FACTORY AUTOMATION

OMDxxx—R2300
Ethernet communication protocol

Protocol version 1.05

I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

R2300 Ethernet communication protocol
Contents

Contents
1 Protocol basics 5
1.1 Basicdesign. 5
1.2 HTTP command protocol o e 5
1.2.1 Sendingcommands. e e 5
1.22 Queryargumentencoding L e e 6
1.23 Repliestocommands L 6
1.2.4 HTTP/1.1 persistentconnections 7
1.25 HTTPrequestandreply —low levelexample 7
1.2.6 HTTPstatuscodes 7
1.2.7 Sensorerror COOES o o i e e e e 8
1.2.8 Protocol information (get_protocol_info) 9
2 Sensor parametrization using HTTP 10
2.1 Parametertypes. o . e e 10
2.1.1 Enumerationvalues (enum) e e e 10
2.1.2 Booleanvalues (bool) o e e 10
2.1.3 Bitfields (bitfield) o i i e e e e e e 11
2.1.4 Integervalues (int, uint) L e e e e 11
2.1.5 Doublevalues (double) o e e e e e 11
2.1.6 Stringvalues (string) e 11
2.1.7 IPv4 address and network mask values (IPv4) ottt 12
2.1.8 NTP timestamp values (ntp64) e 12
2.1.9 Collection of values (array) o e e e 12
2.2 Commands for sensor parametrization 13
2.2.1 1list_parameters —listparameters L 13
2.2.2 get_parameter —readaparameter L 14
2.2.3 set_parameter —change aparameter 14
2.2.4 reset_parameter —reset a parametertoits defaultvalue oo oL 15
2.2.5 reboot_device —restartthe sensorfirmware Lo 15
2.2.6 factory_reset —resetthe sensorto factory settings L. 16
2.3 Basicsensorinformation L e e 17
2.3.1 Parameter oVerview L e e e 17
2.3.2 Device family (device_family) e 17
2.3.3 Userdefinedtag (user_tag) i i e e e e e 17
2.4 Sensorcapabilities e 18
241 Parameter OVervieW L e e e 18
2.4.2 Device features (feature_flags) o e e e e e 18
2.4.3 Emittertype (emitter_type) v o v i e e e e e e e 18
2.4.4 Layer configuration (layer_count and layer_inclination) 18
2.5 Ethernetconfiguration L e 19
2.5.1 Parameter OVerview e e e e e 19
252 IPaddress mode (ip_mode) e e e e 19
2.6 Measuring configuration L e e e 20
2.6.1 Parameteroverview 20 =
2.6.2 Mode of operation (operating mode)t 20 N
2.6.3 Scanrate (scan_frequency, scan_frequency_measured) o.e e e e e 20 DY
2.6.4 Scandirection (scan_direction)o 21 g
2.6.5 Scan resolution (samples_per_SCan)« v v it e e e e e e e e 21 E’
2.6.6 Scan acquisition sector (measure_start_angle / measure_stop_angle) 22 é
2.6.7 Layer configuration (layer_enable) e e e e 22 3
2.7 Alignmentaid (pilotlaser) 22 a
2.7.1 Parameter OVErvieW e e e e 22 0
2.7.2 Pilot laser activation (pilot_laser) ot v i e e e e e 22 2
2.7.3 Pilot laser sector (pilot_start_angle and pilot_stop_angle) 23 .§
2.8 Userinterface configuration 23 g
2.8.1 Parameter overview L e e e 23]
2.8.2 Locator indication (Locator_indication)ottt 23 g
o

2 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Contents

2.9 Systemstatus L e e e 24
2.9.1 Parameter OVerview e 24
2.9.2 System status flags (status_flags) o o v it e e e e e e 25
3 Scan data output using UDP 26
3.1 Principles of scan data acquisition L e 26
3.1.1 Sensorcoordinate system 26
3.1.2 Scandata coordinate system e e 27
3.1.3 Distancereadings 27
3.1.4 Echoamplitudereadings e 27
3.1.5 Timestamps L 28
3.2 Principlesof scandataoutput e 29
3.2.1 Introduction L e 29
3.2.2 Scandataconnectionhandles 29
3.2.3 Scandata output customization 29
3.3 Commands for managing scandataoutput 31
3.3.1 request_handle_udp —request for an UDP-based scandatachannel 31
3.3.2 release_handle —release adatachannelhandle 32
3.3.3 start_scanoutput —initiate outputof scandata L 33
3.3.4 stop_scanoutput —terminate outputof scandata Lo 33
3.3.5 set_scanoutput_config —reconfigure scandataoutput L oL 34
3.3.6 get_scanoutput_config —read scan data output configuration. o oL, 35
3.4 Transmissionofscandata e e 36
3.4.1 Basicpacket structure 36
3.4.2 Typical structure ofascandataheader 37
3.4.3 Scandataheaderstatusflags e 38
3.4.4 Scan data packet type C1 —distance and amplitude oo 39
3.5 Datatransmissionusing UDP e e e 40
4 Filter-based scan data processing 41
4.1 Introductionto scan datafiltering 4
4.1.1 BIoCK-WiS€ ProCesSINg o o i i e e e e 41
4.1.2 Moving-window ProCesSiNg« o o v o e e e e e e e e e e e e 41
4.1.3 Filterprocessingatscan edges 42
4.2 Filteralgorithms e e 42
4.2.1 Nofilter (pass-through) o e 42
422 Averagefilter L 43
423 Medianfilter L 43
424 Maximumfilter e 43
4.3 Filter configuration 43
4.3.1 Parameter overview e 44
4.3.2 Filtertypes (filter_type) o o i it e e 44
4.3.3 Filter width (filter_width) e e 44
4.3.4 Filter error handling (filter_error_handling) o v v i i i i e e 45
4.3.5 Maximum filter margin (filter_maximum_margin) e 45
5 Advanced topics 46
5.1 Devicediscovery using SSDP L e e 46
5.1.1 SSDPsearchrequest. e 46
5.1.2 SSDPdevicereply e e 46
5.1.3 SSDP devicedescription 47 o
<
A Migrating from R2000 to R2300 48 %
A1 Functional comparison 48 a
A.2 PFSDP command implementation e e 48 %
A.2.1 Commands available on R2000 devicesonly 48 5
A.2.2 Commands available on R2300 devicesonly 48 E
A.2.3 Error handling forcommandrequests 48 §
A.3 PFSDP parameter implementation e 49
A.3.1 Measurement configuration 49 ?
A3.2 Pilotlaser 49 s
A3.3 Usertagand usernotes it i 49 I
A34 HMlparameters 49 2
A.4 PFSDP scandataimplementation L 50 8
A.41 Connectionhandling 50 &

3 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Contents

A.4.2 Scandataoutput customization e 50

A4.3 Scandatapackettypes L e 50

A5 Filter-based scandata processing e 50

B Troubleshooting the Ethernet communication 51
B.1 Checking the Ethernetsetup 51
B.2 Debuggingusingawebbrowser 51
B.3 Debugging using Wireshark 51

C Protocol version history 53
C.1 Protocolversion 1.05 L e e 53

D Document change history 54
D.1 Release 2024-10 (protocol version 1.05) 54
D.2 Release 2022-08 (protocol version 1.05) L e 54
D.3 Release 2020-10 (protocol version 1.05) e 54
Index for commands and parameters 55
References 56

Protocol version 1.05 Document release 2024-10

1 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Protocol basics

1 Protocol basics

This chapter describes the basics of the Pepperl+Fuchs scan data protocol (PFSDP).

1.1 Basic design

The communication protocol specification is based on the following basic design decisions:

» A simple command protocol using HTTP requests (and responses) is provided in order to parametrize and control the
sensor. The HTTP can be accessed using a standard web browser or by establishing temporary TCP/IP connections to
the HTTP port.

» Sensor process data (scan data) is received from the sensor using a separate UDP/IP channel. The UDP channel
provides an efficient transmission of scan data combined with minimal latency.

Output of scan data is always conform to the following conventions:
» Data output is performed as packets with a packet size adapted to the common Ethernet frame size .

+ A single packet always contains data of a single continuous scan only. Scan data output always starts with a new packet
for every (new) scan.

» For scan data output the user application can select from multiple data types with different levels of information detail.
This way a client can decide to receive only the amount of data needed for its individual application — reducing traffic.
Furthermore this provides an easy way to implement future extensions to the scan data output (e.g. adding additional
information) as well.

» The byte order for all binary data is Little Endian (least significant byte first). The DSP of the sensor and PC CPUs both
use Little Endian — thus no conversions need to take place.

» The sensor capabilities restrict the number of active (concurrent) client connections. This does not imply though that the
device can handle multiple concurrent connections with the maximum amount of (scan) data. Basically it is the users
responsibility to design his (client) system or application in a way that the sensor can handle the amount of requested
data without getting overloaded.

1.2 HTTP command protocol

The HTTP command protocol provides a simple unified way to control sensor operation for application software. HTTP
commands are used to configure sensor measurement as well as to read and change sensor parameters. Furthermore it is
used to set up (parallel) UDP data channels providing sensor scan data.

This section describes the basic HTTP command protocol and various commands available to the user. Transmission of scan
data using an additional UDP channel is explained in section 3.4.

1.2.1 Sending commands

Sending commands to the sensor is done using the Hypertext Transfer Protocol (HTTP) as defined by RFC 2616 [5]. Each
HTTP command is constructed as Uniform Resource Identifier (URI) according to RFC 3986 [8] with the following basic
structure:

<scheme>:<authority>/<path>?<query>#<fragment>
A typical HTTP request to the sensor looks like:

http://<sensor IP address>/cmd/<cmd_name>?<argumenti=value>&<argument2=value>

Protocol version 1.05 Document release 2024-10

5 2 PEPPERL+FUCHS

http://en.wikipedia.org/wiki/URI_scheme

R2300 Ethernet communication protocol
Protocol basics

Thus, in terms of an URI a valid HTTP command is composed of the following parts:
« scheme is always 'http://’
« authority is represented by the IP address of the sensor (and a port number, if necessary)
« path consists of the prefix 'emd/’ and the name of the requested command ('<cmd_name>’)
» query lists additional arguments for the specific command

« fragment is currently not used — anything following the hash mark will be ignored

Please note:

The order of the command arguments (within <query>) is interchangeable at will. Sole exception is the argument handle
(see section 3.3), which has to be specified always first in order to identify the client scan data connection — provided that
this is required for the requested command.

Please note:
The maximum length of a HTTP request URI is limited to 255 B. Any request with a longer URI will be rejected with a HTTP
status code 400 (see section 1.2.6). Typical user application usually do not exceed this limitation, though.

1.2.2 Query argument encoding

The query part of the command URI (see section 1.2.1) is used to transport additional arguments to HTTP commands (com-
pliant to RFC 3986 [8]). This section describes the composition of arguments as “key=value” pairs.

HTTP command arguments are composed using the following scheme (“key=value” pairs):
key=value[;value] [&key=value]

The key denotes an argument that receives one or more values. Multiple values for a single argument are separated by a
semicolon’;’. A single command takes multiple arguments separated by an ampersand ’&’.

Please note:

Some characters are reserved within an URI and need to be percent encoded according to the rules of RFC 3986 [8]. Most
notably, if parameter values contain URI delimiters like the question mark ’?’, equal sign ’=’ or the ampersand '&’, these
characters need to be escaped on the URI.

1.2.3 Replies to commands

After sending a command to the sensor the following replies can be received:

* HTTP status code
A HTTP command will be answered with a standard HTTP status code first. This code indicates whether the command
(i.e. URI) is known and has been received correctly. An error code is returned only if the URI is invalid or could not be
processed. Please refer to section 1.2.6 for a detailed description of HTTP status codes used by the R2300.

+ Command error code
Normally the HTTP status code is read as 'OK’. In this case the result of the command processing can be evaluated
using two return values: error_code and error_text. error_code contains a numeric result code for the command call,
while error_text provides a textual error description. Both values are returned using JSON encoding [10]. Section 1.2.7
provides a detailed description of all R2300 command error codes.

« Command reply data
The body of a command reply contains any requested payload data. This data is always transmitted using JSON encod-
ing [10]. Large amounts of data might be output using base64 encoded JSON arrays.

Please note:
The character encoding used for all JSON encoded command replies of the R2300 is always UTF-8 (RFC 7159 [10]).

Please note:

If the R2300 is not able to pre-compute the Content-Length of the response, it might choose to use "Transfer-encoding:
chunked" where the length information comes as hex byte count numbers interleaved with the actual content. This can only
happen when using HTTP/1.1 persistent connections (see section 1.2.4) and HTTP client libraries should be able to interpret
the possibly chunked response data as needed. Alternatively the application can choose to use HTTP/1.0 requests only in
order to avoid chunked responses.

Protocol version 1.05 Document release 2024-10

: 2 PEPPERL+FUCHS

http://json.org/
http://json.org/
http://json.org/

R2300 Ethernet communication protocol
Protocol basics

1.2.4 HTTP/1.1 persistent connections

The R2300 provides full support for HTTP/1.1 as specified by RFC 2616 [5] including persistent connections. In order to
establish a persistent connection a HTTP request should include the "Connection: keep-alive" header. The R2300 will
respond and usually keep the connection open except in some rare cases.

Please note:
HTTP client libraries should be able to automatically add the required header for using a single persistent connection. Proper
configuration of the library for this use case is out of the scope of this documentation.

