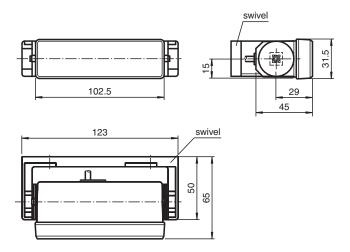
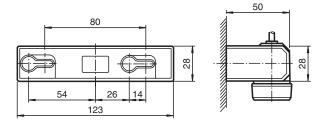


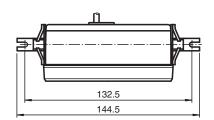
Active infrared scanner PROSCAN/38a

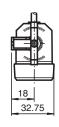
- Fan-shaped detection field with up to 12 beams
- Closing safety monitoring over the complete door width
- Adjustable detection fields for different door widths
- Automatic drift compensation

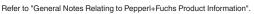

Multi-beam sensor with self-programming function for monitoring automatic doors


Function

The compact ProScan energetic light scanner operates using an integrated source of infrared light and creates a fan-shaped detection field consisting of a maximum of 12 independent light beams. Since the beam intensifies toward the center of the fan, the area around the closing edges in particular is monitored virtually seamlessly. The sensors are self-programming and automatically adapt to any environment, learn the environment, and even automatically adapt to subsequent changes. Other notable features include the high level of sensitivity, ambient light immunity and compensation of long-term drift. This function guarantees reliable long-term use, even in dirty, rainy or snowy conditions.


Dimensions




Mounting dimensions for swivel

Mounting dimensions with mounting bracket set AIR30

Technical Data

General specifications total field: 2300 mm x 80 mm left/right field: 1150 mm x 80 mm center field: 1000 mm x 80 mm ll (installation height: 2 m) Detection field Light source 12 x IRED Light type modulated infrared light Teach-in time approx. 4 s Open time 3 min/10 s, programmable Accessories provided Swivel bracket, Mounting bracket Functional safety related parameters 780 a MTTF_d 20 a Mission Time (T_M) 60 % Diagnostic Coverage (DC) Indicators/operating means Function indicator LED red: on for object detection, flashes during teaching phase Control elements Programmble switch for switching type, open time, detection field **Electrical specifications** U_B 12 ... 38 V DC / 12 ... 28 V AC Operating voltage 10 % Ripple No-load supply current 100 mA I_0 Power consumption P_0 3 VA Output Switching type Output active / inactive programmable Signal output Relay, 1 alternator 48 V DC Switching voltage Switching current 1 A at 24 V DC Response time < 50 ms 200 ms De-energized delay t_{off} Compliance with standards and directives Standard conformity Product standard EN 60947-5-2 Flammability Flame retardant in accordance with UN/ECE-R118 or ISO 14572 **Ambient conditions** Ambient temperature -20 ... 60 °C (-4 ... 140 °F) -20 ... 70 °C (-4 ... 158 °F) Storage temperature Mechanical specifications

