FACTORY AUTOMATION

OMDxxx—R2000
Ethernet communication protocol

Protocol version 1.04

I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

R2000 Ethernet communication protocol
Contents

Contents

1 Protocol basics 5
1.1 Basicdesign. 5
1.2 HTTP command protocol o e 5
1.2.1 Sendingcommands. e e 6
1.22 Queryargumentencoding L e e 6
1.23 Repliestocommands L 6
1.24 HTTPrequestandreply —lowlevelexample 7
1.25 HTTPstatus codes o 7
1.2.6 Sensorerror CodesS i e 8
1.2.7 Protocol information (get_protocol_info) it i e 8
2 Sensor parametrization using HTTP 10
2.1 Parametertypes. 10
2.1.1 Enumerationvalues (enum) e e e e e 10
2.1.2 Booleanvalues (bool) e e e 10
2.1.3 Bitfields (bitfield) o i e e e 11
2.1.4 Integervalues (int,uint) e e 11
2.1.5 Doublevalues (double) e e e e e 11
2.1.6 Stringvalues (string) o e e 11
2.1.7 IPv4 address and network mask values (IPv4) o i it e 12
2.1.8 NTP timestamp values (ntpb4) o o i i i e e e e 12
2.1.9 Binarydata (binary) L e e e 12
2.1.10 Collection of values (array) i i e e e 13
2.2 Commands for sensor parametrization 14
2.2.1 1list_parameters —listparameters L 14
2.2.2 get_parameter —readaparameter L 15
2.2.3 set_parameter —change aparameter 15
2.2.4 reset_parameter —reset a parametertoits defaultvalue oo oL 16
2.2.5 reboot_device —restartthe sensorfirmware Lo 16
2.2.6 factory_reset —resetthe sensorto factory settings L. 17
2.3 Basicsensorinformation L e e 18
2.3.1 Parameter oVerview L e e e 18
2.3.2 Device family (device_family) e 18
2.3.3 User defined strings (user_tag, user_motes)« v v v it b it e e e e 18
2.4 Sensorcapabilities e 19
241 Parameter OVervieW L e e e 19
2.4.2 Device features (feature_flags) o e e e e e 19
2.4.3 Emittertype (emitter_type) v o v i e e e e e e e 19
2.5 Ethernetconfiguration L 20
2.5.1 Parameter overview L e e 20
252 IPaddress mode (ip_mode) e e e e e 20
2.6 Measuring configuration L e 21
2.6.1 Parameter oVerview L e e e e 21

2.6.2 Mode of operation (operating mode) 21 3

2.6.3 Scanrate (scan_frequency, scan_frequency_measured) o. .. e uu i e e 21 §

2.6.4 Scandirection (scan_direction) e e 22 Py

2.6.5 Scanresolution (samples_per_SCam) v v vt e e e e e e e 22 g

2.7 HMI/Display configuration L e 23 E’

271 Parameter OVEIVIEW e e 23 é

2.7.2 HMldisplay mode (hmi_display_mode) v v v it e e e e e e e e e 24 3

2.7.3 HMI display language (hmi_language)o u i u i 24 a

2.7.4 HMIbutton lock (hmi_button_L1ock) o v e e e e e e e 24 S

2.7.5 HMI parameter lock (hmi_parameter_10ck) i i it e 24 -

2.7.6 Locator indication (Locator_indication) L e 24 .§

2

g

o

o

2 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Contents

2.8 Systemstatus L e e 25
2.8.1 Parameteroverview L L e e 25
2.8.2 System status flags (status_flags) o o v it e e e e e e 26
2.8.3 Systemload indication (load_indication) 26
3 Scan data output using TCP or UDP 27
3.1 Principles of scan data acquisition 27
3.1.1 Sensor coordinate system e 27
3.1.2 Scandata coordinate system e e 27
3.1.3 Distancereadings e e 28
3.1.4 Echoamplitudereadings e 28
3.1.5 Timestamps e e 29
3.2 Principlesof scandataoutput e e 30
3.2.1 Introduction L e e 30
3.2.2 Scandataconnectionhandles e 30
3.2.3 Scandataconnectionwatchdog 30
3.2.4 Scandata output customization L 31
3.2.5 Using multiple concurrent scan data connections L oo 33
3.3 Commands for managing scandataoutput L 34
3.3.1 request_handle_udp —request for an UDP-based scandatachannel 34
3.3.2 request_handle_tcp —request fora TCP-based scandatachannel 35
3.3.3 release_handle —release adatachannelhandle, 37
3.3.4 start_scanoutput —initiate outputofscandata Lo 37
3.3.5 stop_scanoutput —terminate outputofscandata L. 37
3.3.6 set_scanoutput_config —reconfigure scandataoutput oL, 38
3.3.7 get_scanoutput_config — read scan data output configuration. L. 39
3.3.8 feed_watchdog —feed connectionwatchdog 40
3.3.9 TCPin-linewatchdogfeeds e 40
3.4 Transmissionof scandata L e e 41
3.4.1 Basicpacketstructure e 41
3.4.2 Typical structure ofascandataheader 42
3.43 Scandataheaderstatusflags L 43
3.4.4 Scandata packettype A—distanceonly 44
3.4.5 Scan data packet type B — distance and amplitude Lo 45
3.4.6 Scan data packet type C — distance and amplitude (compact) 46
3.5 Datatransmissionusing TCP e 47
3.6 Datatransmissionusing UDP e 47
4 Filter-based scan data processing 48
4.1 |Introductionto scan datafiltering 48
4.1.1 BIOCK-WIiS€ ProCeSSING o o i e e 48
4.2 Filteralgorithms 49
4.2.1 Nofilter (pass-through) e 49
422 Averagefilter L 49
423 Medianfilter L 49
4.2.4 Maximumfilter e e e 50
425 Remissionfilter 50
4.3 Filterconfiguration e e 50
4.3.1 Parameter overview L L e e e e e 50
4.3.2 Filtertypes (filter_type) o o i i i e e e e 51
4.3.3 Filterwidth (filter_width) e e e e 51 3
4.3.4 Filter error handling (filter_error_handling) « v v v v v v v i i e 51 N
4.3.5 Maximum filter margin (filter_maximum_margin) 52 Py
4.3.6 Remission filter threshold (filter_remission_threshold) 52 g
[}
5 Lens contamination monitor (LCM) 53 g
51 LCMintroduction 53 E
5.2 LCMconfiguration e 53 §
5.2.1 Parameter overview L e e 53 <
5.2.2 LCM detection sensitivity (Lcm_detection_sensitivity) o o v o e 53 e
5.2.3 LCM detection periodic (Lcm_detection_period) o v vt v it e 54 &
5.2.4 LCM sector configuration (lcm_sector_enable) o i v v i it i 54 5
5.2.5 LCM status flags (lcm_sector_warn_flags, lcm_sector_error_flags) 54 %
o

3 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Contents

6 Working with the HMI LED display 55
6.1 Technical overview L L e 55
6.2 Displaying customtext messages e e e e e 56

6.2.1 OVEIVIEW e e 56
6.2.2 Static text messages (statictext) 56
6.2.3 Dynamic text messages (applicationtext) e 57
6.3 Displaying custom bitmaps L 57
6.3.1 OVEIVIEW e e 57
6.3.2 Statichitmaps e 58
6.3.3 Application bitmaps L e 58
6.3.4 Converting graphics forthe HMIdisplay 58

7 Switching input/output channels I/Qn 60
7.1 Introduction L L e 60
7.2 Commands for I/Q channel parametrization e 60

7.21 1list_iq_parameters —listl/Qparameters 60
7.2.2 get_iq_parameter —read al/Qparameter 60
7.2.3 set_iq_parameter —changeanl/Qparameter. o 61
7.3 Parameters for I/Q channel configuration 61
7.3.1 Electrical configuration of I/Q channels 62
7.3.2 Logicalstate of I/Qchannels 64
7.3.3 1/Q output signal for raw timestamp synchronization Lo o 64

8 Advanced topics 66

8.1 Device discovery using SSDP L 66
8.1.1 SSDPsearchrequest. e e 66
8.1.2 SSDP devicereply e 66
8.1.3 SSDP device description e e 67

A Troubleshooting the Ethernet communication 68
A.1 Checkingthe Ethernetsetup L L e 68
A.2 Debuggingusingawebbrowser 68
A.3 Debugging using Wireshark e 68

B Protocol version history 70
B.1 Protocol version 1.04 L e 70
B.2 Protocolversion 1.03 L e e 70
B.3 Protocol version 1.02 L e 70
B.4 Protocolversion 1.01 L e e e 71
B.5 Protocolversion 1.00 L e 71

C Document change history 72
C.1 Release 2024-05 (protocol version 1.04) o o i e e e e 72
C.2 Release 2020-05 (protocol version 1.04) o o o e e e e 72
C.3 Release 2019-07 (protocol version 1.04) o o 0 e e e 72
C.4 Release 2018-10 (protocol version 1.04) 73
C.5 Release 2017-11 (protocol version 1.03) 73
C.6 Release 2016-03 (protocol version 1.02) 73
C.7 Release 2015-04 (protocol version 1.01) e 74
C.8 Release 2013-08 (protocol version 1.00) e 74

Index for commands and parameters 75

References 7

Protocol version 1.04 Document release 2024-05

1 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Protocol basics

1 Protocol basics

This chapter describes the basics of the Pepperl+Fuchs scan data protocol (PFSDP).

1.1 Basic design

The communication protocol specification is based on the following basic design decisions:

» A simple command protocol using HTTP requests (and responses) is provided in order to parametrize and control the
sensor. The HTTP can be accessed using a standard web browser or by establishing temporary TCP/IP connections to
the HTTP port.

» Sensor process data (scan data) is received from the sensor using a separate TCP/IP or UDP/IP channel. A TCP
channel is recommended for every application that requires a reliable and error proof transmission of scan data. An
UDP channel is recommended for applications in need of minimum latency transmission of scan data.

Output of scan data is always conform to the following conventions:

» Data output is performed as packets with a packet size adapted to the common Ethernet frame size (TCP as well as
UDP).

+ A single packet always contains data of a single continuous scan only. Scan data output always starts with a new packet
for every (new) scan.

» For scan data output the user application can select from multiple data types with different levels of information detail.
This way a client can decide to receive only the amount of data needed for its individual application — reducing traffic.
Furthermore this provides an easy way to implement future extensions to the scan data output (e.g. adding additional
information) as well.

» The byte order for all binary data is Little Endian (least significant byte first). The DSP of the sensor and PC CPUs both
use Little Endian — thus no conversions need to take place.

» The sensor capabilities restrict the number of active (concurrent) client connections. This does not imply though that the
device can handle multiple concurrent connections with the maximum amount of (scan) data. Basically it is the users
responsibility to design his (client) system or application in a way that the sensor can handle the amount of requested
data without getting overloaded.

1.2 HTTP command protocol

The HTTP command protocol provides a simple unified way to control sensor operation for application software. HTTP
commands are used to configure sensor measurement as well as to read and change sensor parameters. Furthermore it is
used to set up (parallel) TCP or UDP data channels providing sensor scan data.

This section describes the basic HTTP command protocol and various commands available to the user. Transmission of scan
data using an additional TCP or UDP channel is explained in section 3.4.

Please note:

The R2000 provides full support for HTTP/1.1 — but does currently not support persistent connections (which is optional
according to the HTTP/1.1 standard [5]). Each HTTP response includes the "Connection: close" header to inform the
client that a subsequent HTTP request requires a separate TCP/IP connection to the sensor.

Protocol version 1.04 Document release 2024-05

5 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Protocol basics

1.2.1 Sending commands

Sending commands to the sensor is done using the Hypertext Transfer Protocol (HTTP) as defined by RFC 2616 [5]. Each
HTTP command is constructed as Uniform Resource Identifier (URI) according to RFC 3986 [7] with the following basic
structure:

<scheme>:<authority>/<path>?<query>#<fragment>
A typical HTTP request to the sensor looks like:
http://<sensor IP address>/cmd/<cmd_name>?<argumentl=value>&<argument2=value>
Thus, in terms of an URI a valid HTTP command is composed of the following parts:
« scheme is always 'http://’
« authority is represented by the IP address of the sensor (and a port number, if necessary)
« path consists of the prefix 'emd/” and the name of the requested command ('<cmd_name>’)
 query lists additional arguments for the specific command

« fragment is currently not used — anything following the hash mark will be ignored

Please note:

The order of the command arguments (within <query>) is interchangeable at will. Sole exception is the argument handle
(see section 3.3), which has to be specified always first in order to identify the client scan data connection — provided that
this is required for the requested command.

Please note:
The number of command arguments (within <query>) is limited to 100. Furthermore, the maximum length of a HTTP request
URI is limited to 16 kB. Typical user application do not exceed these limitation, though.

1.2.2 Query argument encoding

The query part of the command URI (see section 1.2.1) is used to transport additional arguments to HTTP commands (com-
pliant to RFC 3986 [7]). This section describes the composition of arguments as “key=value” pairs.

HTTP command arguments are composed using the following scheme (“key=value” pairs):
key=value[;value] [&key=value]

The key denotes an argument that receives one or more values. Multiple values for a single argument are separated by a
semicolon’;’. A single command takes multiple arguments separated by an ampersand ’&’.

Please note:

Some characters are reserved within an URI and need to be percent encoded according to the rules of RFC 3986 [7]. Most
notably, if parameter values contain URI delimiters like the question mark ’?’, equal sign ’=’ or the ampersand '&’, these
characters need to be escaped on the URI.

1.2.3 Replies to commands

After sending a command to the sensor the following replies can be received:

« HTTP status code
A HTTP command will be answered with a standard HTTP status code first. This code indicates whether the command
(i.e. URI) is known and has been received correctly. An error code is returned only if the URI is invalid or could not be
processed. Please refer to section 1.2.5 for a detailed description of HTTP status codes used by the R2000.

+ Command error code
Normally the HTTP status code is read as 'OK’. In this case the result of the command processing can be evaluated
using two return values: error_code and error_text. error_code contains a numeric result code for the command call,
while error_text provides a textual error description. Both values are returned using JSON encoding [9]. Section 1.2.6
provides a detailed description of all R2000 command error codes.

« Command reply data
The body of a command reply contains any requested payload data. This data is always transmitted using JSON encod-
ing [9]. Large amounts of data might be output using base64 encoded JSON arrays.

Protocol version 1.04 Document release 2024-05

: 2 PEPPERL+FUCHS

http://en.wikipedia.org/wiki/URI_scheme
http://json.org/
http://json.org/
http://json.org/

R2000 Ethernet communication protocol
Protocol basics

Please note:
The character encoding used for all JSON encoded command replies of the R2000 is always UTF-8 (RFC 7159 [9]).

1.2.4 HTTP request and reply — low level example
This section shows an example, how a HTTP request is transmitted to the sensor without using a web-browser. Lets assume,
that the following HTTP request shall be send:

http://<sensor IP address>/cmd/get_parameter?list=scan_frequency

This request is translated into a simple string (using HTTP/1.0 in this example):

1 |GET /cmd/get_parameter?list=scan_frequency HTTP/1.0\r\n\r\n

This string is then send as payload data of a TCP/IP packet to the sensor. The sensor then sends back a TCP/IP packet with
the HTTP reply as payload data. The HTTP reply can be parsed as simple text string with the following content:

"scan_frequency":50,\r\n
"error_code":0,\r\n

1 HTTP/1.0 200 OK\r\n

2> |Expires: -1\r\n

3 |Pragma: no-cache\r\n

4 |Content-Type: text/plain\r\n
5 |Connection: close\r\n

6 |\r\n

7 | {\r\n

8

0

"error_text":"success"\r\n

Nr\n

=
o

[
=

The most important parts of this HTTP reply are the first line containing the HTTP error code and the last few lines containing
the requested information wrapped within a single JSON-encoded [9] object denoted by a pair of curly brackets.

Please note:
It is highly recommended to use a third party HTTP library instead of a new custom implementation. Standards-compliant
HTTP client implementations are widely available for most operation systems and hardware platforms (e.g. Libwww [11] or
1ibcURL [12]).

1.2.5 HTTP status codes

The following table lists all HTTP status codes used by the device:

status code message description
200 0K request successfully received
400 Bad Request wrong URI syntax or URI too long
403 Forbidden permission denied for this URI
404 Not Found unknown command code or unknown URI
405 Method not allowed invalid method requested (currently only GET is allowed)

Examples for (invalid) queries causing a HTTP error

request status code error message
http://<ip>/cmd/nonsense 400 "unrecognized command"
http://<ip>/cmd/get_parameter&test 400 "unrecognized command"
http://<ip>/cmd/get_parameter?list 400 "parameter without value"
http://<ip>/test 404 "file not found"
http://<ip>/test/ 404 "file not found"
http://<ip>/test/file 404 "file not found"

Protocol version 1.04 Document release 2024-05

7 I3 PEPPERL+FUCHS

http://json.org/
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

R2000 Ethernet communication protocol

Protocol basics

1.2.6 Sensor error codes

The following table lists some generic error codes (error_code) returned by the device:

error code description (error_text)

0 "success"

100 "unknown argument ’%s’"

110 "unknown parameter ’%s’"

120 "invalid handle or no handle provided"

130 "required argument ’%s’ missing"

200 "invalid value ’Js’ for argument ’%s’"

210 "value ’%s’ for parameter ’Js’ out of range"

220 "write-access to read-only parameter ’%s’"

230 "insufficient memory"

240 "resource already/still in use"

333 "(internal) error while processing command ’%s’"
Please note:

The error message in error_text might slightly vary depending on the firmware version and the specific error condition of
the actual command. Do not expect to receive error messages exactly as listed above.

Examples for (invalid) commands provoking sensor error codes

command (query) code error message

/cmd/get_protocol_info?list=test 100 "Unknown argument ’list’"

/cmd/get_parameter?list=test 110 "Unknown parameter ’test’"

/cmd/start_scanoutput 120 "Invalid handle or no handle provided"
/cmd/start_scanoutput?handle=test 120 "Invalid handle or no handle provided"
/cmd/set_parameter?ip_address=777 200 "Invalid value ’777’ for argument ’ip_address’."
/cmd/set_parameter?scan_frequency=999 210 "Value ’999° for parameter ’scan_frequency’ is out of range."
/cmd/set_parameter?serial=123456 220 "Write-access to read-only parameter ’serial’”

1.2.7 Protocol information (get_protocol_info)

Ethernet protocol users should be aware that depending on the protocol version some commands might not be available or
might show different behavior. For this reason user applications should always check the protocol version using the dedicated
command get_protocol_info which returns basic version information on the communication protocol:

parameter name type description

protocol_name string Protocol name (currently always ’pfsdp’)
version_major uint Protocol major version (e.g. 1 for 'v1.02’, 3 for 'v3.10’)
version_minor uint Protocol minor version (e.g. 2 for 'v1.02’, 10 for 'v3.10’)
commands string List of all available HTTP commands

This document refers to protocol version '1.04’ which is implemented by R2000 firmware version '1.60’ and newer.

Please note:

The command get_protocol_info will return the above information on every sensor — regardless of its firmware version.
All other commands and their return values might be changed by updates to the communication protocol, though. Therefore
it is strongly recommended to check the protocol version first.

