Moniteur de sécurité AS-interface

Manuel de raccordement et d'utilisation Version V 3.08

Situation : 06/2009

© Tous droits réservés, en particulier de polycopie ainsi que de traduction. Toute polycopie ou reproduction sous quelle forme que ce soit nécessite le consentement écrit de l'auteur. Les noms des produits sont utilisés sans garantie de leur utilisabilité libre. Sous réserve de modifications favorisant le progrès technique.

Table des matières

1	Généralités	4
1.1	Explication des symboles	4
1.2	Déclaration de conformité	4
1.3	Normes	4
1.4	Définitions	5
1.5	Abréviations	6
1.6	Description brève	7
1.7	Différents modèles de moniteur de sécurité AS-interface	10
2	Recommandations de sécurité	
2.1	Standard de sécurité	
2.2	Utilisation conforme	
2.2.1	Domaines d'application	13
2.2.2	Risques résiduels (EN 292-1)	13
2.2.3	Domaines d'application	
2.3	Mesures relatives à l'organisation	
3	Caractéristiques techniques	16
3.1	Caractéristiques générales	
3.2	Caractéristiques de sécurité	
3.3	Encombrement	21
3.4	Étendue de la livraison	21
4	Montage	
4.1	Montage dans l'armoire de commande	
5	Branchement électrique pour le type 1 et le type 3	25
5.1	Affectation des bornes	
5.2	Vue d'ensemble des raccordements	27
6	Branchement électrique pour le type 2 et le type 4	
6.1	Affectation des bornes	
6.2	Vue d'ensemble des raccordements	
7	Branchement électrique pour le type 5 et le type 6	
7.1	Affectation des bornes	
7.2	Vue d'ensemble des raccordements	
7.2.1	Raccordement pour le contrôle d'actionneur	34
7.2.2	Raccordement pour le couplage d'un autre réseau AS-interface	35
8	Branchement électrique pour tous les types	
8.1	Raccordement du bus AS-interface	
8.2	Interface série	

Table des matières

9	Fonction et mise en service	
9.1	Fonctionnement et modes opératoires	
9.1.1	Mode démarrage	38
9.1.2	Mode configuration	39
9.1.3	Mode protection	39
9.2	Éléments d'affichage et de commande	40
9.3	Mise en service de l'appareil	41
9.4	Configuration et paramétrage de l'appareil	41
9.5	Documentation de l'application en matière de sécurité	42
10	Maintenance	43
10.1	Contrôler la coupure de sécurité	43
11	Affichage d'état, pannes et résolution des erreurs	
11.1	Affichage d'état sur l'appareil / Diagnostic des erreurs sur le PC	44
11.2	Quelques conseils pour la recherche d'erreurs	44
11.3	Déverrouillage des erreurs par la touche « Service »	44
11.4	Remplacement des esclaves AS-interface de sécurité défectueux	45
11.4.1	Remplacement d'un esclave AS-interface de sécurité défectueux	45
11.4.2	Remplacement de plusieurs esclaves AS-interface de sécurité défectueux	45
11.5	Remplacement d'un moniteur de sécurité AS-interface défectueux	47
11.6	Vous avez oublié votre mot de passe ? Que faire ?	48
12	Diagnostic par AS-interface	49
12.1	Déroulement général	49
12.2	Messages	50
12.2.1	Diagnostic du moniteur de sécurité AS-interface	50
12.2.2	Diagnostic des blocs trié par circuit de validation	53
12.2.3	Diagnostic des blocs non trié	55
12.3	Exemple : demande pour le diagnostic trié par circuit de validation	57

Liste des illustrations

Figure 1.1 :	Composants standard et composants de sécurité dans un réseau AS-interface7
Figure 1.2 :	Exemple - Contrôle de deux groupes d'actionneurs AS-interface décentralisés
Figure 1.3 :	Exemple - Couplage sécuritaire de 2 réseaux AS-interface
Figure 3.1 :	Exemple 1 - Calcul du temps de réaction système
Figure 3.2 :	Exemple 2 - Calcul du temps de réaction système
Figure 3.3 :	Exemple 3 - Calcul du temps de réaction système
Figure 3.4 :	Dimensions
Figure 4.1 :	Montage
Figure 4.2 :	Bornes de connexion démontables
Figure 4.3 :	Retirer et monter les bornes de connexion codées
Figure 4.4 :	Accessoires de montage pour le plombage de l'appareil
Figure 5.1 :	Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 1
et de type 3	25
Figure 5.2 :	Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 1 et de
type 3	27
Figure 6.1 :	Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 2
et de type 4	28
Figure 6.2 :	Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 2 et de
type 4	30
Figure 7.1 :	Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 5
et de type 6	31
Figure 7.2 :	Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 5 et de
type 6	33
Figure 7.3 :	Raccordement des bornes de la sortie AS-interface sûre pour le contrôle d'actionneur34
Figure 7.4 :	Raccordement des bornes de la sortie AS-interface sûre pour le couplage de réseau35
Figure 8.1 :	Variantes de câbles AS-interface
Figure 8.2 :	Emplacement de l'interface de configuration RS 232C
Figure 9.1 :	Aperçu des DEL40
Figure 12.1	Principe de demande dans le cas du diagnostic trié par circuit de sortie

1 Généralités

1.1 Explication des symboles

Vous trouverez ci-dessous l'explication des symboles utilisés dans ce manuel d'utilisation.

Attention !

Ce symbole est placé devant des paragraphes qui doivent absolument être respectés. En cas de non-respect, vous risquez de blesser des personnes ou de détériorer le matériel.

Remarque !

Ce symbole caractérise les parties du texte contenant des informations importantes.

1.2 Déclaration de conformité

Le moniteur de sécurité AS-interface a été développé et produit dans le respect des normes et directives européennes en vigueur.

Remarque !

Vous trouverez à la fin de ce manuel d'utilisation la déclaration de conformité et le certificat de vérification du modèle-type.

Le fabricant des produits est titulaire du système d'assurance de la qualité selon ISO 9001.