1000 ... 2500 mm

5 m fixed cable

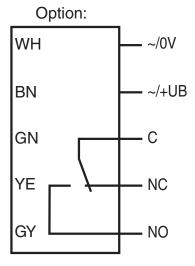
approx. 100 g

IP52

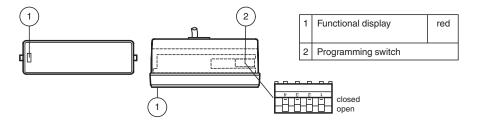
ABS

PMMA

Mounting height


Connection Material

Housing
Optical face

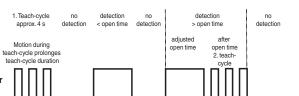

Mass

Degree of protection

Connection Assignment

Assembly

Characteristic Curve


Timing diagram Proscan

1. Teach-cycle approx. 4 s

Teach-cycle after

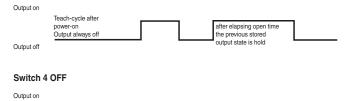
power-on Output always off

off

on

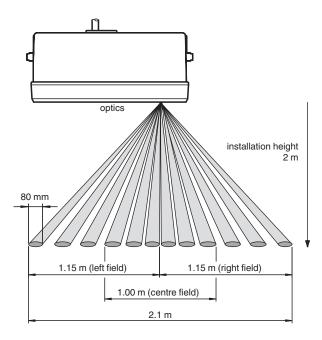
after elapsing open time

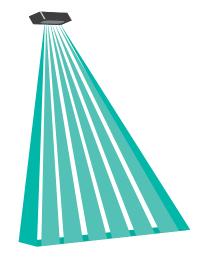
the previous stored output state is hold


Initialization, teach-cycle

flashes

Power ON UB+ ON


Indicator LED


off

Output off

Active infrared scanner PROSCAN/38a

Application

Accessories

UP-Einbaurahmen

Mounting frame for sensors in the AIR30 and PROSCAN series

Programming options

The programming switch can be accessed by carefully removing the cover with the lens assembly from the housing. A small slothead screwdriver can be used to carefully lift off the cover by the slots located on the sides of the cover.

Each switch is on when the switch position is down (ON); if the switch position is up, then the switch is switched off (OFF).

The table below shows the various programming options.

Switch	Output active during detection	Output inactive during detection	Open Time 10 seconds	Open Time PROSCAN 3 min PROSCAN-T 3 seconds
4	ON	OFF		
3			ON	OFF

Detecting field at installation height of 2000 mm						
Switch	2300 mm x 80 mm Full field	1150 mm x 80 mm Left field	1150 mm x 80 mm Right field	1000 mm x 80 mm Center field		
2	OFF	OFF	ON	ON		
1	OFF	ON	OFF	ON		

Function Principle

The ProScan is a 12-beam energetic light scanner based on the principles of active infrared. The beams, which are switched independently, enable the sensor to fan out across an extremely wide and narrow detection field in the area of the door. The clearly defined, fan-shaped detection field on the ProScan can be set manually in four areas: half fan to the right, half fan to the left, central fan and full detection field.

Immediately after being switched on for the first time, the ProScan programs the reflected pattern of the detected background as the reference signal. During this process, the ProScan automatically adapts to the relevant installation and assembly environment. Since each of the individual light beams on the ProScan independently programs its specific reception level, there is no need to manually configure complex sensitivity settings.

Once the programming phase is complete, the light reflected from each of the 12 light beams is evaluated. Each time there is a difference between the reflected value of an individual light beam and the reference signal, a switching process is initiated.

"Open Time" Function

The ProScan is a self-programming device, and automatically adjusts to changes in its environment. If the ProScan detects a stationary object that does not correspond to the programmed reference signal (for example, a suitcase), ProScan interprets this as a permanent change in the environment and initiates a new self teach-in process after a preset time (referred to as "Open Time") has elapsed. Open Time can be adjusted to meet customer application requirements.

"Suitcase" Function

After a background has been changed, the ProScan "Suitcase" function allows the reference to be adjusted back to the original background. Once a self-taught object, such as a suitcase, is removed from the detection field again, ProScan returns to the original reference. A new learning process is not required.

Compensating for long-term drifts

The ProScan is able to compensate for long-term drifts. Using this function, changes to the ground reflectance (for example, caused by rain or snow), as well as temperature fluctuations and dirt on the optical surface or ground are automatically compensated for.

Test input (optional)

Using the integrated test input, the overall function of the ProScan can be reliably checked by testing all 12 light beams simultaneously.

Application

- Closing edge protection on automatic sliding doors, for example sliding doors in shopping centers, public buildings and office buildings
- Version T with e1 approval: Closing edge protection on automatic doors on public transport vehicles, such as buses and trains
- · Threshold monitoring on revolving doors