8 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

. R2000 Ethernet communication protocol

Protocol basics

Example

Query: http://<sensor IP address>/cmd/get_protocol_info

Reply: {
"protocol_name":"pfsdp",
"version_major":1,
"version_minor":4,
"commands": [
"get_protocol_info",
"list_parameters",
"get_parameter",
"set_parameter",
"reboot_device",
"factory_reset",
"reset_parameter",
"request_handle_udp",
"request_handle_tcp",
"feed_watchdog",
"set_scanoutput_config",
"get_scanoutput_config",
"start_scanoutput",
"stop_scanoutput",
"release_handle",
"get_iq_parameter",
"set_iq_parameter",
"list_iq_parameters"

1,
"error_code":0,
"error_text":"success"

}

Protocol version 1.04 Document release 2024-05

0 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2 Sensor parametrization using HTTP

2.1 Parameter types

The sensor provides access to different types of parameters. The following table gives a quick overview of the relevant types,
a more detailed description follows in separate sub-sections:

type description

enum enumeration type with a set of named values (strings)
bool boolean values (on / off)

bitfield a set of boolean flags

int signed integer values

uint unsigned integer values

double floating point values with double precision

string strings composed of UTF-8 characters

ipv4 Internet Protocol version 4 addresses or network masks
ntp64 NTP timestamp values

binary binary data

array collection of values of the same type

Independently of their type, each parameter belongs to one of the following access groups:

access description

sRO static Read-Only access (value never changes)

RO Read-Only access (value might change during operation)
RW Read-Write access (non-volatile storage)
vRW volatile Read-Write access (lost on reset)

Most sensor parameters are stored in non-volatile memory. Thus their value also persists a power-cycle of the device.

Please note:

Non-volatile storage has a limited number of write cycles only (typically > 10.000 cycles). Therefore all non-volatile parame-
ters should be written only if necessary.

2.1.1 Enumeration values (enum)

Notes on parameters using enumeration values (enum):
» An enumeration type parameter accepts a single value out of a list of predefined values.
» Each enumeration values is defined by a string ('(named’ value).
» Each enumeration value is typically (but not necessarily) unique to the specific parameter.
+ Each enum parameter can hold only a single value at a time.

* URI: Named enumeration values use non-reserved ASCII characters only and need no percent encoding [7] when
specified as argument to a command on the URI.

2.1.2 Boolean values (bool)

Notes on parameters using boolean values (bool):
» Boolean parameters are a special case of enumeration parameters.
+ Only the named values on and of£ are accepted.

» Each bool parameter can hold only a single value at a time.

10 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Sensor parametrization using HTTP
2.1.3 Bit fields (bitfield)

Notes on parameters using bit fields (bitfield):
+ Bit fields combine multiple boolean flags into an unsigned integer value.
+ Each flag occupies a single bit of the integer.
» Not every bit of the integer needs to be assigned to a flag.

« Bits might be marked as reserved. These should always be zero.

Bit field parameters are read and written using the integer representation.

2.1.4 Integer values (int, uint)

Notes on parameters using signed integer values (int) and unsigned integer value (uint):
 Unless denoted differently, the value range of integer values is limited to 32 bit.
» Leading zeros are accepted when writing a value (they will be ignored).

» Neither a hexadecimal nor an octal representation of integer values is supported.

2.1.5 Double values (double)

Notes on parameters using double precision floating point values (double):
« Adot’.’ is used as decimal mark (separating the decimal part from the fractional part of a double number).

» The floating point decimal format (xxx.yyy) should be used when accessing double parameters. The floating point
exponential format (xxx.yyy Ezzz) is not supported.

» The number of significant digits of the fractional part of a double value might be limited for some parameters. Excess
digits are rounded or discarded.

2.1.6 String values (string)

Notes on parameters using string values (string):
« Strings represent a set characters.
« All characters of the string need to be encoded in UTF-8 format [6].

» The maximum size of a string is usually limited. Please refer to the description of the specific parameter for its actual
size limitation.

» URI: For write access to a string parameter, its new value is implicitly delimited by the surrounding ’=" and '&’ within the
URI (see RFC 3986 [7]). Any additionally added delimiter (e.g. ') will be interpreted as part of the string.

» URI: Some characters are reserved within an URI and need to be percent encoded [7] (see section 1.2.2 for details).
When parsing a string-typed parameter within an UTF-8 encoded command URI the sensor performs the following steps:
1. Dissect the URl into it individual parts
2. Resolve percent encoded characters
3. Check string for a valid UTF-8 encoding

4. Process the string (UTF-8 bytes), e.g. store it into non-volatile memory

Protocol version 1.04 Document release 2024-05

1 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

When the sensor outputs a string-typed parameter in JSON format, it applies escaping for the following reserved UTF-8
characters (as required by RFC 7159 [9] section 2.5):

character code replacement
backspace U+0008 \b’

tabulator U+0009 \t’

new line U+000A \n’

form feed U+000C \f’

carriage return U+000D A\r’

double quote U+0022 A

solidus U+002F currently not replaced
backslash U+005C AN

other control characters U+0000 ...U+001F "\uXXXX’

2.1.7 IPv4 address and network mask values (IPv4)

Notes on parameters using IPv4 network addresses and subnet masks (IPv4):
» Addresses and network masks need to follow the rules of the Internet Protocol specification (RFC-791 [1])
» Addresses are denoted as string values in human-readable dotted decimal notation (i.e. 10.0.10.9)

» Subnet masks are denoted as string values in human-readable dotted decimal notation (i.e. 255.255.0.0)

2.1.8 NTP timestamp values (ntp64)

Notes on parameters using NTP timestamps (ntp64):
* NTP timestamps are part of the Network Time Protocol (NTP) as defined by RFC 1305 [2].

» NTP timestamps are represented as a 64 bit unsigned fixed-point integer number (uint64) in seconds in reference to a
specific point in time. The most significant 32 bit represent the integer part (seconds), the lower 32 bit the fractional part.

» Absolute timestamps (synchronized time) refer to the time elapsed since 1 January 1900.
* Relative timestamps (raw system time) refer to the time elapsed since power-on of the sensor.

Please refer to section 3.1.5 for more details on timestamps.

2.1.9 Binary data (binary)

Notes on parameters using binary data (binary):

» Parameters of type binary store binary data without further data-specific knowledge. Parameter values are simply
treated as a collection of bytes. The interpretation of binary data is specific to the individual parameter. See the
description of the specific parameter for details.

» For binary parameters usually only size checking is performed. The maximum size of data depends on the specific
parameter.

» Read access to a binary parameter returns its value as base64 encoded string within the JSON reply (see section 1.2.3).
The base64 encoding transforms an 8 bit data stream to a string with a particular set of 64 ASCII characters (6 bit) that
are printable and common to most character encodings (see RFC 4648 [8] for details). This encoding requires 33 %
more storage space.

» Write access to a binary parameter requires the binary data to be encoded as base64url [8] string on the URI. The
base64url encoding is very similar to the base64 encoding but uses a slightly different character set, that avoids using
reserved URI characters.

12 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Sensor parametrization using HTTP
2.1.10 Collection of values (array)

Notes on parameters using a collection of values (array):

» Parameters of type array store multiple elements of the same type. The type of the elements is specific to the individual
parameter. See the description of the specific parameter for details.

 For array parameters both the number of elements as well as the value of each element is checked. The correct number
of elements and allowed element values depend on the specific parameter.

» Read access to a array parameter returns its value as a encoded JSON array with the value for each element.

» Write access to a array parameter requires the array elements to be provided as a comma-separated list of values.

Individual access to a specific element of an array parameter is not supported.

Protocol version 1.04 Document release 2024-05

13 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.2 Commands for sensor parametrization

This section describes all commands available for manipulation of global sensor parameters.

2.2.1 list_parameters — list parameters

The command list_parameters returns a list of all available global sensor parameters.

Example

Query: http://<sensor IP address>/cmd/list_parameters

Reply: {
"parameters": [
"vendor",
"product",
"part",
"serial",
"revision_fw",
"revision_hw",
"max_connections",
"feature_flags",
"radial _range_min",
"radial _range_max",
"radial_resolution",
"angular_fov",
"angular_resolution",
"ip_mode",
"ip_address",
"subnet_mask",
"gateway",
"scan_frequency",
"scan_direction",
"samples_per_scan",
"scan_frequency_measured",
"status_flags",
"load_indication",
"device_family",
"mac_address",
"hmi_display_mode",
"hmi_language",
"hmi_button_lock",
"hmi_parameter_lock",
"ip_mode_current",
"ip_address_current",
"subnet_mask_current",
"gateway_current",
"system_time_raw",
"user_tag",
"user_notes",
"locator_indication",
1,
"error_code":0,
"error_text":"success"

}

Protocol version 1.04 Document release 2024-05

14 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.2.2 get_parameter —read a parameter

The command get_parameter reads the current value of one or more global sensor parameters:
http://<sensor IP address>/cmd/get_parameter?list=<paraml>;<param2>

Command arguments

* list — semicolon separated list of parameter names (optional)

If the argument 1ist is not specified the command will return the current value of all available parameters.

Example

Query:http://<sensor IP address>/cmd/get_parameter?list=scan_frequency;scan_frequency_measured

Reply: {
"scan_frequency":50,
"scan_frequency_measured":49.900000,
"error_code":0,
"error_text":"success"

}

2.2.3 set_parameter — change a parameter

Using the command set_parameter the value of any write-accessible global sensor parameter can be changed:

http://<sensor IP address>/cmd/set_parameter?<paraml>=<value>&<param2>=<value>

Command arguments

* <paraml> = <value> — new <value> for parameter <param1>

* <param2> = <value>— new <value> for parameter <param2>

Please note:
The command set_parameter returns an error message, if any parameter specified as command argument is unknown or a
read-only parameter. The return values error_code and error_text have appropriate values in this case (see section 1.2.6).

Example

Query: http://<sensor IP address>/cmd/set_parameter?scan_frequency=50

Reply: {
"error_code":0,
"error_text":"success"

}

15 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.2.4 reset_parameter — reset a parameter to its default value

The command reset_parameter resets one or more global sensor parameters to their factory default values:
http://<sensor IP address>/cmd/reset_parameter?list=<paraml>;<param2>

Command arguments

+ list — semicolon separated list of parameter names (optional)

Please note:

If the argument 1ist is not specified the command will load the factory default value for all parameters writeable with
set_parameter!

Please note:
This command applies to global R/W parameters accessible via the command set_parameter only. If the argument 1ist
contains an unknown or a read only parameter, an error message will be returned.

Please note:
Resetting a parameter to its default value might require a device restart in order to take effect. For example, this applies to
all Ethernet configuration parameters (see section 2.5).

Example
Query: http://<sensor IP address>/cmd/reset_para.meter?list=scan_frequency;sca.n_direction
Reply: {

"error_code":0,

"error_text":"success"

}

2.2.5 reboot_device — restart the sensor firmware

The command reboot_device triggers a soft reboot of the sensor firmware:
http://<sensor IP address>/cmd/reboot_device

Command arguments

The command accepts no additional arguments. The reboot is performed shortly after the HTTP reply has been sent.

Please note:

A reboot terminates all running scan data output. All scan data handles are invalidated and have to be renewed from scratch
after reboot (see section 3.4).

Please note:
A device reboot takes up to 60 s (depending on the sensor configuration). The reboot is completed as soon as the sensor
answers to HTTP command requests again and the system status flag Initialization (see section 2.8.2) is cleared.

Example

Query: http://<sensor IP address>/cmd/reboot_device

Reply: {
"error_code":0,
"error_text":"success"

}

16 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Sensor parametrization using HTTP
2.2.6 factory_reset — reset the sensor to factory settings

The command factory_reset performs a complete reset of all sensor settings to factory defaults and reboots the device. Its
resultis similar to a call of reset_parameter without any arguments followed by a call to reboot_device.

Command arguments

The command accepts no additional arguments. The factory reset and device reboot is performed shortly after the HTTP
reply has been sent.

Please note:

The factory reset performs a device reboot, because some changes take effect at sensor boot time only (e.g. all changes to
Ethernet configuration parameters — see section 2.5).

PFSDP compatibility note:
The command factory_reset is available on devices with PFSDP version 1.01 or newer.

Example

Query: http://<sensor IP address>/cmd/factory_reset
Reply: {
"error_code":0,

"error_text":"success"

}

Protocol version 1.04 Document release 2024-05

17 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.3 Basic sensor information

This section describes all sensor parameters which are available to the user.

2.3.1 Parameter overview

The following table lists numerous parameters (mostly read-only) which provide basic sensor information:

parameter name type description access
device_family uint Numeric unique identifier (see below) sRO
vendor string Vendor name (max. 100 chars) sRO
product string Product name (max. 100 chars) sRO
part string Part number (max. 32chars) sRO
serial string Serial number (max. 32 chars) sRO
revision_fw string Firmware revision (max. 32 chars) sRO
revision_hw string Hardware revision (max. 32 chars) sRO
user_tag string User defined name (max. 32 chars) RwW
user_notes string User notes (max. 1000 bytes) RW

These entries are comparable to generic information available on 10-Link devices. In contrast to 10-Link most strings have no
size limitation, though. Furthermore each parameter can be read individually using the command get_parameter.

2.3.2 Device family (device_family)

The parameter device_family can be used to identify compatible device families. A single device family is defined as group
of devices with identical functionality (regarding the Ethernet protocol). This identifier can be used to check if the connected
device is compatible with the client application (e.g. DTM user interface).

Currently the following values are defined for device_family:

value nhame description
0 reserved never used
1 OMDxxx-R2000 R2000 OMD UHD raw data devices with ultra-high resolution
2 OBDxxx-R2000 R2000 OBD detection devices with standard features
3 OMDxxx-R2000-HD R2000 OMD HD raw data devices with high resolution
4 reserved
5 OMDxxx-R2300 R2300 OMD multi-line scanner
6 OMDxxx-R2000-SD R2000 OMD SD raw data devices with standard resolution
7 OMDxxx-R2300 R2300 OMD single-line scanner

2.3.3 User defined strings (user_tag, user_notes)

The parameters user_tag and user_notes are strings, that can be used by the user without restriction (except for a valid
UTF-8 encoding — see definition of type string in section 2.1). The default value for user_tag is typically a short version of
the product name (parameter product) while user_notes is empty per default.

18 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.4 Sensor capabilities

2.4.1 Parameter overview

The following static read-only parameters describe the sensor capabilities:

parameter name type unit description access
feature_flags array sensor feature flags (see below) sRO
emitter_type uint type of light emitter used by the sensor (see below) sRO
radial_range_min double m min. measuring range (distance) sRO
radial_range_max double m max. measuring range (distance) sRO
radial_resolution double m mathematical resolution of distance values in scan data output sRO
angular_fov double ° max. angular field of view sRO
angular_resolution double ° mathematical resolution of angle values in scan data output sRO
scan_frequency_min double Hz min. supported scan rate (see section 2.6) sRO
scan_frequency_max double Hz max. supported scan rate (see section 2.6) sRO
sampling_rate_min uint Hz min. supported sampling rate (see section 2.6) sRO
sampling_rate_max uint Hz max. supported sampling rate (see section 2.6) sRO
max_connections uint max. number of concurrent scan data channels (connections) sRO

2.4.2 Device features (feature_flags)

The parameter feature_flags returns a JSON [9] encoded list of features available for the queried device. Currently the
following features are defined:

feature name description reference PFSDP version
ethernet Ethernet interface v1.00 or newer
input_output_ql Digital switching input/output I/Q1 Chapter 7 v1.01 or newer
input_output_q2 Digital switching input/output 1/Q2 Chapter 7 v1.01 or newer
input_output_q3 Digital switching input/output I/Q3 Chapter 7 v1.01 or newer
input_output_q4 Digital switching input/output 1/Q4 Chapter 7 v1.01 or newer

lens_contamination_monitor Sensor lens cover contamination monitor Chapter 5 v1.03 or newer

scan_data_filter Filter based processing of scan data Chapter 4 v1.03 or newer

If a feature is available, its name is listed within the feature_flags array.

2.4.3 Emitter type (emitter_type)

The parameter emitter_type can be used to determine the type of light emitter (aka transmitter) used by the specific
sensor. Currently the following emitter types are defined for R2000 devices:

type description

0 undefined / reserved
1 red laser (660 nm)
2 infrared laser (905 nm)

Protocol version 1.04 Document release 2024-05

19 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.5 Ethernet configuration

2.5.1 Parameter overview

The following parameters allow configuration changes of the Ethernet interface:

parameter type description access default
ip_mode enum IP address mode: static, dhcp, autoip RwW autoip
ip_address ipv4 static IP mode: sensor |IP address RwW 10.0.10.9
subnet_mask ipvé4 static IP mode: subnet mask RwW 255.0.0.0
gateway ipv4 static IP mode: gateway address RwW 0.0.0.0
ip_mode_current enum current IP address mode: static, dhcp, autoip RO autoip
ip_address_current ipvé4 current sensor IP address RO 169.254.x.y
subnet_mask_current ipvé4 current subnet mask RO 255.255.0.0
gateway_current ipvé4 current gateway address RO 0.0.0.0
mac_address string sensor MAC address ("000D81xxxxxx") sRO -

The read-only parameters ip_mode_current, ip_address_current, subnet_mask_current and gateway_current provide
access to the currently active IP configuration. This is especially useful when using automatic IP configuration via DHCP or
AutolP.

Please note:
Any changes to the Ethernet configuration (using set_parameter Or reset_parameter) are applied after a system reboot
only! The command reboot_device (See section 2.2.5) is available to initiate a reboot using the Ethernet protocol.

2.5.2 IP address mode (ip_mode)

The parameter ip_mode configures one of the following IP address modes:

IP mode description

static static IP configuration using ip_address, subnet_mask, gateway
autoip automatic IP configuration using "Zero Configuration Networking" [15]
dhcp automatic IP configuration using a DHCP server

Please note:

With automatic IP configuration using DHCP or AutolP the parameters ip_address_current and subnet_mask_current
might return the invalid IP address 0.0.0.0, if no valid IP address has been assigned to the sensor yet (e.g. if no DHCP
server is found).

Protocol version 1.04 Document release 2024-05

20 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.6 Measuring configuration

2.6.1 Parameter overview

The following (global) parameters are available for basic measurement configuration:

parameter name type unit description access default
operating_mode enum - mode of operation: measure, emitter_off VRW measure
scan_frequency double 1Hz scan rate (10 Hz to 50 Hz) RW 35Hz
scan_direction enum - direction of rotation: cw or ccw RwW cecw
samples_per_scan uint samples number of readings per scan RW 3600
scan_frequency_measured double 1Hz measured scan rate (current value) RO -

2.6.2 Mode of operation (operating_mode)

The parameter operating_mode controls the mode of operation of the sensor. Currently, the following modes are avail-
able:

operating mode description

measure Sensor is recording scan data
emitter_off Emitter is disabled, no scan data is recorded
transmitter_off deprecated, please use emitter_off instead

The mode measure is the normal mode of operation of the sensor and default after power-on. The mode emitter_off allows
the user to deactivate the light emitter, e.g. to avoid interference with other optical devices. A mode switch from measure to
emitter_off can only be performed, if no scan data connections are active, i.e. all handles have been released. While the
operating mode is set to emitter_off, no new scan data connection handles can be requested (see section 3.2). This state
is also signaled by the system status flag scan_output_muted (see section 2.8.2).

Please note:
The parameter operating_mode is a non-persistent parameter, i.e. it reverts to its default value after reboot, power cycle or
factory reset.

PFSDP compatibility note:

The parameter value transmitter_off has been renamed to emitter_off with PFSDP version 1.03. The old
name transmitter_off is still supported for write accesses to the parameter operating_mode, but read accesses return
the new value. It is recommended to use the new name.

Example

Query: http://<sensor IP address>/cmd/set_parameter?operating_mode=measure
Reply: {

"error_code":0,

"error_text":"success"

}

2.6.3 Scan rate (scan_frequency, scan_frequency_measured)

The parameter scan_frequency defines the number of scans recorded per second (see section 3.1 for details). This is also
called scan rate. For R2000 devices this value directly corresponds to the rotational speed of the sensor head. Valid values
range from 10 Hz to 50 Hz with steps of 1 Hz (default is 35Hz). Non-integer values are automatically rounded to integer
values.

The parameter scan_frequency_measured reads back the actual scan rate resulting from the current rotational speed of the
sensor head with a resolution of 0.1 Hz. It is a read-only parameter.

