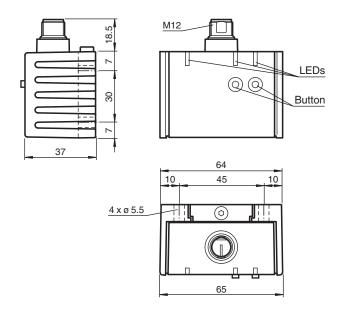


Inclination sensor

INY360D-F99-2U2E2-V17

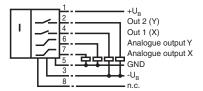

- E1-Type approval
- Measuring range 0 ... 360°
- Analog output 0 V ... 5 V
- Evaluation limits can be taught-in
- 2 programmable switch outputs
- High shock resistance
- Increased noise immunity 100 V/m

Dimensions

Technical Data

General specifications	
Туре	Inclination sensor, 2-axis
Measurement range	0 360 °
Absolute accuracy	≤±0.5 °
Response delay	≤ 25 ms
Resolution	≤0.1 °
Repeat accuracy	≤±0.1 °
Temperature influence	≤ 0.027 °/K
Functional safety related parameters	

Refer to "General Notes Relating to Pepperl+Fuchs Product Information"


Release date: 2020-04-24 Date of issue: 2020-06-03 Filename: 206771_eng.pdf

Technical Data MTTF_d 390 a 20 a Mission Time (T_M) 0 % Diagnostic Coverage (DC) Indicators/operating means Operation indicator LED, green Teach-In indicator 2 LEDs yellow (switching status), flashing Button 2 push-buttons (Switch points programming, Evaluation range programming) Switching state 2 yellow LEDs: Switching status (each output) **Electrical specifications** Operating voltage U_B 10 ... 30 V DC No-load supply current I_0 ≤ 25 mA Time delay before availability ≤ 200 ms t_{v} **Switching output** Output type 2 switch outputs PNP, NO, reverse polarity protected, short-circuit protected Operating current ≤ 100 mA Voltage drop ≤3 V **Analog output** Output type 2 voltage outputs 0 ... 5 V (one output for each axis) Load resistor ≥ 1 kΩ Compliance with standards and directives Standard conformity Shock and impact resistance 100 g according to DIN EN 60068-2-27 EN 60947-5-2:2007 IEC 60947-5-2:2007 Standards Approvals and certificates cULus Listed, Class 2 Power Source **UL** approval 10R-04 E1 Type approval **Ambient conditions** -40 ... 85 °C (-40 ... 185 °F) Ambient temperature Storage temperature -40 ... 85 °C (-40 ... 185 °F) Mechanical specifications Connection type 8-pin, M12 x 1 connector PΑ Housing material IP68 / IP69K Degree of protection 240 g Mass **Factory settings** -45 ° ... 45 ° Analog output (X) -45 ° ... 45 ° Analog output (Y) Switching output (X) -30 ° ... 30 ° Switching output (Y) -30 ° ... 30 °

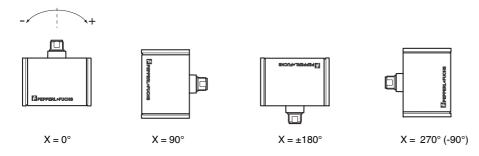
Connection

Standard symbol/Connection:

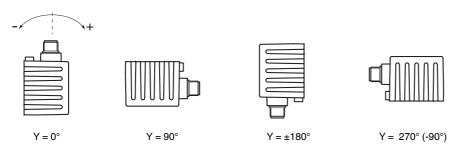
Connection Assignment

Wire colors

1	WH	(white)
2	BN	(brown)
3	GN	(green)
4	YE	(yellow
5	GY	(gray)
6	PK	(pink)
7	BU	(blue)
8	RD	(red)

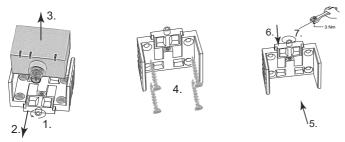

Accessories

V17-G-2M-PUR	Female cordset, M12, 8-pin, shielded, PUR cable
V17-G-5M-PUR	Female cordset, M12, 8-pin, shielded, PUR cable
V17-G-10M-PUR	Female cordset, M12, 8-pin, shielded, PUR cable
V17-G-10M-PVC-ABG	Female cordset, M12, 8-pin, shielded, PVC cable


Sensor Orientation

In the default setting the zero position of the sensor is reached, when the electrical connection faces straight upwards.

X Orientation


Y Orientation

Mounting of the sensor

Sensors from the -F99 series consist of a sensor module and accompanying cast aluminum housing. Select a vertical surface with minimum dimensions of 70 mm x 50 mm to mount the sensor.