1.3 Normes

- Proposition de principe pour la vérification et la certification de « systèmes de bus pour la transmission d'informations de haute sécurité »
- EN 954-1:1996 Sécurité des machines Pièces de sécurité des commandes
- EN ISO 13849-1:2007-07 Sécurité des machines Pièces de sécurité des commandes -1ère partie : Principes généraux de conception
- EN 50295:1999-10 Appareillage électrique à basse tension ; interface commande et appareil ; interface actionneur-capteur (AS-interface)
- EN 60204-1:2006-06 Sécurité des machines Équipement électrique des machines -1ère partie : exigences générales
- EN 60947-5-1:2005-02 Appareillage électrique à basse tension Partie 5-1 : Appareils de commande et éléments de commutation ; appareils de commande électromécaniques
- EN 61496-1:2005-01 Équipements de protection électro-sensibles
- CEI 61508 1-7:2000 Sécurité fonctionnelle de systèmes électriques/électroniques/électroniques programmables avec fonction de sécurité

1.4 Définitions

Élément de commutation de sortie (sortie de sécurité) du moniteur de sécurité AS-interface

Élément actionné par la logique du moniteur et capable de couper en toute sécurité les pièces de commande en aval. L'élément de commutation de sortie ne doit pouvoir passer et rester en état de marche que si tous les composants fonctionnent comme prévu.

Circuit de sortie

Il est composé de deux éléments de commutation de sortie en rapport logique.

Circuit de validation

Composants AS-interface et composants de fonction de sécurité affectés à un circuit de sortie du moniteur de sécurité AS-interface et responsables du déverrouillage de la partie de la machine qui provoque le mouvement dangereux.

Esclave intégré

Composant dans lequel la fonctionnalité de capteur et/ou d'actionneur est assemblée avec l'esclave en une unité.

Mode configuration

Mode de fonctionnement du moniteur de sécurité dans lequel la configuration est chargée et contrôlée.

Maître

Composant de transmission de données qui commande le comportement logique et temporel sur la ligne AS-interface.

Contrôle externe (contrôle à contacteurs)

Le contrôle externe permet la surveillance de la fonction de commutation des contacteurs raccordés au moniteur de sécurité AS-interface.

Sortie de sécurité

Voir élément de commutation de sortie.

Esclave d'entrée de sécurité

Esclave qui lit l'état de sécurité Marche ou Arrêt du capteur ou du dispositif de transmission d'ordre raccordé et le transmet au maître ou au moniteur de sécurité.

Esclave de sécurité

Esclave de raccordement de capteurs, actionneurs et autres appareils de sécurité.

Moniteur de sécurité

Composant surveillant les esclaves de sécurité et le bon fonctionnement du réseau.

Esclave

Composant de transmission de données auquel le maître s'adresse cycliquement à son adresse et qui ne génère qu'alors une réponse.

Esclave standard

Esclave de raccordement de capteurs, actionneurs et autres appareils non sécuritaires.

Temps de synchronisation

Décalage temporel maximal admissible entre l'apparition de deux événements dépendants l'un de l'autre.

1.5 Abréviations

AS-interface	Interface actionneur-capteur
DPSC	Dispositif de protection agissant sans contact
CRC	Cyclic Redundancy Check = contrôle cyclique de la redondance
I/O	Entrée/Sortie
EDM	External Device Monitoring = contrôle externe
CEM	Compatibilité électromagnétique
ESD	Electrostatic Discharge = décharge électrostatique
PELV	Protective Extra-Low Voltage (basse tension de protection)
PFD	Probability of Failure on Demand = probabilité de défaillance lors d'une sollicitation de la fonction de sécurité
API	Automate programmable industriel

1.6 Description brève

L'interface actionneur-capteur (AS-interface) est un système établi pour la mise en réseau de capteurs et actionneurs principalement binaires au niveau le plus bas de la hiérarchie d'automatisation. Le grand nombre de systèmes installés, la facilité de manipulation et la fiabilité du fonctionnement en font un système également intéressant pour la sécurité des machines.

Le système AS-interface **sûr** est conçu pour des applications de sécurité de catégorie allant jusqu'à 4 selon EN 954-1 et EN ISO 13849-1 PLe. Un fonctionnement mixte des composants standard et des composants de sécurité est possible.

Dans un système AS-interface, le moniteur de sécurité AS-interface surveille les esclaves de sécurité qui lui sont affectés selon la configuration que l'utilisateur lui aura indiquée à l'aide du logiciel de configuration. Selon le modèle d'appareil, jusqu'à deux circuits de validation dépendants ou indépendants, chacun muni d'un contrôle externe, sont disponibles. En cas de demande d'arrêt ou de défaut, le moniteur de sécurité AS-interface en mode de protection coupe le système de façon sûre en un temps de réaction de 40ms maximum.

Figure 1.1 : Composants standard et composants de sécurité dans un réseau AS-interface

Il est possible d'utiliser plusieurs moniteurs de sécurité AS-interface dans un seul système AS-interface. Un esclave de sécurité peut être surveillé par plusieurs moniteurs de sécurité AS-interface.

Extension du système - Esclaves AS-interface de sortie sûrs décentralisés

Avec l'extension du **rattachement sécuritaire d'esclaves de sortie AS-interface sûrs décentralisés** au système conformément à CEI 61508 SIL 3, l'appareil est disponibles dans des nouvelles variantes avec **sortie AS-interface sûre**. Ces variantes (type 5/type 6) sont utilisées dans les applications suivantes :

 Intégration sécuritaire et contrôle d'actionneurs ou de groupes d'actionneurs AS-interface, par exemple pour la libération de démarreurs de moteurs ou d'unités à soupapes par la sortie AS-interface sûre du moniteur de sécurité.

Figure 1.2 : Exemple - Contrôle de deux groupes d'actionneurs AS-interface décentralisés

Remarque !

Un moniteur de sécurité AS-interface ne peut surveiller qu'un groupe d'actionneurs.

2. Couplage de réseaux AS-interface pour la transmission sécuritaire de l'état d'un moniteur de sécurité AS-interface d'un réseau AS-interface vers un autre réseau AS-interface via AS-interface, le moniteur de sécurité AS-interface fonctionnant en tant qu'esclave d'entrée AS-interface sûr, p. ex. pour la mise en place de réseau hiérarchiques pour réaliser un arrêt ou un redémarrage d'installation pour tous les réseaux AS-interface, depuis un seul endroit.

Figure 1.3 : Exemple - Couplage sécuritaire de 2 réseaux AS-interface

1.7 Différents modèles de moniteur de sécurité AS-interface

Depuis son lancement en 2001, le moniteur de sécurité AS-interface a fait l'objet de développements et d'extensions de fonctionnalités.