1.2.5 HTTP request and reply — low level example
This section shows an example, how a HTTP request is transmitted to the sensor without using a web-browser. Lets assume,
that the following HTTP request shall be send:

http://<sensor IP address>/cmd/get_parameter?list=scan_frequency

This request is translated into a simple string (using HTTP/1.0 in this example):

1 |GET /cmd/get_parameter?list=scan_frequency HTTP/1.0\r\n\r\n

This string is then send as payload data of a TCP/IP packet to the sensor. The sensor then sends back a TCP/IP packet with
the HTTP reply as payload data. The HTTP reply can be parsed as simple text string with the following content:

"scan_frequency":SO,\r\n
"error_code":0,\r\n
"error_text":"success"\r\n

Nr\n

1 HTTP/1.0 200 OK\r\n

2 |Expires: -1\r\n

3 |Pragma: no-cache\r\n

4 |Content-Type: text/plain\r\n
5 |Connection: close\r\n

6 |\r\n

7 | {\r\n

8

9

[
o

[
[

The most important parts of this HTTP reply are the first line containing the HTTP error code and the last few lines con-
taining the requested information wrapped within a single JSON-encoded [10] object denoted by a pair of curly brack-
ets.

Please note:
It is highly recommended to use a third party HTTP library instead of a new custom implementation. Standards-compliant
HTTP client implementations are widely available for most operation systems and hardware platforms (e.g. Libwww [12] or
1ibcURL [13]).

1.2.6 HTTP status codes

The following table lists all HTTP status codes used by the device:

status code message description
200 0K request successfully received
400 Bad Request wrong URI syntax or URI too long
403 Forbidden permission denied for this URI
404 Not Found unknown command code or unknown URI
405 Method not allowed invalid method requested (currently only GET is allowed)

Protocol version 1.05 Document release 2024-10

7 I3 PEPPERL+FUCHS

http://json.org/
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

R2300 Ethernet communication protocol

Protocol basics

Examples for (invalid) queries causing a HTTP error

request status code error message
http://<ip>/cmd/nonsense 400 "unrecognized command"
http://<ip>/cmd/get_parameter&test 400 "unrecognized command"
http://<ip>/cmd/get_parameter?list 400 "parameter without value"
http://<ip>/test 404 "file not found"
http://<ip>/test/ 404 "file not found"
http://<ip>/test/file 404 "file not found"

1.2.7 Sensor error codes

The following table lists some generic error codes (error_code) returned by the device:

error code description (error_text)

0 "success"

100 "unknown argument ’%s’"

110 "unknown parameter ’%s’"

120 "invalid handle or no handle provided"

130 "required argument ’%s’ missing"

200 "invalid value ’Js’ for argument ’%s’"

210 "value ’%s’ for parameter ’Js’ out of range"

220 "write-access to read-only parameter ’%s’"

230 "insufficient memory"

240 "resource already/still in use"

333 "(internal) error while processing command ’%s’"
Please note:

The error message in error_text might slightly vary depending on the firmware version and the specific error condition of
the actual command. Do not expect to receive error messages exactly as listed above.

Examples for (invalid) commands provoking sensor error codes

command (query) code error message

/cmd/get_protocol_info?list=test 100 "Unknown argument ’list?’"

/cmd/get_parameter?list=test 110 "Unknown parameter ’test’"

/cmd/start_scanoutput 120 "Invalid handle or no handle provided"
/cmd/start_scanoutput?handle=test 120 "Invalid handle or no handle provided"
/cmd/set_parameter?ip_address=777 200 "Invalid value ’777’ for argument ’ip_address’."
/cmd/set_parameter?scan_frequency=999 210 "Value ’999’ for parameter ’scan_frequency’ is out of range."
/cmd/set_parameter?serial=123456 220 "Write-access to read-only parameter ’serial’"

Protocol version 1.05 Document release 2024-10

8 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Protocol basics

1.2.8 Protocol information (get_protocol_info)

Ethernet protocol users should be aware that depending on the protocol version some commands might not be available or
might show different behavior. For this reason user applications should always check the protocol version using the dedicated
command get_protocol_info which returns basic version information on the communication protocol:

parameter name type description

protocol_name string Protocol name (currently always ’pfsdp’)
version_major uint Protocol major version (e.g. 1 for 'v1.02’, 3 for 'v3.10’)
version_minor uint Protocol minor version (e.g. 2 for 'v1.02’, 10 for 'v3.10’)
commands string List of all available HTTP commands

This document refers to protocol version ’1.05’ which is implemented by R2300 firmware version '1.00’ and newer.

Please note:

The command get_protocol_info will return the above information on every sensor — regardless of its firmware version.
All other commands and their return values might be changed by updates to the communication protocol, though. Therefore
it is strongly recommended to check the protocol version first.

Example

Query: http://<sensor IP address>/cmd/get_protocol_info

Reply: {
"protocol_name":"pfsdp",
"version_major":1,
"version_minor":4,
"commands": [
"get_protocol_info",
"list_parameters",
"get_parameter",
"set_parameter",
"reset_parameter",
"factory_reset",
"reboot_device",
"request_handle_udp",
"release_handle",
"start_scanoutput",
"stop_scanoutput",
"get_scanoutput_config",
"set_scanoutput_config",
"feed_watchdog"

1,
"error_code":0,
"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

0 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2 Sensor parametrization using HTTP

2.1 Parameter types

The sensor provides access to different types of parameters. The following table gives a quick overview of the relevant types,
a more detailed description follows in separate sub-sections:

type description

enum enumeration type with a set of named values (strings)
bool boolean values (on / off)

bitfield a set of boolean flags

int signed integer values

uint unsigned integer values

double floating point values with double precision

string strings composed of UTF-8 characters

ipv4 Internet Protocol version 4 addresses or network masks
ntp64 NTP timestamp values

array collection of values of the same type

Independently of their type, each parameter belongs to one of the following access groups:

access description

sRO static Read-Only access (value never changes)

RO Read-Only access (value might change during operation)
RW Read-Write access (non-volatile storage)
vRW volatile Read-Write access (lost on reset)

Most sensor parameters are stored in non-volatile memory. Thus their value also persists a power-cycle of the device.

Please note:

Non-volatile storage has a limited number of write cycles only (typically > 10.000 cycles). Therefore all non-volatile parame-
ters should be written only if necessary.

2.1.1 Enumeration values (enum)

Notes on parameters using enumeration values (enum):
« An enumeration type parameter accepts a single value out of a list of predefined values.
» Each enumeration values is defined by a string (‘'named’ value).
» Each enumeration value is typically (but not necessarily) unique to the specific parameter.
» Each enum parameter can hold only a single value at a time.

* URI: Named enumeration values use non-reserved ASCII characters only and need no percent encoding [8] when
specified as argument to a command on the URI.

2.1.2 Boolean values (bool)

Notes on parameters using boolean values (bool):
» Boolean parameters are a special case of enumeration parameters.
+ Only the named values on and off are accepted.
» Each bool parameter can hold only a single value at a time.

Protocol version 1.05 Document release 2024-10

10 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Sensor parametrization using HTTP
2.1.3 Bit fields (bitfield)

Notes on parameters using bit fields (bitfield):
+ Bit fields combine multiple boolean flags into an unsigned integer value.
+ Each flag occupies a single bit of the integer.
» Not every bit of the integer needs to be assigned to a flag.

« Bits might be marked as reserved. These should always be zero.

Bit field parameters are read and written using the integer representation.

2.1.4 Integer values (int, uint)

Notes on parameters using signed integer values (int) and unsigned integer value (uint):
 Unless denoted differently, the value range of integer values is limited to 32 bit.
» Leading zeros are accepted when writing a value (they will be ignored).

» Neither a hexadecimal nor an octal representation of integer values is supported.

2.1.5 Double values (double)

Notes on parameters using double precision floating point values (double):
« Adot’.’ is used as decimal mark (separating the decimal part from the fractional part of a double number).

» The floating point decimal format (xxx.yyy) should be used when accessing double parameters. The floating point
exponential format (xxx.yyy Ezzz) is not supported.

» The number of significant digits of the fractional part of a double value might be limited for some parameters. Excess
digits are rounded or discarded.

2.1.6 String values (string)

Notes on parameters using string values (string):
« Strings represent a set characters.
« All characters of the string need to be encoded in UTF-8 format [7].

» The maximum size of a string is usually limited. Please refer to the description of the specific parameter for its actual
size limitation.

» URI: For write access to a string parameter, its new value is implicitly delimited by the surrounding ’=" and '&’ within the
URI (see RFC 3986 [8]). Any additionally added delimiter (e.g. '"’) will be interpreted as part of the string.

» URI: Some characters are reserved within an URI and need to be percent encoded [8] (see section 1.2.2 for details).
When parsing a string-typed parameter within an UTF-8 encoded command URI the sensor performs the following steps:
1. Dissect the URl into it individual parts
2. Resolve percent encoded characters
3. Check string for a valid UTF-8 encoding

4. Process the string (UTF-8 bytes), e.g. store it into non-volatile memory

Protocol version 1.05 Document release 2024-10

1 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

When the sensor outputs a string-typed parameter in JSON format, it applies escaping for the following reserved UTF-8
characters (as required by RFC 7159 [10] section 2.5):

character code replacement
backspace U+0008 \b’

tabulator U+0009 \t’

new line U+000A \n’

form feed U+000C \f’

carriage return U+000D A\r’

double quote U+0022 A

solidus U+002F currently not replaced
backslash U+005C AN

other control characters U+0000 ...U+001F "\uXXXX’

2.1.7 IPv4 address and network mask values (IPv4)

Notes on parameters using IPv4 network addresses and subnet masks (IPv4):
» Addresses and network masks need to follow the rules of the Internet Protocol specification (RFC-791 [1])
» Addresses are denoted as string values in human-readable dotted decimal notation (i.e. 10.0.10.9)

» Subnet masks are denoted as string values in human-readable dotted decimal notation (i.e. 255.255.0.0)

2.1.8 NTP timestamp values (ntp64)

Notes on parameters using NTP timestamps (ntp64):
* NTP timestamps are part of the Network Time Protocol (NTP) as defined by RFC 1305 [2].

» NTP timestamps are represented as a 64 bit unsigned fixed-point integer number (uint64) in seconds in reference to a
specific point in time. The most significant 32 bit represent the integer part (seconds), the lower 32 bit the fractional part.

» Absolute timestamps (synchronized time) refer to the time elapsed since 1 January 1900.
* Relative timestamps (raw system time) refer to the time elapsed since power-on of the sensor.

Please refer to section 3.1.5 for more details on timestamps.

2.1.9 Collection of values (array)

Notes on parameters using a collection of values (array):

» Parameters of type array store multiple elements of the same type. The type of the elements is specific to the individual
parameter. See the description of the specific parameter for details.

 For array parameters both the number of elements as well as the value of each element is checked. The correct number
of elements and allowed element values depend on the specific parameter.

» Read access to a array parameter returns its value as a encoded JSON array with the value for each element.

» Write access to a array parameter requires the array elements to be provided as a comma-separated list of values.

Individual access to a specific element of an array parameter is not supported.

12 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.2 Commands for sensor parametrization

This section describes all commands available for manipulation of global sensor parameters.

2.2.1 list_parameters — list parameters

The command list_parameters returns a list of all available global sensor parameters.

Example

Query: http://<sensor IP address>/cmd/list_parameters

Reply: {
"parameters": [
"ip_mode",
"ip_address",
"subnet_mask",
"gateway",
"mac_address",
"ip_mode_current",
"ip_address_current",
"subnet_mask_current",
"gateway_current",
"serial",
"vendor",
"product”,
"part " s
"revision_fw",
"revision_hw",
"feature_flags",
"emitter_type",
"device_family",
"max_connections",
"scan_frequency_min",
"scan_frequency_max",
"radial_range_min",
"radial_range_max",
"radial_resolution",
"angular_resolution",
"angular_fov",
"sampling_rate_min",
"sampling_rate_max",
"up_time",
"power_cycles",
"operation_time",
"operation_time_scaled",
"temperature_current”,
"temperature_min",
"temperature_max",
"system_time_raw",
"status_flags",
"scan_frequency_measured",
"locator_indication",
"pilot_laser",
"pilot_start_angle",
"pilot_stop_angle",
"user_tag",
"layer_enable",
"scan_frequency",
"scan_direction",
"measure_start_angle",
"measure_stop_angle",
"operating_mode",
"samples_per_scan"

s

"error_code":0,
"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

13 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.2.2 get_parameter —read a parameter

The command get_parameter reads the current value of one or more global sensor parameters:
http://<sensor IP address>/cmd/get_parameter?list=<paraml>;<param2>

Command arguments

* list — semicolon separated list of parameter names (optional)

If the argument 1ist is not specified the command will return the current value of all available parameters.

Example

Query:http://<sensor IP address>/cmd/get_parameter?list=scan_frequency;scan_frequency_measured

Reply: {
"scan_frequency":50,
"scan_frequency_measured":49.900000,
"error_code":0,
"error_text":"success"

}

2.2.3 set_parameter — change a parameter

Using the command set_parameter the value of any write-accessible global sensor parameter can be changed:

http://<sensor IP address>/cmd/set_parameter?<paraml>=<value>&<param2>=<value>

Command arguments

* <paraml> = <value> — new <value> for parameter <param1>

* <param2> = <value>— new <value> for parameter <param2>

Please note:
The command set_parameter returns an error message, if any parameter specified as command argument is unknown or a
read-only parameter. The return values error_code and error_text have appropriate values in this case (see section 1.2.7).