Mount the sensor as follows:

- 1. Loosen the central screw under the sensor connection.
- 2. Slide back the clamping element until you are able to remove the sensor module from the housing.
- 3. Remove the sensor module from the housing
- 4. Position the housing at the required mounting location and secure using four countersunk screws. Make sure that the heads of the screws do not protrude.
- 5. Place the sensor module in the housing.
- 6. Slide the clamping element flush into the housing. Check that the sensor element is seated correctly.
- 7. Finally tighten the central screw.

The sensor is now mounted correctly.

Additional Information

LED display

Displays dependent on the operating state	LED	LED	LED	
	green:	yellow	yellow	
	Power	out 1	out 2	
Teach-in of switching points (X-axis):	off	flashes	off	
Teach-in of switching points (Y-axis):	off	off	flashes	
Activate teach-in mode for analog limits:	off	flashes	flashes	
Teach-in of analog limit (X-axis)	off	flashes	off	
Teach-in of analog limit (Y-axis)	off	off	flashes	
Normal operation	on	switchings	switchings	
		tate	tate	
Reset to factory settings:				
2 s 10 s	off	flashes	flashes	
> 10 s end of reset process	flashes	off	off	
Followed by normal operation				
Undervoltage	flashes	off	off	

Axis definition

The definition of the X-axis and Y-axis is shown on the sensor housing by means of imprinted and labeled double arrows.

Teach-in of switching points (X-axis)

- 1. Press key T1 > 2 s (see LED display)
- 2. Move sensor to switching position 1
- 3. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 1 has been taught
- 4. Move sensor to switching position 2
- 5. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 2 has been taught
- 6. Sensor returns to normal operation (see LED display)

The NC (active output state) is always defined in the range from the 1st configured position to 2nd configured position.

As an example:

Case #1: configure position #1 at +45degree, configure position #2 at +90

degree; NC is from +45 ' +90 in the CW direction

Case #2: configure position #1 at +90degree; configure position #2 at +45

degree; NC is from +90 ' +45 in the CW direction

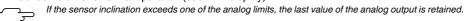
Teach-in of switching points (Y-axis)

- 1. Press key T2 > 2 s (see LED display)
- 2. Move sensor to switching position 1
- 3. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. Switching point 1 has been taught
- 4. Move sensor to switching position 2
- 5. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. Switching point 2 has been taught
- 6. Sensor returns to normal operation (see LED display)

The NC (active output state) is always defined in the range from the 1st configured position to 2nd configured position.

See also the example, above.

Teach-in of analog limits (X-axis)


- 1. Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 > 2 s (see LED display)
- 2. Press key T1 > for 2 s (see LED display)
- 3. Move the sensor into the position of minimum evaluation limit
- 4. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value.
- 5. Move the sensor into the position of maximum evaluation limit
- 6. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value.
- 7. Sensor returns to normal operation (see LED display)

If the sensor inclination exceeds one of the analog limits, the last value of the analog output is retained.

Teach-in of analog limits (Y-axis)

- 1. Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 > 2 s (see LED display)
- 2. Press key T2 > 2 s (see LED display)
- 3. Move the sensor into the position of minimum evaluation limit
- 4. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value.
- 5. Move the sensor into the position of maximum evaluation limit
- 6. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value.
- 7. Sensor returns to normal operation (see LED display)

Resetting the sensor to factory settings

- 1. Press keys T1 and T2 > 10 s (see LED display)
- 2. The sensor has been reset when the green LED "Power" lights again after approx. 10 s.

If the supply voltage falls below a value of approx. 7 V, all outputs and yellow LEDs are deactivated. The green "Power" LED flashes rapidly. If the supply voltage exceeds a value of approx. 8 V, the sensor continues with normal operation.

Technical Features

EMC Properties

Interference immunity in accordance with

DIN ISO 11452-2: 100 V/m

Frequency band 20 MHz up to 2 GHz

Mains-borne interference in accordance with ISO 7637-2:

Pulse	1	2	2	3	3	4
		а	b	а	b	
Severity	1	- 1	- 1	- 1	I	- 1
level	- 1	- 1	- 1	- 1	ı	- [
	1	- 1	- 1	- 1	ı	1
Failure criterion	С	Α	С	Α	Α	С

EN 61000-CD:8kV AD: 15 kV

4-2:

Severity IV

level

EN 61000-30 V/m (80...2500 MHz)

4-3:

Severity level EN 61000-

2 kV

4-4:

Severity level

10 V (0.01...80 MHz) EN 61000-

4-6:

Severity level

EN 55011: Klasse A