21 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

Example

Query: http://<sensor IP address>/cmd/get_parameter?list=scan_frequency;scan_frequency_measured
Reply: {

"scan_frequency":35,

"scan_frequency_measured":34.900000,

"error_code":0,

"error_text":"success"

}

2.6.4 Scan direction (scan_direction)

The parameter scan_direction defines the direction of rotation of the sensors head. User applications can choose between
clockwise rotation (cw) or counter-clockwise rotation (ccw). Please refer to sections 3.1.1 and 3.1.2 on how these settings are
related to the sensor coordinate system and the scan data output.

Example

Query: http://<sensor IP address>/cmd/set_parameter?scan_direction=ccw
Reply: {

"error_code":0,

"error_text":"success"

}

2.6.5 Scan resolution (samples_per_scan)

The parameter samples_per_scan defines the number of samples recorded within a scan (for details please refer to sec-
tion 3.1). This value implicitly also defines the scan resolution, i.e. the angular step between two subsequent measure-
ments.

R2000 devices support a number of discrete values for this parameter. Table 2.1 lists all available setting for R2000 UHD, HD
and SD devices. Requesting any other number of samples per scan results into an error message.

Please note:

The number of samples_per_scan multiplied by the scan_frequency gives the sampling rate, i.e. the number of measure-
ments per second (this is also called pulse repetition rate in laser-safety terminology).

The sensor supports sampling rates between sampling_rate_min and sampling_rate_max (See section 2.4). Thus the
number of samples_per_scan indirectly also limits the maximum value for the parameter scan_frequency (and vice versa).
Therefore table 2.1 denotes the maximum scan rate as well.

PFSDP compatibility note:
The values 1680, 2100 and 2800 for samples_per_scan are supported by devices with PFSDP version 1.02 or newer.

Example

Query: http://<sensor IP address>/cmd/set_parameter?samples_per_scan=3600
Reply: {

"error_code":0,
"error_text":"success"

}

22 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

samples scan scan rate sampling
per scan resolution (max) rate (max)

25200 0.014° 10Hz 252kHz
16800 0.021° 15Hz 252kHz

12600 0.029° 20Hz 252kHz samples scan scanrate sampling
10080 0.036° 25Hz 252 kHz per scan resolution (max) rate (max) samples scan scan rate sampling
8400 0.043° 30Hz 252kHz 8400 0.043° 10Hz 84kHz perscan resolution (max) rate (max)
7200 0.050° 35Hz 252kHz 7200 0.050° 11 Hz 80kHz 7200 0.050° 10Hz 72kHz
6300 0.057° 40Hz 252kHz 6300 0.057° 13Hz 82kHz 6300 0.057° 11Hz 70kHz
5600 0.064° 45Hz 252kHz 5600 0.064° 15Hz 84 kHz 5600 0.064° 12Hz 68 kHz
5040 0.071° 50Hz 252kHz 5040 0.071° 16 Hz 81kHz 5040 0.071° 14Hz 71kHz
4200 0.086° 50Hz 210kHz 4200 0.086° 20 Hz 84 kHz 4200 0.086° 17Hz 72kHz
3600 0.100° 50Hz 180 kHz 3600 0.100° 23Hz 83 kHz 3600 0.100° 20Hz 72kHz
3150 0.114° 50Hz 158 kHz 3150 0.114° 26 Hz 82kHz 3150 0.114° 22Hz 70kHz
2800 0.129° 50Hz 140kHz 2800 0.129° 30Hz 84 kHz 2800 0.129° 25Hz 70kHz
2520 0.143° 50Hz 126 kHz 2520 0.143° 33Hz 84 kHz 2520 0.143° 28 Hz 71kHz
2400 0.150° 50Hz 120 kHz 2400 0.150° 35Hz 84 kHz 2400 0.150° 30Hz 72kHz
2100 0.171° 50Hz 105kHz 2100 0.171° 40Hz 84 kHz 2100 0.171° 30Hz 63 kHz
1800 0.200° 50Hz 90kHz 1800 0.200° 46 Hz 83 kHz 1800 0.200° 30Hz 54 kHz
1680 0.214° 50Hz 84 kHz 1680 0.214° 50Hz 84 kHz 1680 0.214° 30Hz 50kHz
1440 0.250° 50Hz 72kHz 1440 0.250° 50Hz 72kHz 1440 0.250° 30Hz 43 kHz
1200 0.300° 50Hz 60 kHz 1200 0.300° 50Hz 60 kHz 1200 0.300° 30Hz 36 kHz
900 0.400° 50 Hz 45kHz 900 0.400° 50 Hz 45kHz 900 0.400° 30Hz 27 kHz
800 0.450° 50Hz 40kHz 800 0.450° 50Hz 40kHz 800 0.450° 30Hz 24 kHz
720 0.500° 50Hz 36 kHz 720 0.500° 50Hz 36 kHz 720 0.500° 30Hz 22kHz
600 0.600° 50 Hz 30kHz 600 0.600° 50 Hz 30kHz 600 0.600° 30Hz 18kHz
480 0.750° 50Hz 24 kHz 480 0.750° 50Hz 24 kHz 480 0.750° 30Hz 14 kHz
450 0.800° 50Hz 23kHz 450 0.800° 50Hz 23 kHz 450 0.800° 30Hz 14kHz
400 0.900° 50 Hz 20 kHz 400 0.900° 50 Hz 20kHz 400 0.900° 30Hz 12kHz
360 1.000° 50Hz 18kHz 360 1.000° 50Hz 18kHz 360 1.000° 30Hz 11kHz
240 1.500° 50Hz 12kHz 240 1.500° 50Hz 12kHz 240 1.500° 30Hz 7kHz
180 2.000° 50Hz 9kHz 180 2.000° 50Hz 9kHz 180 2.000° 30Hz 5kHz
144 2.500° 50Hz 7 kHz 144 2.500° 50Hz 8kHz 144 2.500° 30Hz 4kHz
120 3.000° 50Hz 6kHz 120 3.000° 50Hz 6kHz 120 3.000° 30Hz 4kHz
90 4.000° 50 Hz 5kHz 90 4.000° 50 Hz 5kHz 90 4.000° 30Hz 3kHz
72 5.000° 50Hz 4kHz 72 5.000° 50Hz 4KkHz 72 5.000° 30Hz 2kHz
(a) R2000 UHD devices (b) R2000 HD devices (c) R2000 SD devices

Table 2.1: List of valid values for parameter samples_per_scan

2.7 HMI / Display configuration

2.7.1 Parameter overview

This section lists all (global) parameters that are available to configure the sensors human machine interface (HMI) consisting
of the heads LED display and two push-buttons.

parameter name type description access default
hmi_display_mode enum normal operation display mode RW static_logo
hmi_language enum display language: english, german RwW english
hmi_button_lock bool lock HMI buttons: on / of £ RwW off
hmi_parameter_lock bool set HMI to read-only: on / off RW off
locator_indication bool LED locator indication: on / off vRW off

display mode parameters (see chapter 6)

hmi_static_logo binary bitmap image for mode static_logo RwW P+F logo
hmi_static_text_1 string textline 1 for mode static_text (max. 30chars) RwW "Pepperl+Fuchs"
hmi_static_text_2 string textline 2 for mode static_text (max. 30chars) RW "R2000"
hmi_application_bitmap binary bitmap image for mode application_bitmap vRW <empty>

hmi_application_text_1 string textline 1 for application_text (max. 30 chars) vRW <empty>
hmi_application_text_2 string textline 2 for application_text (max. 30 chars) vRW <empty>

The display mode parameters allow client application to directly access the HMI LED display. Please refer to chapter 6 for a
detailed description on using these functionalities.

Protocol version 1.04 Document release 2024-05

23 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.7.2 HMI display mode (hmi_display_mode)

The parameter hmi_display_mode controls the content of the HMI LED display during normal operation, i.e. while neither
warnings nor errors are displayed and the user did not activate the HMI menu. Depending on the device family, the following
display modes are available:

Display mode Device family Description

off all Display is blank.
static_logo all Show a static logo.
static_text all Show two lines of static text.

bargraph_distance =~ OMDxxx-R2000 Show visualization of measured distances.
bargraph_echo OMDxxx-R2000 Show visualization of measured echo values.
bargraph_reflector ~OMDxxx-R2000 Show visualization of high echo targets.
application_bitmap OMDxxx-R2000 Show an application-provided bitmap.
application_text OMDxxx-R2000 Show two lines of application-provided text.

The setting of hmi_display_mode is stored into non-volatile memory, i.e. it is preserved during a power cycle.

2.7.3 HMI display language (hmi_language)

The parameter hmi_language controls the language of text messages (menu, warnings, errors) shown by the HMI LED
display. Currently the setting english and german are available. The current setting is stored into non-volatile memory, i.e. it
is preserved during a power cycle.

2.7.4 HMI button lock (hmi_button_lock)

The boolean parameter hmi_button_lock allows to disable the HMI buttons on the sensors front. If set to on any push of a but-
ton is ignored. This enables client applications to deny users access to the HMI menu of the sensor.

Please note:
Locking the buttons also prevents access to read-only information like the current Ethernet configuration. If this is not
intended consider using the parameter hmi_parameter_lock instead.

2.7.5 HMI parameter lock (hmi_parameter_lock)

Protocol version 1.01 adds the boolean parameter hmi_parameter_lock which allows to disable parameter changes via the
HMI display menu of the sensor. This enables client applications to prevent users from changing sensor parameters while
retaining the possibility to determine current settings for parameters available from the HMI menu (e.g. current Ethernet
configuration).

2.7.6 Locator indication (locator_indication)

The parameter locator_indication temporarily activates a distinctive flashing pattern for the Power and Q2 LEDs. This
function can be used to identify a specific R2000 device if multiple devices are installed.

Please note:
The locator indication function is non-persistent, i.e. it is automatically disabled after reboot, power cycle or factory reset.

24 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.8 System status

2.8.1 Parameter overview

The following (read only) parameters can be accessed to get status information from the sensor.

parameter name type unit description access

status information

status_flags bitfield - sensor status flags (see section 2.8.2) RO
load_indication uint % current system load (0 % to 100 %) RO

time information

system_time_raw ntp64 - raw system time (see section 3.1.5) RO
up_time uint min time since power-on RO
power_cycles uint - number of power cycles RO
operation_time uint min overall operating time RO
operation_time_scaled uint min overall operating time scaled by temperature RO

operating conditions

temperature_current int °C current operating temperature RO
temperature_min int °C minimum lifetime operating temperature RO
(power-up update delay 15min)
temperature_max int °C maximum lifetime operating temperature RO
(power-up update delay 15min)
Example

Query: http://<sensor IP address>/cmd/get_parameter?list=up_time;power_cycles

Reply: {
"up_time":44,
"power_cycles":22,
"error_code":0,
"error_text":"success"

}

Protocol version 1.04 Document release 2024-05

25 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Sensor parametrization using HTTP

2.8.2 System status flags (status_flags)

The read-only parameter status_flags (see section 2.8) provides an array of system status flags:

bit flag name description

Generic

0 initialization System is initializing, valid scan data not available yet

2 scan_output_muted Scan data output is muted by current system configuration (see section 2.6.2)
3 unstable_rotation Measured scan rate does not match set value

Warnings

8 device_warning Accumulative flag — set if device displays any warning

9 lens_contamination_warning LCM warning threshold triggered for at least one sector (see chapter 5)
10 low_temperature_warning Current internal temperature below warning threshold

11 high_temperature_warning Current internal temperature above warning threshold

12 device_overload Overload warning — sensor CPU overload is imminent

Errors

16 device_error Accumulative flag — set if device displays any error

17 lens_contamination_error LCM error threshold triggered for at least one sector (see chapter 5)

18 low_temperature_error Current internal temperature below error threshold

19 high_temperature_error Current internal temperature above error threshold

20 device_overload Overload error — sensor CPU is in overload state

Defects

30 device_defect Accumulative flag — set if device detected an unrecoverable defect

System status flags are similar to scan data header status flags (see section 3.4.3) but provide up-to-date information on the
current device status (not associated to specific scan data).

Please note:
All flags not listed in the above table are reserved and should be ignored.

2.8.3 System load indication (load_indication)

The status variable load_indication gives a rough indication of the current CPU load of the sensor:

* 0% — System is idle
The system is idle, if the HMI Display is disabled (hmi_display_mode == off) and there is no active scan data output
running (neither TCP nor UDP).

* 100 % - System is overloaded
The system may go into overload if too many clients are requesting scan data via active TCP/UDP connections. In
this case nominal operation of the R2000 cannot be guaranteed! Please reduce system load by disabling HMI display,
reducing number of TCP/UDP connections or reducing scan resolution.

Protocol version 1.04 Document release 2024-05

26 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3 Scan data output using TCP or UDP

3.1 Principles of scan data acquisition

The R2000 is a laser scanner designed to periodically measure distances within a full 360° field of view while rotating with a
constant rate as defined by the parameter scan_frequency (see section 2.6). The measurements are aggregated into scans.
A single scan corresponds to one revolution of the sensor head, and yields a sequence of scan points (also called samples).
The number of scan points within a scan is defined by the parameter samples_per_scan (see section 2.6).

Each scan point is comprised of a distance value for a corresponding angle as well as an echo amplitude. However, since
measurements are performed with a uniform angular resolution (depending on the parameter samples_per_scan), the actual
scan data output typically just gives distance and amplitude data for each sample. The corresponding angular reading can
be reconstructed by adding up the angular increments from the starting angle of the scan. The output format of scan data
depends on the scan data packet type used — please refer to section 3.4 for further details.

The following subsections describe various basic concepts of the scan data representation used by the R2000.

3.1.1 Sensor coordinate system

The sensor coordinate system is defined as right-handed Cartesian coordinate system. Figure 3.1 shows this coordinate
system for the top view and one side view of the sensor: The origin is located at the point of intersection of the axis of rotation
and the axis of the laser beam. The X-axis points to the sensor front (with status LEDs). The Y-axis is located perpendicular
to the X-axis and parallel to the base-plate of the sensor (pointing upwards in fig. 3.1a). The Z-axis is collinear to the axis of
rotation (pointing upwards in fig. 3.1Db).

(a) R2000 top view (b) R2000 side view

Figure 3.1: Sensor coordinate system

3.1.2 Scan data coordinate system

The plane formed by the X-axis and the Y-axis of the sensor coordinate system is called scan plane. All measurements of
the laser scanner are recorded within this plane. Scan data acquisition is performed sequentially in the direction of head
rotation around the origin of the scan plane. Therefore scan data is typically represented within a polar coordinate system

27 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

(see fig. 3.2a). The pole of the coordinate system is defined by the axis of rotation (Z-axis of the sensor coordinate system).
The reference for angle measurements (polar axis) is equivalent to the X-axis of the sensor coordinate system (pointing
upwards in fig. 3.2a).

During nominal operation scan points are continuously recorded using a uniform angular increment and direction of rota-
tion. Both, angular increment and direction of rotation, can be configured by global device parameters (see section 2.6).
By default the laser scanner rotates in mathematically positive direction. This direction is called counter-clockwise (abbre-
viated ccw) — the angular increment between two subsequent scan points has a positive value. The opposite direction is
accordingly called clockwise (abbreviated cw) — the angular increment between two subsequent scan points has a negative
value.

0° 0°
A '
+30° Polar axis -30° +30° Polar axis .30°
/
measurement angular
/\‘Tcrement
60° -60°
-
+90° -90° +90° — .00°
measurement Pole (sensor)
istance
~
-120° -120°
/ \
+150° -150° +150° } -150°
-180° -180°
(a) Polar coordinates of laser scan (b) Single scan point coordinates

Figure 3.2: Scan data coordinate system

Figure 3.2b shows a (simplified) example of a laser scan with a small number of samples. The measurement angle of a single
scan point (angular coordinate) is calculated within the scan plane with reference to the polar axis. The measurement distance
(radial coordinate) is determined by the distance from the center of rotation (pole) to the object hit by the laser beam. Angular
coordinates within the 360° field of view are specified with a value range of [—180°;+180°[including —180° but excluding
+180°.

3.1.3 Distance readings

Distance readings are typically output as integer value as defined by the scan data packet type (see section 3.4). In case
of invalid measurements (e.g. no echo detected or distance out of range) the distance reading is set to an error substitu-
tion value: the biggest representable integer value for a distance value (e.g. OxFFFFFFFF for an uint32 typed distance
value).

Please note:

The measurement resolution and measurement range are limited by the physical capabilities of the sensor as listed
in the sensor data-sheet. This information is also available by means of the read-only variables radial_resolution,
radial_range_min and radial_range_max (See section 2.4).

3.1.4 Echo amplitude readings

For each measurement of the sensor optional amplitude data is available to the client. R2000 amplitude data is output as
dimensionless linear value with a fixed resolution of 12 bit.

On principle, amplitude data can deliver an estimate of the relative reflectivity of an object only. Measured amplitude depends
on the surface properties of the target object (its absolute reflectivity), its distance to the sensor, the angle of incidence of
the sensors laser beam on the target surface, etc. — therefore a direct comparison of amplitude data is only viable for object
surfaces under similar observation conditions.

28 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

Please note:
Please note that amplitude data is not calibrated. Thus amplitude data of different sensor devices may not be identical even
under similar observation conditions!

The least significant values of the 12 bit amplitude data are reserved for the following special values:

value name description
0 no echo receiver detected no echo
1 blinding receiver overloaded due to excessive echo amplitude
2 error unable to measure echo amplitude
3 reserved internal (should not occur during normal operation)
4 reserved internal (should not occur during normal operation)
5 reserved internal (should not occur during normal operation)
6 weak echo detected echo too weak for a valid measurement

7-31 reserved reserved for internal use

>31 amplitude measured echo amplitude value

All values in the range of 7 to 31 are reserved for internal use. The smallest amplitude value for a valid measurement is
32.

3.1.5 Timestamps

The R2000 devices record raw timestamps while scan data is being captured. They are generated by an internal system
clock that starts counting from zero at power-on. Its resolution is better than 1 ms and its drift is below 100 ppm. The
timestamps are stored in 64bit NTP timestamp format (see section 2.1.8 for details). Raw time is always incrementing without
any discontinuities or overflows.

For synchronisation with another clock source, the client application can access the raw system time via the device pa-
rameter system_time_raw (See section 2.8). When system_time_raw iS read using get_parameter the device will return
the raw system time for the point in time, when the command has been received. Please note that both sending the re-
quest for a timestamp and receiving the reply with the timestamp are affected by the non-deterministic HTTP transmission
delay.

A typical approach for synchronising the sensor system time with a client clock would be:

1. Send a get_parameter command for reading system_time_raw to the device.
Record the client time trcequest for the point in time when the command has been sent.

2. Wait for the reply for get_parameter which provides the sensor system time tfym.
Record the client time trceply for the point in time when the reply has been received.

3. Assuming a symmetric delay for the HTTP transmission of request and reply, calculate the client time ¢S, that corre-
SPONAS 10 ¢35, .
& =1C w
sync — Yrequest 2

Alternatively an electrical output signal can be used for time synchronization (see section 7.3.3).

29 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Scan data output using TCP or UDP

3.2 Principles of scan data output

3.2.1 Introduction

In order to receive scan data from the laser scanner the client application needs to establish a scan data connection to the
sensor. Basically the laser scanner supports two different types of data channels: TCP and UDP. TCP channels provide a
reliable and error proof channel for transmission of scan data at the cost of potentially unpredictable latency. In contrast, UDP
channels allow data transmission with minimum latency at the expense of potential unrecoverable data corruption or data loss.
Both TCP and UDP data channels are managed using the HTTP command interface.

For typical applications the following steps are necessary to use scan data output:
1. Set up global configuration of the scanner (see chapter 2), if necessary

. Establish a data channel to the sensor (see sections 3.3.1 and 3.3.2)

. Configure scan data output (see section 3.3.6), if necessary

Start scan data transmission (see section 3.3.4)

Receive scan data from the device (see section 3.4)

o o w N

Stop scan data transmission (see section 3.3.5)
7. Terminate the data channel to the sensor (see section 3.3.3)

Section 3.3 covers the required commands for managing scan data output in detail.