Example

Query: http://<sensor IP address>/cmd/set_parameter?scan_frequency=50

Reply: {
"error_code":0,
"error_text":"success"

}

14 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.2.4 reset_parameter — reset a parameter to its default value

The command reset_parameter resets one or more global sensor parameters to their factory default values:
http://<sensor IP address>/cmd/reset_parameter?list=<paraml>;<param2>

Command arguments

+ list — semicolon separated list of parameter names (optional)

Please note:

If the argument 1ist is not specified the command will load the factory default value for all parameters writeable with
set_parameter!

Please note:
This command applies to global R/W parameters accessible via the command set_parameter only. If the argument 1ist
contains an unknown or a read only parameter, an error message will be returned.

Please note:
Resetting a parameter to its default value might require a device restart in order to take effect. For example, this applies to
all Ethernet configuration parameters (see section 2.5).

Example
Query: http://<sensor IP address>/cmd/reset_para.meter?list=scan_frequency;sca.n_direction
Reply: {

"error_code":0,

"error_text":"success"

}

2.2.5 reboot_device — restart the sensor firmware

The command reboot_device triggers a soft reboot of the sensor firmware:
http://<sensor IP address>/cmd/reboot_device

Command arguments

The command accepts no additional arguments. The reboot is performed shortly after the HTTP reply has been sent.

Please note:

A reboot terminates all running scan data output. All scan data handles are invalidated and have to be renewed from scratch
after reboot (see section 3.4).

Please note:
A device reboot takes up to 60 s (depending on the sensor configuration). The reboot is completed as soon as the sensor
answers to HTTP command requests again and the system status flag Initialization (see section 2.9.2) is cleared.

Example

Query: http://<sensor IP address>/cmd/reboot_device

Reply: {
"error_code":0,
"error_text":"success"

}

15 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol
Sensor parametrization using HTTP
2.2.6 factory_reset — reset the sensor to factory settings

The command factory_reset performs a complete reset of all sensor settings to factory defaults and reboots the device. Its
resultis similar to a call of reset_parameter without any arguments followed by a call to reboot_device.

Command arguments

The command accepts no additional arguments. The factory reset and device reboot is performed shortly after the HTTP
reply has been sent.

Please note:
The factory reset performs a device reboot, because some changes take effect at sensor boot time only (e.g. all changes to
Ethernet configuration parameters — see section 2.5).

Example

Query: http://<sensor IP address>/cmd/factory_reset
Reply: {
"error_code":0,

"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

16 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.3 Basic sensor information

This section describes all sensor parameters which are available to the user.

2.3.1 Parameter overview

The following table lists numerous parameters (mostly read-only) which provide basic sensor information:

parameter name type description access
device_family uint Numeric unique identifier (see below) sRO
vendor string Vendor name (max. 100 chars) sRO
product string Product name (max. 100 chars) sRO
part string Part number (max. 32chars) sRO
serial string Serial number (max. 32 chars) sRO
revision_fw string Firmware revision (max. 32 chars) sRO
revision_hw string Hardware revision (max. 32 chars) sRO
user_tag string User defined name (max. 32 bytes) RW

These entries are comparable to generic information available on 10-Link devices. In contrast to 10-Link most strings have no
size limitation, though. Furthermore each parameter can be read individually using the command get_parameter.

2.3.2 Device family (device_family)

The parameter device_family can be used to identify compatible device families. A single device family is defined as group
of devices with identical functionality (regarding the Ethernet protocol). This identifier can be used to check if the connected
device is compatible with the client application (e.g. DTM user interface).

Currently the following values are defined for device_family:

value name description
0 reserved never used
1 OMDxxx-R2000 R2000 OMD UHD raw data devices with ultra-high resolution
2 OBDxxx-R2000 R2000 OBD detection devices with standard features
3 OMDxxx-R2000-HD R2000 OMD HD raw data devices with high resolution
4 reserved
5 OMDxxx-R2300 R2300 OMD multi-line scanner
6 OMDxxx-R2000-SD R2000 OMD SD raw data devices with standard resolution
7 OMDxxx-R2300 R2300 OMD single-line scanner

2.3.3 User defined tag (user_tag)

The parameter user_tag is a string that can be used by the user to store information about the device. It can store any data
of type string (see section 2.1) with a length of up 32 bytes.

The default value for user_tag is typically a short version of the product name (parameter product).

Please note:
The string stored in user_tag must not contain NUL bytes.

Protocol version 1.05 Document release 2024-10

17 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.4 Sensor capabilities

2.4.1 Parameter overview

The following static read-only parameters describe the sensor capabilities:

parameter name type unit description access
feature_flags array sensor feature flags (see below) sRO
emitter_type uint type of light emitter used by the sensor (see below) sRO
radial_range_min double m min. measuring range (distance) sRO
radial_range_max double m max. measuring range (distance) sRO
radial_resolution double m mathematical resolution of distance values in scan data output sRO
angular_fov double ° max. angular field of view sRO
angular_resolution double ° mathematical resolution of angle values in scan data output sRO
layer_count uint number of distinct scan planes (layers) sRO
layer_inclination array ° array with inclinations of individual scan planes (layers) sRO
scan_frequency_min double Hz min. supported scan rate (see section 2.6) sRO
scan_frequency_max double Hz max. supported scan rate (see section 2.6) sRO
sampling_rate_min uint Hz min. supported sampling rate (see section 2.6) sRO
sampling_rate_max uint Hz max. supported sampling rate (see section 2.6) sRO
max_connections uint max. number of concurrent scan data channels (connections) sRO

2.4.2 Device features (feature_flags)

The parameter feature_flags returns a JSON [10] encoded list of features available for the queried device. Currently the
following features are defined:

feature name description reference PFSDP version
ethernet Ethernet interface v1.00 or newer
scan_data_filter Block-wise filtering of scan data Chapter 4 v1.03 or newer

scan_data_filter_moving Moving-window filtering of scan data Chapter 4 v1.05 or newer

If a feature is available, its name is listed within the feature_flags array.

2.4.3 Emitter type (emitter_type)

The parameter emitter_type can be used to determine the type of light emitter (aka transmitter) used by the specific
sensor. Currently the following emitter types are defined for R2300 devices:

type description

0 undefined / reserved
1 not available
2 infrared laser (905 nm)

2.4.4 Layer configuration (1layer_count and layer_inclination)

The parameters layer_count and layer_inclination provide information on the layer configuration of R2300 devices. The
following table lists typical layer configurations:

device family layer_count layer_inclination
R2300 OMD multi-line scanner 4 [-4.5°% -1.5° +4.5° +1.59
R2300 OMD single-line scanner 4 [0°;0°;0°;0°]

Please note:

Protocol version 1.05 Document release 2024-10

The array layer_inclination specifies the inclination of subsequent scans in the exact output order.

18 2 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.5 Ethernet configuration

2.5.1 Parameter overview

The following parameters allow configuration changes of the Ethernet interface:

parameter type description access default
ip_mode enum IP address mode: static, dhcp, autoip RwW autoip
ip_address ipv4 static IP mode: sensor |IP address RwW 10.0.10.76
subnet_mask ipvé4 static IP mode: subnet mask RwW 255.0.0.0
gateway ipv4 static IP mode: gateway address RwW 0.0.0.0
ip_mode_current enum current IP address mode: static, dhcp, autoip RO autoip
ip_address_current ipvé4 current sensor IP address RO 169.254.x.y
subnet_mask_current ipvé4 current subnet mask RO 255.255.0.0
gateway_current ipvé4 current gateway address RO 0.0.0.0
mac_address string sensor MAC address ("000D81xxxxxx") sRO -

The read-only parameters ip_mode_current, ip_address_current, subnet_mask_current and gateway_current provide
access to the currently active IP configuration. This is especially useful when using automatic IP configuration via DHCP or
AutolP.

Please note:
Any changes to the Ethernet configuration (using set_parameter Or reset_parameter) are applied after a system reboot
only! The command reboot_device (See section 2.2.5) is available to initiate a reboot using the Ethernet protocol.

2.5.2 IP address mode (ip_mode)

The parameter ip_mode configures one of the following IP address modes:

IP mode description

static static IP configuration using ip_address, subnet_mask, gateway
autoip automatic IP configuration using "Zero Configuration Networking" [16]
dhcp automatic IP configuration using a DHCP server

Please note:

With automatic IP configuration using DHCP or AutolP the parameters ip_address_current and subnet_mask_current
might return the invalid IP address 0.0.0.0, if no valid IP address has been assigned to the sensor yet (e.g. if no DHCP
server is found).

Please note:
If dhcp mode has been configured but no DHCP server is available R2300 devices will fall back to autoip mode while

continuing to search for a DHCP server in the background.

19 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.6 Measuring configuration

2.6.1 Parameter overview

The following (global) parameters are available for basic measurement configuration:

parameter name type unit description access default
operating_mode enum - mode of operation: measure, emitter_off vRW measure
scan_frequency double 1Hz scan rate (50 Hz and 100 Hz) RwW 100 Hz
scan_direction enum - direction of rotation: ccw only RW cew
samples_per_scan uint samples number of readings per scan RO 501
scan_frequency_measured double 1Hz measured scan rate (current value) RO -
layer_enable array - enable individual layers: on, off RW on,on,on,on
measure_start_angle int 0.0001° start angle for measurements (scan acquisition) RwW -500000
measure_stop_angle int 0.0001° stop angle for measurements (scan acquisition) RW +500000

2.6.2 Mode of operation (operating_mode)

The parameter operating_mode controls the mode of operation of the sensor. Currently, the following modes are avail-
able:

operating mode description

measure Sensor is recording scan data
emitter_off Emitter is disabled, no scan data is recorded

The mode measure is the normal mode of operation of the sensor and default after power-on. The mode emitter_off allows
the user to deactivate the light emitter, e.g. to avoid interference with other optical devices. A mode switch from measure to
emitter_off can only be performed, if no scan data connections are active, i.e. all handles have been released. While the
operating mode is set to emitter_off, no new scan data connection handles can be requested (see section 3.2). This state
is also signaled by the system status flag scan_output_muted (see section 2.9.2).

Please note:

The parameter operating_mode iS a non-persistent parameter, i.e. it reverts to its default value after reboot, power cycle or
factory reset.

Example

Query: http://<sensor IP address>/cmd/set_parameter?operating_mode=measure
Reply: {

"error_code":0,

"error_text":"success"

}

2.6.3 Scan rate (scan_frequency, scan_frequency_measured)

The parameter scan_frequency defines the number of scans recorded per second (see section 3.1 for details). This is also
called scan rate. For R2300 devices this value indirectly translates into the rotational speed of the internal mirror. Applications
can select a scan rate of either 50 Hz or 100 Hz (default).

The parameter scan_frequency_measured reads back the actual scan rate resulting from the current rotational speed of the
internal mirror with a resolution of 0.1 Hz. It is a read-only parameter.

Please note:
For R2300 devices the configured scan rate implicitly also defines the scan resolution (see section 2.6.5).

20 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

Example

Query: http://<sensor IP address>/cmd/get_parameter?list=scan_frequency;scan_frequency_measured
Reply: {

"scan_frequency":100,

"scan_frequency_measured":99.900000,

"error_code":0,

"error_text":"success"

}

2.6.4 Scan direction (scan_direction)

The parameter scan_direction defines the direction of rotation of the measuring beam while acquiring measurement data.

R2300 devices are recording scan data always in counter-clockwise (ccw).

Please note:
This parameter is only available for compatibility with R2000 devices. Any attempt to set scan_direction to cw will result in
an error message.

Example

Query: http://<sensor IP address>/cmd/set_parameter?scan_direction=ccw

Reply: {
"error_code":0,
"error_text":"success"

}

2.6.5 Scan resolution (samples_per_scan)

The parameter samples_per_scan defines the number of samples recorded within a scan (for details please refer to sec-
tion 3.1). This value implicitly also defines the scan resolution, i.e. the angular step between two subsequent measure-
ments.

For R2300 devices the scan resolution directly depends on the configured scan rate (parameter scan_frequency, see sec-
tion 2.6.3) and the internal sampling rate (this is also called pulse repetition rate in laser-safety terminology):

» At 100 Hz the sensor will acquire up to 501 samples per scan with a scan resolution of 0.2°.
» At 50 Hz the sensor will acquire up to 1001 samples per scan with a scan resolution of 0.1°.

The actual value additionally depends on the current measuring field of view, which is configured using the parameters
measure_start_angle and measure_stop_angle (see section 2.6.6). The value of samples_per_scan always reflects the
actual number of samples derived from the current configuration.

Please note:

On R2300 devices the parameter samples_per_scan is read-only. Any write access to this parameter will result into an error
message.

Example

Query: http://<sensor IP address>/cmd/get_parameter?list=samples_per_scan
Reply: {

"samples_per_scan'":501,

"error_code":0,

"error_text":"success"

}

21 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.6.6 Scan acquisition sector (neasure_start_angle / measure_stop_angle)

The angular range defined by the parameters measure_start_angle and measure_stop_angle determines the area, where
the sensor is actively acquiring scan data. Outside this area the emitter is not activated. Using these parameters applications
can limit the scanned area to a specific region of interest, if necessary. Per default the sensor acquires scan data for its
maximum field of view (see parameter angular_fov in section 2.4.1).

