a;
}
el se if (decode. synbol ogy
== sone- ot her - speci al - synbol ogy)
data = differently transfornmed decode. dat a;
}
i f (data matches enpl oyee-badge fornat)
| ogi nFor m enpl oyeeFi el d. t ext = decode. dat a;
| oginFormpinField.text ="";
gui . showFor n{ | ogi nForn) ;
return null
else if (data matches part-nunber format)
stockForm partFi el d. text = decode. dat a;
gui . showFor n(st ockFor n) ;
return null
else if (data matches shel f-nunber format)
stockForm shel f Fi el d. text = decode. dat a;
gui . showror n(st ockFor n) ;
return null
else if (data matches wong formats)
{
war ni ng. text = "bad code for this application”;
gui . showFor m(war ni ng) ;
return null
else if (data matches format that is to be ignored)
{
return false; // invalidate the decode
el se // code should be processed by barcode imager firmware
{
if (code should be processed
wi th transformed data)
decode. data = data; // replace the data field
/1 with transforned data
return decode;
}
}

I3 PEPPERL+FUCHS 21

3.4.1 Transform Data by Symbology

Bar codes read by the barcode imager are encoded in unique symbologies. Particularly within
two-dimensional codes, common data items may be present in different locations within the
decode depending on the encoding symbology. In the example, line 5 checks the value of
decode.symbology and transforms the decode data to a common format. To check
symbology, compare decode . symbology against the symbology codes documented in
Spezification Reader- Host- Interface Client Version

Note: Sometimes symbology is used to distinguish otherwise like-formatted data; for
example, shelf tags may have the same number of digits as UPC codes for the products on the
shelves, but have different bar code symbologies that can be used to determine whether the
decode is a shelf tag or a product UPC code.

3.4.2 Evaluate Data Format

After the data is converted into a common data format based on the symbology, the
application determines the data format and processes according to data content.

if (data matches enpl oyee-badge fornmat)

{

| ogi nFor m enpl oyeeFi el d. t ext = decode. dat a;
| oginFormpinField.text ="";

gui . showFor n(| ogi nForm ;

return null;

el se if data nmatches part-nunber format

stockForm partFi el d.text = decode. dat a;
gui . showFor n(st ockFor n) ;
return null;

else if (data matches shel f-nunber format)

st ockForm shel fFi el d. text = decode. dat a;
gui . showror n(st ockFor n) ;
return null;

}

The previous statements from the example demonstrate the processing of data within the
decode handler. Based on the data format, the application program extracts data from the
decode and displays appropriate forms.

These examples execute a return nul I statement to consume the decode for the specified
data formats.

22 I3 PEPPERL+FUCHS

3.4.3 Detect Format Errors

If the format matches a known format that should not be used in the current application
context, the application can send a warning message, which is displayed in "warning" form.

else if data matches wong formats

{
war ni ng. text = "bad code for this application”;
gui . showFor m(war ni ng) ;
return null;

}

In this case, the example returns a null I to consume the decode.

Note: Do not code alert, confirm, or prompt, either as functions or as gui methods, in
an onDecode or onCommand event handler. The events originate in the barcode imager
firmware, resulting from decodes, commands, or communication events. While the event
handler is running, the main application is held idle until the event handler returns. If the
event handler is waiting for the user to finish with alert, confirm, or prompt, the main
application will be forced to wait as well, resulting in timeout errors.

3.4.4 Let the barcode imager Process the Decode

If you want the barcode imager to process the decode, set the decode as the return statement
parameter. If you have changed decode data and want the changes available to the barcode
imager, set the appropriate data field in the decode to the changed value before returning the
decode.

el se // code should be processed by barcode imager firmare

{

if (code should be processed
with transfornmed data)

decode.data = data; // replace the data field
/1 with transforned data

return decode;

3.4.5 Ignore the Decode

You can ignore a particular format by exiting the function with a return value of false as
shown in the following code segment from the example.

else if (data matches format that is to be ignored)

{
}

Note: Normally, the barcode imager will sound a good-decode beep at the end of decode
processing. If you do not want invalidated decodes to cause the usual good-decode beep in
the barcode imager firmware, you must configure the reader to process the decodes via
JavaScript before beeping. Then the barcode imager will only beep if there is at least one

return false; [/ invalidate the decode

I3 PEPPERL+FUCHS 23

decode that is not invalidated. See document Reader- Host Interface, specifically setting
number 0x93.

If your reader .onDecode function returns false, you should configure the barcode
imager beep this way.

3.4.6 Determine the Orientation of the Decode

You can determine the orientation of a code by using the bounds array. The bounds array has
four elements that can be used to give the coordinates of the four corners of the code (the
origin is the center of the decode field):

e (decode.bounds[0].x, decode.bounds[0].y) = coordinates of top right corner

e (decode.bounds[1].x, decode.bounds[1].y) = coordinates of top left corner

e (decode.bounds[2].x, decode.bounds[2].y) = coordinates of bottom left corner
e (decode.bounds[3].x, decode.bounds[3].y) = coordinates of bottom right corner

These designations (e.g. top left) refer to the corners of the symbol, not as it appears in a
particular image, but rather as it appears (most often) in its symbology specification. For
example, for Data Matrix, array element 2, which contains the coordinates of the bottom left
vertex of the symbol boundary, will always be proximate to the intersection of the two lines
which form the “L_" of the symbol, regardless of the actual orientation (or mirroring) of the
symbol in the image submitted to SwiftDecoder.

In normal orientation, we would expect the signs of the coordinates to be:
e decode.bounds[0].x (-), decode.bounds[0].y (+)
e decode.bounds[1].x (-), decode.bounds[1].y (-)
e decode.bounds[2].x (+), decode.bounds[2].y (-)
e decode.bounds[3].x (+), decode.bounds[3].y (+)

A code that is not “right side up” could be rejected by exiting the function with a return value
of False as shown in the following example.

i f (decode. bounds[0].x > 0 && decode. bounds[0].y < 0 &&
decode. bounds[1].x > 0 && decode. bounds[1].y > 0 &&
decode. bounds[2].x < 0 && decode. bounds[2].y > 0 &&
decode. bounds[3] .x < 0 && decode. bounds[3].y < 0)
{

return false; // invalidate the decode
}

Note: Normally, the barcode imager will sound a good-decode beep at the end of decode
processing. If you do not want invalidated decodes to cause the usual good-decode beep in
the barcode imager firmware; you must configure the reader to process the decodes via
JavaScript before beeping. Then the barcode imager will only beep if there is at least one
decode that is not invalidated. See document Reader- Host Interface, specifically setting
number 0x93.

24 I3 PEPPERL+FUCHS

3.5 Host Communication

The barcode imager application development environment defines a host communication
comm object (section 4.4) to support communications with a host resident application. For
example, the Download Utility (section 1.5) is a host resident utility that communicates with
the barcode imager for downloading files to the barcode imager.

From the host computer’s view, the barcode imager is a serial device accessible through a
serial or USB port, or through Bluetooth Radio Frequency (RF) communications. barcode
imager configuration settings define the active host communications port.

The barcode imager host communications implementation supports two basic styles of
communication: raw text and packets. It also supports a set of native protocols.

The application program transfers data to the host by writing to the barcode imager host
communications port using the methods defined by the barcode imager comm object (section
4.4). Applications gain access to data sent by the host by implementing onCommand (and
optionally onCommandFinish) event handlers defined by the barcode imager's reader
object properties (section 4.2) and parsing the “|” command, for example.

Example:
reader . onCommand = function(type, data)

{

/'l intercept | command with app-data: prefix
if(type =='"|'" && data.match(/”app-data\:/))
{

return false; // Suppress the conmand

}

return true;

}

For a full discussion of host communications, see Reader- Host Interface.

3.6 Datain barcode imager Local Storage

The application development environment provides program access to barcode imager local
storage through the storage object (section 4.3). Data is maintained in storage as named
objects called files. The Download utility can transfer host data into a barcode imager file.
The barcode imager application can also store data in files.

The name of a barcode imager file may be 1 - 200 printable ASCII characters.

Use the erase and wr i te methods of the storage object to manage files. Use the
findFirst and FindNext methods to locate files. Use the read method to access a file
or the upload method to send it to the host.

I3 PEPPERL+FUCHS 25

3.7 Reader Configuration

The barcode imager configuration settings define the active capabilities of the barcode
imager. The application development environment defines the reader object (section 4.2),
which contains methods for manipulating barcode imager settings. The document Reader-
Host Interface, defines the configuration items and the values that can be set for each item.

The application developer can dynamically change the active settings by using the
reader .writeSetting method. This method changes the operational value of the
setting, but that value is lost when the reader is turned off. The current values of all settings
can be saved by using the reader . saveSettings method, which writes the current
values of the settings to flash memory from where they are restored on power up.

Example:

reader.witeSetting(0Oxlb, 4);
if (gui.confirm("Setting changed.\n\nSave now? ",
"Setting Change"))
if (!'reader.saveSettings())
alert("Error Saving Settings");

Retrieve the current value of a setting by using the reader . readSetting method.
Restore factory default settings by using the reader .defaul tSettings method.

26 I3 PEPPERL+FUCHS

4 Class Reference

The built-in objects described in this section enable a JavaScript program to receive data from
the barcode imager and control its behavior.

4.1 gui (only MAH300)

The gui object provides application programming access to the MAH300 display screen.
The MAH300 application development environment defines a standard software GUI format
(section 4.1.3) consisting of a status bar, a display area, and labels for the left and right
software programmable keys (softkeys) on the MAH300 key pad.

The properties, methods, and classes of the gui object support the development of graphical
user interfaces in custom software applications.

4.1.1 Methods

The following section documents the methods defined for the MAH300 gui object.

4.1.1.1 alert
The gui .alert function displays text in the display area of the standard GUI display. Do
not call this function within onDecode and onCommand event handlers.

Format:
gui .alert(text, title);

Where:
text - string; text to display as the alert.
title - string; text to display in the gui object status bar; defaults to “Alert.”

Processing suspends until the operator presses an enter key — either the enter key or the left
softkey defined as OK.