3.2.2 Scan data connection handles

The PFSDP protocol supports parallel scan data connections to multiple clients. In order to configure and control these
connections individually, each connection is identified by a unique connection handle. A handle is defined as random alpha-
numeric string of maximal 16 characters. The sensor ensures that each handle is used for only one active scan data con-
nection. Applications should not make any further assumption regarding the structure of a handle as implementation details
might change with new firmware versions (see also below).

Compatibility to handle implementation of R2000 firmware v1.0x

Connection handles have been specified as random alpha-numeric string since the first version of the Ethernet communication
protocol. Unfortunately, R2000 firmware versions prior to v1.20 implemented a rather systematic handle generation algorithm,
that caused subsequent handles to receive linear increasing signatures. With firmware v1.20 this implementation has been
updated to a more random handle generation pattern.

3.2.3 Scan data connection watchdog

By default each scan data connection (identified by a handle) features a watchdog timer. If a data channel is not used within
a defined time period the associated scan data output will be stopped, the data channel will be closed and the data channel
handle will be invalidated by the sensor. This way the device can free up precious resources for new scan data connections
that would be otherwise permanently blocked by "zombie" connections.

In order to prevent a watchdog timeout, the client needs to feed the watchdog on regular basis. This can be done with the com-
mand feed_watchdog (see section 3.3.8) or using "in-line" watchdog feeds for TCP scan data connections (see section 3.3.9).
Each call resets the watchdog timer.

The watchdog timeout period can be configured by the client application individually for each scan data connection using the
parameters watchdog and watchdogtimeout of the commands request_handle_udp (see section 3.3.1) , request_handle_tcp
(see section 3.3.2) and set_scanoutput_config (see section 3.3.6). The parameter watchdogtimeout specifies the timeout
period within the range of 1s up to 500s. The parameter watchdog enables (value on) or disables (value off) the watchdog.
Per default the watchdog is enabled with a timeout period of 60 s.

Please note:
Although the watchdog timeout period (wvatchdogtimeout) can be specified with a resolution of 1 ms, the effective internal
resolution used by current firmware versions is about 10 s. Client software should not rely on shorter reaction times.

Protocol version 1.04 Document release 2024-05

30 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

Please note:
Enabling the watchdog (watchdog) or changing the watchdog timeout period (watchdogtimeout) using the com-
mand set_scanoutput_config implicitly feeds the watchdog (i.e. the watchdog timeout is reset).

3.2.4 Scan data output customization

A client may customize some properties of how scan data is output over a scan data channel. These configuration settings are
specific to a single data connection identified by the unique connection handle. The settings can be set while initiating a new
scan data connection using request_handle_tcp (See section 3.3.2) and request_handle_udp(see section 3.3.1), or can be
changed for an existing scan data connection using set_scanoutput_config (see section 3.3.6).

Selecting a start angle

A client may define a (virtual) start angle for scan data output using the parameter start_angle (see section 3.3.6). All
scan points recorded before this start angle (in scan direction) are discarded. The first scan point (index 0) of a scan has
a angle which is equal to or behind the given start angle. The parameter start_angle does not control the angular value
at which scan points are recorded. It only defines a criterion, which scan points should be oufput for a specific scan data
connection.

The value of start_angle refers to the (polar) measurement angle of the scan data coordinate system (see section 3.1.2).
By default start_angle is set to the beginning of the sensors angular field of view at —180.0°(i.e. start_angle = —1800000)
for ccw rotation. Subsequent scan points (index (n + 1)) within the scan data stream are ordered according to the direction of
rotation of the measuring beam.

Limiting the number of scan points

The parameter max_num_points_scan allows to limit the number of scan points that are output over a scan data connection.
In contrast to the global parameter samples_per_scan, which controls how many samples per scan are recorded by the
sensor, the setting of max_num_points_scan affects the number of scan points output for a specific scan data connection
only.

If max_num_points_scan is set to a value below samples_per_scan, the client application receives less scan points than the
sensor records. In combination with the parameter start_angle this allows client application to obtain only a segment (sector)
of a scan instead of all recorded scan points. Figure 3.3 visualizes such a setup. This can be very useful to reduce data traffic
if the full field of view of the sensor is not needed.

0°
+30° *Polar axis .30°
\

start_angle
7/

+60°_ max:num_points, scan ~ -60°
+90° — [) — -90°
Pole (sensor)
-~ ~
+120° -120°
/ \
+150° | -150°
-180°

Figure 3.3: Restriction of scan output to a segment

J I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Scan data output using TCP or UDP

Please note:
Setting max_num_points_scan t0 a value above samples_per_scan will have no effect. The resulting scan output will not
contain any additional (dummy) samples.

PFSDP compatibility note:
The parameter max_num_points_scan is available on devices with PFSDP version 1.01 or newer.

Limiting the number of scans

The parameter skip_scans allows to reduce the oufput rate of scans over a scan data connection in comparison to the
recording rate of scans as defined by the global parameter scan_frequency. The setting of skip_scans affects the output of
scans for a specific scan data connection only (see section 3.3.6).

This option is useful for applications that require a high scan rate in order to reduce the motion blur effect in scans recorded
in a dynamic environment (e.g. with moving object) but do not need every scan at such a high rate.

The decimation of scan output is transparent to the receiving client. The entry scan_number in the scan data header
(see section 3.4.2) counts transmitted scans and ignores skipped scans. Therefore a client receiver handle the configura-
tion scan_frequency=50 with skip_scans=4 the same way as the configuration scan_frequency=10 with skip_scans=0. In
both cases scans are received at a rate of 10 Hz.

PFSDP compatibility note:
The parameter skip_scans is available on devices with PFSDP version 1.03 or newer.

Additional scan data packet checksum

The parameter packet_crc allows a client to activate an additional 32 bit checksum calculation for each scan data packet. The
checksum is calculated over the whole packet including the packet header, the packet payload and any padding. If enabled,
the resulting 32 bit CRC value is appended at the very end of each scan data packet (field packet_crc — see section 3.4.1).
Client application implementations should use the offset (packet_size — 4) to access this value.

An additional scan data checksum is usually only required for applications with exceptional requirements regarding data
integrity. For typical applications data integrity is already ensured by the checksums of the underlying TCP or UDP transport
layer as well as the Ethernet data link layer. Due to performance considerations it is recommended to enable the additional
scan data checksum only if it is required by the specific application.

The PFSDP packet checksum calculation can be configured by setting packet_crc to one of the following values:

value description

none Checksum calculation is disabled. The field packet_crc is not present in scan data packets.

CRC32C Checksum is calculated using the CRC-32C algorithm:
width=32 poly=0xledc6f41 init=0xffffffff refin=true refout=true xorout=0xffffffff

The checksum is calculated byte-by-byte in memory byte-order. To verify the packet checksum on the client side it is recom-
mended to use a CRC library supporting the CRC-32C algorithm in order to avoid implementation issues.

Example: The CRC-32C checksum of the buffer {0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08} should be 0x46891F81.[10]

Please note:
If packet checksum calculation is disabled the field packet_crc is not present in scan data packets (see section 3.4.1).

PFSDP compatibility note:
The parameter packet_crc is available on devices with PFSDP version 1.04 or newer.

Protocol version 1.04 Document release 2024-05

32 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Scan data output using TCP or UDP
3.2.5 Using multiple concurrent scan data connections

As pointed out before, the scan data protocol is designed to support multiple concurrent scan data connections. However, CPU
resources are limited for current R2000 devices. It depends on the measuring configuration of the sensor (see section 2.6)
how many concurrent connections can be operated without adverse effects due to system overload.

It is the responsibility of the client application software to ensure that the system load resulting from concurrent data channels
can be handled by the sensor (see section 1.1). Neither a successful request of a connection handle (see sections 3.3.1
and 3.3.2) nor a successful connection establishment guarantee that the requested amount of data can be continuously
provided by the sensor in real time. System load of the device can be monitored by reading the system status variable
load_indication — see section 2.8.

The maximum number of connections is limited to the value of max_connections (see section 2.4).

Please note:
A single client data channel can be handled by the sensor without any restrictions.

Protocol version 1.04 Document release 2024-05

33 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.3 Commands for managing scan data output

The subsequent sections describe all commands.

3.3.1 request_handle_udp — request for an UDP-based scan data channel

The command request_handle_udp is used to request a handle for an UDP-based scan data transmission from the sensor to
the client. If successful the sensor will send scan data to the client using the target IP address and UDP port specified at the
handle request. Figure 3.4 gives an overview on the communication between sensor and client when using an UDP-based
channel for scan data output.

Command arguments

The command request_handle_udp accepts the following arguments:

argument name type unit description default
address ipvéd - required: target IP address of the client -

port uint - required: target port for UDP data channel (client side) -

watchdog bool on/off optional: enable or disable connection watchdog on
watchdogtimeout uint 1ms optional: connection watchdog timeout period 60000 ms
packet_type enum - optional: scan data packet type: A, B, C, (see section 3.4) A
packet_crc enum - optional: enable additional checksum for scan data packets none
start_angle int 0.0001° optional: angle of first scan point for scan data output -1800000
max_num_points_scan uint Samples optional: limit number of points in scan data output 0 (unlimited)
skip_scans uint scans optional: reduce scan output rate to every (n+1)th scan 0 (unlimited)

The optional arguments of request_handle_udp facilitate an adequate initial configuration of the scan data output, which can
be later modified using the command set_scanoutput_config. Please refer to section 3.3.6 for a detailed description of these
optional arguments.

Command return values

* handle — unique (random) alpha-numeric string as identifier (handle) for the new UDP data channel

During a valid command call the scanner creates a new UDP channel to the client using the specified target IP address and
port number. In case of an error the returned value for handle is invalid and error_code / error_text return details regarding
the cause of the negative response (see section 1.2.6).

Please note:
The scanner will refuse a request to create a new UDP channel if the maximum number of concurrent client connections
(TCP or UDP) is exceeded (see max_connections in section 2.4.1).

Please note:

Since an UDP scan data connection is established from the sensor to the client (“incoming connection”) it is prone to be
blocked by firewall software. Please ensure that your firewall settings allow incoming UDP connections from the sensor IP
address to your client application.

Please note:
Applications should not make any assumption regarding the structure of a handle. Handles should be treated as random

alpha-numeric string of max. 16 characters.

Command example

Query: http://<sensor IP address>/cmd/request_handle_udp?address=192.168.10.20&port=54321&packet_type=C
Reply: {
"handle":"s10",

"error_code":0,
"error_text":"success"

}

Z 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

optional HTTP: parameterize sensor (set_parameter) >
HTTP: request UDP connection handle (request_handle_udp) >
HTTP: reply: connection handle
«—
[
O optional HTTP: parameterize sensor (set_parameter)
L e I e e »
©
O _ .
o HTTP: start scan data output (start_scanoutput) > 3
Q c
< UDP: send scan data using UDP to specified address / port $
e <<
Q
O H
< UDP: send scan data using UDP
HTTP: stop scan data output (stop_scanoutput) >
HTTP: release connection handle (release_handle) >
< UDP: close UDP connection

\ \

Figure 3.4: Timeline: scan data transmission using UDP

3.3.2 request_handle_tcp — request for a TCP-based scan data channel

The command request_handle_tcp is used to request a handle for a TCP-based scan data transmission from the sensor
to the client. If successful, the client is allowed to create a new TCP connection to the sensor in order to receive scan data.
Figure 3.5 gives an overview on the communication between sensor and client when using an TCP-based channel for scan
data output.

Command arguments

The command request_handle_tcp accepts the following arguments:

argument name type unit description default
address ipvé - optional: IP address of the client (see below)
port uint - optional: desired port for client connection (sensor side) (see below)
watchdog bool on/off optional: enable or disable connection watchdog on
watchdogtimeout uint 1ms optional: connection watchdog timeout period 60000 ms
packet_type enum - optional: scan data packet type: A, B, C, (see section 3.4) A
packet_crc enum - optional: enable additional checksum for scan data packets none
start_angle int 0.0001° optional: angle of first scan point for scan data output -1800000
max_num_points_scan uint samples optional: limit number of points in scan data output 0 (unlimited)
skip_scans uint scans optional: reduce scan output rate to every (n+1)th scan 0 (unlimited)

The optional arguments of request_handle_tcp facilitate an adequate initial configuration of the scan data output, which can
be later modified using the command set_scanoutput_config. Please refer to section 3.3.6 for a detailed description of these
optional arguments.

Command return values

* handle — unique (random) alpha-numeric string as identifier (handle) for the new TCP data channel

+ port — port number for the new TCP data channel

35 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

optional HTTP: parameterize sensor (set_parameter) >
HTTP: request TCP connection handle (request_handle_tcp) >
< HTTP reply: connection handle and TCP port
TCP: open TCP connection to specified port >
cC optional HTTP: parameterize sensor (set_parameter)
S| T >
e
©
kS _ o
ol HTTP: start scan data output (start_scanoutput) > 2
< 5
= < TCP: send scan data using TCP N
Q : .
O : :
< TCP: send scan data using TCP
HTTP: stop scan data output (stop_scanoutput) >
HTTP: release connection handle (release_handle) >
TCP: close TCP connection >

\4 \4

Figure 3.5: Timeline: scan data transmission using TCP

On success the sensor returns a TCP port number in port, which is now open for a client data connection. Note, that each
port accepts a single TCP connection only! If the argument address had been specified upon calling request_handle_tcp, the
scanner accepts an IP connection originating from the given IP address only (using the returned handle).

Using the argument port the client can try to reserve a specific port for its TCP connection. If this port is already in use,
request_handle_tcp returns an error. If the argument port is not specified the sensor autonomously selects an ephemeral
port within the range 32768 — 61000.

A call to request_handle_tcp might fail, e.g. if the maximum number of concurrent client connections is reached. In case
of an error the returned values for handle and port are invalid and error_code / error_text provide error details (see
section 1.2.6).

Please note:
It is recommended to use automatic port selection by the sensor instead of requesting a specific port number using the
command argument port. A fixed port might be blocked by other applications or a previous connection.

Please note:
Applications should not make any assumption regarding the structure of a handle. Handles should be treated as random
alpha-numeric string of max. 16 characters.

Please note:
The scanner will refuse a request to create a new TCP channel if the maximum number of concurrent client connections
(TCP or UDP) is exceeded (see max_connections in section 2.4.1).

Command example

Query: http://<sensor IP address>/cmd/request_handle_tcp?packet_type=A&watchdogtimeout=1000&start_angle=0
y P q PP yp g g

Reply: {
"port":39731,
"handle":"s22",
"error_code":0,
"error_text":"success"

}

3 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.3.3 release_handle — release a data channel handle

Using the command release_handle the client can release a data channel handle. Any active scan data output using this
handle will be stopped immediately. An associated UDP-based data channel is closed by the sensor itself. An associated
TCP-based data channel should be closed by the client.

Command arguments

argument name type description

handle string handle for scan data channel (max. 16 chars)
(required argument — always specified first)

Command example

Query: http://<sensor IP address>/cmd/release_handleZhandle=s22
Reply: {

"error_code":0,

"error_text":"success"

}

3.3.4 start_scanoutput — initiate output of scan data

The command start_scanoutput starts the transmission of scan data for the data channel specified by the given handle.
When started, the sensor will begin sending scan data to the client using an established UDP or TCP channel with the given
handle — see section 3.3.1 and section 3.3.2. (Re-)starting a scan data transmission also resets the counters for scan number
and scan packet number in the scan data header (see section 3.4.2). Scan data output always starts at the beginning of a
new scan (with scan number 0 and scan packet number 1).

Command arguments

argument name type description

handle string handle for scan data channel (max. 16 chars)
(required argument — always specified first)

Command example

Query: http://<sensor IP address>/cmd/start_scanoutput?handle=s22
Reply: {

"error_code":0,
"error_text":"success"

}

3.3.5 stop_scanoutput — terminate output of scan data

The command stop_scanoutput stops the transmission of scan data for the data channel specified by the given handle. Scan
data output stops immediately after the current scan data packet — not necessarily at the end of a full scan.

Please note:
TCP clients might still receive several scan data packets after sending stop_scanoutput, due to the TCP stack data queue.

Protocol version 1.04 Document release 2024-05

a7 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

Command arguments

argument name type description

handle string handle for scan data channel (max. 16 chars)
(required argument — always specified first)

Command example

Query: http://<sensor IP address>/cmd/stop_scanoutput?handle=s22
Reply: {
"error_code":0,

"error_text":"success"

}

3.3.6 set_scanoutput_config — reconfigure scan data output

Using the command set_scanoutput_config the client can parametrize scan data output separately for each active scan
data output channel. All command arguments solely apply to the oufput of scan data. Customization of (global) param-
eters referring to the recording of measurements (scan data) is done by use of the command set_parameter (see sec-
tion 2.6).

Command arguments

argument hame type unit description default
handle string - handle for scan data channel (max. 16 chars) -

(required argument — always specified first)
watchdog bool on/off optional: enable or disable connection watchdog on
watchdogtimeout uint 1ms optional: connection watchdog timeout period 60000 ms
packet_type enum - optional: scan data packet type: A, B, C, (see section 3.4) A
packet_crc enum - optional: enable additional checksum for scan data packets none
start_angle int 0.0001° optional: angle of first scan point for scan data output -1800000
max_num_points_scan uint samples optional: limit number of points in scan data output 0 (unlimited)
skip_scans uint scans optional: reduce scan output rate to every (n+1)th scan 0 (unlimited)

It is recommended (but not required) to stop sensor data output while using set_scanoutput_config. In case scan data out-
put is active, the point in time when modified configuration settings are applied to the running data stream is non-deterministic.
After the new settings are applied, scan data output is suspended until the start of an new scan (skipping scan data pack-
ets in-between). If the client application depends on a deterministic switching behavior, it should stop scan data transmis-
sion first using stop_scanoutput, change settings using set_scanoutput_config and finally restart the data stream with
start_scanoutput.

Parameter start_angle

The user can control the angle for the first scan point of a scan by means of the parameter start_angle. The range of
valid values is [-1800000; +1800000[including -1800000 (—180°) but excluding +1800000 (+180°). The specified value does
not have to match the configured angular resolution for scan data acquisition (see section 2.6) — the sensor will start scan
data output with the first scan point whose recording angle is equal to or following behind the specified angle in direction of
rotation.

Please note:

The command get_scanoutput_config (see section 3.3.7) will return the exact user specified value, while the entry “abso-
lute angle of first scan point” within the scan data packet header (see section 3.4.2) will specify the exact value of the first
scan point actually used.

38 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

Command example

Query: http://<sensor IP address>/cmd/set_scanoutput_config?handle=s22&packet_type=B&start_angle=-900000
Reply: {

"error_code":0,
"error_text":"success"

}

Parameter max_num_points_scan

This parameter allows to limit the number of samples that are output for each scan. In combination with the parame-
ter start_angle a client application can reduce scan data output to a single region of interest (sector). Please refer to
section 3.2.4 for further details.

The parameter is specified as unsigned integer (uint) and accepts any non-negative number. The value 0 is recognized as
special case for 'no limitation’, i.e. the sensor outputs always all points of scan. This is also the default value.

Parameter skip_scans

This parameter allows an application to receive only every (n+1)th recorded scan. All other scans are not transmitted to the
client thus reducing communication load significantly. Please refer to section 3.2.4 for further details.

The parameter is specified as unsigned integer (uint) and accepts any non-negative number. The default setting is to output
all scans recorded (skip_scans set to value 0).

3.3.7 get_scanoutput_config — read scan data output configuration
The command get_scanoutput_config returns the current scan data output configuration for a specified scan data output

channel (UDP or TCP).

Command arguments

argument name type description
handle string handle for scan data channel (max. 16 chars)
(required argument — always specified first)
list string semicolon separated list of parameter names (optional)

If the argument 1list is not specified the command will return the current value of all available configuration parameters
(see section 3.3.6).