Please note:
Restricting the measuring field of view using measure_start_angle and measure_stop_angle Will resultin a reduced number
of measurements in a scan as reported by samples_per_scan (see section 2.6.5).

Please note:

The number of scan points that are output via a scan data connection can be further reduced using the connection-specific
parameters start_angle and max_num_points_scan (See section 3.3.5 for details) as well as by applying a decimating scan
data filter (see chapter 4 for details).

Example

Query: http://<sensor IP address>/cmd/set_parameter?measure_start_angle=0&measure_stop_angle=450000
Reply: {

"error_code":0,
"error_text":"success"

}

2.6.7 Layer configuration (1ayer_enable)

The parameter layer_enable allows the application to enable (on) or disable (off) measurements for individual layers. If a
layer is disabled, scan data for that layer is neither recorded nor output via an active scan data connection. The settings for
the individual layers are specified as elements of an array.

Example

Ouery: http://<sensor IP address>/cmd/set_parameter?layer_enable=on,off,on,off

Reply: {
"error_code":0,
"error_text":"success"

}

2.7 Alignment aid (pilot laser)

2.7.1 Parameter overview

R2300 devices feature a pilot laser functionality that intended to be used as alignment aid in client applications. This section
lists all (global) parameters that are available to configure this feature.

parameter name type description access default
pilot_laser bool enable pilot laser: on / off vRW off
pilot_start_angle int angle where to enable red pilot laser (0.0001 °) vRW -500000

pilot_stop_angle int angle where to disable red pilot laser (0.0001) vRW 500000

Please note:
All these parameters are non-persistent, i.e. they revert to their default values after reboot, power cycle or factory reset.

2.7.2 Pilot laser activation (pilot_laser)

The boolean parameter pilot_laser allows to enable (on) or disable (off) the pilot laser functionality. Default is of£.

Protocol version 1.05 Document release 2024-10

22 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Sensor parametrization using HTTP
2.7.3 Pilot laser sector (pilot_start_angle and pilot_stop_angle)

The parameters pilot_start_angle and pilot_stop_angle allow to restrict the field of view, where the pilot laser is shown
(when enabled via pilot_laser). Per default the parameters define the maximum field of view.

Please note:

The operation of the pilot laser is further restricted by the parameters measure_start_angle / measure_stop_angle (Sec-
tion 2.6.6) and layer_enable (section 2.6.7). The pilot laser will only be visible within the scan acquisition sector of each
active scan layer.

2.8 User interface configuration

2.8.1 Parameter overview

This section lists all (global) parameters that are available to configure the sensors human machine interface (HMI).

parameter name type description access default

locator_indication bool LED locator indication: on/ off vRW off

2.8.2 Locator indication (locator_indication)

The parameter locator_indication temporarily activates a distinctive flashing pattern for the Power and Q2 LEDs. This
function can be used to identify a specific R2300 device if multiple devices are installed.

Please note:
The locator indication function is non-persistent, i.e. it is automatically disabled after reboot, power cycle or factory reset.

Protocol version 1.05 Document release 2024-10

23 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.9 System status

2.9.1 Parameter overview

The following (read only) parameters can be accessed to get status information from the sensor.

parameter name type unit description access

status information

status_flags bitfield - sensor status flags (see section 2.9.2) RO

time information

system_time_raw ntp64 - raw system time (see section 3.1.5) RO
up_time uint min time since power-on RO
power_cycles uint - number of power cycles RO
operation_time uint min overall operating time RO
operation_time_scaled wuint min overall operating time scaled by temperature RO
operating conditions

temperature_current int °C current operating temperature RO
temperature_min int °C minimum lifetime operating temperature RO

(power-up update delay 15min)

temperature_max int °C maximum lifetime operating temperature RO

(power-up update delay 15min)

Example

Query: http://<sensor IP address>/cmd/get_parameter?list=up_time;power_cycles

Reply: {
"up_time":44,
"power_cycles":22,
"error_code":0,
"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

24 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Sensor parametrization using HTTP

2.9.2 System status flags (status_flags)

The read-only parameter status_flags (see section 2.9) provides an array of system status flags:

bit flag name description

Generic

0 initialization System is initializing, valid scan data not available yet

2 scan_output_muted Scan data output is muted by current system configuration (see section 2.6.2)
3 unstable_rotation Measured scan rate does not match set value

Warnings

8 device_warning Accumulative flag — set if device displays any warning

10 low_temperature_warning Current internal temperature below warning threshold
11 high_temperature_warning Current internal temperature above warning threshold

12 device_overload Overload warning — sensor CPU overload is imminent

Errors

16 device_error Accumulative flag — set if device displays any error

18 low_temperature_error Current internal temperature below error threshold

19 high_temperature_error Current internal temperature above error threshold

20 device_overload Overload error — sensor CPU is in overload state

Defects

30 device_defect Accumulative flag — set if device detected an unrecoverable defect

System status flags are similar to scan data header status flags (see section 3.4.3) but provide up-to-date information on the
current device status (not associated to specific scan data).

Please note:
All flags not listed in the above table are reserved and should be ignored.

Protocol version 1.05 Document release 2024-10

25 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Scan data output using UDP

3 Scan data output using UDP

3.1 Principles of scan data acquisition

The R2300 is a multi-layer laser scanner designed to periodically measure distances within a 100° field of view for up to
4 distinct measurement planes. The measurements recorded for a single sweep of the measuring beam over the angular
field of view are aggregated into a scan which yields a sequence of scan points (also called samples) within this spe-
cific scan plane (also called scan layer). Scan acquisition is performed at a constant rate as defined by the parameter
scan_frequency (see section 2.6). The number of scan points within a scan is defined by the parameter samples_per_scan
(see section 2.6).

Each scan point is comprised of a distance value for a corresponding angle as well as an echo amplitude. However, since
measurements are performed with an uniform angular resolution (depending on the parameter samples_per_scan), the actual
scan data output typically just gives distance and amplitude data for each sample. The corresponding angular reading can
be reconstructed by adding up the angular increments from the starting angle of the scan. The output format of scan data
depends on the scan data packet type used — please refer to section 3.4 for further details.

For multi-layer devices successive scans are recorded with different inclination angles (as defined by layer_inclination). A
set of these scans can be combined to a 3D image frame (3D point cloud). The update rate (frame rate) of this 3D image is
determined by the scan rate (as configured by scan_frequency) divided by the number of distinct scan layers (as defined by
layer_count).

The following subsections describe various basic concepts of the scan data representation used by the R2300.

3.1.1 Sensor coordinate system

The sensor coordinate system is defined as right-handed Cartesian coordinate system. Figure 3.1 shows this coordinate
system for the top view and one side view of the sensor: The origin is located at the point of intersection of the axis of rotation
and the axis of the laser beam. The X-axis points to the sensor front (with status LEDs). The Y-axis is located perpendicular
to the X-axis and parallel to the base-plate of the sensor (pointing upwards in fig. 3.1a). The Z-axis is collinear to the axis of
rotation (pointing upwards in fig. 3.1b).

A

Y

(a) R2300 top view (b) R2300 front view

Figure 3.1: Sensor coordinate system

Protocol version 1.05 Document release 2024-10

26 2 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Scan data output using UDP
3.1.2 Scan data coordinate system

All measurements of a laser scan are recorded within a specific scan plane. R2300devices acquire scan data in up to 4
individual layers which are slightly tilted along the Y-axis compared to the plane formed by the X-axis and the Y-axis of the
sensor coordinate system. Therefore each layer defines it's own scan data coordinate system.

Scan data acquisition is performed sequentially by a measuring beam rotation around the origin of the scan plane. Therefore
scan data is typically represented within a polar coordinate system (see fig. 3.2a). The pole of the polar coordinate system is
defined by the axis of rotation (Z-axis of the scan data coordinate system). The reference for angular measurements (polar
axis) is equivalent to the X-axis of the scan data coordinate system (pointing upwards in fig. 3.2a).

During nominal operation scan points are continuously recorded using a uniform angular increment and direction of rotation.
While the angular increment can be configured by a global device parameter (see section 2.6) the direction of rotation is
always performed in mathematically positive direction. This direction is called counter-clockwise (abbreviated ccw) — the
angular increment between two subsequent scan points has a positive value.

00
. 0°
A Polar axis measurement Polar axis
angle |
/ -30°
/ angular
increment
+50° 50° +50° 5 50e
AN v
measurement
distance

Pole (sensor)

v Pole (sensor)

(a) Polar coordinates of laser scan (b) Single scan point coordinates

Figure 3.2: Scan data coordinate system

Figure 3.2b shows a (simplified) example of a laser scan with a small number of samples. The measurement angle of a
single scan point (angular coordinate) is calculated within the scan plane with reference to the polar axis. The measurement
distance (radial coordinate) is determined by the distance from the center of rotation (pole) to the object hit by the laser beam.
Angular coordinates within the 100° field of view are specified with a value range of [—50°; +50°] including both -50° and
+50°.

3.1.3 Distance readings

Distance readings are typically output as integer value as defined by the scan data packet type (see section 3.4). In case
of invalid measurements (e.g. no echo detected or distance out of range) the distance reading is set to an error substitu-
tion value: the biggest representable integer value for a distance value (e.g. OxFFFFFFFF for an uint32 typed distance
value).

Please note:

The measurement resolution and measurement range are limited by the physical capabilities of the sensor as listed
in the sensor data-sheet. This information is also available by means of the read-only variables radial_resolution,
radial_range_min and radial_range_max (See section 2.4).

3.1.4 Echo amplitude readings

For each measurement of the sensor optional amplitude data is available to the client. R2300 amplitude data is output as
dimensionless non-linear value with a fixed resolution of 12 bit.

On principle, amplitude data can deliver an estimate of the relative reflectivity of an object only. Measured amplitude depends
on the surface properties of the target object (its absolute reflectivity), its distance to the sensor, the angle of incidence of
the sensors laser beam on the target surface, etc. — therefore a direct comparison of amplitude data is only viable for object
surfaces under similar observation conditions.

Protocol version 1.05 Document release 2024-10

27 2 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Scan data output using UDP

Please note:
Please note that amplitude data is not calibrated. Thus amplitude data of different sensor devices may not be identical even
under similar observation conditions!

The least significant values of the 12 bit amplitude data are reserved for the following special values:

value name description
0 no echo receiver detected no echo
1 blinding receiver overloaded due to excessive echo amplitude
2 error unable to measure echo amplitude
3 reserved internal (should not occur during normal operation)
4 reserved internal (should not occur during normal operation)
5 reserved internal (should not occur during normal operation)
6 weak echo detected echo too weak for a valid measurement

7-31 reserved reserved for internal use

>31 amplitude measured echo amplitude value

All values in the range of 7 to 31 are reserved for internal use. The smallest amplitude value for a valid measurement is
32.

3.1.5 Timestamps

The R2300 devices record raw timestamps while scan data is being captured. They are generated by an internal system
clock that starts counting from zero at power-on. Its resolution is better than 1 ms and its drift is below 100 ppm. The
timestamps are stored in 64bit NTP timestamp format (see section 2.1.8 for details). Raw time is always incrementing without
any discontinuities or overflows.

For synchronisation with another clock source, the client application can access the raw system time via the device pa-
rameter system_time_raw (see section 2.9). When system_time_raw iS read using get_parameter the device will return
the raw system time for the point in time, when the command has been received. Please note that both sending the re-
quest for a timestamp and receiving the reply with the timestamp are affected by the non-deterministic HTTP transmission
delay.

A typical approach for synchronising the sensor system time with a client clock would be:

1. Send a get_parameter command for reading system_time_raw to the device.
Record the client time trcequest for the point in time when the command has been sent.

2. Wait for the reply for get_parameter which provides the sensor system time ¢5,,,..

Record the client time trceply for the point in time when the reply has been received.

3. Assuming a symmetric delay for the HTTP transmission of request and reply, calculate the client time ¢S, that corre-
SPONAS 10 ¢35, .

C C
C _ tC (tTeply - trequest)
tsync — Yrequest + 2

28 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol
Scan data output using UDP

3.2 Principles of scan data output

3.2.1 Introduction

In order to receive scan data from the laser scanner the client application needs to establish a scan data connection to
the sensor. R2300 devices currently support UDP data channels only. UDP channels allow data transmission with low

latency at the expense of potential unrecoverable data corruption or data loss. They are managed using the HTTP command
interface.

For typical applications the following steps are necessary to use scan data output:
1. Set up global configuration of the scanner (see chapter 2), if necessary

. Establish a data channel to the sensor (see section 3.3.1)

. Configure scan data output (see section 3.3.5), if necessary

Start scan data transmission (see section 3.3.3)

Receive scan data from the device (see section 3.4)

o om0 N

Stop scan data transmission (see section 3.3.4)
7. Terminate the data channel to the sensor (see section 3.3.2)

Section 3.3 covers the required commands for managing scan data output in detail.

3.2.2 Scan data connection handles

The PFSDP protocol supports parallel scan data connections to multiple clients. In order to configure and control these
connections individually, each connection is identified by a unique connection handle. A handle is defined as random alpha-
numeric string of maximal 16 characters. The sensor ensures that each handle is used for only one active scan data con-
nection. Applications should not make any further assumption regarding the structure of a handle as implementation details
might change with new firmware versions (see also below).