Example:
gui .alert("Status Alert", "gui.alert exanple");

Displays the alert shown in Figure 8 and waits until the operator presses the enter key or the
left softkey (OK).

Status Alert

Figure 8 — gui.alert Example

I3 PEPPERL+FUCHS 27

41.1.2 confirm

The gui . confirm function displays text in the display area of the standard GUI display
and returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:

result = gui.confirnm(text, title,
| ef t Sof t keyLabel , ri ght Soft keyLabel);

Where:
text - string; text to display for confirmation
title - string; text to display in the gui object status bar; defaults to “Confirm.”

resullt — Boolean; true if the confirm receives an enter key (either the enter key or the
left softkey); False if the confirm receives the right softkey. leftSoftkeyLabel -
string; text to use as label for the left softkey (default is "Yes").

rightSoftkeyLabel - string; text to use as label for the right softkey (default is
"No").

Processing suspends until the operator presses an enter key or cancel key.
Example:
while('gui.confirm("Exit?", "guiConfirni));

Displays the confirm dialog shown in Figure 9 and waits until the operator presses the enter
key or the left softkey.

uiConfirm

Figure 9 — gui.Confirm Example

41.1.3 enableRefresh

The gui .enableRefresh function can be used to temporarily disable screen updates to
speed up GUI object construction. The JavaScript application must reenable refresh after GUI
object construction is completed.

Format:
gui . enabl eRefresh(enabl e) ;

Where:

enable - Boolean; true enables screen updates, false disables screen updates

28 I3 PEPPERL+FUCHS

Example:
gui . enabl eRefresh(fal se);

//build QU objects

gui . enabl eRefresh(true);

Notes: Requires firmware 3478+

4114 prompt

The gui . prompt function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:
result = gui.prompt(text, initial, title);
Where:
text - string; text to display as a label above a gui .Ed it control

initial - string; the initial string to display as the contents of edit control; default is an
empty string.

title -string; text to display in the gui object status bar; defaults to “Prompt”.

result - string; contents of the edit control if the prompt receives an enter key (either
the enter key or the left softkey defined as OK); null if the prompt receives the right
softkey defined as Cancel.

Processing suspends until the operator presses an enter key or Cancel key. The operator can
key new data into the edit control before pressing enter or the left softkey.

Example:
string = gui.pronpt("Enter login ID', "None", "guiPrompt");
Displays the prompt shown in Figure 10 — gui.Prompt Example.

Cancel

Figure 10 — gui.Prompt Example
The value of string depends on the operator action.

e |If the operator presses the right softkey (Cancel), the value of stringisnull.
e If the operator presses the blue “enter” key or the left softkey (OK) the value of
string is:
— <new content> if the operator changes the contents of the edit control
"None" if the operator does not change the content.

I3 PEPPERL+FUCHS 29

4.1.1.5 sendKey
The gui . sendKey method sends a “pressed key” indication to the MAH300 firmware as
though it came from MAH300 keypad.

Format:
result = gui.sendKey(key);

Where:
key — number constant; the key to send. Use number constants defined in section 4.1.2.2.

result - Boolean; true if successful; false if not, which usually means the keypad
is locked but can also mean that the key buffer is full.

Example:
gui . sendKey(enter);

Sends the enter key event to the MAH300 firmware as though the operator had pressed the
enter key.

4.1.1.6 sendText
The gui .sendText method sends a text string to the MAH300 gui object as though it
had been entered from the keypad.

Format:
result = gui.sendText(text);

Where:
text - string; the text to send.

resullt - Boolean; false if all specified text could not be sent to the GUI (in which
case, none of it will have been sent); otherwise, true.

Example:

reader. onDecode =
function(decode) { gui.sendText (decode.data); }

Sends all decode data to the gui object as though it had been entered from the keypad.

41.1.7 setFont

The gui . setFont method sets the font of the MAH300 gui display to the specified font.

Format:
gui . set Font (font);

Where:
font - string; the file name of the font.

result — Boolean; false if the specified font file could not be loaded; otherwise,
true.

30 I3 PEPPERL+FUCHS

Example:
gui . set Font (“nyFontFile.fnt”);

Sets the GUI font to myFontFile.

Notes: The default font is uniread10Bold.fnt. Contact P+F for a list of currently available
fonts.

41.1.8 show

The gui . show method instructs the MAH300 to write the specified form, menu, or text
object to the MAH300 display as a standard gui object (section 4.1.3).

This low level approach is not recommended for use in most applications. Instead, P+F
recommends using the gui . showForm, gui . showMenu, and gui . showSubMenu
methods.

Format:
gui . show(obj ect) ;
Where:

object - object to show on the display. The object must be a gui . Form gui .Menu,
or gui . Text object (section 4.1.3).

Note: This method does not return a value.

4.1.1.9 showForm
The gui . showForm method instructs the MAH300 to display the specified form on the
MAH300 display as a standard gui object (section 4.1.3).
Format:
gui . showFor m(your For n) ;
Where:

yourForm - form object to show on the display; the object must be a gui . Form object
(section 4.1.3.3).

Note: This method does not return a value.
To insert a caption into the status bar, set the yourForm.caption property.

By default, the left software programmable key is set to gui . okSoftkey (section 4.1.4.3).
You may also define a custom leftSoftkey for your form object, e.g.,
yourForm.leftSoftkey = yourSoftkey, in which case gui . showForm will use
your softkey.

By default, the right software programmable key is set to gui . cancelSoTtkey (section
4.1.4.2). You may also define a custom rightSoftkey for your form object.

I3 PEPPERL+FUCHS 31

41.1.10 showMenu

The gui . showMenu method instructs the MAH300 to display the specified menu on the
MAH300 display as a standard gui object (section 4.1.3). This menu is the top level menu;
sub-menus can be created using the gui . showSubMenu method.

Format:
gui . showvenu(your Menu) ;

Where:

yourMenu — menu object to show on the display. The object must be a gui .Menu
object (section 4.1.3.6).

Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu . caption property.

This method sets the left software programmable key to gui . selectSoftkey (section
4.1.4.4).

This method sets the right software programmable key to gui . backSoftkey (section
4.1.4.1) if the yourMenu.onCancel property is set; otherwise, nul .

4.1.1.11 showSubMenu
The gui . showSubMenu method instructs the MAH300 to display the specified menu on
the MAH300 display as a standard gui object (section 4.1.3).

Format:
gui . showSubMenu(your Menu, parent Menu);

Where:

yourMenu — menu object to show on the display. The object must be a gui -Menu
object (section 4.1.3.6).

parentMenu - parent menu to display in response to gui . backSoftkey.
Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu . caption property.

This method sets the left software programmable key to gui . selectSoftkey (section
4.1.4.4).

This method sets the right software programmable key to gui . backSoftkey (section
4.1.4.1) and sets the menu object’s onCancel property to a function that shows the parent
menu.

32 I3 PEPPERL+FUCHS

4.1.1.12 splash

The gui . splash method displays an image on the MAH300 screen and suspends
execution until a key is pressed. An optional timeout value will restart execution after a
specified time, if no key is pressed.

Note: The key that is pressed to cancel the splash screen is consumed. If a decode occurs
while the splash screen is displayed, the splash screen will be dismissed as if a key had been
pressed; the decode is not consumed.

Format:

result = gui.splash(imgeNane, stringText, tinmeout_ns);
Where:

1mageName — string; the name of the image file to display (section 4.1.3.4).

stringText — string; the text string to be displayed below the image in the softkey area of
the display.

timeout_ms — number; the number of microseconds to wait before timeout of the
splash display.

result - Boolean; true if a key was pressed before timeout; fal se if a timeout
occurred.

Example:
result = gui.splash(CorplLogo.ing, "Version 1", 2000);
displays a corporate logo image and the text “Version 1” on the display for two seconds.

The MAH300 supports only its native format, which uses the extension .1mg. The image
must be 128x128 pixels (for splash screen only). Images are not cropped; they will either
display in their entirety or will not display at all. The MAH300 displays the image in four
grayscale values from white to black.

P+F provides a utility to convert standard .pgm format files to the MAH300’s native .img
format (contact P+F for more information http://www.pepperl-fuchs.com). Several image
conversion programs are available, commercially and as freeware, to convert other formats to
.pgm files.

4.1.1.13 translateDigitToCustom
The gui .translateDigitToCustom method changes the keypad input to a custom key
map.
Format:
gui .transl ateDi gi t ToCustom = function(digit, index);

Where:
digit - number of button on keypad (0-9).

index — index of custom key map.

I3 PEPPERL+FUCHS 33

Example:

var keyMap = new Array("0.! @$%*()","1

@, "abc2ABC', " def 3DEF",

"ghi 4GH ", "] kl 5JKL", "nmo6MNO', " pqr s7PQRS", "t uv8TUV", " wxyz 9WKYZ
")

gui .transl ateDi gi t ToCustom = function(digit, index)
if (keyMap[digit])
{ return keyMap[digit][index % keyMap[digit].|ength];
]:el se
{
}

returns the characters specified by the “keyMap” variable.

return digit;

}

Note: Requires firmware 3478+,

4.1.2 Properties

The following section documents the properties defined for the MAH300 gui object.

4.1.2.1 inputMode

The gui . InputMode object contains constants that define input modes for the MAH300.
The constant definitions are:

gui . inputMode.numeric

gui . inputMode.caps

gui . inputMode. lower

gui . inputMode. latinCaps

gui . inputMode. latinLowerCase

gui . inputMode.symbols

The character sets defined for these modes are described in A 2.

34 I3 PEPPERL+FUCHS

4122 key

The gui .key property is a read-only object containing number constants specifying keys
for use with the gui . sendKey method. The constants are named:

° up

e down

o left

e right

e enter (the blue key on the keypad)
e back (“CLEAR” on the keypad)
e escape

e home

e end

e leftSoftkey

e rightSoftkey

Constants escape, home, and end have no keypad counterpart.

Constants leftSoftkey and rightSoftkey represent the left and right software
programmable keys on the MAH300.