Le moniteur de sécurité est disponible dans six versions qui se distinguent par le jeu de fonctions du logiciel d'exploitation et la configuration de départ.

Remarque !

Vous trouverez une description détaillée de toutes les fonctions citées dans la suite des différentes versions du moniteur de sécurité AS-interface dans le manuel d'utilisation du logiciel de configuration **asimon**.

Versions du logiciel d'exploitation Version 2.0

Les jeux de fonctions de « Base » et « Étendu » se distinguent comme suit :

	« Base »	« Étendu »
Nombre de fonctions implémentées	32	48
Porte Ou (entrées)	2	6
Porte Et (entrées)	non	6
Fonction de temps sûre, temporisation à la mise sous et hors tension	non	oui
Fonction « Bouton »	non	oui
Porte de sécurité/module avec stabilisation	non	oui
Porte de sécurité avec verrouillage	non	oui
Désactivation de blocs fonctionnels	oui	oui
Déverrouillage des erreurs	oui	oui
Arrêt du diagnostic	oui	oui
Support des techniques A/B pour les esclaves non sécuritaires	oui	oui
Nouveaux blocs fonctionnels (bascules, impulsion lors de fronts de montée etc.)	non	oui
Bloc de substitut (NOP)	non	oui

Tableau 1.1 : Jeux de fonctions de « Base » et « Étendu »

Remarque !

Les versions d'appareil du logiciel d'exploitation 2.0 sont compatibles avec les versions d'appareil du premier logiciel 1.1 de jeu de fonctions de « base ».

Nouveautés du logiciel d'exploitation à partir de la version 2.1

La version 2.1 du logiciel d'exploitation du moniteur de sécurité AS-interface contient les nouveautés suivantes :

- Nouveau bloc de contrôle Détection d'une suite de zéros
- Extension du bloc de sortie Verrouillage de porte par temporisation : catégorie d'arrêt 1 en option pour le premier circuit de validation
- Extension du bloc de sortie Verrouillage de porte par contrôle d'arrêt et temporisation : catégorie d'arrêt 1 en option pour le premier circuit de validation
- Nouveau bloc de démarrage Activation par esclave standard (sensible au niveau)
- Nouveau bloc de démarrage Activation par entrée du moniteur (sensible au niveau)
- Nouveau bloc de contrôle Commutation standard via l'entrée du moniteur
- Extension du bloc de contrôle **Deux contacts dépendants avec stabilisation** d'un acquittement local et d'un test au démarrage
- Extension du bloc de contrôle **Deux contacts indépendants** d'un acquittement local et d'un test au démarrage
- Programmation progressive des tables de code
- Affectation des index de bloc
- · Représentation du symbole d'inversion quand l'esclave standard est inversé
- · Possibilité de choisir le nombre d'esclaves simulés
- Signalisation des sorties relais et de signalisation via AS-interface

Configuration des sorties

Types d'appareil type 1 et type 3 :un circuit de sortie commutable

Types d'appareil type 2 et type 4 :deux circuits de sortie commutables séparément

Propriétés des différentes versions d'appareil

		Jeu de fe	onctions
		« Base »	« Étendu »
Nombre de	1	Type 1	Туре З
circuits de sortie	2	Type 2	Type 4

Tableau 1.2 : Propriétés des versions d'appareil de type 1 ... 4

Remarque !

Les versions d'appareil du logiciel d'exploitation 2.1 sont compatibles avec les versions d'appareil du logiciel 1.1 et 2.0.

Nouveautés du logiciel d'exploitation à partir de la version 3.0

En plus des types d'appareils disponibles jusqu'à présent type 1 ... type 4, **2 nouveaux types** (type 5 et type 6) de la version 3 du moniteur de sécurité AS-interface **avec sortie AS-interface sûre** sont pris en charge.

La version 3.0 du logiciel d'exploitation du moniteur de sécurité AS-interface contient les nouveautés suivantes :

- Prise en charge de la transmission AS-interface sûre pour la commande d'actionneurs AS-interface sûrs
- Couplage de plusieurs réseaux AS-interface sûrs, le moniteur de sécurité fonctionnant en tant qu'esclave d'entrée sûr (nouveaux types d'appareils avec sortie AS-interface sûre uniquement)
- Bloc de contrôle Deux contacts dépendants avec filtrage
- Entrée manuelle des tables de code des esclaves AS-interface sûrs
- Disponibilité des bits de sortie standard du maître pour les esclaves sûrs et les esclaves simulés par le moniteur de sécurité pour les commutations standard (acquittements, validations, déverrouillages, etc.)

Configuration des sorties

Types d'appareil type 5 et type 6 :deux circuits de sortie commutables séparément

Propriétés des différentes versions d'appareil

		Jeu de fonctions « Étendu »		
		Circuit de sortie 1	Circuit de sortie 2	
Nombro do		Type 5	Relais	Sortie AS-interface sûre
circuits de sortie	2	Type 6	Relais	Relais + Sortie AS-interface sûre

Tableau 1.3 : Propriétés des versions d'appareil de type 5 et type 6

Remarque !

Les versions d'appareil du logiciel d'exploitation 3.0 sont compatibles avec les versions d'appareil du logiciel 1.1, 2.0 et 2.1.

Nouveautés du logiciel d'exploitation à partir de la version 3.08

À partir de la version 3.08 du logiciel d'exploitation du moniteur de sécurité AS-interface, le bloc de contrôle « Deux contacts dépendants avec stabilisation » est remplacé dans l'appareil par le bloc de contrôle « Deux contacts dépendants avec filtrage ».

Remarque !

Les versions d'appareil du logiciel d'exploitation 3.08 sont compatibles avec les versions d'appareil du logiciel 1.1, 2.0, 2.1 et 3.0.

2 Recommandations de sécurité

2.1 Standard de sécurité

Le moniteur de sécurité AS-interface a été développé, produit et testé dans le respect des normes de sécurité en vigueur au moment du contrôle, et soumis à la certification des modèles-type. Les exigences de sécurité du SIL 3 conformément à CEI 61508, de la catégorie 4 conformément à EN 954-1 et de la catégorie 4 PL e conformément à EN ISO 13849-1 sont remplies par tous les appareils.

Remarque !

Vous trouverez une énumération détaillée des valeurs de la probabilité de défaillance (valeurs PFD) dans le chapitre 3.2.