Command example

Query: http://<sensor IP address>/cmd/get_scanoutput_config?handle=s22

Reply: {
"address":"0.0.0.0",
"port":39050,
"watchdog":"on",
"watchdogtimeout":60000,
"packet_type":"A",
"start_angle":-1800000,
"error_code":0,
"error_text":"success"

}

39 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.3.8 feed_watchdog — feed connection watchdog

The command feed_watchdog feeds the connection watchdog, i.e. each call of this command resets the watchdog timer.
Please refer to section 3.2.3 for a detailed description of the connection watchdog mechanism.

Command arguments

argument name type description

handle string handle for scan data channel (max. 16 chars)
(required argument — always specified first)

Command example

Query: http://<sensor IP address>/cmd/feed_watchdog?handle=s36924971
Reply: {

"error_code":0,

"error_text":"success"

}

Please note:
Enabling the watchdog (watchdog) or changing the watchdog timeout period (watchdogtimeout) using the com-
mand set_scanoutput_config (see section 3.3.6) implicitly feeds the watchdog as well.

3.3.9 TCP in-line watchdog feeds

A TCP "in-line" watchdog feed uses the backward channel of an existing TCP scan data connection (see section 3.3.2).
It allows to feed the connection watchdog without imposing an HTTP connection for every feed action as required by the
feed_watchdog command (see section 3.3.8).

Feed sequence

In order to feed the watchdog of an existing TCP scan data connection the following byte sequence needs to be send from
the client application to the sensor:

0x66 0x65 0x65 0x64 0x77 0x64 0x67 0x04

This 8-byte sequence represents the ASCII string feedwdg<eot>, which is recognized by the sensor. The sensor does not
send any confirmation whether the watchdog request has been processed. However, since the TCP connection ensures an
error free transmission this confirmation is not needed anyway.

Please note:

Due to limitations of the sensor firmware client applications should not send in-line watchdog feed requests more often than
once per second (maximum feed rate of 1 Hz).

Please note:
Enabling the watchdog (watchdog) or changing the watchdog timeout period (watchdogtimeout) using the com-
mand set_scanoutput_config (see section 3.3.6) implicitly feeds the watchdog as well.

PFSDP compatibility note:
TCP in-line watchdog feeds are available on devices with PFSDP version 1.01 or newer.

40 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4 Transmission of scan data

Scan data is always transmitted within packets. A complete scan is usually transmitted using multiple scan data packets (see
section 1.1 for basic design considerations). Each packet comprises of a generic header, a scan data specific header and the
actual scan data.

A new scan will always start with a new scan data packet, i.e. the first sample of a new scan will always appear as first sample
of a new packet. Each scan data packet is transmitted as soon as the required data is available. This streaming approach
allows a client application to start processing scan data with minimal delay — eliminating the need to wait until the full scan is
recorded and transmitted to the client completely.

Multiple scan data packet types are defined to output different sets of scan data information efficiently. These packet types
follow a standard structure — differing in the bulk scan data only. Within bulk scan data each scan point is represented by a
structure containing the favored amount of data (distance, amplitude, etc.). The following sections describe scan data packets
in detail.

3.4.1 Basic packet structure

Each data packet has the following basic structure:

type name description
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet
(low-byte: payload type, high-byte: header type)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uint16 header_size size of header in bytes (i.e. offset to payload data)

packet type specific additional header information

uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)

- payload_data packet type specific payload data
uint8[] payload_padding 0-3 bytes padding (to align the payload size to a 32bit boundary)
uint32 packet_crc optional checksum of whole packet (except this field)
(optional) Note: This field is only present if packet checksums are enabled (see section 3.2.4)
Please note:

Although the structure of the packet usually appears to be fixed, it is highly recommended that client applications always
evaluate the entries for packet size and header size since they may change due to future extensions.

The magic byte at the beginning of the packet header is designed to be used as synchronization mark within a continuous
data stream. It can be ignored if synchronization is not needed.

The starting address of payload data is always aligned to a 32bit address boundary by using padding bytes within the header
(header_padding). Additionally, the overall size of the packet is always aligned to 32bit boundary. Depending on the scan
data packet type there might be additional padding bytes (payload_padding) at the end of the packet. Currently, this is only
the case for scan data packets of type B (see section 3.4.5) containing an odd number of points.

41 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4.2 Typical structure of a scan data header

A scan data packet contains a scan data header with information on the scan and the scan data itself. The scan data header
is designed in ways that each scan data packet can be processed independent of other scan data packets belonging to the
same scan.

A typical scan data header has the following structure:

type name description
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uint16 num_points_packet number of scan points within this packet
uintl6 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 ©)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment, CW rotation: negative increment)
uint32 iq_input bit field for switching input state (see section 7.3.2)
(all bits zero for devices without switching I/Q)
uint32 iq_overload bit field for switching output overload warning (see section 7.3.2)
(all bits zero for devices without switching I/Q)
ntp64 iq_timestamp_raw raw timestamp for status of switching 1/Q (see section 3.1.5)
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scandata packet type specific scan data
uint8[] payload_padding 0-3 bytes padding (to align the payload size to a 32bit boundary)
uint32 packet_crc optional checksum of whole packet (except this field)
(optional) Note: This field is only present if packet checksums are enabled (see section 3.2.4)
Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, wWhichever is smaller for the specific scan data connection. Please refer to
section 3.2.4 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be
estimated from the timestamps of the current and subsequent scan data packets.

Please note:

Angular values specified with a resolution of 0.0001 ° are usually prone to rounding errors due to the decimal range of values.
They are part of the header for convenience only. Subsequent calculations requiring precise angular values should calculate
an exact angle for each scan point by reference to its index number, the configured angular increment and the configured
start angle of the scan:

angular_fov

CCW rotation: exact_anglescanpoint = start_anglescan + indeTscanpoint * -
num_points_scan

angular_fov

CW rotation: exact_anglescanpoint = start_anglescan — indeTscanpoint * :
num_points_scan

42 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4.3 Scan data header status flags

Scan data header status flags are similar to system status flags (see section 2.8.2) but provide status information specific
to the scan data of a scan data packet. Each scan data header contains an uint32 entry status_flags (See section 3.4.2)

comprised of the following flags:

bit flag name

description

Informational

0 scan_data_info
1 new_settings

2 invalid_data
unstable_rotation
4 skipped_packets

w

Accumulative flag — set if any informational flag (bits 1..7) is set

System settings for scan data acquisition changed during recording of this packet.
This flag is triggered by write accesses to global parameters affecting the measur-
ing configuration (see section 2.6) which can be done by any client. Changes to
connection-specific parameters (see section 3.3.6) do not trigger this flag!
Consistency of scan data is not guaranteed for this packet.

Measured scan rate did not match set value while recording this scan data packet.
Preceding scan data packets have been skipped due to connection issues,
changes to scan data acquisition settings or scan data inconsistencies.

Warnings

8 device_warning

9 lens_contamination_warning
10 low_temperature_warning

11 high_temperature_warning
12 device_overload

Accumulative flag — set if any warning flag (bits 9. .15) is set

LCM warning threshold triggered for at least one sector (see chapter 5)
Current internal temperature below warning threshold

Current internal temperature above warning threshold

Overload warning — sensor CPU overload is imminent

Errors

16 device_error

17 lens_contamination_error
18 low_temperature_error

19 high_temperature_error
20 device_overload

Accumulative flag — set if any error flag (bits 17. .23) is set

LCM error threshold triggered for at least one sector (see chapter 5)
Current internal temperature below error threshold

Current internal temperature above error threshold

Overload error — sensor CPU is in overload state

Defects

30 device_defect

Accumulative flag — set if device detected an unrecoverable defect

Please note:

All flags not listed in the above table are reserved and should be ignored.

43

I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4.4 Scan data packet type A — distance only

Scan data packets of type A have the following structure:

type name description
packet header
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet: 0x0041 (ASCII character 'A’)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uint16 num_points_packet number of scan points within this packet
uintl6 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 °)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment, CW rotation: negative increment)
uint32 iq_input bit field for switching input state (see section 7.3.2)
(all bits zero for devices without switching I/Q)
uint32 iq_overload bit field for switching output overload warning (see section 7.3.2)
(all bits zero for devices without switching I/Q)
ntp64 iq_timestamp_raw raw timestamp for status of switching I/Q (see section 3.1.5)
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scan point data
uint32 distance measured distance (in mm)
Invalid measurements return OxFFFFFFFF.
packet checksum
uint32 packet_crc optional checksum of whole packet (except this field)
(optional) Note: This field is only present if packet checksums are enabled (see section 3.2.4)
Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, wWhichever is smaller for the specific scan data connection. Please refer to

section 3.2.4 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be

estimated from the timestamps of the current and subsequent scan data packets.

44

I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4.5 Scan data packet type B — distance and amplitude

Scan data packets of type B have the following structure:

type name description
packet header
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet: 0x0042 (ASCII character 'B’)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uint16 num_points_packet number of scan points within this packet
uintl6 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 °)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment, CW rotation: negative increment)
uint32 iq_input bit field for switching input state (see section 7.3.2)
(all bits zero for devices without switching I/Q)
uint32 iq_overload bit field for switching output overload warning (see section 7.3.2)
(all bits zero for devices without switching I/Q)
ntp64 iq_timestamp_raw raw timestamp for status of switching I/Q (see section 3.1.5)
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scan point data
uint32 distance measured distance (in mm)
Invalid measurements return OxFFFFFFFF.
uint16 amplitude measured amplitude (padded 12bit value — most significant bits are zero)
Please see section 3.1.4 for a description of amplitude data values.
padding
uint8[] payload_padding 0 or 2 bytes padding (to align the payload size to a 32bit boundary)
packet checksum
uint32 packet_crc optional checksum of whole packet (except this field)
(optional) Note: This field is only present if packet checksums are enabled (see section 3.2.4)
Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, whichever is smaller for the specific scan data connection. Please refer to

section 3.2.4 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be

estimated from the timestamps of the current and subsequent scan data packets.

45

2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.4.6 Scan data packet type C — distance and amplitude (compact)

Scan data packets of type C have the following structure:

type name description
packet header
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet: 0x0043 (ASCII character 'C’)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uint16 num_points_packet number of scan points within this packet
uintl6 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 °)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment, CW rotation: negative increment)
uint32 iq_input bit field for switching input state (see section 7.3.2)
(all bits zero for devices without switching I/Q)
uint32 iq_overload bit field for switching output overload warning (see section 7.3.2)
(all bits zero for devices without switching I/Q)
ntp64 iq_timestamp_raw raw timestamp for status of switching I/Q (see section 3.1.5)
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scan point data
uint20 distance measured distance (in mm) — maximum representable value is 1 km
Invalid measurements return OxFFFFF.
uintl2 amplitude measured amplitude
Please see section 3.1.4 for a description of amplitude data values.
packet checksum
uint32 packet_crc optional checksum of whole packet (except this field)

(optional)

Note: This field is only present if packet checksums are enabled (see section 3.2.4)

Scan data packets of type C differ from type B in the binary size of the values distance and amplitude only. For type C these
values are encoded as bit fields within a uint32 type.

Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, wWhichever is smaller for the specific scan data connection. Please refer to
section 3.2.4 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be
estimated from the timestamps of the current and subsequent scan data packets.

Protocol version 1.04 Document release 2024-05

4 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Scan data output using TCP or UDP

3.5 Data transmission using TCP

The TCP/IP-based scan data output provides a reliable and error proof channel for transmitting the stream of scan data
packets. Communication partners have no control on how scan data packets are wrapped into one or more Ethernet frames
(TCP segments), though. For this reason there is no 1:1 mapping between PFSDP scan data packets and Ethernet frames
on the transport layer. A single Ethernet frame can contain (partial) data from more than one scan data packet. Furthermore,
there is no simple rule on how the client TCP stack provides received data to the client application.

Please note:

If output of scan data is slowed down due to delayed or missing TCP acknowledgements from a client, high load on the
scanner (e.g. concurrent requests from many clients) or other network congestion, the scanner may decide to skip trans-
mission of scan data packets or complete scans in order to avoid increasing latency and excessive memory usage. It will
never transmit only partial scan data packets. Additionally, skipped packets are signaled with the flag skipped_packets in
the scan data header of the next scan data packet (see section 3.4.3).

3.6 Data transmission using UDP

The UDP/IP-based scan data output provides a low latency channel for scan data transmission. Each scan data packet is
send as separate UDP message (datagram) using (at least) one Ethernet frame. In case an UDP message (scan data packet)
is lost during transmission, no error correction is provided. Corrupted scan data packets are discarded. The client application
can make use of all successfully received scan data packets though, since every scan data packet incorporates a full scan
data header which allows to process the contained scan data separately.

Please note:

The sensor uses a special real time (RT) task for UDP scan data output in order to minimize latency. This RT task is currently
available for a single UDP client connection only. Additional (parallel) UDP client connections are handled by non-RT tasks
and might show inferior time behavior.

47 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Filter-based scan data processing

4 Filter-based scan data processing

4.1 Introduction to scan data filtering

Many typical customer applications cannot take advantage of the high angular resolution of the R2000 devices due to the large
amount of data that need to be processed on the client side when running at the maximum sampling rate. The introduction of
scan data filtering adds an option for in-device pre-processing, reducing the amount of scan data output while still utilizing the
high scan resolution.

The basic idea of scan data filtering is to combine a configurable number of N adjacent scan points (input values) into a
single resulting scan point (output value) using one of various predefined algorithms. A filter algorithm calculates both a dis-
tance value and an amplitude value from the input data. The resulting scan point is placed at the center of the processing
window for both angular value and timestamp value. All operations are performed in the sensor coordinate system (see sec-
tion 3.1.1).

Please note:
Scan data filtering is applied globally, i.e. its settings affect all clients. It should be treated similar to the (global) measuring
configuration (see section 2.6).

Scan data filtering can be considered as transparent to a client application. On protocol level there is no difference between
a scan recorded with a lower resolution and a scan recorded with a high resolution and scan data filtering enabled. However,
the latter provides a potentially higher signal quality. For example an application using 3150 points/scan at 10 Hz may instead
also use a scan resolution of 25200 points/scan at 10 Hz with an 8:1 decimation filtering enabled. With both configurations,
scan data output has an effective sampling rate of 31.5 kHz.

4.1.1 Block-wise processing

Filter algorithms with block-wise processing calculate a single output value for N input values. After processing the input
values the input window is shifted by IV values, i.e. each input value is processed only once. Thus the number of points in the
resulting scan is reduced by a decimation factor of 1 : N compared to the input scan, i.e. the output scan contains only 1/N
scan points and has a N times coarser scan resolution (with a constant angular increment).

® o L X
000® 00°°° L% "%g0%0,0,
| 11 1L | . valid scanpoint high
w * * . invalid scanpoint gﬁ.gi_ﬁgled
. . ignored scanpoint
| . . | low

Above figure shows an example for the decimation process of 24 input scan points with a window size of 8 points. Each scan
point is represented by a circle with a color-encoded echo amplitude (blue: low echo, green: high echo). The filtered result
contains only 3 output scan points — on for each group of input values (8:1 decimation).

PFSDP compatibility note:
Block-wise scan data filtering requires a device with PFSDP version 1.03 or newer. Furthermore the device must support
the device feature scan_data_filter — please refer to section 2.4 for details on sensor capabilities.

Protocol version 1.04 Document release 2024-05

4 2 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Filter-based scan data processing

4.2 Filter algorithms

This section describes the available algorithms for scan data filtering, selectable by the global parameter filter_type. All
parameters are discussed in detail in section 4.3.

4.2.1 No filter (pass-through)

Per default no filtering is performed on sensor data. All recorded scan points are passed-through to the client without change.
This behavior is identical to devices that do not support scan data filtering (e.g. older firmware releases).

Y Y
090° 00® > ¢%0°® oo°

window size

Related configuration parameters: —

4.2.2 Average filter

The average filter calculates a simple arithmetic average (distance and amplitude) of all scan data points within the configured
window size (filter_width).

For block-wise processing the result is a single output scan point replacing the complete group of input scan points:

®

window size

Related configuration parameters: filter_width, filter_error_handling

4.2.3 Median filter

The median filter calculates a median value from all scan data points within the configured window size (filter_width). For
this purpose, first all scan points are (virtually) sorted by their distance value. For odd window sizes the middle scan point is
selected as output sample. For even window sizes the two middle points are selected and the output sample is calculated as
arithmetical average (for both distance and amplitude) of these points.

For block-wise processing the resulting scan point replaces the group of input scan points:

o
0%0® 00® > .00 > o

window size

Related configuration parameters: filter_width, filter_error_handling

Protocol version 1.04 Document release 2024-05

49 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Filter-based scan data processing

4.2.4 Maximum filter

The maximum filter is a more complex filter operation. It calculates the arithmetic average from a subset of scan points within
the configured filter window (filter_width). Scan points are selected by first determining the scan point with the maximum
distance within the current filter window. Then all scan points within this window are eliminated, whose distance value falls
below the maximum distance value less a threshold value (filter_maximum_margin). The remaining points are used to
calculate an arithmetic average for both distance and amplitude.

For block-wise processing the resulting scan point replaces the group of input scan points:

0000%00® > s0.0°,,0 >

window size

margin

Related configuration parameters: filter_width, filter_error_handling, filter_maximum_margin

4.2.5 Remission filter

The remission filter calculates a simple arithmetic average (distance and amplitude) from a subset of scan points within the
configured window size (filter_width). Scan points are selected by comparing their individual echo amplitude to a threshold
value (filter_remission_threshold). Only scan points with an amplitude above the threshold are used to calculate a single
average.

For block-wise processing the resulting scan point replaces the group of input scan points:

[®
0e® ® > > o
[Bl o0 . @ o
1 | remission | 1 |
threshold

window size

Related configuration parameters: filter_width, filter_error_handling, filter_remission_threshold

4.3 Filter configuration

Scan data filtering is configured globally using the commands for sensor parametrization (see section 2.2). This section gives
an overview on the available settings.

4.3.1 Parameter overview

The following (global) parameters are available for configuration of scan data filtering:

parameter name type unit description access default
filter_type enum - algorithm for filtering RW none
(see section 4.3.2 for details)
filter_width uint samples window size for filtering RW 4
(see section 4.3.3 for details)
filter_error_handling enum - strategy for filtering invalid values RW tolerant
(see section 4.3.4 for details)
filter_maximum_margin uint 1mm margin for filter type maximum RW 100 mm
(see section 4.3.5 for details)
filter_remission_threshold enum - threshold for filter type remission RW reflector_std

(see section 4.3.6 for details)

Protocol version 1.04 Document release 2024-05

50 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Filter-based scan data processing
4.3.2 Filter types (filter_type)

The parameter filter_type selects the filtering algorithm that is applied globally to all scan data recorded by the sensor.
Currently, the following algorithms are available (see section 4.2 for details):

filter type description

none Filtering disabled. Output all recorded samples (pass through).

average Calculate arithmetic average from N raw samples (see section 4.2.2).
median Calculate median from N raw samples (see section 4.2.3).

maximum Filter raw samples by distance and calculate average (see section 4.2.4).

remission Filter raw samples by remission and calculate average (see section 4.2.5).

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_type=average
Reply: {

"error_code":0,

"error_text":"success"

}

4.3.3 Filter width (filter_width)

The parameter filter_width controls the window size of the filter algorithm applied to all recorded scan data. It defines
the number of recorded samples (scan data points) that are processed to produce a (single) filtered output sample. All
filter algorithms available on R2000 devices are applied block-wise, i.e. the amount of output data is reduced by the ratio
filter_width:1.

R2000 devices currently support the following window sizes: 2, 4, 8, 16

Please note:

The filtered output scan point is always placed at the center of the filter window for both angular value and timestamp value
(see section 4.1).