Please note:

Due to limited system ressources R2300 devices support a single scan data connection only. Nevertheless the PFSDP
handle mechanism is used to manage that connection.

3.2.3 Scan data output customization

A client may customize some properties of how scan data is output over a scan data channel. These configuration settings
are specific to a single data connection identified by the unique connection handle. The settings can be set while initiating
a new scan data connection using request_handle_udp (see section 3.3.1), or can be changed for an existing scan data
connection using set_scanoutput_config (see section 3.3.5).

Selecting a start angle

A client may define a (virtual) start angle for scan data output using the parameter start_angle (see section 3.3.5). All
scan points recorded before this start angle (in scan direction) are discarded. The first scan point (index 0) of a scan has
a angle which is equal to or behind the given start angle. The parameter start_angle does not control the angular value
at which scan points are recorded. It only defines a criterion, which scan points should be output for a specific scan data
connection.

The value of start_angle refers to the (polar) measurement angle of the scan data coordinate system (see section 3.1.2).
By default start_angle is set to the beginning of the sensors angular field of view at -50.0° (i.e. start_angle = —500000).
Subsequent scan points (index (n + 1)) within the scan data stream are ordered according to the direction of rotation of the
measuring beam.

Please note:

The sensors angular field of view can be further limited using the parameters measure_start_angle and
measure_stop_angle (See section 2.6.6). The value of start_angle can be configured outside these limits, but the re-
sulting scan output will always contain values from the angular measuring range only.

Protocol version 1.05 Document release 2024-10

29 2 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Scan data output using UDP

Limiting the number of scan points

The parameter max_num_points_scan allows to limit the number of scan points that are output over a scan data connection.
In contrast to the global parameter samples_per_scan, which reflects how many samples per scan are recorded by the
sensor, the setting of max_num_points_scan affects the number of scan points output for a specific scan data connection
only.

If max_num_points_scan is set to a value below samples_per_scan, the client application receives less scan points than the
sensor records. In combination with the parameter start_angle this allows client application to obtain only a segment (sector)
of a scan instead of all recorded scan points. Figure 3.3 visualizes such a setup. This can be very useful to reduce data traffic
if the full field of view of the sensor is not needed.

00
*Polaraxis
#30° I 300

\ / start_angle
/
+50° max_num_points /scan 50°

v

Figure 3.3: Restriction of scan output to a segment

Please note:

Setting max_num_points_scan t0 a value above samples_per_scan Will have no effect. The resulting scan output will not
contain any additional (dummy) samples.

Protocol version 1.05 Document release 2024-10

30 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Scan data output using UDP

3.3 Commands for managing scan data output

The subsequent sections describe all commands.

3.3.1 request_handle_udp — request for an UDP-based scan data channel

The command request_handle_udp is used to request a handle for an UDP-based scan data transmission from the sensor to
the client. If successful the sensor will send scan data to the client using the target IP address and UDP port specified at the
handle request. Figure 3.4 gives an overview on the communication between sensor and client when using an UDP-based
channel for scan data output.

Command arguments

The command request_handle_udp accepts the following arguments:

argument name type unit description default
address ipvéd - required: target IP address of the client -

port uint - required: target port for UDP data channel (client side) —
packet_type enum - optional: scan data packet type: C1 (see section 3.4) c1
start_angle int 0.0001° optional: angle of first scan point for scan data output -500000
max_num_points_scan uint samples optional: limit number of points in scan data output 0 (unlimited)

The optional arguments of request_handle_udp facilitate an adequate initial configuration of the scan data output, which can
be later modified using the command set_scanoutput_config. Please refer to section 3.3.5 for a detailed description of these
optional arguments.

Command return values

* handle — unique (random) alpha-numeric string as identifier (handle) for the new UDP data channel

During a valid command call the scanner creates a new UDP channel to the client using the specified target IP address and
port number. In case of an error the returned value for handle is invalid and error_code / error_text return details regarding
the cause of the negative response (see section 1.2.7).

Please note:
When a new UDP connection handle is requested the scanner will close any previously requested UDP connection. R2300
devices support a single scan data connection only (as denoted by max_connections, see section 2.4.1).

Please note:

Since an UDP scan data connection is established from the sensor to the client (“incoming connection”) it is prone to be
blocked by firewall software. Please ensure that your firewall settings allow incoming UDP connections from the sensor IP
address to your client application.

Please note:
Applications should not make any assumption regarding the structure of a handle. Handles should be treated as random
alpha-numeric string of max. 16 characters.

Command example

Query: http://<sensor IP address>/cmd/request_handle_udp?address=192.168.10.23&port=3456&packet_type=C1
Reply: {

"handle":"s10",

"error_code":0,

"error_text":"success"

}

J I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol
Scan data output using UDP

optional HTTP: parameterize sensor (set_parameter) >
HTTP: request UDP connection handle (request_handle_udp)
< HTTP: reply: connection handle
[
O optional HTTP: parameterize sensor (set_parameter)
L e I e e »
©
O _ .
o HTTP: start scan data output (start_scanoutput) > 3
Q c
< UDP: send scan data using UDP to specified address / port %
e <<
2 : :
O H
< UDP: send scan data using UDP
HTTP: stop scan data output (stop_scanoutput) >
HTTP: release connection handle (release_handle) >
< UDP: close UDP connection

\ \

Figure 3.4: Timeline: scan data transmission using UDP

3.3.2 release_handle — release a data channel handle

Using the command release_handle the client can release a data channel handle. Any active scan data output using this
handle will be stopped immediately. An associated UDP-based data channel is closed by the sensor itself. An associated
TCP-based data channel should be closed by the client.

Command arguments

argument name type description

handle string required: handle for scan data channel (max. 16 chars)

Command example

Query: http://<sensor IP address>/cmd/release_handleZhandle=s22
Reply: {

"error_code":0,

"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

32 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Scan data output using UDP

3.3.3 start_scanoutput — initiate output of scan data

The command start_scanoutput starts the transmission of scan data for the data channel specified by the given handle.
When started, the sensor will begin sending scan data to the client using an established UDP or TCP channel with the given
handle — see section 3.3.1. (Re-)starting a scan data transmission also resets the counters for scan number and scan packet
number in the scan data header (see section 3.4.2). Scan data output always starts at the beginning of a new scan (with scan
number 0 and scan packet number 1).

Command arguments

argument name type description

handle string required: handle for scan data channel (max. 16 chars)

Command example

Query: http: //<sensor IP address>/cmd/start_scanoutput?hand1e=s22

Reply: {
"error_code":0,
"error_text":"success"

}

3.3.4 stop_scanoutput — terminate output of scan data

The command stop_scanoutput stops the transmission of scan data for the data channel specified by the given handle. Scan
data output stops immediately after the current scan data packet — not necessarily at the end of a full scan.

Please note:
TCP clients might still receive several scan data packets after sending stop_scanoutput, due to the TCP stack data queue.

Command arguments

argument name type description

handle string required: handle for scan data channel (max. 16 chars)

Command example

Query: http://<sensor IP address>/cmd/stop_scanoutput?handle=s22

Reply: {
"error_code":0,
"error_text":"success"

}

33 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Scan data output using UDP

3.3.5 set_scanoutput_config — reconfigure scan data output

Using the command set_scanoutput_config the client can parametrize scan data output separately for each active scan
data output channel. All command arguments solely apply to the oufput of scan data. Customization of (global) param-
eters referring to the recording of measurements (scan data) is done by use of the command set_parameter (see sec-
tion 2.6).

Command arguments

argument hame type unit description default
handle string - required: handle for scan data channel (max. 16chars) —

(NOTE: needs to be the first command argument)
packet_type enum - optional: scan data packet type: C1 (see section 3.4) c1
start_angle int 0.0001° optional: angle of first scan point for scan data output -500000
max_num_points_scan uint samples optional: limit number of points in scan data output 0 (unlimited)

It is recommended (but not required) to stop sensor data output while using set_scanoutput_config. In case scan data out-
put is active, the point in time when modified configuration settings are applied to the running data stream is non-deterministic.
After the new settings are applied, scan data output is suspended until the start of an new scan (skipping scan data pack-
ets in-between). If the client application depends on a deterministic switching behavior, it should stop scan data transmis-
sion first using stop_scanoutput, change settings using set_scanoutput_config and finally restart the data stream with
start_scanoutput.

Parameter start_angle

The user can control the angle for the first scan point of a scan by means of the parameter start_angle. The range of
valid values is [-500000; +500000] including -500000 (-50°) but excluding +500000 (+50°). The specified value does not
have to match the configured angular resolution for scan data acquisition (see section 2.6) — the sensor will start scan data
output with the first scan point whose recording angle is equal to or following behind the specified angle in direction of
rotation.

Please note:

The command get_scanoutput_config (See section 3.3.6) will return the exact user specified value, while the entry “abso-
lute angle of first scan point” within the scan data packet header (see section 3.4.2) will specify the exact value of the first
scan point actually used.

Command example

Query: http://<sensor IP address>/cmd/set_scanoutput_config?handle=s22&packet_type=Cl&start_angle=-450000
Reply: {

"error_code":0,
"error_text":"success"

}

Parameter max_num_points_scan

This parameter allows to limit the number of samples that are output for each scan. In combination with the parame-
ter start_angle a client application can reduce scan data output to a single region of interest (sector). Please refer to
section 3.2.3 for further details.

The parameter is specified as unsigned integer (uint) and accepts any non-negative number. The value 0 is recognized as
special case for 'no limitation’, i.e. the sensor outputs always all points of scan. This is also the default value.

Z 2 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Scan data output using UDP

3.3.6 get_scanoutput_config — read scan data output configuration

The command get_scanoutput_config returns the current scan data output configuration for a specified scan data output
channel (UDP or TCP).

Command arguments

argument name type description

handle string required: handle for scan data channel (max. 16 chars)
(NOTE: needs to be the first command argument)

list string optional: semicolon separated list of parameter names

If the argument 1list is not specified the command will return the current value of all available configuration parameters
(see section 3.3.5).

Command example

Query: http://<sensor IP address>/cmd/get_scanoutput_config?handle=s22

Reply: {
"address":"192.168.10.23",
"port":3456,
"watchdog":"on",
"watchdogtimeout":60000,
"packet_type":"C1",
"start_angle":-450000,
"error_code":0,
"error_text":"success"

}

3 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Scan data output using UDP

3.4 Transmission of scan data

Scan data is always transmitted within packets. A complete scan is usually transmitted using multiple scan data packets (see
section 1.1 for basic design considerations). Each packet comprises of a generic header, a scan data specific header and the
actual scan data.

A new scan will always start with a new scan data packet, i.e. the first sample of a new scan will always appear as first sample
of a new packet. Each scan data packet is transmitted as soon as the required data is available. This streaming approach
allows a client application to start processing scan data with minimal delay — eliminating the need to wait until the full scan is
recorded and transmitted to the client completely.

Multiple scan data packet types are defined to output different sets of scan data information efficiently. These packet types
follow a standard structure — differing in the bulk scan data only. Within bulk scan data each scan point is represented by a
structure containing the favored amount of data (distance, amplitude, etc.). The following sections describe scan data packets
in detail.

3.4.1 Basic packet structure

Each data packet has the following basic structure:

type name description
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet
(low-byte: payload type, high-byte: header type)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uint16 header_size size of header in bytes (i.e. offset to payload data)

packet type specific additional header information

uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)

- payload_data packet type specific payload data
uint8[] payload_padding 0-3 bytes padding (to align the payload size to a 32bit boundary)

Please note:
Although the structure of the packet usually appears to be fixed, it is highly recommended that client applications always
evaluate the entries for packet size and header size since they may change due to future extensions.

The magic byte at the beginning of the packet header is designed to be used as synchronization mark within a continuous
data stream. It can be ignored if synchronization is not needed.

The starting address of payload data is always aligned to a 32bit address boundary by using padding bytes within the header
(header_padding). Additionally, the overall size of the packet is always aligned to 32bit boundary. Depending on the scan data
packet type there might be additional padding bytes (payload_padding) at the end of the packet.

3 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Scan data output using UDP

3.4.2 Typical structure of a scan data header

A scan data packet contains a scan data header with information on the scan and the scan data itself. The scan data header
is designed in ways that each scan data packet can be processed independent of other scan data packets belonging to the
same scan.

A typical scan data header has the following structure:

type name description
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
uint16 layer_index index of scan layer (starting with 0)
int32 layer_inclination angle of scan layer inclination (0.0001°)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uintl6 num_points_packet number of scan points within this packet
uint16 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 ©)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment, CW rotation: negative increment)
uint32 reserved reserved field
uint32 reserved reserved field
uint64 reserved reserved field
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scandata packet type specific scan data
uint8[] payload_padding 0-3 bytes padding (to align the payload size to a 32bit boundary)
Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, wWhichever is smaller for the specific scan data connection. Please refer to
section 3.2.3 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be
estimated from the timestamps of the current and subsequent scan data packets.