Réalisez une analyse des risques. Vous pourrez ensuite utiliser le moniteur de sécurité AS-interface conformément à sa catégorie de sécurité (4) comme dispositif de protection par coupure pour la mise en sécurité de zones dangereuses.

2.2 Utilisation conforme

2.2.1 Domaines d'application

Le moniteur de sécurité AS-interface est un **dispositif de protection par coupure** développé pour la mise en sécurité de zones dangereuses sur les appareils à moteur.

Attention !

La protection de l'utilisateur et de l'appareil n'est pas garantie si l'appareil n'est pas employé conformément aux directives d'utilisation conforme.

Attention !

Aucune intervention ni modification n'est autorisée sur les appareils, en dehors de celles décrites explicitement dans ce manuel.

2.2.2 Risques résiduels (EN 292-1)

Les propositions de câblage exposés dans ce manuel ont été soigneusement testés et contrôlés. Les normes et règlements applicables seront respectés si vous utilisez bien les composants indiqués avec les câblages correspondants. Il reste des risques si :

- les concepts de câblage proposés ne sont pas parfaitement respectés, ce qui aurait pour conséquence que les composants de sécurité et dispositifs de protection raccordés ne seraient pas ou pas assez impliqués dans le système de sécurité.
- l'exploitant ne respecte pas les règlements de sécurité applicables pour l'utilisation, le réglage et l'entretien de la machine. Veillez à respecter scrupuleusement les intervalles de test et d'entretien de la machine.

2.2.3 Domaines d'application

Le moniteur de sécurité AS-interface permet, s'il est utilisé comme prévu, d'employer des dispositifs de protection de personnes commandés par capteurs et d'autres composants de sécurité jusqu'à la catégorie 4 incluse, conformément à EN 954-1 et à EN ISO 13849-1 PLe.

Le moniteur de sécurité prend également en charge la fonction d'arrêt d'urgence (catégorie d'arrêt 0 ou 1) obligatoire pour toutes les machines non manuelles, ainsi que la surveillance dynamique de la fonction de redémarrage et la fonction de contrôle à contacteurs.

Exemples d'utilisation du moniteur de sécurité AS-interface :

Le moniteur de sécurité est intéressant économiquement parlant dans les machines et installations dans lesquelles le bus AS-interface standard est rentable en tant que bus local. Ainsi, en utilisant le moniteur de sécurité comme participant au bus, des configurations de bus AS-interface déjà existantes peuvent être étendues sans problème, des composants de sécurité avec AS-interface safety at work ajoutés. Si le composant de sécurité ne dispose pas d'interface AS-interface safety at work, il est aussi possible d'ajouter des modules dits de couplage qui se chargeront de la liaison. Les maîtres AS-interface et les blocs d'alimentation AS-interface déjà en place peuvent rester.

On peut utiliser le moniteur de sécurité dans toutes les branches de l'industrie. Citons ici quelquesuns des domaines d'application les plus importants :

- Machines-outil
- Machines d'usinage étendues comportant plusieurs éléments de commande et capteurs de sécurité pour le bois et le métal
- Machines à imprimer et de traitement du papier, découpeuses
- Empaqueteuses utilisées seules ou en groupe
- Machines utilisées dans l'alimentaire
- Installations de transport de pièces et de marchandises en vrac
- Machines utilisées dans l'industrie du caoutchouc et du plastique
- · Automates de montage et matériel de maniement

2.3 Mesures relatives à l'organisation

Documentation

Toutes les indications contenues dans ce manuel d'utilisation, et en particulier les paragraphes « Recommandations de sécurité » et « Mise en service » doivent absolument être respectées.

Conservez ce manuel d'utilisation avec soin. Il doit toujours être disponible.

Règlements de sécurité

Respectez les décrets en vigueur dans la région, ainsi que les règlements des corporations professionnelles.

Personnel qualifié

Le montage, la mise en service et la maintenance des appareils doivent toujours être effectués par des experts qualifiés.

Les travaux électriques ne doivent être effectués que par des personnes qualifiées en électrotechnique.

La définition et la modification de la configuration de l'appareil avec un ordinateur et le programme de configuration **asimon** doivent être réalisées uniquement par les personnes autorisées.

Le responsable de la sécurité doit conserver le **mot de passe** permettant de changer la configuration de l'appareil dans un endroit fermé.

Réparations

Les réparations, en particulier l'ouverture de l'appareil, doivent être réalisées par le fabricant ou une personne autorisée par lui uniquement.

Élimination

Remarque !

La ferraille électronique fait partie des déchets spéciaux. Pour son élimination, respectez les consignes locales en vigueur !

Le moniteur de sécurité AS-interface ne renferme aucune pile ; il n'y a donc pas lieu de veiller à les enlever avant de mettre l'appareil à la décharge.

3 Caractéristiques techniques

3.1 Caractéristiques générales

Données électriques

Tension d'alimentation U _N	24V CC +/- 15%	
Ondulation résiduelle	< 15%	
Courant de fonctionnement	type 1 et type 3 :	150mA
de dimensionnement	type 2, type 4 et type 5 : type 6 :	200mA 250mA
Courant de pointe au démarrage ¹⁾	tous les types : 600mA	
Temps de réaction ²⁾ (du point de vue de la sécurité)	< 40ms	
Temps d'initialisation	< 10s	

1) Mise en route simultanée de tous les relais, le courant des sorties de signalisation n'est pas pris en compte

2) Attention ! Veuillez tenir compte des remarques sur le calcul des temps de réaction données dans le chapitre 3.2.