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_width=4
Reply: {

"error_code":0,
"error_text":"success"

}

4.3.4 Filter error handling (filter_error_handling)

The parameter filter_error_handling specifies how the filter algorithm is handling invalid measurement values within the
group of scan data points as configured by filter_width.

parameter value description

strict Result is invalid, if any scan data point of the group is invalid.
tolerant Result is valid, if at least one scan data point of the group is valid.

The following pictures illustrate this behavior:

Protocol version 1.04 Document release 2024-05

51 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Filter-based scan data processing

o

| strict L |

window size

o
0%0? 72 > °

] tolerant L |

window size

Example

Query: http: //<sensor IP address>/cmd/set_parameter?filter_error_handling=tolerant
Reply: {
"error_code":0,

"error_text":"success"

}

4.3.5 Maximum filter margin (filter_maximum_margin)

The parameter filter_maximum_margin is evaluated by the maximum filter algorithm (see section 4.2.4). It defines the
allowed distance of a scan point to the maximum distance value within the group of scan data points. The parameter has a
resolution of 1 mm and accepts values in the range from 0 mm up to 65535 mm.

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_maximum_margin=220
Reply: {

"error_code":0,

"error_text":"success"

}

4.3.6 Remission filter threshold (filter_remission_threshold)

The parameter filter_remission_threshold controls the threshold for the remission filter algorithm (see section 4.2.5). The
parameter can be set to one of several pre-defined thresholds representing the remission of typical target surfaces. All scan
points with a remission below the configured threshold are filtered (marked as invalid). The following table lists the available
parameter values:

threshold type of target used as reference for filtering

diffuse_low Natural, non-black targets (e.g. gray surfaces)

diffuse_high Natural, bright targets (e.g. white surfaces)

reflector_min Very small reflectors or very bright natural targets (e.g. metal surfaces)
reflector_low Rather small reflectors or reflective natural surface (e.g. polished surfaces)
reflector_std All typical reflectors

reflector_high Larger reflectors

reflector_max Large reflectors

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_remission_threshold=diffuse_high
Reply: {

"error_code":0,
"error_text":"success"

}

52 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Lens contamination monitor (LCM)

5 Lens contamination monitor (LCM)

This chapter describes the capabilities and configuration of the lens contamination monitor (LCM).

PFSDP compatibility note:

feature flag 1lens_contamination_monitor (see section 2.4.1) is set.

The lens contamination monitor (LCM) is available on devices with PFSDP version 1.03 or newer, if the corresponding

5.1 LCM introduction

The LCM continuously monitors the contamination of the sensors lens
cover. The lens cover is segmented into 12 sectors — each covering a 30°
field of view. The LCM sectors are numbered in counter-clockwise orien-
tation starting with Sector 0 at —180° at the back of the sensor. Figure 5.1
illustrates the mapping of the LCM sectors.

The lens contamination monitor (LCM) evaluates the contamination of each
sector separately and compares it to a warning threshold and an error
threshold. In case of a positive test result either a warning flag or an er-
ror flag is set for the respective sector. The evaluation can be enabled or
disabled for each sector individually. Furthermore the sensitivity and re-
action time of the LCM can be configured globally. The following sections

Sector 0 Sector 11
o

Sector 1 Sector 10

120°.. - 120°

Sector 2

Sector 9

Sector 3 Sector 8

provide details on the LCM configuration.

5.2 LCM configuration

-60°

Sector 4

-30°
Sector 5

Sector 6

T e0°

Sector 7

5.2.1 Parameter overview Figure 5.1: LCM sectors

The following (global) parameters are available for configuration of the lens contamination monitor:

parameter name type unit description access default

lcm_detection_sensitivity enum - sensitivity of lens contamination detection RwW disabled
(disabled, low, medium, high)

lcm_detection_period uint 1ms reaction time of LCM to lens contamination RwW 5000 ms

lcm_sector_enable enum - array of flags to enable / disable LCM sectors RwW on (all)
(on or off)

lcm_sector_warn_flags bitfield - bit field with warning state of LCM sectors RO 0

lcm_sector_error_flags bitfield - bit field with error state of LCM sectors RO 0

5.2.2 LCM detection sensitivity (1cm_detection_sensitivity)

The parameter 1cm_detection_sensitivity controls the detection sensitivity of the lens contamination monitor:

mode description

disabled lens contamination is not detected (default)
low only severe lens contamination is detected
medium moderate lens contamination is detected
high slight lens contamination is detected

The sensitivity should be adjusted according to the environmental conditions and functional requirements of a specific appli-
cation.

Protocol version 1.04 Document release 2024-05

53 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Lens contamination monitor (LCM)

5.2.3 LCM detection periodic (1cm_detection_period)

The parameter 1cm_detection_period controls the reaction time of lens contamination monitor, i.e. how fast it detects and
signals a contamination. The reaction time is specified in milliseconds [ms]. The default value is 5000 (5s).

Please note:

A low value for 1cm_detection_period means a faster reaction to contamination but might also cause spurious contamina-
tion warnings due to temporary disturbances like floating dust.

5.2.4 LCM sector configuration (1cm_sector_enable)

The parameter 1cm_sector_enable allows to limit the lens contamination monitoring to specific sectors of the sensors 360°
field of view. Please refer to section 5.1 for a definition of LCM sectors. The sector evaluation is defined by an array of flags

(one flag per sector), which can be set to on or off. Per default all sectors are enable, i.e. the LCM operates on the whole
field of view.

Example

Disable lens contamination detector for the backside of the sensor (sectors 0-2 and 9-11):

Query: http://<sensor IP>/cmd/set_parameter?lcm_sector_enable=off,off,off,on,on,on,on,on,on,off,off,off
Reply: {

"error_code":0,

"error_text":"success"

}

5.2.5 LCM status flags (1cm_sector_warn_flags, lcm_sector_error_flags)

The read-only parameters lcm_sector_warn_flags and lcm_sector_error_flags provide detailed information on the cur-
rent lens contamination state for each LCM sector. Contamination is reported with two levels of severity — either as warn-
ing or as error. If at least on sector reports a contamination warning in lcm_sector_warn_flags, also the system status
flag lens_contamination_warning is set (see section 2.8.2). Accordingly, if at least on sector reporting a contamination error
in lcm_sector_error_flags, also the system status flag lens_contamination_error is set (see section 2.8.2).

54 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Working with the HMI LED display

6 Working with the HMI LED display

This chapter features a detailed description of the HMI LED display of the R2000 and instructions on using it for displaying
application-specific information.

6.1 Technical overview

The R2000 device family features a multi-function HMI LED display. The display is created by an array of 24 LEDs that are
mounted on one edge of the rotating sensor head, making use of the so-called Persistence of Vision (POV) characteristic of
the human eye. By rapid updates of the LED array during the rotation of the sensor head a virtual raster graphic with 24 rows
and 252 columns is created. For best readability scan rates above 35 Hz are recommended (see parameter scan_frequency
in section 2.6).

Column 0
-180°

Column 21 Column 231

Row 20 Column 42 Column 210
-120° . - 120°
Row 16
Row 12
— Row 8
-— Row 4
— Row 0 Column 63 ~__Column 189
-90° 90°
-60° 60°
Column 84 Column 168

-30° ; -30°

Column 105 010 Column 147
Column 126
(a) Rows of LED display (b) Columns of LED display

Figure 6.1: HMI display coordinate system

Figure 6.1 shows the positioning of the LED display with respect to the sensor coordinate system (as defined in section 3.1.1).
Information on the LED display is usually shown centered at 0° on the front of the sensor (column 126). The display area starts
at column 0 on the back of the sensor at —180°. The columns are arranged in mathematical positive order up to column 251
at approximately +178.6°. The transition from column 251 to column 0 on the sensors back is seamless, enabling a usable
field of view of full 360°. When rendering the display content the sensor firmware takes the sensors direction of rotation into
account. The client application does not need to consider the current value of parameter scan_direction (section 2.6) when
preparing content for the HMI LED display.

Figure 6.2 shows a two-dimensional representation of the display pixel layout (2D bitmap). This is a simplified view since the
curvature and 360° wrap-around nature of the real display are not shown. The physical display area covers approximately
48 mm in height and 170 mm in width. This results into a horizontal pixel density (resolution) of about 38 dpi and a vertical pixel
density of about 12dpi. The three times higher horizontal resolution implies that three horizontal pixels need to be combined
in order to show a single square ’pixel’ on the HMI LED display.

Application developers can utilize the LED display for showing custom text messages or custom bitmap images. The following
sections describe these use-cases in detail.

55 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Working with the HMI LED display

Single pixel Square

H :

1111111

|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIII [
0 21 42 63 84 105 126 147 168 189 210 231 251 0123456
Columns i Columns np»

N
w

-
(2]

o

Rows i

Rows 1

o

Figure 6.2: HMI display pixel layout (252 x 24 pixels)

6.2 Displaying custom text messages

Using short text messages is the easiest way of showing custom information on the R2000 HMI LED display. The sensor sup-
ports two different modes for displaying text: A mode for static text messages that are preserved even after a power-cycle and
a mode for rather volatile text messages that are updated by the client application more frequently.

6.2.1 Overview

The text display features two independent lines of text — one in the upper half of the display and one in the lower half. Text
is displayed with a fixed width font of 8 pixel height (using 8 of 24 display rows). Each text line is limited to a length of max.
30 characters and shown horizontally centered at the front of the sensor. The display supports a selection of typical special

characters (e.g. umlauts) out of the UTF-8 code range. Unsupported special characters are replaced by a question mark
character (*??).

6.2.2 Static text messages (static text)

The display mode static_text allows client applications to display up to two lines of static text on the HMI LED display. The
application text lines are stored in the parameters hmi_static_text_1 and hmi_static_text_2 within non-volatile memory,
i.e. the content is not lost during a power-cycle. The display mode is especially suited for displaying rarely updated information,
e.g. an identification string for the sensor. The parameters hmi_static_text_1 and hmi_static_text_2 are reset on request
only (e.g. when loading the factory defaults). The default content reads ’Pepperl+Fuchs’ and *R2000°.

Steps for displaying static text messages are:
1. Write text for the upper display line to hmi_static_text_1 USing set_parameter.
2. Write text for the lower display line to hmi_static_text_2 USing set_parameter.

3. Enable the static text display by setting parameter hmi_display_mode t0 static_text USiNg set_parameter.

Please note:
Since each write access to hmi_display_mode, hmi_static_text_1 and hmi_static_text_2 triggers a write access to

non-volatile memory with a limited number of write-cycles, it is strongly recommended to write these parameters only if
necessary.

Command example

Query for selecting the display mode static_text:
http://<IP address>/cmd/set_parameter?hmi_display_mode=static_text

Query for setting the displayed text to "Hello World!”:
http: //<IP address>/cmd/set_parameter?hmi_static_text_1=He110&hmi_static_text_2=Wor1d!

56 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Working with the HMI LED display

6.2.3 Dynamic text messages (application text)

The display mode application_text enables client applications to display up to two lines of custom text on the HMI LED
display. The application text lines are stored in the parameters hmi_application_text_1 and hmi_application_text_2
using volatile memory only, i.e. the content is lost during reset. Therefore, this display mode is especially suited for displaying
frequently updated information, e.g. status information of the client application processing the sensors scan data. Per default
(e.g. after power-on) hmi_application_text_1 and hmi_application_text_2 are empty.

Steps for displaying application text messages are:
1. Enable the application text display by setting parameter hmi_display_mode {0 application_text USINg set_parameter.
2. Write text for the upper display line to hmi_application_text_1 using set_parameter.

3. Write text for the lower display line to hmi_application_text_2 USing set_parameter.

Please note:

Since each write access to hmi_display_mode triggers a write access to non-volatile memory with a limited number of
write-cycles, it is strongly recommended to write it only to select the display mode. For subsequent content updates write to
hmi_application_text_1 and hmi_application_text_2 only.

Command example

Query for selecting the display mode application_text:
http://<IP address>/cmd/set_parameter?hmi_display_mode=application_text

Query for setting the displayed text to 'My status message’:
http://<IP address>/cmd/set_parameter?hmi_application_text_1=My status&hmi_application_text_2=message

6.3 Displaying custom bitmaps

Alternatively to simple text messages (as described in section 6.2) the sensor allows client application to display custom
bitmaps on the HMI LED display. This gives maximum flexibility regarding the displayed content, but requires more complex
preparations by the client firmware. Similar to the display modes for text messages the sensor provides a mode for static
bitmaps (logos) that are preserved even after a power-cycle and a mode for rather dynamic graphics that are updated by the
client application more frequently.

6.3.1 Overview

Section 6.1 did already cover various details on the technical implementation of the LED display. This section concentrates on
how display pixels are mapped into a binary frame buffer and how this data is transferred to the sensor.

28 — 1 mEmEm BEMEr)
eHeH=HEHEHE prr . % % % §°v1l52:4 567 80101112131415 1617181920 212223
Bhchshhshsh zHaH= bt
A R EEmEy ot g0~ |7|e|s|4|a|z|1lg|7|e|s|4|s|z|1IQ|7|e|s|4|s|z|1u
o ~ - — — ~ ~ ~
é _E f%’ % % % f;; f%’. s % f;; ;% § Byte 0 Byte 1 Byte 2
:8:====== NERER 51|7|6|5|4|3|2|1|J|7|6|5|4|3|2|1|J|7|6|5|4|3|2|1|J
@ o= 1BHEHaNaHaHe 5| 1=l 2] 2~ [T el s T2l (el e el [oTo) e (e e E]
0 1 2 3 4 5 249 250 251 Byte 6 5 Byte 7 B Byte 8
Columns nup
(a) Mapping of bitmap to bytes (b) Mapping of pixels to bytes

Figure 6.3: Byte mapping of HMI display pixels

Figure 6.3 shows the mapping of display pixels to a binary frame buffer. Each pixel of the LED display (see fig. 6.2) is
represented by a single bit within this frame buffer. The 6048 pixels (24 * 252 = 6048) of a complete display image map
into a frame buffer of 756 B (6048/8 = 756). The mapping starts at row 0 of column 0 in the lower left corner of the 2D
display image: Pixel (0;0) maps into byte 0 bit 7, pixel (0; 1) maps into byte 0 bit 6 and so on. The last pixel (0; 23) of the
first column maps into byte 3 bit 0. The first pixel (1;0) of the second column maps into byte 4 bit 7. This mapping scheme

57 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Working with the HMI LED display

continues column by column until the very last pixel (251;23) in the upper right corner of the 2D display image fills bit 0 of
byte 755.

Bitmap access to the HMI LED display always updates the complete display frame buffer. The necessary data is stored in
binary form within the display parameters hmi_static_logo and hmi_application_bitmap — see subsequent sections for
details. Writing to these parameters with set_parameter requires the binary content to be encoded as base64url string
for the command URI (see sections 1.2.1 and 1.2.2). Reading the parameters returns a base64 encoded string as part
of the JSON encoded (see section 1.2.3). Please refer to section 2.1 for a more detailed description of binary parameter
types.

6.3.2 Static bitmaps

The parameter hmi_static_logo allows to customize the graphic shown by the HMI display mode static_logo. The
static bitmap is stored into non-volatile memory, i.e. the content is not lost during a power-cycle. Therefore, this dis-
play mode is especially suited for displaying rarely updated information, e.g. a custom company logo. The parameter
hmi_static_logo is reset on request only (e.g. when loading the factory defaults). The default value shows a Pepperl+Fuchs
logo.

Steps for customizing the static logo are:
1. Write a custom bitmap to the parameter hmi_static_logo using the command set_parameter.

2. Display the bitmap by setting parameter hmi_display_mode to the value static_logo using set_parameter.

Please note:
Since each write access to hmi_display_mode and hmi_static_logo triggers a write access to non-volatile memory with a
limited number of write-cycles, it is strongly recommended to write these parameters only if necessary.

6.3.3 Application bitmaps

The display mode application_bitmap enables client applications to display a custom bitmap image on the HMI LED display.
The bitmap is stored in the parameter hmi_application_bitmap using volatile memory only, i.e. the content is lost during
reset. Therefore, this display mode is especially suited for displaying frequently updated information, e.g. status graphics
of the client application processing the sensors scan data. Per default (e.g. after power-on) hmi_application_bitmap is
empty.

Steps for displaying an application bitmap are:
1. Write an application bitmap to the parameter hmi_application_bitmap using the command set_parameter.

2. Display the application bitmap by setting parameter hmi_display_mode to the value application_bitmap using the
command set_parameter.

Please note:
Since each write access to hmi_display_mode triggers a write access to non-volatile memory with a limited number of

write-cycles, it is strongly recommended to write it only to select the display mode. For subsequent content updates write to
hmi_application_bitmap only.

Please note:
The interface to the HMI LED display is currently not designed for real-time updates. It is recommended to update the

application bitmap not more often than once per second (update rate 1Hz). In case of faster updates the behavior of the
display is undefined.

6.3.4 Converting graphics for the HMI display

To convert an existing graphic to the HMI LED display the following steps are recommended:
1. Stretch the graphic by factor 3 in horizontal direction to compensate for the asymmetrical display resolution.

2. Trim the image to an aspect ratio of 2 : 21 (vertical:horizontal). Keep in mind that the image is shown on a 360 ° surface,
so repeating the image for different view angles might be a good idea. A tried and trusted approach is to trim the image
to a 2 : 7 aspect ration and then repeat this image three times in horizontal direction.

3. Down-scale the image to a resolution of 24 x 252 pixels.

4. Reduce the image to a black-and-white graphics with only two colors.

58 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Working with the HMI LED display

5. If necessary, manually optimize the resulting low-resolution graphic by removing artifacts from the conversion process.
6. Save the image to a common graphics file format with support for monochrome images (2 bits per pixel).

7. Convert the image file to binary format using a common image conversion tool like Image Magick. The following com-
mand uses the tool convert from Image Magick to convert a bitmap into the correct raw binary data:

> convert input.bmp -rotate 90 -negate GRAY:output.bin
The resulting binary file (>output.bin’ in the above example) should have a size of exactly 756 B.

8. Finally, store the binary data in either hmi_static_logo Or hmi_application_bitmap. The data needs to be encoded
as base64url string [8] with a length of exactly 1008 B.

It is highly recommended to use vector graphics as source for creating bitmaps for the HMI LED display. This way many
conversion artefacts can be avoided resulting in higher image quality.

Protocol version 1.04 Document release 2024-05

59 I3 PEPPERL+FUCHS

http://www.imagemagick.org

R2000 Ethernet communication protocol

Switching input/output channels I/Qn

7 Switching input/output channels 1/Qn
This chapter describes the configuration and usage of the sensors switching input/output channels.

7.1 Introduction

Many R2000 devices are equipped with I/Q channels that can be used as either digital input or digital output. The presence
of an I/Q channels is indicated by the system feature flags (see section 2.4).

7.2 Commands for I/Q channel parametrization

7.2.1 list_iq_parameters — list I/Q parameters

The command list_iq_parameters is similar to the generic 1ist_parameters command (see section 2.2.1) but returns all
parameters related to the switching input/output channels 1/Qn.

Example

Query: http://<sensor IP address>/cmd/list_iq_parameters
Reply: {

"iq_parameters": [
"iq_global_enable",
"ig_input",
"iq_output",
"iq_overload",
"iql_mode",
"iq2_mode",
"iq3_mode",
"ig4_mode",
"iql_polarity",
"iq2_polarity",
"iq3_polarity",
"iq4_polarity",
"iql_off_delay",
"iq2_off_delay",
"iq3_off_delay",
"iq4_off_delay"

1,

"error_code":0,
"error_text":"success"

}

7.2.2 get_iq_parameter — read a I/Q parameter

The command get_iq_parameter is similar to the generic get_parameter command (see section 2.2.2) but operates on
parameters related to the switching input/output channels 1/Qn. The command returns the current value of one or more
parameters:

http://<sensor IP address>/cmd/get_iq_parameter?1ist=<param1>;<param2>

Protocol version 1.04 Document release 2024-05

60 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Switching input/output channels I/Qn

Command arguments

» list — semicolon separated list of parameter names (optional)

If the argument 1ist is not specified the command will return the current value of all available parameters.