Please note:

Angular values specified with a resolution of 0.0001 ° are usually prone to rounding errors due to the decimal range of values.
They are part of the header for convenience only. Subsequent calculations requiring precise angular values should calculate
an exact angle for each scan point by reference to its index number, the configured angular increment and the configured
start angle of the scan:

. . angular_fov
CCW rotation: exact_anglescanpoint = start_anglescan + indeTscanpoint * g _f

num_points_scan

. . angular_fov
CW rotation: exact_anglescanpoint = start_angléscan — indescanpoint * g _f

num_points_scan

a7 2 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Scan data output using UDP

3.4.3 Scan data header status flags

Scan data header status flags are similar to system status flags (see section 2.9.2) but provide status information specific
to the scan data of a scan data packet. Each scan data header contains an uint32 entry status_flags (See section 3.4.2)
comprised of the following flags:

bit flag name description

Informational

0 scan_data_info Accumulative flag — set if any informational flag (bits 1. .7) is set

1 new_settings System settings for scan data acquisition changed during recording of this packet.

This flag is triggered by write accesses to global parameters affecting the measur-
ing configuration (see section 2.6) which can be done by any client. Changes to
connection-specific parameters (see section 3.3.5) do not trigger this flag!

2 invalid_data Consistency of scan data is not guaranteed for this packet.

3 unstable_rotation Measured scan rate did not match set value while recording this scan data packet.

4 skipped_packets Preceding scan data packets have been skipped due to connection issues, changes
to scan data acquisition settings or scan data inconsistencies.

Warnings

8 device_warning Accumulative flag — set if any warning flag (bits 9. . 15) is set

10 low_temperature_warning Current internal temperature below warning threshold
11 high_temperature_warning Current internal temperature above warning threshold

12 device_overload Overload warning — sensor CPU overload is imminent

Errors

16 device_error Accumulative flag — set if any error flag (bits 17. .23) is set

18 low_temperature_error Current internal temperature below error threshold

19 high_temperature_error Current internal temperature above error threshold

20 device_overload Overload error — sensor CPU is in overload state

Defects

30 device_defect Accumulative flag — set if device detected an unrecoverable defect
Please note:

All flags not listed in the above table are reserved and should be ignored.

Protocol version 1.05 Document release 2024-10

38 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Scan data output using UDP

3.4.4 Scan data packet type C1 — distance and amplitude

Scan data packets of type C1 have the following structure:

type name description
packet header
uintl6 magic magic byte (0xa25c) marking the beginning of a packet
uintl6 packet_type type of scan data packet: 0x3143 (ASCII characters 'C1’)
uint32 packet_size overall size of this packet in bytes (header, payload, checksum)
uintl6 header_size size of header in bytes (i.e. offset to payload data)
uint16 scan_number sequence number for scan (counting transmitted scans, starting with 0, overflows)
uintl6 packet_number sequence number for packet (counting packets of a particular scan, starting with 1)
uint16 layer_index index of scan layer (starting with 0)
int32 layer_inclination angle of scan layer inclination (0.0001°)
ntp64 timestamp_raw raw timestamp of first scan point in this packet (see section 3.1.5)
uint64 reserved reserved field
uint32 status_flags scan status flags (see section 3.4.3)
uint32 scan_frequency currently configured scan rate (0.001 Hz)
uintl6 num_points_scan number of scan points (samples) within complete scan (depending on configured FOV)
uint16 num_points_packet number of scan points within this packet
uintl6 first_index index of first scan point within this packet
int32 first_angle absolute angle of first scan point in this packet (0.0001 ©)
int32 angular_increment delta angle between two scan points (0.0001 °)
(CCW rotation: positive increment)
uint32 reserved reserved field
uint32 reserved reserved field
uint64 reserved reserved field
uint64 reserved reserved field
uint8[] header_padding 0-3 bytes padding (to align the header size to a 32bit boundary)
scan point data
uint20 distance measured distance (in mm) — maximum representable value is 1 km
Invalid measurements return OxFFFFF.
uintl2 amplitude measured amplitude
Please see section 3.1.4 for a description of amplitude data values.
Please note:

The field num_points_scan states the total number of scan points output for each recorded scan. It is always equal to either
samples_per_scan Of max_num_points_scan, wWhichever is smaller for the specific scan data connection. Please refer to

section 3.2.3 for more details on this matter.

Please note:

The field scan_frequency states the current target value for the scan acquisition rate as defined by the global parame-
ter scan_frequency (see section 2.6.3). The instantaneous value of the angular velocity of the measuring beam can be

estimated from the timestamps of the current and subsequent scan data packets.

39

I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol
Scan data output using UDP

3.5 Data transmission using UDP

The UDP/IP-based scan data output provides a low latency channel for scan data transmission. Each scan data packet is
send as separate UDP message (datagram) using (at least) one Ethernet frame. In case an UDP message (scan data packet)
is lost during transmission, no error correction is provided. Corrupted scan data packets are discarded. The client application
can make use of all successfully received scan data packets though, since every scan data packet incorporates a full scan
data header which allows to process the contained scan data separately.

Protocol version 1.05 Document release 2024-10

40 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Filter-based scan data processing

4 Filter-based scan data processing

4.1 Introduction to scan data filtering

The R2300 devices optionally provide support for in-device pre-processing of scan data. This gives customer applications the
options to either reduce the amount of received data while utilizing the full scan resolution with block-wise processing or to
just apply a filtering algorithm to all scan data with moving-window processing.

The basic idea of scan data filtering is to combine a configurable number of N adjacent scan points (input values) into a
single resulting scan point (output value) using one of various predefined algorithms. A filter algorithm calculates both a dis-
tance value and an amplitude value from the input data. The resulting scan point is placed at the center of the processing
window for both angular value and timestamp value. All operations are performed in the sensor coordinate system (see sec-
tion 3.1.1).

Please note:
Scan data filtering is applied globally, i.e. its settings affect all clients. It should be treated similar to the (global) measuring
configuration (see section 2.6).

Scan data filtering can be considered as transparent to a client application. On protocol level there is no difference between
a scan recorded with a lower resolution and a scan recorded with a high resolution and scan data filtering enabled. However,
the latter provides a potentially higher signal quality.

4.1.1 Block-wise processing

Filter algorithms with block-wise processing calculate a single output value for NV input values. After processing the input
values the input window is shifted by IV values, i.e. each input value is processed only once. Thus the number of points in the
resulting scan is reduced by a decimation factor of 1 : N compared to the input scan, i.e. the output scan contains only 1/N
scan points and has a N times coarser scan resolution (with a constant angular increment).

* ¢ ¢ . valid scanpoint high
. . . color-coded
. . ‘ invalid scanpoint amplitude

ignored scanpoint
I 1 1L | low

Above figure shows an example for the decimation process of 24 input scan points with a window size of 8 points. Each scan
point is represented by a circle with a color-encoded echo amplitude (blue: low echo, green: high echo). The filtered result
contains only 3 output scan points — on for each group of input values (8:1 decimation).

PFSDP compatibility note:
Block-wise scan data filtering requires a device with PFSDP version 1.03 or newer. Furthermore the device must support
the device feature scan_data_filter — please refer to section 2.4 for details on sensor capabilities.

4.1.2 Moving-window processing

Filter algorithms with moving-window processing calculate a single output value from N input values. After processing the
input values the input window is shifted by 1, i.e. each input value is incorporated into N consecutive output values. The
resolution of the resulting scan is equal to the resolution of the original input scan (no decimation).

Protocol version 1.05 Document release 2024-10

41 2 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Filter-based scan data processing

—l . valid scanpoint high
w w * . invalid scanpoint gﬂ%ﬁi—&%deed

Above figure shows an example for the filtering process for a continuous stream of input scan points. Again each scan point
is represented by a circle with a color-encoded echo amplitude (blue: low echo, green: high echo). The moving-window uses
a window size of 3 points here. The filtered result contains a similar amount of output scan points — one for each group of 3
input values.

PFSDP compatibility note:
Moving-window scan data filtering requires a device with PFSDP version 1.05 or newer. Furthermore the device must
support the device feature scan_data_filter_moving — please refer to section 2.4 for details on sensor capabilities.

4.1.3 Filter processing at scan edges

The global parameters measure_start_angle and measure_stop_angle determine the scan data acquisition sector (see sec-
tion 2.6.6), i.e. the angular field of view where measurements are recorded as input for the scan data filter. Since the R2300
does not feature a full 360° field of view, the filter processing needs to pay particular attention at the edges of a scan (first and
last scan points).

For both block-wise and moving-window processing the first filtered sample appears at the center of the first processing
window which begins directly after measure_start_angle. The last filtered sample appears at the center of the last processing
window which ends directly before measure_stop_angle. Consequently the first (filter_width — 1)/2) input scan points and
the last (filter_width — 1)/2) input scan points have no direct counterpart in the output scan.

The following figure shows an example for a moving-window filter with window size 5 at the start and at the end of a scan:

®©g00%90g0
Yol oo
® L 000

o€ O

4
®

Please note:
The number of filtered scan points that are output via a scan data connection can be further reduced using the connection-
specific parameters start_angle and max_num_points_scan. Please refer to section 3.3.5 for details.

4.2 Filter algorithms

This section describes the available algorithms for scan data filtering, selectable by the global parameter filter_type. All
parameters are discussed in detail in section 4.3.

4.2.1 No filter (pass-through)

Per default no filtering is performed on sensor data. All recorded scan points are passed-through to the client without change.
This behavior is identical to devices that do not support scan data filtering (e.g. older firmware releases).

o °
0°90° 00® 2 ¢%0°® oo°

window size

Protocol version 1.05 Document release 2024-10

Related configuration parameters: —

42 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Filter-based scan data processing

4.2.2 Average filter

The average filter calculates a simple arithmetic average (distance and amplitude) of all scan data points within the configured
window size (filter_width).

For block-wise processing the result is a single output scan point replacing the complete group of input scan points:

®
0%0® oo® ° O

window size
For moving-window processing the filter works similar but a filtered output sample is calculated for each input sample (with
the configured window size).

Related configuration parameters: filter_width, filter_error_handling

4.2.3 Median filter

The median filter calculates a median value from all scan data points within the configured window size (filter_width). For
this purpose, first all scan points are (virtually) sorted by their distance value. For odd window sizes the middle scan point is
selected as output sample. For even window sizes the two middle points are selected and the output sample is calculated as
arithmetical average (for both distance and amplitude) of these points.

For block-wise processing the resulting scan point replaces the group of input scan points:

o

window size
For moving-window processing the filter works similar but a filtered output sample is calculated for each input sample (with
the configured window size).

Related configuration parameters: filter_width, filter_error_handling

4.2.4 Maximum filter

The maximum filter is a more complex filter operation. It calculates the arithmetic average from a subset of scan points within
the configured filter window (filter_width). Scan points are selected by first determining the scan point with the maximum
distance within the current filter window. Then all scan points within this window are eliminated, whose distance value falls
below the maximum distance value less a threshold value (filter_maximum_margin). The remaining points are used to
calculate an arithmetic average for both distance and amplitude.

For block-wise processing the resulting scan point replaces the group of input scan points:

[.......,.f.,..g > .es0" ° >

margin

window size

For moving-window processing the filter works similar but a filtered output sample is calculated for each input sample (with
the configured window size).

Related configuration parameters: filter_width, filter_error_handling, filter_maximum_margin

4.3 Filter configuration

Scan data filtering is configured globally using the commands for sensor parametrization (see section 2.2). This section gives
an overview on the available settings.

43 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Filter-based scan data processing

4.3.1 Parameter overview

The following (global) parameters are available for configuration of scan data filtering:

parameter name type unit description access default

filter_type enum - algorithm for filtering RwW none
(see section 4.3.2 for details)

filter_width uint samples window size for filtering RW 4
(see section 4.3.3 for details)

filter_error_handling enum - strategy for filtering invalid values RW tolerant
(see section 4.3.4 for details)

filter_maximum_margin uint 1mm margin for filter type maximum RW 100 mm

(see section 4.3.5 for details)

4.3.2 Filter types (filter_type)

The parameter filter_type selects the filtering algorithm that is applied globally to all scan data recorded by the sensor.

Currently, the following algorithms are available (see section 4.2 for details):

filter type description

none Filtering disabled. Output all recorded samples (pass through).

average Calculate arithmetic average from N raw samples (see section 4.2.2).
median Calculate median from N raw samples (see section 4.2.3).

maximum Filter raw samples by distance and calculate average (see section 4.2.4).

moving_average Calculate a moving-window arithmetic average from N raw samples (see section 4.2.2).
moving_median Calculate a moving-window median from N raw samples (see section 4.2.3).
moving_maximum Filter raw samples by distance and calculate a moving-window average (see section 4.2.4).

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_type=average
Reply: {

"error_code":0,
"error_text":"success"

}

4.3.3 Filter width (filter_width)

The parameter filter_width controls the window size of the filter algorithm applied to all recorded scan data. It de-
fines the number of recorded samples (scan data points) that are processed to produce a (single) filtered output sam-
ple.

R2300 devices currently support the following window sizes: 2, 3, 4, 5, 7, 8, 15, 16

Please note:

The filtered output scan point is always placed at the center of the filter window for both angular value and timestamp value
(see section 4.1).

Example

Query: http://<sensor IP address>/cmd/set_parameter?filter_width=4
Reply: {

"error_code":0,
"error_text":"success"

}

4 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Filter-based scan data processing

4.3.4 Filter error handling (filter_error_handling)

The parameter filter_error_handling specifies how the filter algorithm is handling invalid measurement values within the
group of scan data points as configured by filter_width.

parameter value description

strict Result is invalid, if any scan data point of the group is invalid.
tolerant Result is valid, if at least one scan data point of the group is valid.