4.1.2.3 leftSoftkey

The gui . leftSoftkey property identifies an event handler for the onCl i ck property of
a gui .Softkey object and the key label, associated with the left programmable key on the
MAH300. The application program defines a gui . Softkey object. See the example in
section 3.2.1

Setting gui . lefTtSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui . showMenu, gui . showSubMenu, and
gui .showForm methods, the gui . leftSoftkey property is set automatically.

4.1.2.4 rightSoftkey

The gui . rightSofttkey property identifies an event handler for the onCl i1 ck property
of a gui . Softkey object and the key label, associated with the right programmable key on
the MAH300. The application program defines a gui . Softkey object. See the example in
section 3.2.1.

Setting gui . rightSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui . showMenu, gui . showSubMenu, and
gui .showForm methods, the gui . rightSoftkey property is set automatically.

I3 PEPPERL+FUCHS 35

4,125 statusText

The gui .statusText property is a string that specifies text for display in the status bar at
the top of a MAH300 GUI screen. When gui . status is null, the MAH300 displays status
icons in the status bar. Note: The input mode icon will always be displayed in addition to the
status text when an edit control is active.

With menus and forms, use the caption property (section 4.1.6.1) to automatically set
gui .statusText when the menu or form is shown.

4.1.3 Objects

The MAH300 application development environment provides the user classes described in
this section for use in building forms for the MAH300 gui object. The instances of these
classes are referred to as controls in this document.

4131 gui.Button

The gui .Button constructor creates a button control for a GUI form. The onCl1ck event
handler is called when the enter key on the MAH300 keypad is pressed and the button control
is active. Program the function to return Boolean true if the control’s default processing of
the key should continue. Otherwise, program the function to return false; the control will
act as if not clicked.

Format:

var <button_nane> =
new gui . Button(text, ondick);

Where:
<button_name> - program-provided button control.

text - string; a label for the button. This property can be changed after the object is
created.

onCl ick - function for handling the button click event. The MAH300 calls this function
when the operator presses the OK enter key on the MAH300 keypad when the GUI button
is the active control.

Example:

/1 button control event handl er
function rFOnC i ck(){reader.witeSetti ng(0Ox1lb, 4);}
function rs2320ndick(){reader.witeSetting(0Oxlb, 1);}

/1l create the form object
var myForm = new gui . Form();

/'l create the button
var rfButton = new gui.Button("RF Comm', RFOnd i ck);
var rs232Button = new gui.Button("RS232 Comm', RS2320nC i ck);

/1 position the controls on the form
myFor m append(rf Button);

36 I3 PEPPERL+FUCHS

myFor m append(rs232Button);

/] Place text on the status bar
gui . statusText = "button deno";

/1 show the form
gui . showror n{ nyForm ;

Displays the form shown in Figure 11.

button demo
RF Comm

Figure 11 — Button Demo

When the operator presses the left softkey or the enter key when the control labeled “RF
Comm?” is active, the script executes a reader .writeSettings method to set the
communications mode setting to RF (Bluetooth). When the “RS232 Comm” control is active
and the operator presses the key, the script executes a reader .writeSettings method
to set the communications mode setting to RS232.

Note: The active control is highlighted.

4132 guiEdit

The gui . Edit constructor creates an edit control for a GUI form. The MAH300 operator
can enter data into the edit control.

Format:

var <edit_nane> =
new gui . Edit (text, defaultlnputMode, validl nput Modes,
onChar, readOnly);

Where:
<edit_name> - program-provided edit control.

text - string; the initial value for the edit control. The control contains text when it is
first displayed on the gui object. This property can be changed after the object is
created.

defaultlnputMode — number; the input mode that is selected when the user
navigates to the edit control and enters data. Modes are defined by gui . inputMode
(section 4.1.2.1).

Note: The user can change to another input mode using the shift key.

val idInputModes — number; a bitwise combination of input modes as defined by
gui . inputMode (section 4.1.2.1); defines the input modes that are valid in the edit
control.

onChar - function; the function to run when a character is entered into an edit control.

I3 PEPPERL+FUCHS 37

readOnly — Boolean; false allows the text to be changed by the user, true prevents the
text from being changed.

Example:

function quit() { reader.runScript(".default.js"); }

var form= new gui.Forn(null, quit);
form Caption = "I nput Mdes";

form append(new gui . Edit("Num shft any",

gui . i nput Mode. nuneric));

f orm append(new gui . Edit (" CAP, shft any",

gui . i nput Mode. caps)) ;

f orm append(new gui . Edit (" Num only",

gui . i nput Mbde. nuneri c,
gui . i nput Mbde. nuneric));

form append(new gui . Edit("CAP, U | Case",

gui . i nput Mode. caps,
gui . i nput Mbde. caps
| gui.inputMde. | owerCase));

gui . showrForn(form;

Displays the form shown in Figure 12.

Input Modes []
Num, any

[CAP, any

[Num, only

[CAP, U}l Case

Cancel

Figure 12 -- Input Modes Example

The text in each edit control identifies the default input mode of the control and the modes
which are enabled for the shift key.

Note: onChar and readOnly require firmware 3478+

4.1.3.3

gui.Form

The gui . Form constructor creates a Form object for the MAH300 GUI. The gui .Form
constructor defines three event handlers for key events. Event handlers are null if not

The following controls can be used in a form:

specified.
e guli
e Qgui
e Qgui.
e Qui.
e Quil
e Qgui

38

-Button
-.ToggleButton

Edit
Image

-Label
-.Separator

I3 PEPPERL+FUCHS

Form controls must be appended (section 4.1.5.1) or prepended (section 4.1.5.2) to the form
object.

Format:

var <form name> = new gui . Form onCk, onCancel, onKey);
Where:

<form_name> — program-provided form control.

onOk - function for handling the enter key. The MAH300 calls this function when the
operator presses the enter key on the MAH300 keypad and the active control is not a
button.

onCancel - function for handling the CLEAR key. The MAH300 calls this function
when the operator presses the key on the MAH300 keypad and the active control is not an
ed it control. This function is also called when the escape key is issued as a softkey.

onKey - function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

To add a label to the form in the status area, set the form's caption property to a string
containing the label.

Example:
See section 3.2.2.

4134 gui.lmage

The gui . Image constructor creates an image object that can be displayed in the MAH300
GUI form.

Format:
var <image_nanme> = new gui . i mage(namne);
Where:
<image_name> — program-provided image control.
name - string; the name of an image file in file storage (section 4.1.3.4).

Example:
var nmyForm = new gui . Forn();
var inmage = new gui.|nmage(" M/l mage.inmy");
nyFor m append(i mage) ;
gui . showFor m(nyFor n) ;

The image can be up to 128x94 pixels depending on the form. Images are not cropped; they
either display in their entirety or do not display at all. The MAH300 displays the image in
four grayscale values from white to black.

The image file format is specific to the MAH300. P+F provides a utility to convert standard
.pgm format files to the MAH300 native .img format. Several image conversion programs are
available, commercially and as freeware, to convert other formats to .pgm files.

I3 PEPPERL+FUCHS 39

4135 gui.Label

The gui . Label constructor creates a label control that can be displayed in the MAH300
GUI menu or form.

Format:

var <label_name> = new gui . Label (text);
Where:

<label name> - program-provided label control.

text - string; the text to be displayed as a label. This property can be changed after the
object is created.

Example:
See the form example in section 3.2.2.

4.1.3.6 gui.Menu

The gui .Menu constructor creates a menu object for the MAH300 GUI. The gui .Menu
constructor defines three event handlers for key events. Event handlers are null if not
specified.

The following controls can be used in a menu:

e gui.Menultem
e gui.Separator
e gui.ToggleButton

Menu controls must be appended (section 4.1.5.1) or prepended (section 4.1.5.2) to the menu
object.

Format:

var <menu_nanme> = new gui . Menu(onCk, onCancel, onKey);
Where:

<menu_name> — program-provided menu.

onOk - function for handling the enter key. The MAH300 calls this function when the
operator presses the enter key on the MAH300 keypad when the active control is not a
button.

onCancel - function for handling the CLEAR key. The MAH300 calls this function
when the operator presses the CLEAR key on the MAH300 keypad and the active control
is not an ed it control. This function also is called when the escape virtual key is issued
(typically by a softkey).

onKey - function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

Example: See the menus example in section 3.2.3.

40 I3 PEPPERL+FUCHS

4.1.3.7 gui.Menultem

The gui -Menu I'tem constructor creates a Menu I tem control for display in a MAH300
GUI menu. The onClick processing function is called when the enter key on the MAH300
keypad is pressed and the Menu I tem control is active.

Format:

var <menultenmltem nane> =
new gui . Menul ten(text, onCick);

Where:
<menu ltem_name> — program-provided Menu I tem control.
text - string; a label for the Menul tem.

onCl ick - function for handling the Menu Item. The MAH300 calls this function
when the operator presses the enter key on the MAH300 keypad when the Menu I tem is
the active control. Program the function to return Boolean true if the control's default
processing of the key should continue. Otherwise, program the function to return false;
the control will act as if not clicked.

Example:
See section 3.2.3.

4.1.3.8 gui.MultiLineEdit

The gur _.MultiLineEdit constructor creates a multiple line edit control for the GUI
screen. The MAH300 operator can enter data into the multiple line edit control. The

gui .MultiLineEdit constructor consumes the entire GUI screen, so it cannot be
appended/prepended to a menu or form. To access a multiple line edit control from a menu

Format:

var <mul ti Li neEdit_nane> =
new gui . Mul ti Li neEdi t (text, defaultlnputMde,
val i dl nput Modes, onChar);

Where:
<edit_name> - program-provided multiple line edit control.

text - string; the initial value for the multiple line edit control. The control contains
text when it is first displayed on the gui screen. This property can be changed after
the object is created.

defaultlnputMode — number; the input mode that is selected when the user
navigates to the edit control and enters data. Modes are defined by gui . inputMode
(section 4.1.2.1).

Note: The user can change to another input mode using the shift key.

val idInputModes — number; a bitwise combination of input modes as defined by
gui . inputMode (section 4.1.2.1); defines the input modes that are valid in the edit
control.