Example

Query: http://<sensor IP address>/cmd/get_iq_parameter?list=iq_input;iql_mode
Reply: {

"iq_input":1,

"iql_mode":"input_high_z",

"error_code":0,

"error_text":"success"

}

7.2.3 set_iq_parameter — change an I/Q parameter

The command set_iq_parameter is similar to the generic set_parameter command (see section 2.2.3) but operates on
parameters related to the switching input/output channels I/Qn. Using the command set_iq_parameter the value of any
write-accessible 1/Q parameter can be modified:

http: //<sensor IP address>/cmd/ set_iq_parameter?<paraml>=<value>&<param2>=<value>

Command arguments

* <paraml> = <value> — new <value> for parameter <param1>

* <param2> = <value> — new <value> for parameter <param2>

Please note:
The command set_iq_parameter returns an error message, if any parameter specified as command argument is unknown

or a read-only parameter. The return values error_code and error_text have appropriate values in this case (see sec-
tion 1.2.6).

Please note:
All I/Q channel configuration parameters are non-persistent, i.e. they return to their default values on every power cycle.

Therefore, user applications need to configure these settings on every start.

Example

Query: http://<sensor IP address>/cmd/set_iq_parameter?iql_mode=output_push_pull
Reply: {

"error_code":0,
"error_text":"success"

}

7.3 Parameters for I/Q channel configuration

This section provides information on all available parameters for configuring the switching input/output channels of the device.
This applies to both, electrical and logical configuration.

Please note:
All I/Q channel configuration parameters are non-persistent, i.e. they return to their default values on every power cycle.
Therefore, user applications need to configure these settings on every start.

61 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Switching input/output channels I/Qn

7.3.1 Electrical configuration of I/Q channels

This section describes the parameters for the electrical configuration of the switching input/output channels 1/Qn. For each
channel the following parameters are defined (the list applies to channel 1/Q1):

parameter name type description access default
ig_global_enable bool |/Q global enable switch for all I/Q channels VRW off
(on, off)
iq<n>_source enum |/Q signal source vRW iq_output
(iq_output, timesync)
iq<n>_mode enum |/Q channel operation mode vRW disabled

(disabled, input_high_z, output_push_pull
output_n_switching, output_p_switching)

ig<n>_polarity enum |/Q channel polarity vRW active_high
(active_high, active_low)
ig<n>_off_delay uint 1/Q channel pulse extension (ms) vVRW Oms
Please note:
The channel-specific settings for polarity, operation mode and off-delay are defined for each 1/Q channel present in the
device, e.g. iql_polarity for channel I/Q1, iq2_mode for channel I/Q2, Any I/Q channel not present in a specific device

(as indicated by the system feature flags — see section 2.4) has no associated parameter (e.g. access to iq8_mode fails if
I/Q8 is not present).

1/Q channels global enable (iq_global_enable)

The parameter iq_global_enable acts as global enable switch for all I/Q channels. It is non-persistent and defaults to off at
system startup. While set to of£ all I/Q channels are disabled — regardless of their individual configuration. This way the user
can set up and change I/Q configurations while avoiding switching artefacts at the output pins.

1/Q channel signal source (iq<n>_source)

The parameter iq<n>_source selects which signal source takes control of the output state of an 1/Q channel. The following
signal sources are available:

source description

ig_output output state is defined by user variable iq_output (see section 7.3.2)
timesync output signal for time synchronization (see section 7.3.3)

The signal source can be configured for each 1/Q channel separately (iql_source for channel I/Q1, iq2_source for channel
/Q2, ...).

Please note:
The available signal source might be depending on the specific I/Q channel. On current R2000 devices the following options
are available:

I1/Q channel available sources

iql_source ig_output
iq2_source ig_output, timesync
iq3_source ig_output
iq4_source ig_output

62 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Switching input/output channels 1/Qn

1/Q channel operation mode (ig<n>_mode)

For each I/Q channel an operation mode can be configured using the parameter iq<n>_mode (iql_mode for channel I/Q1,
iq2_mode for channel I1/Q2, ...). The following operation modes are available:

operation mode description

disabled no function (high impedance)
input_high_z input with high impedance
output_push_pull output with P and N channel

output_p_switching output with P channel only
output_n_switching output with N channel only

1/Q channel polarity (iq<n>_polarity)

The polarity of each I/Q channel can be individually configured using the parameter iq<n>_polarity. It defines the translation
between the logic level and the electric level of the I/Q channel for all operating modes (both input and output).

The following table gives an overview on this logic level to electric level translation for all output modes:

logic level polarity electric level electric level electric level
(output_push_pull) (output_p_switching) (output_n_switching)

0 (inactive) active_high LOW HI-Z LOW

1 (active) HIGH HIGH HI-Z

0 (inactive) active_low HIGH HIGH HI-Z

1 (active) LOW HI-Z LOW

The following table gives an overview on the electric level to logic level translation for all input modes:

electric level polarity logic level
(input_high_z)
LOW active_high O (inactive)
HIGH 1 (active)
HI-Z ? (application-dependent)
LOW active_low 1 (active)
HIGH 0 (inactive)
HI-Z ? (application-dependent)

1/Q channel pulse extension (iq<n>_off_delay)

Each switching output channel provides a programmable pulse extension which guarantees a minimum duration for an active
output signal. More precisely, in case of an off transition (change from active to inactive state) of a bit in iq_output, the active
state of the corresponding output channel is extended for the configured delay time T, ;. If the bit in iq_output is set back to
1 before T, ;s expires, the intermediate 0 state will be suppressed at the output pin.

Please note:

An on transition (inactive to active state change) does not trigger this functionality. This change is applied to the output pin
immediately.

Furthermore, the 1/Q pulse extension functionality (as configured by iq<n>_off_delay) is affected by the following special
cases:

» The pulse extension is not applied, if the 1/Q channels are disabled by means of iq_global_enable (off state).

« All active pulse extensions are aborted, when ig_global_enable is switched off (transition from on to off) — globally
disabling all I/Q channels.

» Changes to iq_output do not trigger a pulse extension for any 1/Q channel that is operating in 'input’ or 'disabled’ mode
(see iq<n>_mode in section 7.3.1).

« If the electrical configuration of an I/Q channel (section 7.3.1) is changed from mode 'output’ to either ’input’ or 'disabled’
then this change takes effect immediately — aborting any currently active pulse extension.

63 2 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Switching input/output channels 1/Qn

7.3.2 Logical state of I/Q channels

The following parameters define the logical state (active or inactive) of the switching input/output channels 1/Qn. These settings
are independent of the electrical configuration of each channel (see section 7.3.1).

parameter name type description access default
iq_input bitfield bit field with state of switching inputs (0 —inactive, 1 — active) RO 0
Bit 0 — 1/Q1, Bit 1 — 1/Q2, Bit 2 — I/Q3, Bit 3 — 1/Q4, ...
iq_output bitfield bit field with logic state of switching outputs (0 — inactive, 1 — active) vRW 0
Bit 0 — 1/Q1, Bit 1 — 1/Q2, Bit 2 — I/Q3, Bit 3 — 1/Q4, ...
iq_overload bitfield bit field with status of switching outputs (0 — normal, 1 — overload) RO 0

Bit 0 —1/Q1, Bit 1 — 1/Q2, Bit 2 - I/Q3, Bit 3 - 1/Q4, ...

I/Q input state (iq_input)

The current state of all digital switching I/Q channels can be read using the 1/Q status variable iq_input. Each bit represents
an individual I/Q channel (up to 32 channels). This works for I/Q channel operating as input or output (see section 7.3.1).
Disabled and non-present I/Q channels are always read as 0 in the corresponding bit.

Please note:
iq_input returns 0 for all channels if I/Q channels are globally disabled via iq_global_enable (see section 7.3.1).

1/Q output state (ig_output)

The variable iq_output controls the logic state of all I/Q channels that are configured to an output operation mode (ig<n>_mode)
and to the iq_output signal source (iq<n>_source). If a different signal source is selected or if an I/Q channel is configured
as input, disabled or not present at all, the corresponding bit in iq_output is ignored.

1/Q overload state (ig_overload)

The variable iq_overload signals an overload condition at any I/Q channel configured to an output operation mode. If an I/Q
channel is configured as input, disabled or not present the corresponding bit is always read as 0.

7.3.3 1/Q output signal for raw timestamp synchronization

To enable a low-level synchronization of the sensors raw system time (see section 3.1.5) with the system time of an external
client, the sensor can generate a periodic synchronization pulse at selected 1/Q pins. The synchronization signal can be
configured using the following parameters:

parameter name type description access default

iq_timesync_interval wuint Interval for generating a timesync pulse (ms) RwW 4000 ms

The synchronization pulse will be generated each time the raw system timestamp system_time_raw reaches an integer
multiple of the configured interval iq_timesync_interval.

Please note:

Although the parameter iq_timesync_interval is specified with the unit 1 ms it currently accepts only values with a resolu-
tion of 1s, i.e. integral multiples of 1000 ms.

64 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol

Switching input/output channels I/Qn

To enable the synchronization signal generation on an I/Q channel, the following settings need to be applied:
1. Set I/Q mode to an output mode using the parameter iq<n>_mode (see section 7.3.1).
2. Set I/Q polarity to an appropriate value using the parameter iq<n>_polarity (see section 7.3.1).
3. Set I/Q pulse extension to an appropriate value using the parameter iq<n>_off_delay (see section 7.3.1).
4. Set I/Q source to timesync using the parameter ig<n>_source (see section 7.3.1).
5. Select the period of the timesync signal using the parameter iq_timesync_interval (see above).
6. Enable all I/Q channels using the parameter iq_global_enable (see section 7.3.1).

Please note:
If ig<n>_off_delay is set to 0 ms the pulse length of the synchronization signal is implementation-specific. It is highly
recommended to configure iq<n>_off_delay to a non-zero value.

Please note:

The maximum pulse length of the synchronization signal is 500 ms. Larger values of ig<n>_off_delay are internally capped
to 500 ms.

Please note:
The 1/Q timestamp synchronization signal is currently available on 1/Q2 only.

Please note:
All 1/Q channel configuration parameters are non-persistent, i.e. they return to their default values on every power cycle.
Therefore, user applications need to configure these settings on every start.

65 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Advanced topics

8 Advanced topics
This chapter covers various advanced topics about using R2000 devices in more complex applications.

8.1 Device discovery using SSDP

The R2000 provides support for the Simple Service Discovery Protocol (SSDP) [14] in order to discover any R2000 devices
and their associated IP address within the Ethernet network. SSDP uses UDP multicast messages to query SSDP aware
devices.

In order to discover all R2000 devices, the following steps need to be performed:
1. Send a SSDP search request.
2. Process SSDP replies from devices.
3. Read a SSDP device description from each device for additional information.

The following sections describe each step in detail.

8.1.1 SSDP search request

The first step of the SSDP device discovery is to issue a search request on the local network. For this purpose an UDP listener
needs to be opened on the local UDP port 1900. Then an UDP datagram with the following content needs to be sent to the
UDP multicast address 239.255.255.250 at port 1900:

1 M-SEARCH * HTTP/1.1
2 HOST: 239.255.255.250:1900
3 ST: urn:pepperl-fuchs-com:device:R2000:1
4 MAN: "ssdp:discover"
5 MX: 1
The specified URN addresses R2000 devices only. Other SSDP aware devices on the network will ignore this request.
Please note:
On a client PC with multiple network adapters, the SSDP search request needs to be performed on each network adapter.
8.1.2 SSDP device reply
The second step of the discovery procedure requires the client application to wait for replies to the above search request using
the created UDP listener. Each R2000 device on the local network will answer the search request with a message similar to
this example:
1 HTTP/1.1 200 OK
2 |LOCATION: http://10.0.10.9/ssdp.xml
3 SERVER: pfda/1.0 UPnP/1.0 R2000/1.0
4 CACHE-CONTROL: max-age=1800
5 |EXT:
6 ST: urn:pepperl-fuchs-com:device:R2000:1
7 USN: uuid:7df9abed-07f6-45e1-acb55-333340704340: :urn:pepperl-fuchs-com:device:R2000:1

This reply contains two important pieces of information:

» The line LOCATION: contains the IP address of the device within an URL pointing to a more detailed SSDP device
description (see next section).

» The line USN: contains an unique identifier (uuid) for this specific device. This uuid allows to identify this R2000 device
even if its IP address changes.

Protocol version 1.04 Document release 2024-05

66 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Advanced topics

8.1.3 SSDP device description

The final step of the SSDP discovery procedure is to obtain the XML based device description. This step can be skipped, if
no detailed information on the discovered devices are needed. R2000 devices provide a ssdp.xml file at the URL from the
LOCATION field of the SSDP device reply (see previous section):

1 <?7xml version="1.0"7>

2 <root xmlns="urn:schemas-upnp-org:device-1-0">

3 <specVersion>

4 <major>1</major>

5 <minor>0</minor>

6 </specVersion>

7 <device>

8 <deviceType>urn:pepperl-fuchs-com:device:R2000:1</deviceType>
9 <friendlyName>OMD10M-R2000-B23-V1V1D (#40000007343704)</friendlyName>
10 <manufacturer>Pepperl+Fuchs</manufacturer>

11 <manufacturerURL>http://www.pepperl-fuchs.com</manufacturerURL>
12 <modelDescription>2D Laser Scanner</modelDescription>

13 <modelName>0MD10M-R2000-B23-V1V1D</modelName>

14 <modelNumber>232934</modelNumber>

15 <serialNumber>40000007343704</serialNumber>

16 <UDN>uuid:7df9abed-07f6-45e1-ac55-333340704340</UDN>

17 <serviceList>

18 <service>

19 <serviceType>urn:pepperl-fuchs-com:service:none:1</serviceType>
20 <serviceId>urn:pepperl-fuchs-com:serviceld:none</serviceld>
21 <controlURL>/cmd/</controlURL>

22 <eventSubURL></eventSubURL>

23 <SCPDURL>/service.xml</SCPDURL>

24 </service>

25 </servicelist>

26 <iconList>

27 <icon>

28 <id>0</id>

20 <mimetype>image/png</mimetype>

30 <width>48</width>

31 <height>48</height>

32 <depth>24</depth>

33 <url>/device.png</url>

34 </icon>

35 </iconList>

36 <X_pfsdpVersionMajor>1</X_pfsdpVersionMajor>

37 <X_pfsdpVersionMinor>2</X_pfsdpVersionMinor>

38 <X_pfsdpDeviceFamily>1</X_pfsdpDeviceFamily>

39 <X_dtmAccessPath>/dtm/</X_dtmAccessPath>

40 </device>

41 </root>

The standard SSDP XML device description contains already various useful fields:
» manufacturer — vendor name of the device (see parameter vendor in section 2.3)
* modelName — product name of the device (see parameter product in section 2.3)
» modelNumber — part number of the device (see parameter part in section 2.3)
* serialNumber — serial number of the device (see parameter serial in section 2.3)

R2000 devices additionally provide the following non-standard items with PFSDP specific information:
* X_pfsdpVersionMajor — major PFSDP protocol revision (see version_major in section 1.2.7)
* X_pfsdpVersionMinor — minor PFSDP protocol revision (see version_minor in section 1.2.7)

+ X_pfsdpDeviceFamily — PFSDP device family (see device_family in section 2.3)

Protocol version 1.04 Document release 2024-05

67 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Troubleshooting the Ethernet communication

A Troubleshooting the Ethernet communication
This chapter contains some basic suggestions for troubleshooting issues concerning the R2000 Ethernet communication.

A.1 Checking the Ethernet setup

In case of communication problems, first ensure a working Ethernet connection between PC and sensor. Please consider the
following steps:

» Sensor IP configuration
Check the current IP configuration of the sensor in the HMI menu "Ethernet Info” (see user manual). If necessary, change
the configuration in the "Ethernet Setup” menu and reboot the device to apply the changes. Now verify the IP configuration
in the "Ethernet Info” menu.

« Ethernet connection
Use the network utility ping to verify the network connection between sensor and PC. The sensor will reply to all ping
requests it receives. If ping does not receive any replies, re-check the IP configuration of your client PC and the sensor.
Make sure the IP addresses of both devices are within the same subnet.

« Electrical connection
In case of connectivity problems, check the link status and link speed of the sensor, the client PC and any network
infrastructure device (router, switch, etc.) in-between to rule out electric connection issues. For maximum reliability, try to
use a direct cable-based Ethernet connection between sensor and PC. The sensor supports Auto-MDIX — a cross-over
Ethernet cable is not required.

A.2 Debugging using a web browser

If basic network connectivity has been established, verify that the HTTP command interface is operational with a standard
web browser. Please consider these steps:

* Proxy settings
Make sure that no proxy is used when accessing the sensor. In the browser settings, either completely disable any proxy
or add a proxy exception for the sensor IP address.

* HTTP access
Try to access the sensor via the following URL:

http://<sensor IP address>/cmd/protocol_info

This command should return some basic protocol information (see section 1.2.7). If this is not the case, re-check your
proxy settings and Ethernet setup (see above).

* HTTP commands
You can test the syntax and effect of any HTTP command used in your application software just by sending the command
from a web browser. The web browser will display the response received from the sensor — making it easy to review
any potential error messages. Furthermore, after changing sensor settings with the set_parameter command (see sec-
tion 2.2.3), it might be helpful to read back all parameters using the command get_parameter (see section 2.2.2).

A.3 Debugging using Wireshark

For complex communication issues it is highly recommended to use the free network traffic analysis tool Wireshark [13] to
sniff and record the Ethernet communication between the client software and the R2000 sensor.

Protocol version 1.04 Document release 2024-05

68 2 PEPPERL+FUCHS

. R2000 Ethernet communication protocol

Troubleshooting the Ethernet communication

For example, this can be very helpful for:
» Checking the content of HTTP messages and the corresponding replies
+ Checking order and time behavior of HTTP commands
+ Checking time behavior of scan data output (TCP or UDP)

In case you contact your sensor support representative about a specific communication issue, it is highly recommended to
have a Wireshark log file (.pcap) at hand for examination by the technical support organisation.

Protocol version 1.04 Document release 2024-05

69 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Protocol version history

B Protocol version history

B.1 Protocol version 1.04

Minor protocol extension (backward-compatible to protocol versions 1.00, 1.01, 1.02 and 1.03)
Notable extensions:

» Section 3.3.6: Added new parameter packet_crc for scan data connections.

Note: This protocol version is implemented by R2000 firmware v1.60 or newer.

B.2 Protocol version 1.03

Major protocol extensions (backward-compatible to protocol versions 1.00, 1.01 and 1.02)
Significant extensions:
» Chapter 4: Added various options for scan data filtering.
» Chapter 5: Added various options for lens contamination monitoring.
Notable extensions:
+ Section 2.6.5: Added scan resolutions 2520 and 3150 to R2000 UHD and HD devices (Table 2.1).
+ Section 3.3.6: Added new parameter skip_scans for scan data connections.
+ Section 3.4.2: Added fields iq_timestamp_raw and iq_timestamp_sync in scan data header.
Notable changes:
 Section 2.4.1: Removed irrelevant sensor-capability parameters max_scan_sectors and max_data_regions.
+ Section 2.6.2: Renamed value transmitter_off {0 emitter_off.

+ Section 3.2.2: Removed deprecated parameter deprecated_handle_generation.

Note: This protocol version is implemented by R2000 firmware v1.50 or newer.

B.3 Protocol version 1.02

Minor protocol extensions (backward-compatible to protocol versions 1.00 and 1.01)
Notable extensions:
« Section 2.4: Added new informational parameter emitter_type.
+ Section 2.6.5: Added scan resolutions 1680, 2100 and 2800 to R2000 UHD and HD devices (Table 2.1).

Note: This protocol version is implemented by R2000 firmware v1.21 or newer.