Caractéristiques de l'AS-interface

Profil de l'AS-interface	moniteur 7.F
Plage de tension de l'AS-interface	18,5 31,6V
Consommation de l'AS-interface	< 45mA
Nombre d'appareils par branche AS-interface	Sur un réseau AS-interface complet avec 31 adresses stan- dard utilisées, il est possible d'installer en plus jusqu'à quatre moniteurs de sécurité sans adresse. Si moins de 31 adresses standard sont utilisées, un moniteur supplémentaire peut être installé par adresse standard non utilisée. Si d'autres participants sans adresse sont installés (p. ex. des modules de surveillance de la mise à la terre), le nombre de moniteurs de sécurité pouvant être installés dimi- nue en conséquence. Si des prolongateurs de ligne sont en place, cette règle est valable pour chaque segment

Données mécaniques

Dimensions (H x L x P) Matériel du boîtier Poids 45mm x 105mm x 120mm polyamide PA 66 type 1 et type 3 : env. 350g type 5 : env. 420g type 2, type 4 et type 6 : env. 450g fixation encliquetable sur profilé chapeau conforme à EN 50022

Ø 5 6 mm / PZ2	0,8 1,2 Nm 7 10.3 LB.IN
	1 x (0,5 4,0) mm ² 2 x (0,5 2,5) mm ²
	1 x (0,5 2,5) mm ² 2 x (0,5 1,5) mm ²
AWG	2 x 20 14

Situation : 06/2009

Fixation Raccordement

RS 232	9600 Baud, pas de parité, 1 bit de départ, 1 bit d'arrêt, 8 bits de données	
Entrées et sorties		
Entrée « Démarrage »	entrée d'optocoupleur (actif HIGH), courant d'entrée env. 10mA pour 24V CC	
Entrée « Contrôle externe »	entrée d'optocoupleur (actif HIGH), courant d'entrée env. 10mA pour 24V CC sortie de transistor PNP, 200mA, proténée contre les courts-circuits et l'inversion de polarité	
Sortie de signalisation « Safety on » ¹⁾		
Sortie de sécurité	contacts de travail libres de potentiel, charge max. des contacts : 1A CC-13 sous 24V CC 3A CA-15 sous 230V CA	
Courant permanent thermique maximal	type 1, type 3 et type 5 : courant somme maximal pour tous les éléments de commutation de sortie : 6A càd. circuit de sortie 1 :3A par élément de commutation de sortie type 2, type 4 et type 6 : courant somme max. pour tous les éléments de commutation de sortie : 8A càd. circuit de sortie 1 : 3A par élément de commutation de sortie circuit de sortie 2 : 1A par élément de commutation de sortie	
	ou circuit de sortie 1 : 2A par élément de commutation de sortie circuit de sortie 2 : 2A par élément de commutation de sortie	
Valeur B10 pour une charge ohmique selon EN 61810-2	à la charge max. des contacts : $2 \cdot 10^5$ au ¹ / ₄ de la charge max. des contacts : $4 \cdot 10^5$ au ¹ / ₁₀ ^{ème} de la charge max. des contacts : $2,5 \cdot 10^6$	
Fusibles	externes, max. 4A à action semi-retardée	
Catégorie de surtension	3 pour une tension de fonctionnement de dimensionnement de 300V CA selon VDE 0110 1ère partie	

1) La sortie de signalisation « Safety on » n'est pas de sécurité !

Caractéristiques ambiantes

Interface de configuration

Température de fonctionnement	-20 +60 °C
Température de stockage	-30 +70°C
Indice de protection	IP 20 (adapté uniquement à l'utilisation dans des locaux / armoires
	électriques d'indice de protection minimum IP 54)

Attention !

Le bloc d'alimentation AS-interface servant à l'alimentation des composants AS-interface doit posséder un système sûr de déconnexion du réseau conformément à CEI 60742 (PELV) et surmonter des pannes brèves du réseau (jusqu'à 20ms).

Le bloc d'alimentation 24 V doit également posséder un système sûr de déconnexion du réseau conformément à CEI 60742 (PELV) et surmonter des pannes brèves du réseau (jusqu'à 20ms).

Remarque !

Conformément à EN 61000-4-2, il a été testé que le moniteur de sécurité fonctionne sans incident sous une décharge dans l'air de 8kV. La valeur de 15kV imposée dans la norme EN 61496-1 n'est pas importante pour le moniteur de sécurité puisque ce dernier ne sera intégré à l'installation que dans un boîtier ou une armoire électrique et que seul le personnel qualifié a accès au moniteur. Nous recommandons toutefois à l'utilisateur de se décharger (en se mettant à la terre) à un endroit adapté avant de brancher le câble de paramétrage dans le moniteur de sécurité.

3.2 Caractéristiques de sécurité

Caractéristique	Valeur	Norme
Catégorie de sécurité	4	EN 954-1
Catégorie de sécurité	4	EN ISO 13849-1
Performance Level (PL)	е	
Safety Integrated Level (SIL)	3	CEI 61508
Durée d'utilisation (TM) en années	20	EN ISO 13849-1
Durée maximale de démarrage en mois	12	CEI 61508
PFD ¹⁾ pour les types 1, 2, 3, 4	6,1 • 10 ⁻⁵	CEI 61508
PFD ¹⁾ pour les types 5, 6	7,2 • 10 ⁻⁵	EN 62061
PFH _D ¹⁾ (probabilité de défaillance dangereuse par heure)	9,1 • 10 ⁻⁹	CEI 61508 EN 62061
Temps max. de réaction système ²⁾ en millisecondes	40	CEI 61508

 Les valeurs de PFD et de PFH_D indiquées se rapportent à la durée maximale de démarrage de 12 mois et à une durée maximale d'utilisation de 20 ans conformément à EN ISO 13849-1.

2) En ce qui concerne le temps de réaction système :

Au temps de réaction système de 40ms max. s'ajoutent les temps de réaction de l'esclave capteur AS-interface sûr, du capteur utilisé pour le contrôle, de l'esclave actionneur ASinterface sûr et de l'actionneur utilisé pour cela. Veuillez noter que, avec le paramétrage du moniteur de sécurité, des temps de réaction supplémentaires peuvent également être générés.

Tableau 3.1 : Caractéristiques de sécurité

Attention !

Remarque !

Vous trouverez les temps de réaction à ajouter dans les caractéristiques techniques des esclaves, ainsi que des capteurs et actionneurs.

Attention !

Les temps de réaction système des composants AS-interface enchaînés s'ajoutent.