I3 PEPPERL+FUCHS 41

onChar - function; the function to run when a character is entered into a multiple line
edit control.

Other Functionality:

Insert - function, arg: string; this function inserts a string where the cursor is when the
function is called.

Format: <multiLineEditControlName>.insert(string);
Where

<multiLineEditControlName> - program- provided multiple line
edit control.

string - string; text to insert into multiLineEdit control.

Example:

var main = new gui.Menu
mai n. append(new gui . Button("Notes", function() {
gui . showDi al og(captureNotes); }));

gui . showvenu(mai n);
storage.wite("saveNotes.txt","");

var captureNotes = new gui.MiltiLineEdit("",
gui . i nput Mode. caps)

captureNotes. | eftSoftkey = new gui. Softkey("Save", function()
{storage. append("saveNotes.txt", captureNotes.text);

captureNotes.text = ""; gui.showMenu(main); });
captureNot es. ri ght Soft key = new gui . Sof t key(" Cancel ",
function() { captureNotes.text = ""; gui.showMenu(main); });

Note: Requires firmware 3478+

4.1.3.9 gui.Separator

The gui . Separator constructor creates a separator control for display in a MAH300 GUI
menu or form. Use the separator to insert white space or lines into a form to increase
separation between controls.

Format:

var <separator_nanme> =
new gui . Separ at or (hei ght, style);

Where:
<separator_name> — program-provided separator control.
he1ght — number; the height in pixels of the separator; minimum 1 pixel.

style — number; the style of the separator. sty le must be selected from one of the
following numeric constants:

e gul.separatorStyle._blank
e gui.separatorStyle_horizontalLine

42 I3 PEPPERL+FUCHS

e gui.separatorStyle.horizontalGroove
e gui.separatorStyle.horizontalRidge

The gui .separatorStyle.horizontalLine style adds a line in the approximate
center of the separator space as shown in Figure 13.

Line Separators
1 pixel

Next Control
10 pixels

Next Control

Figure 13 — gui.Separator Lines
Example:

See the menu example in section 3.2.3.

4.1.3.10 gui.Softkey
The gui . Softkey object provides processing control of the programmable or “soft” keys
on the MAH300 just below the display screen.
Format:
var <softkey> = new gui. Softkey(text, onCick);
Where:
<softkey> - program-provided softkey object.
text - string; a label for the softkey; displays on the GUL.
onCl ick - function; the function to be executed when the softkey is pressed.

Set the gui . leftSoftkey or gui . rightSoftkey property to <softkey> as

appropriate. The MAH300 JavaScript Library defines a set of useful softkey objects (section
4.1.4).

Example:
function | eftSoftkeyOnd ick()

/* processing code */

}
function right SoftkeyOnd i ck()

/* processing code */

}
var left = new gui. Softkey("Ck", |eftSoftkeyOnd i ck);
var right =

new gui . Sof t key(" Cancel ", right SoftkeyOnd i ck);

gui .l eft Softkey = left;
gui . right Softkey = right;

I3 PEPPERL+FUCHS 43

41311 guiText

The gui . Text constructor creates a text object that can be displayed in the MAH300 GUI
display area. Text length can exceed the capacity of the display area. The Text control
includes a scroll bar to indicate relative position within the text when the operator presses the
up and down arrow keys.
Format:

var <text_name> =

new gui . Text (text, onCk, onCancel, onKey);

Where:

<text_name> - program-provided text control.

text - string; text data to display on the MAH300 GUI. To display multi-line text, insert
the new-line character (“\n”) in the text string. This property can be changed after the
object is created.

onOk — function for handling the enter key. The MAH300 calls this function when the
operator presses the enter key on the MAH300 keypad.

onCancel - function for handling the CLEAR key. The MAH300 calls this function
when the operator presses the CLEAR key on the MAH300 keypad. This function also is
called when the escape key is issued (typically by a softkey).

onKey - function for handling any key, soft or real, not consumed by the active control
(section 4.1.6.2).

Note: The gui . Text constructor should be used only to display text, not as a control within
agui.Formorgui.Menu.

Other Functionality:
leftClipString - function with a single string argument.

Return: string; the input string parameter is truncated when necessary so the result
string can be displayed without exceeding the maximum width of the MAH300
display.

Example:

gui . statusText = "text exanple";

gui . show(new gui . Text
("Four score and seven years ago, our fathers brought
forth upon this continent, etc ..."));

displays the screen shown in Figure 14.

Four score and
SEeVEen years
ago, our
fFathers
brought forth

Figure 14 — gui.Text Example

44 I3 PEPPERL+FUCHS

Note: The scroll bar indicates that there is more text to display than is currently on the screen.

4.1.3.12 gui.ToggleButton

The gui . ToggleButton constructor defines a button control for a GUI form. When a
toggle button is clicked, an indicator in the button is alternately displayed or suppressed.

Format:

var <toggl ebutton_nane> =
new gui . Toggl eButton(text, initiallyChecked, onToggle);

Where:
<togglebutton_name> - program-provided toggle button control.
text - string; a label for the toggle button.

initial lyChecked - Boolean; true, the button displays the checked indicator
when first shown; False, the button does not display the checked indicator when first
shown.

onToggle - function for handling the button click event. It passes a single Boolean
parameter; true, the button is checked; false, the button is not checked. The MAH300
calls this function when the operator presses the OK enter key on the MAH300 keypad
when the GUI button is the active control.

Other Functionality:
checked — Boolean; current state of toggle button.
toggle - function; toggles the toggle button as if activated by the GUI screen.

Example:

/1 formevent handlers

/1 button control event handl er

function toggl eOnd i ck(checked)
{reader.witeSetting(0xa7, checked);}

/1l create the form object
var nyForm = new gui . Form();

/1l create the button
var toggle =
new gui . Toggl eButton("Vi brate", false, toggleOndick);

/1 position the controls on the form
myFor m append(t oggl e) ;

/] Place text on the status bar
nyForm caption = "toggl e demp";

/'l show the form
gui . showFor n(nyFor m ;

initially shows the form in Figure 15.

I3 PEPPERL+FUCHS 45

. JavaScript Programming Guide

toggle demo
Vibrate

Cancel

Figure 15 — Toggle Not Selected

Pressing the left softkey (OK) toggles the indicator, as shown in Figure 16, and turns on
the vibrate feature of the MAH300. Pressing OK again turns off the indicator and the
vibrate feature.

toggle demo
*Wibrate

Cancel

Figure 16 — Toggle Selected
Notes: toggleButton.checked and toggleButton.toggle() require firmware 3478+.

46 I PEPPERL+FUCHS

4.1.4 Predefined Softkey Objects

The softkey objects described in this section are defined by the MAH300 JavaScript library.

4.1.4.1 backSoftkey

The gui .backSoftkey object defines a softkey object. It labels the softkey “Back” and
sends the escape key when the softkey is clicked.

Example:
gui . ri ght Sof t key = gui . backSoft key;

4.1.4.2 cancelSoftkey

The gui .cancel Softkey object defines a softkey object. It labels the softkey “Cancel”
and sends the escape key when the softkey is clicked.

Format:
gui . ri ght Sof t key = gui . cancel Sof t key;

4.1.4.3 okSoftkey

The gui .okSoftkey object defines a softkey object. It labels the softkey “OK” and sends
the enter key when the softkey is clicked.

Format:
gui . | eft Soft key = gui . okSoft key;

4.1.4.4 selectSoftkey

The gui .selectSoftkey object defines a softkey object. It labels the softkey “Select”
and sends the enter key when the softkey is clicked.

Example:
gui .l eft Soft key = gui. sel ect Soft key;

I3 PEPPERL+FUCHS 47

4.1.5 Form and Menu Common Methods

415.1 append(control)
The append function places the specified control as the last control in the specified
menu or form.
Format:
<MenuOrForm_name>_append(control);
Where:
control - the control to append.
Note: A control cannot be used more than once in a form or menu.
Example:
See section 3.2.2.

4.15.2 prepend(control)
The prepend function places the specified control as the first control in the specified
menu or form.
Format:
<MenuOrForm_name>_prepend(control);
Where:
control —the control to prepend to the menu.
Note: A control cannot be used more than once in a menu or form.
Example:
See forms example in section 3.2.2.

4,153 setActiveChild(control)

The setActiveChi Id selects (but does not activate) the specified control when the menu

or form is displayed. This method is optional.
Format:

<MenuOrForm_name>.setActiveChild(control);
Where:

control —the control to select when the menu is displayed.
Example:

See forms example in section 3.2.2.

Note: You must show the form/menu after setting the active child in order for this function
to work properly.

48 I3 PEPPERL+FUCHS

4.1.6 Form and Menu Common Properties

The properties and methods described in the following section are common to the
gui .Menu and gui . Form objects.

4.1.6.1 caption
The caption property is a string that is used by gui . showForm, gui . showMenu, and
gui .showSubMenu to display a caption in the status bar of the MAH300 gu i object.
Format:

<MenuOrForm_name>_caption = '<caption_string>";
Example:

See forms example in section 3.2.2.

4.1.6.2 onKey

The onKey property is a property of type function that is used by gui . Form, gui .Menu,
and gui . Text to provide control for any key not consumed by the active control. Key
constants are defined in section 4.1.2.2.

Format:
function processKey(key)

/* processing code */

}

<MenuOr For m_nane>. onKey = processKey;

I3 PEPPERL+FUCHS 49

4.2 reader

The reader object models the barcode imager hardware and firmware. Use the methods and
properties of the reader object to command the behavior of the barcode imager such as:

Executing commands on the barcode imager
Running a JavaScript on the barcode imager
Reading and changing barcode imager settings
Obtaining data decoded from bar codes

42.1 Methods

This section documents the methods defined for the barcode imager's reader object.

4.2.1.1 beep

The beep method causes the barcode imager to beep.

Format:
reader . beep(nunBeeps) ;

Where:
numBeeps — number; number of beeps.
Note: This method does not return a value.