The following pictures illustrate this behavior:

o

| strict L |

window size

o
0%?0? 72 > °

] tolerant L |

window size

Example

Ouery: http://<sensor IP address>/cmd/set_parameter?filter_error_handling=tolerant
Reply: {

"error_code":0,
"error_text":"success"

}

4.3.5 Maximum filter margin (filter_maximum_margin)

The parameter filter_maximum_margin is evaluated by the maximum filter algorithm (see section 4.2.4). It defines the
allowed distance of a scan point to the maximum distance value within the group of scan data points. The parameter has a
resolution of 1 mm and accepts values in the range from 0 mm up to 65535 mm.

Example

Query: http: //<sensor IP address>/cmd/set_parameter?filter_maximum_margin=220
Reply: {

"error_code":0,

"error_text":"success"

}

Protocol version 1.05 Document release 2024-10

4 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
Advanced topics

5 Advanced topics
This chapter covers various advanced topics about using R2300 devices in more complex applications.

5.1 Device discovery using SSDP

The R2300 provides support for the Simple Service Discovery Protocol (SSDP) [15] in order to discover any R2300 devices
and their associated IP address within the Ethernet network. SSDP uses UDP multicast messages to query SSDP aware
devices.

In order to discover all R2300 devices, the following steps need to be performed:
1. Send a SSDP search request.
2. Process SSDP replies from devices.
3. Read a SSDP device description from each device for additional information.

The following sections describe each step in detail.

5.1.1 SSDP search request

The first step of the SSDP device discovery is to issue a search request on the local network. For this purpose an UDP listener
needs to be opened on the local UDP port 1900. Then an UDP datagram with the following content needs to be sent to the
UDP multicast address 239.255.255.250 at port 1900:

1 M-SEARCH * HTTP/1.1
2 HOST: 239.255.255.250:1900
3 ST: urn:pepperl-fuchs-com:device:R2300:1
4 MAN: "ssdp:discover"
5 MX: 1
The specified URN addresses R2300 devices only. Other SSDP aware devices on the network will ignore this request.
Please note:
On a client PC with multiple network adapters, the SSDP search request needs to be performed on each network adapter.
5.1.2 SSDP device reply
The second step of the discovery procedure requires the client application to wait for replies to the above search request using
the created UDP listener. Each R2300 device on the local network will answer the search request with a message similar to
this example:
1 HTTP/1.1 200 OK
2 |LOCATION: http://10.0.10.76/ssdp.xml
3 SERVER: urhttpd/1.0 UPnP/1.0 R2300/1.0
4 CACHE-CONTROL: max-age=1800
5 |EXT:
6 ST: urn:pepperl-fuchs-com:device:R2300:1
7 USN: uuid:7df9abed-07f6-45e1-acb5-3335a4057a10: :urn:pepperl-fuchs-com:device:R2300:1

This reply contains two important pieces of information:

» The line LOCATION: contains the IP address of the device within an URL pointing to a more detailed SSDP device
description (see next section).

» The line USN: contains an unique identifier (uuid) for this specific device. This uuid allows to identify this R2300 device
even if its IP address changes.

Protocol version 1.05 Document release 2024-10

4 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Advanced topics

5.1.3 SSDP device description

The final step of the SSDP discovery procedure is to obtain the XML based device description. This step can be skipped, if
no detailed information on the discovered devices are needed. R2300 devices provide a ssdp.zxml file at the URL from the
LOCATION field of the SSDP device reply (see previous section):

1 <?7xml version="1.0"7>

2 <root xmlns="urn:schemas-upnp-org:device-1-0">

3 <specVersion>

4 <major>1</major>

5 <minor>0</minor>

6 </specVersion>

7 <device>

8 <deviceType>urn:pepperl-fuchs-com:device:R2300:1</deviceType>
) <friendlyName>0OMD10M-R2300-B23-V1V1D-4S (#40000069736491)</friendlyName>
10 <modelDescription>2-D LiDAR sensor</modelDescription>

11 <modelName>0MD10M-R2300-B23-V1V1D-4S</modelName>

12 <modelNumber>322226</modelNumber>

13 <serialNumber>40000069736491</serialNumber>

14 <UDN>uuid:7df9abed-07f6-45e1-ac55-3335a4057a10</UDN>

15 <manufacturer>Pepperl+Fuchs</manufacturer>

16 <manufacturerURL>http://www.pepperl-fuchs.com</manufacturerURL>
17 <serviceList>

18 <service>

19 <serviceType>urn:pepperl-fuchs-com:service:none:1</serviceType>
20 <serviceId>urn:pepperl-fuchs-com:serviceld:none</serviceld>
21 <controlURL>/cmd/</controlURL>

22 <eventSubURL></eventSubURL>

23 <SCPDURL>/service.xml</SCPDURL>

24 </service>

25 </servicelist>

26 <iconList>

27 <icon>

28 <id>0</id>

20 <mimetype>image/png</mimetype>

30 <width>48</width>

31 <height>48</height>

32 <depth>24</depth>

33 <url>/device.png</url>

34 </icon>

35 </iconList>

36 <X_pfsdpVersionMajor>0</X_pfsdpVersionMajor>

37 <X_pfsdpVersionMinor>5</X_pfsdpVersionMinor>

38 <X_pfsdpDeviceFamily>5</X_pfsdpDeviceFamily>

39 <X_dtmAccessPath>/dtm/</X_dtmAccessPath>

40 </device>

41 </root>

The standard SSDP XML device description contains already various useful fields:
* manufacturer — vendor name of the device (see parameter vendor in section 2.3)
* modelName — product name of the device (see parameter product in section 2.3)
» modelNumber — part number of the device (see parameter part in section 2.3)
* serialNumber — serial number of the device (see parameter serial in section 2.3)

R2300 devices additionally provide the following non-standard items with PFSDP specific information:
* X_pfsdpVersionMajor — major PFSDP protocol revision (see version_major in section 1.2.8)
* X_pfsdpVersionMinor — minor PFSDP protocol revision (see version_minor in section 1.2.8)

+ X_pfsdpDeviceFamily — PFSDP device family (see device_family in section 2.3)

Protocol version 1.05 Document release 2024-10

47 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Migrating from R2000 to R2300

A Migrating from R2000 to R2300

This chapter provides additional information on migrating R2000 PFSDP applications to R2300 devices.

A.1 Functional comparison

The following table gives an overview about functional differences between R2000 and R2300 devices, which are relevant for
the PFSDP communication:

functionality R2000 devices R2300 devices

Field of view 360° 100°

Scan layers single-layer multi-layer (4)

Scan rate up to 50 Hz 50Hz /100 Hz

Scan direction cw/ ccw ccw only

Sampling rate up to 252 kHz 90 kHz (constant)

Lens contamination monitor (LCM) yes no

Switching I/O yes (up to 4) no

User interface display / buttons / status LEDs status LEDs
Please note:

Client applications can use the commands get_protocol_info (section 1.2.8) and 1ist_parameters (section 2.2.1) as well
as the parameter device_family (section 2.3.2) to identify the connected device and available commands.
Additionally several device capabilities can be read from the device as well. Please refer to section 2.4 for details.

A.2 PFSDP command implementation

A.2.1 Commands available on R2000 devices only

The following commands are not available on R2300 devices:
* request_handle_tcp
¢ get_iq_parameter
¢ set_iq_parameter

* list_iq_parameters

A.2.2 Commands available on R2300 devices only

There are currently no commands that are specific to R2300 devices.

A.2.3 Error handling for command requests

When setting parameters with commands like set_parameter the arguments are processed one after another, not just after
checking all values for validity. This processing is aborted whenever an invalid value or unknown argument name is encoun-
tered. Additionally, the command return value error_text in most cases does not indicate the argument that was processed
when the problem came up. To determine the actual cause of an error response, the arguments have to be tried one at a
time.

Please note:
As the R2300 has less computing resources, it does not perform as many checks regarding the validity of requests, e.g.

when setting parameters. Some actually questionable settings might be accepted (maybe ignored) without reporting an
error, whereas the R2000 would reject them.

4 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Migrating from R2000 to R2300

A.3 PFSDP parameter implementation

A.3.1 Measurement configuration

The R2300 provides some additional parameters for measurement configuration:
* layer_enable (see section 2.6.7)
* measure_start_angle / measure_stop_angle (see section 2.6.6)

These parameters can usually be left at their default values.

A.3.2 Pilot laser

The R2300 features a pilot laser that can be used as alignment aid (see section 2.7). This feature can be configured by a set
of new parameters:

* pilot_laser
* pilot_start_angle
* pilot_stop_angle

These parameters can usually be left at their default values.

A.3.3 User tag and user notes

On R2300 devices the parameter user_tag accepts strings with a length of up to 32 bytes only (R2000 devices accept up to
32 UTF-8 characters). Additionally, the parameter must not contain NUL bytes.

The parameter user_notes is not supported by the R2300.

A.3.4 HMI parameters
Since R2300 devices possess neither controls nor a graphical user interface all HMI parameters known from the R2000 device
family are not available:

e hmi_button_lock and hmi_parameter_lock

* hmi_language

* hmi_display_mode

* hmi_static_logo

* hmi_static_textl and hmi_static_text2

* hmi_application_bitmap

* hmi_application_textl and hmi_application_text2

Please note:
The locator indication functionality is available via locator_indication (see section 2.8)

49 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol

Migrating from R2000 to R2300

A.4 PFSDP scan data implementation

A.4.1 Connection handling

The R2300 scan data output can be controlled with operations including handle management and watchdog feeding just like
for the R2000. It accepts those commands and responds properly. However, due to the smaller system design compared to
the R2000, only a single scan data connection can be managed at a time.

The scan data connection watchdog (which closes a connection if a client application stopped working), is not implemented.
Instead the R2300 simply closes any currently active scan data connection when a new connection is requested using
request_handle_udp (see section 3.3.1).

The following watchdog-related connection parameters are available for compatibility purposes only:
» watchdog: accepts the setting off only

» watchdogtimeout: accepts the value 60000 only

Please note:
The command feed_watchdog is available for compatibility purposes, but eventually has no effect.

A.4.2 Scan data output customization

The following scan data connection parameters (see section 3.2.3) are not supported by R2300 devices and are available for
compatibility purposes only:

+ skip_scans: accepts the value 0 only

+ packet_crc: accepts the setting off only

A.4.3 Scan data packet types

The R2300 currently supports the new scan data packet type 'C1’ (see section 3.4.4) only. It is largely identical to the R2000
packet type 'C’ except for two new fields layer_index and layer_inclination which have been added to the scan data
header behind the scan_number and packet_number fields.

A.5 Filter-based scan data processing

The R2300 does currently not support the remission filter available on R2000 devices. Consequently, the parameter filter_type
(see section 4.3.2) cannot be set to the value remission and the related parameter filter_remission_threshold is not
available.

50 I3 PEPPERL+FUCHS

Protocol version 1.05 Document release 2024-10

R2300 Ethernet communication protocol
Troubleshooting the Ethernet communication

B Troubleshooting the Ethernet communication
This chapter contains some basic suggestions for troubleshooting issues concerning the R2300 Ethernet communication.

B.1 Checking the Ethernet setup

In case of communication problems, first ensure a working Ethernet connection between PC and sensor. Please consider the
following steps:

» Sensor IP configuration
Check the current IP configuration of the sensor by inspecting SSDP notifications sent by the device during startup
(see section 5.1). In case of an improper IP setup try to reset the device into AutolP mode using the recovery method
described in the user manual.

« Ethernet connection
Use the network utility ping to verify the network connection between sensor and PC. The sensor will reply to all ping
requests it receives. If ping does not receive any replies, re-check the IP configuration of your client PC and the sensor.
Make sure the IP addresses of both devices are within the same subnet.

« Electrical connection
In case of connectivity problems, check the link status and link speed of the sensor, the client PC and any network
infrastructure device (router, switch, etc.) in-between to rule out electric connection issues. For maximum reliability, try to
use a direct cable-based Ethernet connection between sensor and PC. The sensor supports Auto-MDIX — a cross-over
Ethernet cable is not required.

B.2 Debugging using a web browser

If basic network connectivity has been established, verify that the HTTP command interface is operational with a standard
web browser. Please consider these steps:

* Proxy settings
Make sure that no proxy is used when accessing the sensor. In the browser settings, either completely disable any proxy
or add a proxy exception for the sensor IP address.

* HTTP access
Try to access the sensor via the following URL:

http://<sensor IP address>/cmd/protocol_info

This command should return some basic protocol information (see section 1.2.8). If this is not the case, re-check your
proxy settings and Ethernet setup (see above).

* HTTP commands
You can test the syntax and effect of any HTTP command used in your application software just by sending the command
from a web browser. The web browser will display the response received from the sensor — making it easy to review
any potential error messages. Furthermore, after changing sensor settings with the set_parameter command (see sec-
tion 2.2.3), it might be helpful to read back all parameters using the command get_parameter (see section 2.2.2).

B.3 Debugging using Wireshark

For complex communication issues it is highly recommended to use the free network traffic analysis tool Wireshark [14] to
sniff and record the Ethernet communication between the client software and the R2300 sensor.