Temps de réaction système – Exemples de calcul

Composants du système :

ASI1	réseau AS-interface 1	
ASI2	réseau AS-interface 2	
S1-1	esclave capteur de sécurité	(commutateur d'arrêt d'urgence : t _{R S1-1} = 100ms)
S1-2	esclave capteur de sécurité	(rideau optique de sécurité : t _{R S1-2} = 18ms)
S2-1	esclave capteur de sécurité	(commutateur d'arrêt d'urgence : t _{R S2-1} = 100ms)
A2-1	esclave actionneur de sécurité	(démarreur de moteur : t _{R A2-1} = 50ms)
SM1-1	moniteur de sécurité de type 5 avec le réseau AS-interface 1	une sortie relais et une sortie AS-interface sûre dans
SM1-2	moniteur de sécurité de type 1 avec	une sortie relais dans le réseau AS-interface 1

SM2-1 moniteur de sécurité de type 5 avec une sortie relais et une sortie AS-interface sûre dans le réseau AS-interface 2

Exemple 1 de configuration système :

Figure 3.1 : Exemple 1 - Calcul du temps de réaction système

Lors de l'activation du rideau optique de sécurité S1-2, la sortie relais de sécurité est commandée par le moniteur de sécurité SM1-2.

Calcul du temps de réaction système important pour l'AS-interface :

t_{système complet a)} = t_{R S1-2} + t_{R système} = 18ms + 40ms = <u>58ms</u>

Exemple 2 de configuration système :

Figure 3.2 : Exemple 2 - Calcul du temps de réaction système

Lors du verrouillage du commutateur d'arrêt d'urgence S2-1, le démarreur moteur est commandé via la sortie AS-interface sûre du moniteur de sécurité SM2-1.

Calcul du temps de réaction système important pour l'AS-interface :

t_{système complet b}) = t_{R S2-1} + t_{R système} + t_{R A2-1} = 100ms + 40ms + 50ms = <u>190ms</u>

Exemple 3 de configuration système :

Figure 3.3 : Exemple 3 - Calcul du temps de réaction système

Lors du verrouillage du commutateur d'arrêt d'urgence S1-1, la sortie relais du moniteur de sécurité SM2-1 est commandée par le couplage de la sortie AS-interface sûre du moniteur de sécurité SM1-1.

Calcul du temps de réaction système important pour l'AS-interface :

t_{système complet c}) = t_{R S1-1} + t_{R système ASI1} + t_{R système ASI2} = 100ms + 40ms + 40ms = <u>180ms</u>

3.3 Encombrement

Figure 3.4 : Dimensions

3.4 Étendue de la livraison

L'unité de base comprend les éléments suivants :

• un moniteur de sécurité AS-interface de type 1, 2, 3, 4, 5 ou 6

Les accessoires suivants sont disponibles :

- Câble d'interface pour la configuration (RJ45/SubD à 9 pôles) pour la liaison PC/moniteur de sécurité
- CD contenant le programme avec
 - le logiciel de communication asimon compatible Microsoft[®] Windows 9x/Me/NT/2000/XP/ Vista[®]
 - le manuel d'utilisation au format PDF (pour pouvoir lire les fichiers vous avez besoin d'Adobe[®] Acrobat Reader[®] Version 4.x ou suivante)
- Manuel d'utilisation
- Câble de téléchargement (RJ45/RJ45) pour la liaison moniteur de sécurité/moniteur de sécurité
- Couvercle à l'avant de l'appareil pour la protection et le plombage

4 Montage

4.1 Montage dans l'armoire de commande

Le moniteur de sécurité AS-interface est monté dans l'armoire de commande sur des rails 35 mm standard conformément à la norme DIN EN 50022.

Attention !

Le boîtier du moniteur de sécurité AS-interface ne convient pas pour une installation murale extérieure. Si vous souhaitez installer l'appareil en-dehors de l'armoire de commande, prévoyez dans tous les cas un carter protecteur.

Figure 4.1 : Montage

Pour le montage, posez l'appareil sur l'arête supérieure du rail standard puis enclenchez-le sur l'arête inférieure. Pour le retirer, appuyer fermement l'appareil contre le contrerail supérieur et le dégager.

Remarque !

Recouvrez le moniteur de sécurité AS-interface lors de tout forage au dessus de l'appareil. Aucune particule, et en particulier aucun copeau métallique, ne doit pouvoir pénétrer dans le boîtier par les prises d'air ; cela pourrait engendrer un court-circuit.

Pour éviter les incidents, il est recommandé de respecter la température de fonctionnement indiquée dans les caractéristiques techniques du moniteur de sécurité AS-interface pour le montage dans une armoire électrique. Il est aussi conseillé de maintenir généralement un écart minimal de 10mm entre plusieurs moniteurs de sécurité et vers d'autres composants dans l'armoire électrique.

Bornes de connexion démontables

Le moniteur de sécurité AS-interface possède des bornes de connexion codées démontables (A, B, C, D sur la figure 4.2).

Figure 4.2 : Bornes de connexion démontables

Pour démonter les bornes de connexion codées, faire sortir le ressort d'arrêt **a** en appuyant dessus et retirer les bornes vers l'avant (figure 4.3). Lors du montage, les bornes de connexion doivent s'encliqueter.

Accessoires pour le montage

Comme le moniteur de sécurité AS-interface est un composant de sécurité, il est possible de protéger l'accès à l'interface de configuration **CONFIG** et à la touche **Service** par un plombage. Vous trouverez pour cela dans le contenu de la livraison un couvercle transparent avec des crochets de sécurité qui permettent de faire passer un fil de plombage tout en laissant l'appareil monté (voir figure 4.4). Rompez le crochet de sécurité avant d'utiliser le couvercle.

Figure 4.4 : Accessoires de montage pour le plombage de l'appareil

Remarque !

Nous vous recommandons de toujours mettre le couvercle transparent avec les crochets de sécurité en place : il apporte une bonne protection contre les décharges électrostatiques (ESD) et empêche la pénétration de corps étrangers dans la prise RJ45 **CONFIG** de l'interface de configuration du moniteur de sécurité AS-interface.

Le fil de plombage ne fait pas partie de la livraison.

5 Branchement électrique pour le type 1 et le type 3

Ο

רן

Les travaux électriques ne doivent être effectués que par des personnes qualifiées en électrotechnique.

5.1 Affectation des bornes

Occupation des bornes / Schéma fonctionnel

- ① Bloc d'alimentation
- 2 Logique de commande
- 3 Commande élément de commutation de sortie 1
- 4 Commande élément de commutation de sortie 2

Figure 5.1 : Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 1 et de type 3

Affectation des bornes

Borne	Signal / description		
AS-i+	Baccordement au bus AS-interface		
AS-i-			
L+	+24V CC / tension d'alimentation		
М	GND / terre de référence		
FE	Terre de fonction		
1.Y1	EDM 1 / Entrée Contrôle externe		
1.Y2	Démarrage 1 / Entrée Démarrage		
1.13 ¹⁾	Élément de commutation de sortie 1		
1.14			
1.23 ¹⁾	Élément de commutation de sortie 2		
1.24			
1.32	Sortie de signalisation « Safety on »		

1) Mise en sécurité conformément aux caractéristiques techniques

Tableau 5.1 : Affectation des bornes des moniteurs de sécurité AS-interface de type 1 et de type 3

Remarque !