Example:
r eader . beep(3);

Cause the reader to beep 3 times

4.2.1.2 defaultSettings

The defaul tSettings method resets selected barcode imager settings to manufacturing
defaults; it is equivalent to sending the 'J' command using the reader . processCommand
method (section 4.2.1.3).

Format:
reader . defaul t Settings();

Note: This method has no arguments and no return value.

barcode imager settings are defined in the document Reader-Host Interface, which also
identifies settings that this command does not reset.

50 I3 PEPPERL+FUCHS

4.2.1.3 processCommand

The processCommand method instructs the barcode imager to execute a command.

Format:
result = reader. processConmand(conmandType, data);

Where:

commandType - string, 1 character; the command to be processed on the barcode
imager.

data - string; data as required to process the command.
result - depending on the command, either:

— aBoolean value
— adata string

For commandType, data, and resulting values, see document Reader-Host Interface

Example:
r eader . processCommand(' $', "\x03"); // read a code

Sends a “$” command code (post event) with a one-byte value of 3 (event type = read near
and far fields) to the barcode imager firmware.

4.2.1.4 readSetting

The readSetting method returns the current value of the specified configuration setting.

Format:
val ue = reader.readSetting(setti ngNunber);

Where:
settingNumber — number; integer value representing the setting to be read.
For settingNumber values, see document Reader-Host Interface,

Example:
val ue = reader.readSetting(0x1b);

Returns the current value of the barcode imager setting hex 1b (communications mode).

4.2.1.5 runScript

The runScript method instructs the barcode imager to schedule the load, compile, and
execution of the specified JavaScript. The barcode imager schedules execution of the script
immediately after the currently executing event handler or main script completes. The
runScript method does not include a mechanism to return to the calling script.

Format:
result = reader.runScript(scriptNane);

I3 PEPPERL+FUCHS 51

Where:

scriptName - string; the name of the JavaScript to be run. The script must first be
loaded into barcode imager flash by name. See the Download Utility (section 1.5).

resullt — Boolean; true if the script was loaded successfully; false otherwise. A
return of fal se usually means that the script could not be found.

Example:

In the forms example (section 3.2.2), the onTimeCard function could be defined as
follows:

function onTi meCard()
{reader.runScri pt (" Ti neCar dApp.js");}

The operator, at the end of a work shift, could press the “TimeCard” button to access a
time card application.

4.2.1.6 saveSettings

The saveSettings method writes the current values of the barcode imager configuration
settings into flash memory. Operational setting values are loaded from flash memory when
the barcode imager initializes. Any changed configuration settings will be lost at reader
shutdown unless saved in flash memory.

Format:
result = reader.saveSettings();

Where:
result — Boolean; false if the flash write fails; true otherwise.

Note: There are no arguments to this method.

4.2.1.7 setDisplayLed

The setDisplayLed method activates the LED of the MAH300 above the display.

Format:
reader . set Di spl ayLed(col or);

Where:

color — must be reader.green, reader.red, reader.amber, or reader.none.

Note: Setting 0x014d must be set to false for setDisplayLed to function properly. Requires
firmware 3478+.

4218 setinterval

The setInterval method works similarly to the HTML DOM setInterval method, except
that the resolution is in seconds rather than milliseconds.

52 I3 PEPPERL+FUCHS

Format:
intervalld = reader.setlInterval (function, interval _sec);

Where:
interval Id - program provided interval ID.
function - program provided function to run at the specified interval.
interval _sec - amount of time (in seconds) to delay before running the function
again.

Note: Requires firmware 3478+.

4.2.1.9 clearinterval
The clear Interval method works similarly to the HTML DOM clearinterval method,
and is used in conjunction with setInterval to stop processing a function called by setInterval.

Format:
reader.clearlnterval (intervalld);

Where:
interval 1d - program provided interval ID.

Note: Requires firmware 3478+,

4.2.1.10 setTimeout

The setTimeout method works similarly to the HTML DOM setTimeout method, except
that the resolution is in seconds rather than milliseconds.

Format:
ti meoutld = reader. setTi neout (function, tineout_sec);

Where:
timeoutld - program provided timeout ID.
function - program provided function to run after the specified timeout.

timeout_sec - amount of time (in seconds) to delay before running the function.

Note: Requires firmware 3478+.

I3 PEPPERL+FUCHS 53

42111 clearTimeout

The clearTimeout method works similarly to the HTML DOM clearTimeout method,
and is used in conjunction with setTimeout to stop processing a function called by
setTimeout.

Format:
reader. cl ear Ti neout (ti meout | d);

Where:

timeoutld - program provided timeout ID.

Note: Requires firmware 3478+.

4.2.1.12 shiftJisToUnicode
The shiftJisToUnicode method converts a string from Shift-JIS encoding to Unicode
encoding.

Format:
uni codeString = reader.shiftJi sToUni code(text);

Where:
text - String; text encoded as JIS.

unicodeString - String; text encoded as Unicode.

Example:
nyUni codeString = reader. shiftJisToUni code(nyString);

Sets myUnicodeString to the Unicode encoded equivalent of myString.

4.2.1.13 writeSetting
The writeSetting method changes the operational value of a single barcode imager
configuration setting.

Format:
witeSetting(settingNunber, val ue);

Where:
settingNumber — number; the setting to be changed.
value — number; the value to be written to the configuration setting.

For the possible values of settingNumber and value, see document Reader-Host
Interface

Note: This method does not return a value.

54 I3 PEPPERL+FUCHS

Example:
reader.witeSetting(0Ox1lb, 4);

Sets the reader communications mode to Bluetooth RF. See also the gui . Button example
in section 4.1.3.1.

4.2.2 Properties

This section documents the properties defined for the barcode imager's reader object.

4221 onBatteryLevelChange
The onBatteryLevelChange property of the reader object provides processing
control when the barcode imager detects a change in its battery charge level.

Format:

function batteryCharge(previousLevel,
current Level)

/* Processing statenments */

reader.onBatterylLevel Change = batteryCharge;
Where:
previouslLevel - integer; previous battery charge level.
currentLevel - integer; current battery charge level.
Possible battery charge levels are documented in sections 4.2.2.9 through 4.2.2.12.

Example:

function batteryCharge(previousLevel,
current Level)

if (currentLevel == reader.anber)
alert("Battery Low');

reader.onBatterylLevel Change = batteryCharge;

Sends an alert when the battery level drops to amber.

4.2.2.2 onCommand
The onCommand property of the barcode imager calls the specified function when the
reader:

e Receives a configuration command from a communication port.
e Decodes a configuration command from a code read by the barcode imager.

The application uses this property as an event handler to:

e Receive notification of command processing.
e Prevent execution of a command.

I3 PEPPERL+FUCHS 55

The function will not be called in response to a reader . processCommand call or
commands within a stored-code (“performance strings”). Performance strings are
documented in Reader-Host Interface

Return Boolean true to instruct the reader to process the command. Return Boolean false
to suppress the command. When a command is suppressed, the firmware will not send any
response to the host, but the JavaScript application may provide its own response to the host.

Format:
function filterComand(comandType, conmandDat a)

{

var shoul dSuppr essConmand = f al se;
/* Processing statenents */
return !shoul dSuppr essCommand;

reader. onCommand = filter Command;

Where:
commandType - string; 1 character; specifies the command being processed.
commandData - string; data to be process by the command.

Example:

function notifyErase(comandType)

if (commandType == ")")
print("Erasing Error Log...");

reader. onCommand = noti f yEr ase;

Sends a debugging message to the host to show that the erase command was detected.

4.2.2.3 onCommandFinish
The onCommandFinish property of the reader object provides processing control upon
completion of a command.

Format:

function fini shedCommand(commandSuccess,
responseType,
responseDat a)

/* Processing statenments */
r eader . onConmandFi ni sh = fi ni shedConmand;

Where:

commandSuccess — Boolean; contains the return status of the command: true =
success, false = failure.

responseType - string; 1 character; specifies the response type.

responseData - string; the response data.

56 I3 PEPPERL+FUCHS

Example:

function fini shedCommand(comandSuccess,
responseType,
responseDat a)

i f(!commandSuccess)
alert("Command failed ("
+ responseType + ":" + responseData + ")");

r eader . onConmandFi ni sh = fi ni shedConmand;

sends an alert when a command fails.

4224 onDecode

The onDecode property of the reader object provides processing control to the
application program at the completion of a decode action. The barcode imager firmware
passes the decode object to the function through the calling argument.

Code the function in your script and return a code as follows:

nul I —the decode has been consumed by the JavaScript application; there should be no
further processing of it by the barcode imager firmware.

false - invalidate the decode; if the barcode imager firmware is so-configured, it will
act as if there had not been a decode; the good-decode-beep will be suppressed.

decode object (modified or unmodified) — the barcode imager firmware will continue to
process the modified or unmodified decode data.

Format:
functi on onDecode(decode)
{
var valid = true;

/* set to false below if decode is to be invalidated */

var passthrough = true;
/* set to false below if decode is consuned here */

/* processing statenments, which nmay nodi fy decode. dat a,
val i d, and/or passthrough */

if('valid)
return fal se;

i f(!passthrough)
return null;

return decode;

r eader. onDecode = onDecode;
Where:
decode - object having the following properties:

I3 PEPPERL+FUCHS 57

data — string; the text decoded from the bar code.

symbology — read-only number; the symbology number (see document Reader-Host
Interface,).

symbologyModifier — read-only number; the symbology modifier number (see
document Reader-Host Interface).

symbologyldentifier — read-only string; this is the AIM identifier (“Jcm”).
X — read-only number; unit is pixels, 0 is center of image.
y — read-only number; unit is pixels, O is center of image.

X,y combined specify the position of the center of the bar code in the image (relative
to the center of the image; the values can be positive or negative).

time — read-only Date object; a JavaScript Date object indicating the time the code
was read.

quality_percent — read-only number; a code quality metric returned by the decoder.
The precise meaning is symbology-specific.

linkage — read-only number; indicates that a code is one part of a composite code. See
document Reader-Host Interface

bounds — 4-element array, indexed from 0 — 3. Each element is a decode.bounds
object with 2 properties: x and y, both are integers and read only. Note: Requires
firmware 3280+.