Protocol version 1.05 Document release 2024-10

51 2 PEPPERL+FUCHS

. R2300 Ethernet communication protocol

Troubleshooting the Ethernet communication

For example, this can be very helpful for:
» Checking the content of HTTP messages and the corresponding replies
+ Checking order and time behavior of HTTP commands
+ Checking time behavior of scan data output (TCP or UDP)

In case you contact your sensor support representative about a specific communication issue, it is highly recommended to
have a Wireshark log file (.pcap) at hand for examination by the technical support organisation.

Protocol version 1.05 Document release 2024-10

52 I3 PEPPERL+FUCHS

. R2300 Ethernet communication protocol

Protocol version history

C Protocol version history

C.1 Protocol version 1.05

First public release.

Note: This protocol version is implemented by R2300 firmware v1.00 or newer.

Protocol version 1.05 Document release 2024-10

53 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Document change history

D Document change history

D.1 Release 2024-10 (protocol version 1.05)

Minor Document update.

Notable changes:
« Section 3.1.5: Added more details regarding timestamps and time synchronisation
« Section 4.3.2: Added missing documentation for moving average filters for parameter filter_type
+ Several minor corrections (e.g. faulty examples)

» Various minor textual and cosmetic updates

D.2 Release 2022-08 (protocol version 1.05)

Document update for R2300 firmware v1.00.
Notable extensions:
+ Section 2.3.2: Added device family definition for R2300 single-layer devices
+ Section 2.4.1: Added parameters layer_count and layer_inclination
+ Section 2.4.2: Added feature flags scan_data_filter and scan_data_filter_moving
+ Section 3.1: Added definition of term frame rate
» Chapter 4: Added documentation on filter-based scan data processing
Notable changes:

+ Section 2.5.1: Updated default values for ip_address_current and subnet_mask_current

Section 3.1.5: Removed references to synchronized timestamps (not available on R2300 devices)

Section 3.4.4: Fixed incorrectly documented value of field packet_type

Appendix A.4.1: Added note on compatibility with command feed_watchdog

Replace term scan frequency with term scan rate in whole document

» Various minor textual and cosmetic updates

D.3 Release 2020-10 (protocol version 1.05)

First release.

Protocol version 1.05 Document release 2024-10

54 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol

Index for commands and parameters

Index for commands and parameters

This index provides a quick reference for all commands and parameters defined by this communication protocol.

Generic commands (URI) radial_resolution, 18, 27
factory_reset, 16 revision_fw, 17
feed_watchdog, 50 revision_hw, 17
get_parameter, 14 samples_per_scan, 20-22, 26, 30, 37, 39
get_protocol_info, 9, 48 sampling_rate_max, 18
get_scanoutput_config, 34, 35 sampling_rate_min, 18
list_parameters, 13, 48 scan_direction, 20, 21
reboot_device, 15, 16, 19 scan_frequency, 20, 21, 26, 37, 39
release_handle, 32 scan_frequency_max, 18
request_handle_udp, 29, 31, 50 scan_frequency_measured, 20
reset_parameter, 15, 16 scan_frequency_min, 18
set_parameter, 14, 48 serial, 17, 47
set_scanoutput_config, 29, 31, 34 status_flags, 24, 25
start_scanoutput, 33, 34 subnet_mask, 19
stop_scanoutput, 33, 34 subnet_mask_current, 19

system_time_raw, 24, 28

Global parameters (sensor) temperature_current, 24
angular_fov, 18, 22 temperature_max, 24
angular_resolution, 18 temperature_min, 24
device_family, 17, 48 up_time, 24
emitter_type, 18 user_tag, 17, 49
feature_flags, 18 vendor, 17, 47
filter_error_handling, 43—45
filter_maximum_margin, 43—45 Scan data output parameters
filter_remission_threshold, 50 address, 31
filter_type, 42, 44, 50 handle, 6, 31-35
filter_width, 42—-45 max_num_points_scan, 22, 30, 31, 34, 37, 39, 42
gateway, 19 packet_type, 31, 34
gateway_current, 19 port, 31
hmi_application_text2, 49 start_angle, 22, 29-31, 34, 42

hmi_parameter_lock, 49
hmi_static_text2, 49
ip_address, 19
ip_address_current, 19
ip_mode, 19
ip_mode_current, 19
layer_count, 18, 26
layer_enable, 20, 22, 23, 49
layer_inclination, 18, 26
locator_indication, 23, 49
mac_address, 19
max_connections, 18, 31
measure_start_angle, 20-23, 29, 42, 49
measure_stop_angle, 20-23, 29, 42, 49
operating_mode, 20
operation_time, 24
operation_time_scaled, 24
part, 17, 47

pilot_laser, 22, 23, 49
pilot_start_angle, 22, 23, 49
pilot_stop_angle, 22, 23, 49
power_cycles, 24

product, 17, 47
radial_range_max, 18, 27
radial_range_min, 18, 27

Protocol version 1.05 Document release 2024-10

55 I3 PEPPERL+FUCHS

R2300 Ethernet communication protocol
References

References

[1] RFC-791: Internet Protocol Specification
http://tools.ietf.org/html/rfc791

[2] RFC-1305: Network Time Protocol (Version 3)
http://tools.ietf.org/html/rfc1305

[8] RFC-2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
http://tools.ietf.org/html/rfc2046

[4] RFC-2069: An Extension to HTTP : Digest Access Authentication
http://tools.ietf.org/html/rfc2069

[5] RFC-2616: Hypertext Transfer Protocol — HTTP/1.1
http://tools.ietf.org/html/rfc2616

[6] RFC-2617: HTTP Authentication: Basic and Digest Access Authentication
http://tools.ietf.org/html/rfc2617

[7] RFC-3629: UTF-8, a transformation format of ISO 10646
http://tools.ietf.org/html/rfc3629

[8] RFC-3986: Uniform Resource Identifier (URI)
http://tools.ietf.org/html/rfc3986

[9] RFC-4648: The Base16, Base32, and Base64 Data Encodings
http://tools.ietf.org/html/rfc4648

[10] RFC-7159: The JavaScript Object Notation (JSON) Data Interchange Format
http://tools.ietf.org/html/rfc7159

[11] Online CRC32 calculation of an example buffer
http://crccalc.com/?crc=0x010x020x030x040x050x060x070x08&method=crc32&datatype=hex

[12] Libwww: the W3C Protocol Library
http://www.w3.org/Library/

[13] libcurl: free and easy-to-use client-side URL transfer library
http://curl.haxx.se/libcurl/

[14] Wireshark: free network protocol analyzer for Unix and Windows
http://www.wireshark.org/

[15] Simple Service Discovery Protocol (Draft v1.03)
https://tools.ietf.org/html/draft-cai-ssdp-v1-03

[16] Zero Configuration Networking (Zeroconf)
http://www.zeroconf.org/

Protocol version 1.05 Document release 2024-10

56 I3 PEPPERL+FUCHS

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc1305
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2069
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc7159
http://crccalc.com/?crc=0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08&method=crc32&datatype=hex
http://www.w3.org/Library/
http://curl.haxx.se/libcurl/
http://www.wireshark.org/
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://www.zeroconf.org/

FACTORY AUTOMATION -
SENSING YOUR NEEDS

—_— T

Worldwide Headquarters
Pepperl+Fuchs GmbH - Mannheim - Germany
E-mail: fa-info@pepperl-fuchs.com

USA Headquarters
Pepperl+Fuchs Inc. - Twinsburg, OH - USA
E-mail: fa-info@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd - Singapore

Company Registration No. 199003130E

E-mail: fa-info@sg.pepperl-fuchs.com L |

www.pepperl-fuchs.com I3 PEPPERL+FUCHS

SENSING YOUR NEEDS

#77335 clean —2024-10-21 15:36

Subject to modifications without notice
Copyright Pepperl+Fuchs - Printed in Germany

	1 Protocol basics
	1.1 Basic design
	1.2 HTTP command protocol
	1.2.1 Sending commands
	1.2.2 Query argument encoding
	1.2.3 Replies to commands
	1.2.4 HTTP/1.1 persistent connections
	1.2.5 HTTP request and reply – low level example
	1.2.6 HTTP status codes
	1.2.7 Sensor error codes
	1.2.8 Protocol information (get_protocol_info)

	2 Sensor parametrization using HTTP
	2.1 Parameter types
	2.1.1 Enumeration values (enum)
	2.1.2 Boolean values (bool)
	2.1.3 Bit fields (bitfield)
	2.1.4 Integer values (int, uint)
	2.1.5 Double values (double)
	2.1.6 String values (string)
	2.1.7 IPv4 address and network mask values (IPv4)
	2.1.8 NTP timestamp values (ntp64)
	2.1.9 Collection of values (array)

	2.2 Commands for sensor parametrization
	2.2.1 list_parameters – list parameters
	2.2.2 get_parameter – read a parameter
	2.2.3 set_parameter – change a parameter
	2.2.4 reset_parameter – reset a parameter to its default value
	2.2.5 reboot_device – restart the sensor firmware
	2.2.6 factory_reset – reset the sensor to factory settings

	2.3 Basic sensor information
	2.3.1 Parameter overview
	2.3.2 Device family (device_family)
	2.3.3 User defined tag (user_tag)

	2.4 Sensor capabilities
	2.4.1 Parameter overview
	2.4.2 Device features (feature_flags)
	2.4.3 Emitter type (emitter_type)
	2.4.4 Layer configuration (layer_count and layer_inclination)

	2.5 Ethernet configuration
	2.5.1 Parameter overview
	2.5.2 IP address mode (ip_mode)

	2.6 Measuring configuration
	2.6.1 Parameter overview
	2.6.2 Mode of operation (operating_mode)
	2.6.3 Scan rate (scan_frequency, scan_frequency_measured)
	2.6.4 Scan direction (scan_direction)
	2.6.5 Scan resolution (samples_per_scan)
	2.6.6 Scan acquisition sector (measure_start_angle / measure_stop_angle)
	2.6.7 Layer configuration (layer_enable)

	2.7 Alignment aid (pilot laser)
	2.7.1 Parameter overview
	2.7.2 Pilot laser activation (pilot_laser)
	2.7.3 Pilot laser sector (pilot_start_angle and pilot_stop_angle)

	2.8 User interface configuration
	2.8.1 Parameter overview
	2.8.2 Locator indication (locator_indication)

	2.9 System status
	2.9.1 Parameter overview
	2.9.2 System status flags (status_flags)

	3 Scan data output using UDP
	3.1 Principles of scan data acquisition
	3.1.1 Sensor coordinate system
	3.1.2 Scan data coordinate system
	3.1.3 Distance readings
	3.1.4 Echo amplitude readings
	3.1.5 Timestamps

	3.2 Principles of scan data output
	3.2.1 Introduction
	3.2.2 Scan data connection handles
	3.2.3 Scan data output customization

	3.3 Commands for managing scan data output
	3.3.1 request_handle_udp – request for an UDP-based scan data channel
	3.3.2 release_handle – release a data channel handle
	3.3.3 start_scanoutput – initiate output of scan data
	3.3.4 stop_scanoutput – terminate output of scan data
	3.3.5 set_scanoutput_config – reconfigure scan data output
	3.3.6 get_scanoutput_config – read scan data output configuration

	3.4 Transmission of scan data
	3.4.1 Basic packet structure
	3.4.2 Typical structure of a scan data header
	3.4.3 Scan data header status flags
	3.4.4 Scan data packet type C1 – distance and amplitude

	3.5 Data transmission using UDP

	4 Filter-based scan data processing
	4.1 Introduction to scan data filtering
	4.1.1 Block-wise processing
	4.1.2 Moving-window processing
	4.1.3 Filter processing at scan edges

	4.2 Filter algorithms
	4.2.1 No filter (pass-through)
	4.2.2 Average filter
	4.2.3 Median filter
	4.2.4 Maximum filter

	4.3 Filter configuration
	4.3.1 Parameter overview
	4.3.2 Filter types (filter_type)
	4.3.3 Filter width (filter_width)
	4.3.4 Filter error handling (filter_error_handling)
	4.3.5 Maximum filter margin (filter_maximum_margin)

	5 Advanced topics
	5.1 Device discovery using SSDP
	5.1.1 SSDP search request
	5.1.2 SSDP device reply
	5.1.3 SSDP device description

	A Migrating from R2000 to R2300
	A.1 Functional comparison
	A.2 PFSDP command implementation
	A.2.1 Commands available on R2000 devices only
	A.2.2 Commands available on R2300 devices only
	A.2.3 Error handling for command requests

	A.3 PFSDP parameter implementation
	A.3.1 Measurement configuration
	A.3.2 Pilot laser
	A.3.3 User tag and user notes
	A.3.4 HMI parameters

	A.4 PFSDP scan data implementation
	A.4.1 Connection handling
	A.4.2 Scan data output customization
	A.4.3 Scan data packet types

	A.5 Filter-based scan data processing

	B Troubleshooting the Ethernet communication
	B.1 Checking the Ethernet setup
	B.2 Debugging using a web browser
	B.3 Debugging using Wireshark

	C Protocol version history
	C.1 Protocol version 1.05

	D Document change history
	D.1 Release 2024-10 (protocol version 1.05)
	D.2 Release 2022-08 (protocol version 1.05)
	D.3 Release 2020-10 (protocol version 1.05)

	Index for commands and parameters
	References