Le raccordement du conducteur de protection sur la borne FE n'est pas nécessaire si la borne M est reliée à la terre à proximité immédiate de l'appareil.

Attention !

Le bloc d'alimentation AS-interface servant à l'alimentation des composants AS-interface doit posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms). Le bloc d'alimentation 24V doit également posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms).

5.2 Vue d'ensemble des raccordements

Figure 5.2 : Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 1 et de type 3

6 Branchement électrique pour le type 2 et le type 4

Remarque !

 \bigcirc

٦

Les travaux électriques ne doivent être effectués que par des personnes qualifiées en électrotechnique.

6.1 Affectation des bornes

Affectation des bornes

Figure 6.1 : Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 2 et de type 4

Affectation des bornes

Borne	Signal / description		
AS-i+	Recordement ou bus AS interface		
AS-i–			
L+	+24V CC / tension d'alimentation		
M	GND / terre de référence		
FE	Terre de fonction		
1.Y1	EDM 1 / Entrée Contrôle externe, circuit de sortie 1		
1.Y2	Démarrage 1 / Entrée Démarrage, circuit de sortie 1		
1.13 ¹⁾	Élément de commutation de cortie 1, airquit de cortie 1		
1.14	Element de commutation de sortie 1, circuit de sortie 1		
1.23 ¹⁾	Élément de commutation de sortie 2, circuit de sortie 1		
1.24			
1.32	Sortie de signalisation 1 « Safety on », circuit de sortie 1		
2.Y1	EDM 2 / Entrée Contrôle externe, circuit de sortie 2		
2.Y2	Démarrage 2 / Entrée Démarrage, circuit de sortie 2		
2.13 ¹⁾	Élément de commutation de sortie 1, circuit de sortie 2		
2.14			
2.23 ¹⁾	Élément de commutation de cortie 2, circuit de cortie 2		
2.24			
2.32	Sortie de signalisation 2 « Safety on », circuit de sortie 2		

1) Mise en sécurité conformément aux caractéristiques techniques

Tableau 6.1 : Affectation des bornes des moniteurs de sécurité AS-interface de type 2 et de type 4

Remarque !

Le raccordement du conducteur de protection sur la borne FE n'est pas nécessaire si la borne M est reliée à la terre à proximité immédiate de l'appareil.

Attention !

Le bloc d'alimentation AS-interface servant à l'alimentation des composants AS-interface doit posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms). Le bloc d'alimentation 24 V doit également posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms).

6.2 Vue d'ensemble des raccordements

Figure 6.2 : Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 2 et de type 4

7 Branchement électrique pour le type 5 et le type 6

Ο

רן

Les travaux électriques ne doivent être effectués que par des personnes qualifiées en électrotechnique.

7.1 Affectation des bornes

Affectation des bornes

Figure 7.1 : Disposition des bornes / schéma fonctionnel des moniteurs de sécurité AS-interface de type 5 et de type 6

Affectation des bornes

Borne	Signal / description		
AS-i+	Baccordement au bus AS-interface		
AS-i–			
AS-iS+	Sortie AS-interface sûre pour le contrôle d'actionneur ou le couplage d'un autre		
AS-iS-	réseau AS-interface		
L+	+24V CC / tension d'alimentation		
М	GND / terre de référence		
FE	Terre de fonction		
1.Y1	EDM 1 / Entrée Contrôle externe, circuit de sortie 1		
1.Y2	Démarrage 1 / Entrée Démarrage, circuit de sortie 1		
1.13 ¹⁾	Élément de commutation de sortie 1, circuit de sortie 1		
1.14			
1.23 ¹⁾	Élément de commutation de sortie 2, circuit de sortie 1		
1.24			
1.32	Sortie de signalisation 1 « Safety on », circuit de sortie 1		
2.Y1	EDM 2 / Entrée Contrôle externe, circuit de sortie 2		
2.Y2	Démarrage 2 / Entrée Démarrage, circuit de sortie 2		
2.13 ¹⁾	Élément de commutation de sortie 1, circuit de sortie 2 (seulement type 6 !)		
2.14			
2.23 ¹⁾	Élément de commutation de sortie 2, circuit de sortie 2 (seulement type 6 !)		
2.24			
2.32	Sortie de signalisation 2 « Safety on », circuit de sortie 2		

1) Mise en sécurité conformément aux caractéristiques techniques

Tableau 7.1 : Affectation des bornes des moniteurs de sécurité AS-interface de type 5 et de type 6

Remarque !

Le raccordement du conducteur de protection sur la borne FE n'est pas nécessaire si la borne M est reliée à la terre à proximité immédiate de l'appareil.

Attention !

Le bloc d'alimentation AS-interface servant à l'alimentation des composants AS-interface doit posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms). Le bloc d'alimentation 24V doit également posséder un système sûr de déconnexion du réseau conformément à CEI 60742 et surmonter des pannes brèves du réseau (jusqu'à 20ms).

Attention !

Veillez impérativement au bon raccordement des bornes AS-iS+ et AS-iS- de la sortie ASinterface sûre conformément au chapitre 7.2.1 ou au chapitre 7.2.2.

Figure 7.2 : Vue d'ensemble des raccordements des moniteurs de sécurité AS-interface de type 5 et de type 6

 \bigcirc

ח

Remarque !

Malgré l'absence des éléments de commutation de sortie pour le circuit de sortie 2, les entrées Contrôle des contacteurs (2.Y1) et Démarrage (2.Y2) ainsi que la sortie de signalisation (2.32) sont disponibles sur le moniteur de sécurité AS-interface de type 5.

7.2.1 Raccordement pour le contrôle d'actionneur

Attention ! La borne AS-iS+ doit être reliée à AS-i+ et AS-iS- à AS-i- du même moniteur de sécurité AS-interface.