Example: See the discussion of symbol decoding in section 3.4.

4.2.2.5 onDecodeAttempt

The onDecodeAttempt property of the reader object provides processing control to the
application program at the completion of a decode action, before any of the decoded symbols
are passed to reader .onDecode.

Format:
functi on onDecodeAtt enpt (count)

/* processing statements */

reader . onDecodeAt t enpt = onDecodeAtt enpt ;
Where:

count - number; a count of the number of symbols that were read by a single decode
request.

Note: This method does not return a value.

Example:
var ok = fal se;

reader . onDecodeAttenpt = function(count)

{
}

ok = count >= 2;

58 I3 PEPPERL+FUCHS

reader . onDecode = functi on(decode)

if('ok)
return fal se;

return decode;

}

Ensures there at least two decodes per attempt; otherwise, invalidates the single decode.
Each decode found in the field of view will be decoded only once per attempt, so this
example ensures there are two distinct symbols in the field of view. The reader must have
been configured (section 3.7) to support multiple reads per attempt.

4.2.2.6 onldle

The onldle property of the reader object provides processing control to the application
program whenever the reader is idle; i.e., no events (such as button presses) are active or
queued. This event is posted when the JavaScript has nothing else queued and is not related
to the barcode imager active time (setting hex 32).

Format:
function onldl e()

/* processing statements */

reader.onldl e = onldl e;

Note: This method does not return a value.

Example:
function onldle()
{
reader. processCommand(‘.’, “\x22\x05\x32\x64");
}

reader.onldle = onldle();

Flashes both LEDs on the MAH200 green 5 times, with LEDs on for ¥ second and off for 1
second.

Note: Requires firmware 3280+

I3 PEPPERL+FUCHS 59

4.2.2.7 onStandby

The onStandby property of the reader object provides processing control to the
application program whenever the reader is is about to enter the standby mode.
Format:
function onStandby()
/* processing statements */

reader. onSt andby = onSt andby;
Where:

return — Boolean; true if the reader should be allowed to enter the standby mode; false
to prevent it.

Example:
functi on onStandby()

if (commisConnected) return false;
el se return true;

}
reader. onSt andby = onSt andby();

Prevents the reader from entering standby if it is connected and allows it to enter standby
otherwise.

4.2.2.8 batteryLevel
The batteryStatus property of the reader object contains a read only integer
specifying the battery charge level. Possible battery charge levels are:

reader .green —not low.

reader .amber — somewhat low.

reader.red - very low.

reader .none — battery not present.

Example:
batterylLevel = reader.batterylLevel;
4.2.2.9 red

The red property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Note: Requires firmware 3478+

60 I3 PEPPERL+FUCHS

4.2.2.10 green

The green property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Note: Requires firmware 3478+

4.2.2.11 amber

The amber property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Note: Requires firmware 3478+

42212 none

The red property of the reader object contains a read only constant for use with
reader.batteryLevel and reader.setDisplayLed.

Note: Requires firmware 3478+

4.2.2.13 cabled

The cabled property of the reader object contains a read only Boolean value containing
the cabling state of the barcode imager hardware. The value will be true if cabled and
false if not cabled.

Example:
cabl ed = reader. cabl ed;

Note: Requires firmware 3478+.

4.2.2.14 charging

The charging property of the reader object contains a read only Boolean value
containing the charging state of the barcode imager hardware. The value will be true of
charging and false if not charging.

Example:

chargi ng = reader. charging;
Note: Requires firmware 3280+.

4.2.2.15 hardwareVersion

The hardwareVersion property of the reader object contains a read only string
containing the version number of the barcode imager hardware.

Example:
hwWer si on = reader . har dwar eVer si on;

I3 PEPPERL+FUCHS 61

4.2.2.16 oemld

The oemld property of the reader object contains a read-only string containing the
barcode imager unique OEM identifier from the locked flash memory.

Example:
oem d = reader. oenld;

42217 readerld

The reader I d property of the reader object contains a read-only string containing the
barcode imager unique ID from the locked flash memory.

Example:
rid = reader.readerld;

4.2.2.18 softwareVersion
The softwareVersion property of the reader object contains a read only string
containing the version number of the firmware currently running in the barcode imager.

Example:
swWer si on = reader. softwar eVer si on;

4.3 storage

The storage object provides application software access to barcode imager file storage.
Files are written to storage by the storage .write method and by downloading from the
host (see section 3.6).

Note: Names of files can be 1 - 200 printable ASCII characters. For compatibility with host
file systems, P+F recommends you do not use characters that are reserved by host operating

systems: /,\, 5,2, *,[,],", ", etc. Files should be kept to a maximum length of 32K bytes. Files
are stored in UTF8 format, which encodes Unicode characters in one or more bytes each.

4.3.1 Methods

The following section documents the methods defined for the barcode imager storage
object.

In this section, the examples use elements of a time card application that assumes time card
records are maintained as files organized by employee number. The naming convention for
the time card records is TimeCard<employee number>.

43.1.1 append

The storage . append method adds data to the end of a file.

Format:

62 I3 PEPPERL+FUCHS

result = storage. append(nane, data);
Where:
name — string; the name of the object to append.
data - string; the data to add to the end of the file.
result - Boolean; true if the append succeeded; false if the append failed.

Example:
st orage. append(" Ti meCard” + enpl oyeeNunber, tcRecord);

Adds the time card record to the end of the time card record that already exists for the
employee specified by employeeNumber.

Note: Requires firmware 3226+

4.3.1.2 erase

The storage . erase method erases a file.

Format:
result = storage.erase(nane);

Where:
name - string; the name of the object to erase.

result — Boolean; true if the file existed (the object is deleted); False if the file did
not exist.

Example:
storage. erase("Ti neCard” + enpl oyeeNunber) ;

Erases the time card record for the employee specified by employeeNumber.

43.1.3 findFirst
The storage. findFirst method locates the first file where the name matches a regular
expression specified in the call parameter.

Format:
nane = storage. findFirst(expression);

Where:

expression — regular expression (not a string); a regular expression used by the
barcode imager to match against names of stored objects.

name - string; the name of the first matching file; name is nul I if no file matches the
expression.

Example:
name = storage.findFirst(/"TinmeCard.*/);

Sets name to the name of the first time card record file.

I3 PEPPERL+FUCHS 63

4314 findNext

The storage . findNext method locates the next file where the name matches the regular
expression specified in the expression parameter of a previous storage . findFirst
call. The matching names are not ordered, but they will not be repeated; a findFirst -
FindNext sequence will return all matching files, provided that there are no other
intervening storage method calls. (You can put the files into an array and use JavaScript’s
sort method when you need them ordered.)

Format:
nane = storage.findNext();

Where:

name - string; the name of a file; name is null 1 if no remaining file matches the
previous regular expression.

Example:
nane = storage. findNext();

Sets name to the name of the next time card record file.

4.3.1.5 read

The storage . read method reads a file.

Format:
data = storage.read(nane);

Where:
name - string; the name of a file.
data - string; the contents of the file; null I if there was no file with that name.

Example:
data = storage. read(nane);

Sets data to the contents of the time card record specified by name.

4.3.1.6 size

The storage.size method returns the size of a file in bytes.

Format:
nanmeSi ze = storage. si ze(nane);

Where:
name - string; the name of a file.
nameSize — integer; the size of the file in bytes.

Example:
naneSi ze = storage.size(“nane”);

64 I3 PEPPERL+FUCHS

Sets nameSi ze to the size of the time card record specified by name.

Note: Requires firmware 3280+

4.3.1.7 upload

The storage . upload method uploads a file to the host over the current active host comm
port.

Format:

result = storage. upl oad(nanme, w thHeader AndFooter);
Where:

name - string; the name of a file.

withHeaderAndFooter — Optional boolean; If set to false the file is uploaded
without the header (ap/g(file size))and footer (ap/d(checksum)). If the parameter is not
included the header and footer will be included with the upload.

result - Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the
data has been sent to and acknowledged by the host.

Note: The upload protocol is documented with the "A" command in document Reader-Host
Interface. Uploaded files may be split into multiple packets as defined in the protocol.

Example:

name = storage.findFirst(/TinmeCard.*/);
whi l e (nane)

if (!storage. upl oad(nane))
alert(name + " upload failed!");
nane = storage.findNext();

b
Uploads all time card records to the host. If a time card record fails to upload, the operator is
alerted.

43.1.8 write
The storage -wr ite method writes a file to storage. If the file does not exist, the barcode
imager creates it. If there was an existing file of the same name, it is replaced.

Format:
result = storage.wite(nane, data);

Where:
name - string; name of a file.
data - string; data to be written.
result — Boolean; true if the file was successfully written; otherwise, false.

Note: When replacing an existing file, if there is insufficient storage space to hold the new
file, it will not be written; however, the old file will be erased.

I3 PEPPERL+FUCHS 65

Example:
result = storage.wite("TinmeCard" + enpl oyeeNunber, tcRecord);

Writes a time card record to a file.

4.3.2 Properties

The following section documents the properties defined for the barcode imager storage
object.

4321 fullness_percent

The storage.ful Iness_percent property is a read-only integer containing the
percent of storage in use.

43.2.2 IsFull

The storage. 1sFull property is a read-only Boolean value; true if storage is full and
cannot be added to; otherwise, false.

4.4 comm

The comm object models the host commutation feature of the barcode imager. Use the
methods and properties of the comm object to send either packet or text data to the host.

44.1 Methods

The following section documents the methods defined for the barcode imager comm object.

4411 connect
The connect method instructs the barcode imager communication driver to attempt to
establish a connection.

Format:
result = comm connect (ti meout _sec);

Where:

timeout_sec - integer, the number of seconds for the communication driver to
continue to attempt to establish a connection.

result - Boolean; false if there was a failure to connect; otherwise, true.

Example:
result = conmm connect (30);

Causes the reader to attempt to connect for up to thirty seconds. The reader stops attempting
to connect when either a connection is made or the timeout is reached (i.e. if a connection is

66 I3 PEPPERL+FUCHS

established after three seconds, the reader does not wait for the remaining twenty seven
seconds before moving to the next queued task).