Protocol version 1.04 Document release 2024-05

70 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
Protocol version history

B.4 Protocol version 1.01

Protocol enhancements (backward-compatible to protocol version v1.00)
Significant extensions:

+ Section 2.7: Added access to bitmap shown by display mode static_logo

Section 2.7: Added display mode static_text to show static custom text

Section 2.7: Added display mode application_bitmap to show a dynamic custom bitmap

Section 2.7: Added display mode application_text to show a dynamic custom text

Section 3.2.4: Added option max_num_points_scan to limit number of points per scan for scan data output
» Section 3.3.9: Added mechanism for TCP in-line watchdog feeds
» Chapter 7: Added commands and parameters for switching input/output channels
Notable extensions:
+ Section 2.2.6: Added new command factory_reset to perform a complete factory reset.
+ Section 2.3: Added device family for HD devices (OMDxxx-R2000-HD)

+ Section 2.4: Added capability values scan_frequency_min and scan_frequency_max

Section 2.4: Added capability values sampling_rate_min and sampling_rate_max

Section 2.6.2: Added parameter operating_mode to control mode of operation (e.g. disable emitter)

Section 2.7: Added new parameter hmi_parameter_lock for setting the HMI menu to read-only.

Section 3.4.2: Redefined field output_status t0 iq_input (all scan data packet headers)

Section 3.4.2: Redefined field field_status t0 iq_overload (all scan data packet headers)
Note: This protocol version is implemented by R2000 firmware v1.20 or newer.
B.5 Protocol version 1.00

First public release.

Note: This protocol version is implemented by R2000 firmware v1.00 or newer.

Protocol version 1.04 Document release 2024-05

7 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Document change history

C Document change history

C.1 Release 2024-05 (protocol version 1.04)

Minor document update:

» Replaced term scan frequency with term scan rate in whole document.

Section 2.1: Added description of array type

+ Section 2.5.1: Fixed incorrect default values for ip_mode, ip_address_current and subnet_mask_current

Sections 3.1.5 and 3.4: Removed references to synchronized timestamps (not available on R2000 devices)

Section 5.2: Added detailed description for LCM configuration parameters

 Various minor textual and cosmetic updates

C.2 Release 2020-05 (protocol version 1.04)

Document update for OMD SD device release:
» Section 2.3.2: Added device family definition for R2000 OMD SD devices

+ Section 2.4.2: Fixed name of I/Q feature flags (input_output_gN instead of input_output_iqN)

Section 2.5.1: Fixed documentation of subnet mask default (255.0.0.0 instead of 255.255.255.0)

Section 2.6.5: Updated table 2.1 for UHD devices (50 Hz maximum scan frequency)
Section 2.6.5: Added OMD SD devices to table 2.1

Section 3.4.3: Fixed documentation for accumulative status flags
(accumulation does not cover the accumulated flags themselves)

 Various minor textual and cosmetic updates

C.3 Release 2019-07 (protocol version 1.04)

Document update for LCM feature release:
» Section 2.8.2: Added documentation of LCM status flags
» Section 3.4.3: Added documentation of LCM status flags
+ Chapter 5: Publish chapter on lens contamination monitor (LCM)

» Various minor textual and cosmetic updates

Protocol version 1.04 Document release 2024-05

72 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Document change history

C.4 Release 2018-10 (protocol version 1.04)

Document update for protocol version 1.04:
+ Section 3.2.4: Added description of option packet_crc for an additional scan packet checksum.

» Various minor textual and cosmetic updates

C.5 Release 2017-11 (protocol version 1.03)

Document update for protocol version 1.03:
« Section 2.4.1: Clarified description of radial_resolution and angular_resolution.
« Section 2.4.1: Corrected type of scan_frequency_min and scan_frequency_max (double instead of int)

« Section 2.6.5: Updated table 2.1 to reflect new maximum scan frequency of 100 Hz.

Section 2.8.2: Updated description of system status flags.

Section 3.2.4: Added description of option skip_scans to reduce the scan output frequency.

Sections 3.4 to 3.6: Updated and clarified details of scan data transmission.

Section 3.4.1: Documented potential padding at the end of a scan data packet (payload_padding).
+ Section 3.4.3: Added LCM status flags and updated description of flags.
» Chapter 4: Added chapter about integrated scan data filtering.

+ Section 6.3.3: Corrected steps for displaying an application bitmap:
Parameter hmi_display_mode needs to be set to application_bitmap instead of static_logo.

» Chapter 5: Added chapter on monitoring lens contamination.
» Chapter 7: Added chapter on switching input/output channels.
+ Section 7.3.3: Added description of new timestamp synchronization signal.

+ Various textual and cosmetic updates

C.6 Release 2016-03 (protocol version 1.02)

Minor documentation update for protocol version 1.02:
+ Section 2.6.5: Added list of available scan resolutions for R2000 HD devices to table 2.1.
+ Section 3.4.3: Updated description of flag new_settings.
+ Section 8.1: Added section on device discovery using SSDP.

» Various textual and cosmetic updates

73 I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

R2000 Ethernet communication protocol
Document change history

C.7 Release 2015-04 (protocol version 1.01)

Document update for protocol version 1.01:
+ Added descriptions for all protocol extensions listed in appendix B.4
» Section 1.2.2: Moved description of parameter types to separate section (section 2.1)

+ Section 2.1: Extended description for various parameter types (bitfield, string, IPv4, ntp64, binary)

Section 2.8.2: Added missing description of temperature warning and error flags in system status flags

Section 3.2: Separated description of basic scan data output mechanisms from description of commands (section 3.3)

Section 3.2.2: Added separate section for details on connection handles and backwards compatibility

Section 3.2.3: Added separate section for details on the connection watchdog mechanism

Section 3.2.4: Added section on configuration options for scan data output

Section 3.2.5: Added separate section on performance considerations for concurrent scan data connections

» Section 3.4.3: Added missing description of temperature warning and error flags in scan data header status flags
» Chapter 6: Added chapter about client application access to the HMI LED display

» Appendix B: Separated protocol history and document history

* Various textual and cosmetic updates

C.8 Release 2013-08 (protocol version 1.00)

First public release.

Protocol version 1.04 Document release 2024-05

7 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol

Index for commands and parameters

Index for commands and parameters

This index provides a quick reference for all commands and parameters defined by this communication protocol.

Generic commands (URI)
factory_reset, 17, 71
feed_watchdog, 30, 40
get_parameter, 15, 60
get_protocol_info, 8
get_scanoutput_config, 38, 39
list_parameters, 14, 60
reboot_device, 16, 17, 20 operation_time, 25
release_handle, 37 operation_time_scaled, 25
request_handle_tcp, 30, 31, 35, 36 part, 18, 67
request_handle_udp, 30, 31, 34 power_cycles, 25
reset_parameter, 16, 17 product, 18, 67
set_parameter, 15, 56-58, 61 radial_range_max, 19, 28
set_scanoutput_config, 30, 31, 34, 35, 38, 40 radial_range_min, 19, 28
start_scanoutput, 37, 38 radial_resolution, 19, 28, 73
stop_scanoutput, 37, 38 revision_fw, 18

revision_hw, 18

samples_per_scan, 21-23, 27, 31, 32, 42, 44—-46

sampling_rate_max, 19, 22, 71

sampling_rate_min, 19, 22, 71

scan_direction, 21, 22, 55

scan_frequency, 21, 22, 27, 32, 42, 44—-46, 55

Global parameters (sensor) scan_frequency_max, 19, 71, 73
angular_fov, 19 scan_frequency_measured, 21
angular_resolution, 19, 73 scan_frequency_min, 19, 71, 73
deprecated_handle_generation, 70 serial, 18, 67
device_family, 18 status_flags, 25, 26
emitter_type, 19, 70 subnet_mask, 20
feature_flags, 19 subnet_mask_current, 20, 72
filter_error_handling, 49-51 system_time_raw, 25, 29
filter_maximum_margin, 50, 52 temperature_current, 25
filter_remission_threshold, 50, 52 temperature_max, 25
filter_type, 49-51 temperature_min, 25

load_indication, 25, 26, 33
locator_indication, 23, 24
mac_address, 20
max_connections, 19, 33, 34, 36
max_data_regions, 70
max_scan_sectors, 70
operating_mode, 21, 71

Switching I/Q commands (URI)
get_iq_parameter, 60
list_ig_parameters, 60
set_ig_parameter, 61

filter_width, 49-51 up_time, 25
gateway, 20 user_notes, 18
gateway_current, 20 user_tag, 18
hmi_application_bitmap, 23, 58, 59 vendor, 18, 67

hmi_application_text_1, 23, 57

hmi_application_text_2, 23, 57 Scan data output parameters
hmi_button_lock, 23, 24 address, 34-36

hmi_display_mode, 23, 24, 26, 56-58, 73 handle, 6, 34, 37-40

hmi_language, 23, 24 iq_timesync_interval, 64
hmi_parameter_lock, 23, 24, 71 max_num_points_scan, 31, 32, 34, 35, 38, 39, 42,
hmi_static_logo, 23, 58, 59 44-46, 71

hmi_static_text_1, 23, 56 packet_crc, 32, 34, 35, 38, 70, 73
hmi_static_text_2, 23, 56 packet_type, 34, 35, 38

ip_address, 20 port, 34—-36

ip_address_current, 20, 72 skip_scans, 32, 34, 35, 38, 39, 70, 73

75

ip_mode, 20, 72
ip_mode_current, 20
Ilcm_detection_period, 53, 54
lcm_detection_sensitivity, 53
lcm_sector_enable, 53, 54
lcm_sector_error_flags, 53, 54
lcm_sector_warn_flags, 53, 54

start_angle, 31, 34, 35, 38, 39
watchdog, 30, 31, 34, 35, 38, 40
watchdogtimeout, 30, 31, 34, 35, 38, 40

I3 PEPPERL+FUCHS

Protocol version 1.04 Document release 2024-05

. R2000 Ethernet communication protocol

Index for commands and parameters

Switching input/output parameters
iq1_source, 62
ig2_source, 62
iq3_source, 62
ig4_source, 62
ig<n>_mode, 62-65
ig<n>_off_delay, 62, 63, 65
ig<n>_polarity, 62, 63, 65
ig<n>_source, 62, 64, 65
ig_global_enable, 62—65
ig_input, 64
ig_output, 62—-64
iq_overload, 64
ig_timesync_interval, 64, 65

Protocol version 1.04 Document release 2024-05

76 I3 PEPPERL+FUCHS

R2000 Ethernet communication protocol
References

References

[1] RFC-791: Internet Protocol Specification
http://tools.ietf.org/html/rfc791

[2] RFC-1305: Network Time Protocol (Version 3)
http://tools.ietf.org/html/rfc1305

[8] RFC-2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
http://tools.ietf.org/html/rfc2046

[4] RFC-2069: An Extension to HTTP : Digest Access Authentication
http://tools.ietf.org/html/rfc2069

[5] RFC-2616: Hypertext Transfer Protocol — HTTP/1.1
http://tools.ietf.org/html/rfc2616

[6] RFC-3629: UTF-8, a transformation format of ISO 10646
http://tools.ietf.org/html/rfc3629

[7] RFC-3986: Uniform Resource Identifier (URI)
http://tools.ietf.org/html/rfc3986

[8] RFC-4648: The Base16, Base32, and Base64 Data Encodings
http://tools.ietf.org/html/rfc4648

[9] RFC-7159: The JavaScript Object Notation (JSON) Data Interchange Format
http://tools.ietf.org/html/rfc7159

[10] Online CRC32 calculation of an example buffer
http://crccalc.com/7crc=0x010x020x030x040x050x060x070x08&method=crc32&datatype=hex

[11] Libwww: the W3C Protocol Library
http://www.w3.org/Library/

[12] libcurl: free and easy-to-use client-side URL transfer library
http://curl.haxx.se/libcurl/

[13] Wireshark: free network protocol analyzer for Unix and Windows
http://www.wireshark.org/

[14] Simple Service Discovery Protocol (Draft v1.03)
https://tools.ietf.org/html/draft-cai-ssdp-v1-03

[15] Zero Configuration Networking (Zeroconf)
http://www.zeroconf.org/

Protocol version 1.04 Document release 2024-05

7 I3 PEPPERL+FUCHS

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc1305
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2069
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc7159
http://crccalc.com/?crc=0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08&method=crc32&datatype=hex
http://www.w3.org/Library/
http://curl.haxx.se/libcurl/
http://www.wireshark.org/
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://www.zeroconf.org/

FACTORY AUTOMATION -
SENSING YOUR NEEDS

—_— T

Worldwide Headquarters
Pepperl+Fuchs GmbH - Mannheim - Germany
E-mail: fa-info@pepperl-fuchs.com

USA Headquarters
Pepperl+Fuchs Inc. - Twinsburg, OH - USA
E-mail: fa-info@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd - Singapore

Company Registration No. 199003130E

E-mail: fa-info@sg.pepperl-fuchs.com L |

www.pepperl-fuchs.com I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

#74998 clean —2024-05-16 13:25

Subject to modifications without notice
Copyright Pepperl+Fuchs - Printed in Germany

	1 Protocol basics
	1.1 Basic design
	1.2 HTTP command protocol
	1.2.1 Sending commands
	1.2.2 Query argument encoding
	1.2.3 Replies to commands
	1.2.4 HTTP request and reply – low level example
	1.2.5 HTTP status codes
	1.2.6 Sensor error codes
	1.2.7 Protocol information (get_protocol_info)

	2 Sensor parametrization using HTTP
	2.1 Parameter types
	2.1.1 Enumeration values (enum)
	2.1.2 Boolean values (bool)
	2.1.3 Bit fields (bitfield)
	2.1.4 Integer values (int, uint)
	2.1.5 Double values (double)
	2.1.6 String values (string)
	2.1.7 IPv4 address and network mask values (IPv4)
	2.1.8 NTP timestamp values (ntp64)
	2.1.9 Binary data (binary)
	2.1.10 Collection of values (array)

	2.2 Commands for sensor parametrization
	2.2.1 list_parameters – list parameters
	2.2.2 get_parameter – read a parameter
	2.2.3 set_parameter – change a parameter
	2.2.4 reset_parameter – reset a parameter to its default value
	2.2.5 reboot_device – restart the sensor firmware
	2.2.6 factory_reset – reset the sensor to factory settings

	2.3 Basic sensor information
	2.3.1 Parameter overview
	2.3.2 Device family (device_family)
	2.3.3 User defined strings (user_tag, user_notes)

	2.4 Sensor capabilities
	2.4.1 Parameter overview
	2.4.2 Device features (feature_flags)
	2.4.3 Emitter type (emitter_type)

	2.5 Ethernet configuration
	2.5.1 Parameter overview
	2.5.2 IP address mode (ip_mode)

	2.6 Measuring configuration
	2.6.1 Parameter overview
	2.6.2 Mode of operation (operating_mode)
	2.6.3 Scan rate (scan_frequency, scan_frequency_measured)
	2.6.4 Scan direction (scan_direction)
	2.6.5 Scan resolution (samples_per_scan)

	2.7 HMI / Display configuration
	2.7.1 Parameter overview
	2.7.2 HMI display mode (hmi_display_mode)
	2.7.3 HMI display language (hmi_language)
	2.7.4 HMI button lock (hmi_button_lock)
	2.7.5 HMI parameter lock (hmi_parameter_lock)
	2.7.6 Locator indication (locator_indication)

	2.8 System status
	2.8.1 Parameter overview
	2.8.2 System status flags (status_flags)
	2.8.3 System load indication (load_indication)

	3 Scan data output using TCP or UDP
	3.1 Principles of scan data acquisition
	3.1.1 Sensor coordinate system
	3.1.2 Scan data coordinate system
	3.1.3 Distance readings
	3.1.4 Echo amplitude readings
	3.1.5 Timestamps

	3.2 Principles of scan data output
	3.2.1 Introduction
	3.2.2 Scan data connection handles
	3.2.3 Scan data connection watchdog
	3.2.4 Scan data output customization
	3.2.5 Using multiple concurrent scan data connections

	3.3 Commands for managing scan data output
	3.3.1 request_handle_udp – request for an UDP-based scan data channel
	3.3.2 request_handle_tcp – request for a TCP-based scan data channel
	3.3.3 release_handle – release a data channel handle
	3.3.4 start_scanoutput – initiate output of scan data
	3.3.5 stop_scanoutput – terminate output of scan data
	3.3.6 set_scanoutput_config – reconfigure scan data output
	3.3.7 get_scanoutput_config – read scan data output configuration
	3.3.8 feed_watchdog – feed connection watchdog
	3.3.9 TCP in-line watchdog feeds

	3.4 Transmission of scan data
	3.4.1 Basic packet structure
	3.4.2 Typical structure of a scan data header
	3.4.3 Scan data header status flags
	3.4.4 Scan data packet type A – distance only
	3.4.5 Scan data packet type B – distance and amplitude
	3.4.6 Scan data packet type C – distance and amplitude (compact)

	3.5 Data transmission using TCP
	3.6 Data transmission using UDP

	4 Filter-based scan data processing
	4.1 Introduction to scan data filtering
	4.1.1 Block-wise processing

	4.2 Filter algorithms
	4.2.1 No filter (pass-through)
	4.2.2 Average filter
	4.2.3 Median filter
	4.2.4 Maximum filter
	4.2.5 Remission filter

	4.3 Filter configuration
	4.3.1 Parameter overview
	4.3.2 Filter types (filter_type)
	4.3.3 Filter width (filter_width)
	4.3.4 Filter error handling (filter_error_handling)
	4.3.5 Maximum filter margin (filter_maximum_margin)
	4.3.6 Remission filter threshold (filter_remission_threshold)

	5 Lens contamination monitor (LCM)
	5.1 LCM introduction
	5.2 LCM configuration
	5.2.1 Parameter overview
	5.2.2 LCM detection sensitivity (lcm_detection_sensitivity)
	5.2.3 LCM detection periodic (lcm_detection_period)
	5.2.4 LCM sector configuration (lcm_sector_enable)
	5.2.5 LCM status flags (lcm_sector_warn_flags, lcm_sector_error_flags)

	6 Working with the HMI LED display
	6.1 Technical overview
	6.2 Displaying custom text messages
	6.2.1 Overview
	6.2.2 Static text messages (static text)
	6.2.3 Dynamic text messages (application text)

	6.3 Displaying custom bitmaps
	6.3.1 Overview
	6.3.2 Static bitmaps
	6.3.3 Application bitmaps
	6.3.4 Converting graphics for the HMI display

	7 Switching input/output channels I/Qn
	7.1 Introduction
	7.2 Commands for I/Q channel parametrization
	7.2.1 list_iq_parameters – list I/Q parameters
	7.2.2 get_iq_parameter – read a I/Q parameter
	7.2.3 set_iq_parameter – change an I/Q parameter

	7.3 Parameters for I/Q channel configuration
	7.3.1 Electrical configuration of I/Q channels
	7.3.2 Logical state of I/Q channels
	7.3.3 I/Q output signal for raw timestamp synchronization

	8 Advanced topics
	8.1 Device discovery using SSDP
	8.1.1 SSDP search request
	8.1.2 SSDP device reply
	8.1.3 SSDP device description

	A Troubleshooting the Ethernet communication
	A.1 Checking the Ethernet setup
	A.2 Debugging using a web browser
	A.3 Debugging using Wireshark

	B Protocol version history
	B.1 Protocol version 1.04
	B.2 Protocol version 1.03
	B.3 Protocol version 1.02
	B.4 Protocol version 1.01
	B.5 Protocol version 1.00

	C Document change history
	C.1 Release 2024-05 (protocol version 1.04)
	C.2 Release 2020-05 (protocol version 1.04)
	C.3 Release 2019-07 (protocol version 1.04)
	C.4 Release 2018-10 (protocol version 1.04)
	C.5 Release 2017-11 (protocol version 1.03)
	C.6 Release 2016-03 (protocol version 1.02)
	C.7 Release 2015-04 (protocol version 1.01)
	C.8 Release 2013-08 (protocol version 1.00)

	Index for commands and parameters
	References