Note: Requires firmware 3280+

4412 disconnect
The disconnect method instructs the barcode imager communication driver to disconnect
from the host.
Format:
comm di sconnect () ;
Example:
comm di sconnect () ;
Causes the reader to disconnect from the host.
Note: This method does not return a result. Requires firmware 3280+

4.4.1.3 sendPacket

The sendPacket method instructs the barcode imager to send a data packet to the host via
the communications port currently specified by the active barcode imager communication
settings. The barcode imager creates a packet formatted according to the active barcode
imager packet protocol configuration setting.

For a discussion of data packets, see document Reader-Host Interface
Format:

result = comm sendPacket (type, data);
Where:

type - string, length 1; the type of packet to send. The packet types are documented in
document Reader-Host Interface.

data - string; data to be inserted into the packet.

result — Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the
data has been sent to and acknowledged by the host.

Example:

reader . onDecode =
function(decode) {comm sendPacket('z', decode.data)};

Sends a packet containing results of a decode to the current comm port.

4414 sendText

The sendText method instructs the barcode imager to send arbitrary text (which may
include NULL characters) to be sent via the active communication port; the text will be sent
“raw” regardless of the reader comm mode settings. This method buffers the data until the

I3 PEPPERL+FUCHS 67

USB packet size limit is reached or a “z’ packet is sent. For an immediate response, send the
data as a ‘z” packet using comm.sendPacket.

Format:
result = comm sendText (data);

Where:
data - string; data to be sent via the active communication port.

result - Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the
data has been sent to and acknowledged by the host.

Example:

reader . onDecode =
function(decode) {comm sendText ("decode. data"); }

Sends the raw text “decode.data” via the active communications port.
Note: Requires firmware 3280+

4.4.2 Properties

The following section documents the properties defined for the barcode imager comm object.

4421 iIsConnected
The 1sConnected property of the comm object contains a read-only Boolean specifying
the host connection status. Possible connection values are:

true - reader is connected to the host.

Tal se - reader is not connected to the host.

Example:
connected = comm i sConnect ed;

68 I3 PEPPERL+FUCHS

4.5 Functions

The following section documents functions that enhance the application development
environment.

45.1 Dialog (only MAH300)

The barcode imager JavaScript Engine provides the following functions like those defined by
JavaScript in Web browsers:

e alert
e confirm
e prompt

These functions interact with the MAH300 standard GUI display. The MAH300 displays the
name of the function in the GUI status bar and the text associated with the function, and then
waits until a key is pressed. The following subsections describe the operation of each
function in the MAH300 environment.

Similar but more flexible functions are provided in the gui object (see section 4.1). For
example, if you want to change the caption on these displays use the gui object functions.

45.1.1 alert
The alert function displays text in the display area of the standard GUI display. Do not call
this function within onDecode and onCommand event handlers.
Format:
alert(text);
Where:
text - string; text to display as the alert.

Processing suspends until the operator presses an enter key — either the enter key or the left
softkey defined as OK.

Example:
alert("Status Alert");

Displays the alert shown in Figure 17 and waits until the operator presses the enter key or the
left softkey (OK).

Status Alert

Figure 17 — Alert Example

I3 PEPPERL+FUCHS 69

451.2 confirm

The confirm function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:
result = confirmtext);
Where:
text - string; text to display for confirmation.

resullt — Boolean; true if the confirm receives an enter key (either the enter key or the
left softkey defined as OK); False if the confirm receives the right softkey defined as
Cancel.

Processing suspends until the operator presses a suitable key.
Example:
result = confirm("Exit?");

Displays the confirm shown in Figure 18 and waits until the operator presses the left softkey
(OK) or the right softkey (Cancel).

Confirm
Exit?

Cancel

Figure 18 — Confirm Example

If you want softkey labels other than OK and Cancel (for example, Yes and No), use the
gui .confirm method (section 4.1.1.2).

4513 prompt

The prompt function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:
result = pronpt(text, default);

Where:
text - string; text to display as a label above a gui . Ed it control.
default - string; a default string to display as the contents of edit control.

result - string; contents of the edit control if the prompt receives an enter key (either
the enter key or the left softkey defined as OK); null if the prompt receives the right
softkey defined as Cancel.

70 I3 PEPPERL+FUCHS

Processing suspends until the operator presses an enter key or Cancel key. The operator can
key new data into the edit control before pressing enter or the left softkey.

Example:
string = pronpt("Enter login ID', "None");
Displays the prompt shown in Figure 19.

Enter login ID

Figure 19 — Prompt Example
The value of string depends on the operator action.

e If the operator at any time presses the right softkey (Cancel), the value of string is null.

e |f the operator changes the contents of the edit control to <new content> and presses the
left softkey (OK), the value of string is <new content>.

e |f the operator presses the left softkey (OK) without changing the contents of the edit
control, the value of string is “None” (the value entered as the second call parameter).

4.5.2 Process Control

45.2.1 sleep_ms

The barcode imager defines a sleep function to control time-sequence. Any busy-loops or
time-consuming tasks should sleep to give other tasks time to run. It is very important to
include a sleep_ms(0) function in your code periodically to give the main task a chance to
update the watchdog timer. Failure to do so will cause a watchdog timeout error.

Event handlers such as onCl i ck run during main code sleep. The event handlers themselves
must NOT sleep; they should handle the event and return as quickly as possible.

Format:
sl eep_nms(mlliseconds);

Where:

mi Il 1seconds — number; the minimum number of milliseconds to sleep.

I3 PEPPERL+FUCHS 71

4.5.3 Other Functions

453.1 format

The Format function allows you to combine variables and text into a string. Its operation is
similar to the spriantf function of the C language.
Format:

string = format (<control _string> <argunment _|ist>);

Where:

<control_string> - contains a combination of characters that will be included in
the string and format specifiers that instruct format how to process the items in the
argument list.

<argument_list>-acomma-separated list of items to be processed according to
format specifiers in the control string.

Example:
45;
n I DII ;

n
S
string = format ("% = %", s, n);

=

t
creates the string:
"ID = 45"
Format specifiers are taken from the standard C library and are discussed in A 3.

The output string is truncated to 1023 characters. If an error occurs, the output string is
“format error.”

45.3.2 include

The 1nclude function executes the included script inline.

Format:
result = include(scriptNane);

Where:

scriptName - string; the name of the script to be included.

result - Boolean; true if the script could be loaded and executed; otherwise, false.
Example:

i nclude("nyScript.js");

adds the definitions in myScript. js to the application. The definitions become part of
the “including” script.

72 I3 PEPPERL+FUCHS

. JavaScript Programming Guide

45.3.3 print

The print function sends text to stdout (the active communication port), not to the
MAH300 display. Limit the use of the print function to debugging. Use the comm object
methods for normal data output to communication ports.

Format:
print(text);
Where:

text - string; debugging data to be sent to the active communications port.

4534 setStandbyMessage

The setStandbyMessage allows you to create a custom standby message to display
when the reader enters standby mode.

Format:
set St andbyMessage(text);

Where:

text - string; message to display when the reader enters standby mode.

Note: Requires firmware 3280+

I3 PEPPERL+FUCHS 73

. JavaScript Programming Guide

Glossary and Acronyms

Term Definition

Control User Class object instantiated in a MAH300 GUI form.

MAH300 P+F Handheld reader with display and keypad

RF Radio Frequency

Code Data Data resulting from the decode process after data capture or bar code
read

Smart Quote Previously formatted quotation marks, usually found in a word
processing program

Softkey User programmable key found on the MAH300

Consume Used with no return value by the user defined application or firmware

74 I PEPPERL+FUCHS

Al MAH300 Simulator (only MAH300)

P+F provides a JavaScript simulator as part of the MAH300 Application Development
environment. A free source code editor, SCITE, is packaged with the simulator.

From the editor you can execute the current edit file and walk through JavaScript errors
detected during execution.

A 1.1.Installation

The simulator/editor package is distributed as a . zip file. To install, simply unzip the file
into any directory in your Microsoft® Windows® environment. This document refers to this
installation directory as the base directory. The unzip process creates two subdirectories,
editor and jse, and a shortcut, JSE . exe, to the Sci TE editor tailored to the MAH300
simulator.

The editor directory contains the editor and associated operational files, and SciTE
documentation. The file editor/SciTEDoc . html contains the editor user manual. The
directory contains additional SciTE html documents that discuss an array of extensions, add-
ons, and programming interfaces. These discussions are beyond the scope of this document.

The jse directory contains the MAH300 JavaScript simulator and associated operational
files. When you start the JSE . exe program, the directory jse becomes the default
directory for script files.

A 1.2.Using JSE
To execute the editor, double click on the JavaScript icon in the base directory.

0 4

J5E

JSE displays an editor window. From there, you can run the simulator (section A 1.2.2).

Al21. Editor Window

The editor displays the window shown in Figure 20, which shows the execution of a script,
user . s, which purposely includes an error to demonstrate the editor display.

Two keys control execution and error evaluation when the editor window has focus: function
key 4 (F4) and function key 5 (F5).

e 4 steps through detected errors when repeatedly pressed.
e F5 instructs the editor to execute the currently selected script.

For additional controls and features of the editor, see the Sci TE user documentation in
<base directory>/editor/SciTEDoc.html.

In Figure 20 the F5 key has been pressed to start execution of the script, and the F4 key has
been pressed to highlight the first error. Note the yellow circle at the left of the display that
highlights the currently selected statement in error. Note: SciTE includes an option to display
line numbers (see the SCiTE View menu).

I3 PEPPERL+FUCHS 75

. JavaScript Programming Guide

= user.js - ScilE

File Edit Search Miew Tools Options Language Buffers Help

DELE & B X o~ Qg

LEEEEEE T T T T T T T T T T T d T i T i i i didididsd

/4 usen.jz (currently, a copy of cr3.jz with minor madifications for experimentation) —
/¢ detoult €R3 application
/¢ zends/=ztore= and disploys decode data: uplonds and clears on request

|

/¢ pravides link to configuration opplication
FEEEEEE T EdE A ddd i i it dddd i diddddiddddididds

[this i a deliberate error to demonstrate how the tools flags it
ST i d i i i ddddddddddidddiidds

A conatants

sepHeight = 3;

r
namePrefix = "cr3-app-";
dataPrefix = namePrefix + "data-"; |

=cmd Ao JsSim user.)s

startup script: user.js

storage_readFile: read 7032 bytes

storage_readFile: read 12557 bytes

jse; failed to compile script 'user.js'

1se: include: run script failed

user.js:&: SyntaxError: missing ;) before statement:

user.js:&: this is a deliberate error to demonstrate how the tools flags it
user.gs:8: ...

li=5 co=1 INS (CR+LF)

Figure 20 — Editor Display

76 I PEPPERL+FUCHS

Al2.2. Simulator Window

Figure 21 shows both segments of the MAH300 simulator window. The upper segment,
MAH300 Simulator, simulates the display screen on the MAH300. The lower segment,
Simulated Decode, contains a data entry control into which you can type text to
simulate scanning a bar code (key in or copy and paste data and press enter). It may be
necessary to input characters that cannot be keyed in. To input these characters, use URL
encoding (% followed by the hexadecimal value of the character). For example,
<SOH>1234<EOQT> would be encoded as %011234%04. The simulated decode window can
be resized, but does not support multiple line input.

M CR3 Simul... [X]

|

Figure 21 - MAH300 Simulator Display

The standard computer keyboard mappings simulate the keypad of the MAH300 as follows:

F1 simulates the left MAH300 softkey.

F2 simulates the right MAH300 softkey.

Backspace simulates the MAH300 clear key.

Enter simulates the blue key in the MAH300 cursor pad.

The arrow, shift, and number keys simulate the corresponding MAH300 keys.
Alt+F4, or typing “q” twice, closes both segments of the MAH300 Simulator Display.
(You can also close the display by clicking the MAH300 Simulator close (“X”)
button.)

For a complete discussion of the MAH300 key pad, see the MAH300 — User Manual

I3 PEPPERL+FUCHS 77

A 2. Input Modes

The input mode determines the character set that is active for the MAH300 keypad. The
modes are described in Table 2.

Table 2 — Keypad Input Modes

inputMode characters
numeric 0123456789
caps A-Z, 0-9 and all ASCII non-alphanumeric symbols:
TS %, &\
D i S A
|<|’ |:|, |>|, '.I, l@l’ l['1 '\\" ']', 'A"
I_I' "" I{Ii I||' I}I7 ~!
lower a-z, 0-9 and all ASCII non-alphanumeric symbols
latinCaps All characters in caps plus all accented capital letters from the 1SO-8859-1

character set and the additional 1SO-8859-1 non-alphanumeric symbols

latinLowerCase

All characters in lowercase plus all accented lowercase letters from the
ISO-8859-1 character set and the additional 1SO-8859-1 non-alphanumeric
symbols

symbols

All ASCII and 1SO-8859-1 non-alphanumeric symbols

78

I3 PEPPERL+FUCHS

. JavaScript Programming Guide

A 3. Format Specifiers

The control string of the format function accepts the following codes from the standard C
library:

%d signed decimal integers

%i signed decimal integers

%e lowercase scientific notation

%E uppercase scientific notation

%f floating point decimal

%g uses %e or %f , whichever is shorter
%G uses %E or %f, whichever is shorter
%0 unsigned octal

%s character string

%u unsigned decimal integers

%x lowercase unsigned hexadecimal
%X uppercase unsigned hexadecimal
%% insert a percent sign

Flag, width, and precision modifiers are the same as in the standard C library definition.

I3 PEPPERL+FUCHS

79

Pepperl+Fuchs sets the standard in quality and innovative technology for the world of automation. Our expertise, dedica-
tion, and heritage of innovation have driven us to develop the largest and most versatile line of industrial sensor technolo-
gies and interface components in the world. With our global presence, reliable service, and flexible production facilities,
Pepperl+Fuchs delivers complete solutions for your automation requirements — wherever you need us.

Contact

Pepperl+Fuchs GmbH

LilienthalstraBBe 200

68307 Mannheim - Germany

Tel. +49 621 776-4411 - Fax +49 621 776-27-4411
E-mail: fa-info@pepperl-fuchs.com

Worldwide Headquarters
Pepperl+Fuchs GmbH - Mannheim - Germany
E-mail: fa-info@pepperl-fuchs.com

USA Headquarters
Pepperl+Fuchs Inc. - Twinsburg, OH - USA
E-mail: fa-info@us.pepperl-fuchs.com

Asia Pacific Headquarters
Pepperl+Fuchs Pte Ltd - Singapore
Company Registration No. 199003130E
E-mail: fa-info@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

Subject to reasonable modifications due to technical advances

Copyright Pepperl+Fuchs e Printed in Germany

L _

I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

TDOCT1980__ENG
01/2010

	1 Introduction
	1.1 Product Description
	1.2 Document Organization
	1.3 Document and Coding Conventions
	1.4 Related Documents
	1.5 Related Utilities

	2 Programming Environment
	2.1 JavaScript Resources
	2.2 Editor
	2.3 Simulator
	2.4 MAH300 CodeViewer Application (only MAH300)
	2.5 Security
	2.6 Debugging

	3 Programming Concepts
	3.1 Simplicity
	3.2 The MAH300 gui Object (only MAH300)
	3.2.1 Softkey Implementation
	3.2.2 Forms
	3.2.3 Menus
	3.2.4 Text

	3.3 Event Handlers
	3.3.1 Decode Event Handler
	3.3.2 Key Event Handling
	3.3.3 Command Execution

	3.4 Symbol Decoding
	3.4.1 Transform Data by Symbology
	3.4.2 Evaluate Data Format
	3.4.3 Detect Format Errors
	3.4.4 Let the barcode imager Process the Decode
	3.4.5 Ignore the Decode
	3.4.6 Determine the Orientation of the Decode

	3.5 Host Communication
	3.6 Data in barcode imager Local Storage
	3.7 Reader Configuration

	4 Class Reference
	4.1 gui (only MAH300)
	4.1.1 Methods
	4.1.1.1 alert
	4.1.1.2 confirm
	4.1.1.3 enableRefresh
	4.1.1.4 prompt
	4.1.1.5 sendKey
	4.1.1.6 sendText
	4.1.1.7 setFont
	4.1.1.8 show
	4.1.1.9 showForm
	4.1.1.10 showMenu
	4.1.1.11 showSubMenu
	4.1.1.12 splash
	4.1.1.13 translateDigitToCustom

	4.1.2 Properties
	4.1.2.1 inputMode
	4.1.2.2 key
	4.1.2.3 leftSoftkey
	4.1.2.4 rightSoftkey
	4.1.2.5 statusText

	4.1.3 Objects
	4.1.3.1 gui.Button
	4.1.3.2 gui.Edit
	4.1.3.3 gui.Form
	4.1.3.4 gui.Image
	4.1.3.5 gui.Label
	4.1.3.6 gui.Menu
	4.1.3.7 gui.MenuItem
	4.1.3.8 gui.MultiLineEdit
	4.1.3.9 gui.Separator
	4.1.3.10 gui.Softkey
	4.1.3.11 gui.Text
	4.1.3.12 gui.ToggleButton

	4.1.4 Predefined Softkey Objects
	4.1.4.1 backSoftkey
	4.1.4.2 cancelSoftkey
	4.1.4.3 okSoftkey
	4.1.4.4 selectSoftkey

	4.1.5 Form and Menu Common Methods
	4.1.5.1 append(control)
	4.1.5.2 prepend(control)
	4.1.5.3 setActiveChild(control)

	4.1.6 Form and Menu Common Properties
	4.1.6.1 caption
	4.1.6.2 onKey

	4.2 reader
	4.2.1 Methods
	4.2.1.1 beep
	4.2.1.2 defaultSettings
	4.2.1.3 processCommand
	4.2.1.4 readSetting
	4.2.1.5 runScript
	4.2.1.6 saveSettings
	4.2.1.7 setDisplayLed
	4.2.1.8 setInterval
	4.2.1.9 clearInterval
	4.2.1.10 setTimeout
	4.2.1.11 clearTimeout
	4.2.1.12 shiftJisToUnicode
	4.2.1.13 writeSetting

	4.2.2 Properties
	4.2.2.1 onBatteryLevelChange
	4.2.2.2 onCommand
	4.2.2.3 onCommandFinish
	4.2.2.4 onDecode
	4.2.2.5 onDecodeAttempt
	4.2.2.6 onIdle
	4.2.2.7 onStandby
	4.2.2.8 batteryLevel
	4.2.2.9 red
	4.2.2.10 green
	4.2.2.11 amber
	4.2.2.12 none
	4.2.2.13 cabled
	4.2.2.14 charging
	4.2.2.15 hardwareVersion
	4.2.2.16 oemId
	4.2.2.17 readerId
	4.2.2.18 softwareVersion

	4.3 storage
	4.3.1 Methods
	4.3.1.1 append
	4.3.1.2 erase
	4.3.1.3 findFirst
	4.3.1.4 findNext
	4.3.1.5 read
	4.3.1.6 size
	4.3.1.7 upload
	4.3.1.8 write

	4.3.2 Properties
	4.3.2.1 fullness_percent
	4.3.2.2 isFull

	4.4 comm
	4.4.1 Methods
	4.4.1.1 connect
	4.4.1.2 disconnect
	4.4.1.3 sendPacket
	4.4.1.4 sendText

	4.4.2 Properties
	4.4.2.1 isConnected

	4.5 Functions
	4.5.1 Dialog (only MAH300)
	4.5.1.1 alert
	4.5.1.2 confirm
	4.5.1.3 prompt

	4.5.2 Process Control
	4.5.2.1 sleep_ms

	4.5.3 Other Functions
	4.5.3.1 format
	4.5.3.2 include
	4.5.3.3 print
	4.5.3.4 setStandbyMessage