Figure 7.3 : Raccordement des bornes de la sortie AS-interface sûre pour le contrôle d'actionneur

7.2.2 Raccordement pour le couplage d'un autre réseau AS-interface

Figure 7.4 : Raccordement des bornes de la sortie AS-interface sûre pour le couplage de réseau

8 Branchement électrique pour tous les types

Remarque !

Les travaux électriques ne doivent être effectués que par des personnes qualifiées en électrotechnique.

Les bornes non utilisées doivent rester libres, elles ne doivent pas être employées à d'autres fonctions !

8.1 Raccordement du bus AS-interface

Figure 8.1 : Variantes de câbles AS-interface

8.2 Interface série

L'interface série RS 232C **CONFIG** sert à la communication entre l'ordinateur et l'appareil, sa vitesse de transmission est fixe et réglée à 9600 Baud.

L'interface série se matérialise sur le moniteur de sécurité AS-interface sous forme d'une douille RJ45. Un câble d'interface avec prise SubD à 9 pôles est disponible comme accessoire.

Attention !

Utilisez uniquement le câble d'interface disponible en option. L'utilisation d'un autre câble risque d'entraîner des dysfonctionnements ou d'endommager le moniteur de sécurité AS-interface raccordé !

Interface de configuration RS 232C

Figure 8.2 : Emplacement de l'interface de configuration RS 232C

9 Fonction et mise en service

La configuration et la mise en service du moniteur de sécurité AS-interface se font à partir d'un PC/ ordinateur portable muni du logiciel de configuration **asimon**.

(С)
5		

Remarque !

Vous trouverez la description du logiciel **asimon** et de la mise en service du moniteur de sécurité AS-interface dans le manuel « asimon - Logiciel de configuration du moniteur de sécurité AS-interface pour Microsoft[®]-Windows[®] ».

Le manuel décrivant le logiciel est une partie importante du manuel d'utilisation du moniteur de sécurité AS-interface. La configuration et la mise en service du moniteur de sécurité ASinterface sans le logiciel **asimon** ne sont pas possibles.

Seul un responsable de la sécurité est habilité à effectuer la configuration. Toutes les commandes importantes relevant de la sécurité sont protégées par un mot de passe.

9.1 Fonctionnement et modes opératoires

On distingue 3 modes de fonctionnement pour le moniteur de sécurité AS-interface :

- Mode démarrage
- Mode configuration
- Mode protection

9.1.1 Mode démarrage

Après la mise en marche, les microcontrôleurs du moniteur de sécurité AS-interface effectuent tout d'abord un test système du matériel et du logiciel interne. Si une erreur interne de l'appareil est détectée, l'initialisation de l'appareil est stoppée et les éléments de commutation de sortie restent coupés.

Une fois que tous les tests internes sont terminés avec succès, le moniteur de sécurité AS-interface contrôle qu'une configuration valable et validée est enregistrée dans la mémoire de configuration interne.

Si tel est le cas, cette configuration est chargée, les structures de données nécessaires constituées, et le système passe en mode protection. Les éléments de commutation de sortie sont mis en route ou restent coupés conformément à la configuration.

Si la configuration détectée dans la mémoire de configuration est inexistante ou erronée, le système passe en mode configuration. Les éléments de commutation de sortie restent coupés.

9.1.2 Mode configuration

En mode configuration du moniteur de sécurité AS-interface, un traitement des instructions est activé. Celui-ci communique avec le logiciel **asimon** installé sur l'ordinateur/le portable raccordé via l'interface série de configuration (voir manuel « asimon - Logiciel de configuration du moniteur de sécurité AS-interface pour Microsoft[®]-Windows[®] »). La transmission des données est surveillée et en cas d'erreur de transmission, répétée.

Il est possible de basculer en mode configuration

- en envoyant par voie logicielle asimon l'instruction d'Arrêt protégée par un mot de passe en mode protection. Il faut alors tenir compte des délais d'arrêt paramétrés.
- en envoyant par voie logicielle asimon l'instruction d'Arrêt en mode protection sans entrée de mot de passe. La condition en est qu'aucune communication n'ait lieu sur la ligne AS-interface, ce que vous pourrez obtenir par exemple en déconnectant la ligne AS-interface au niveau du moniteur directement.
- lorsque l'appareil constate l'absence de configuration ou une configuration erronée en mode démarrage.
- par un premier appui sur la touche Service lors du remplacement d'un esclave AS-interface de sécurité défectueux (voir chapitre 11.4 « Remplacement des esclaves AS-interface de sécurité défectueux »).

9.1.3 Mode protection

Le mode protection est le mode de fonctionnement normal du moniteur de sécurité AS-interface. Les éléments de commutation de sortie y sont activés et désactivés suivant l'état de fonctionnement des esclaves AS-interface de sécurité surveillés et des composants de fonction configurés.

En mode protection, le moniteur de sécurité AS-interface envoie en continu des données de diagnostic via l'interface série de configuration. Ces données peuvent ensuite être traitées par le logiciel **asimon**.

Si, en mode protection du moniteur de sécurité AS-interface, une fonction interne défectueuse est détectée, les éléments de commutation de sortie sont immédiatement coupés sans tenir compte de temps de retard éventuellement réglés. Le moniteur de sécurité AS-interface effectue ensuite un nouvel autocontrôle. Si l'erreur a disparu, le moniteur de sécurité AS-interface rebascule en mode protection. Si l'erreur est encore là, c'est que cet état est verrouillé contre les erreurs et ne peut être quitté qu'en remettant le moniteur de sécurité AS-interface en route.

Il est possible de basculer en mode protection

- en envoyant par voie logicielle asimon l'instruction de Démarrage en mode configuration.
- lorsque l'appareil constate une configuration validée et correcte en mode démarrage.
- par un deuxième appui sur la touche Service lors du remplacement d'un esclave AS-interface de sécurité défectueux (voir chapitre 11.4 « Remplacement des esclaves AS-interface de sécurité défectueux »).

9.2 Éléments d'affichage et de commande

Les affichages à DEL à l'avant du moniteur de sécurité AS-interface vous renseigneront sur le mode de fonctionnement et l'état de l'appareil.

Figure 9.1 : Aperçu des DEL

Signification de l'affichage à DEL en mode protection

DEL	Coule	eur	Signification
AC : 1		éteinte	Pas d'alimentation
		verte, Iumière permanente	Alimentation AS-interface présente
AS 1 2		éteinte	Fonctionnement normal
A0-12		rouge, Iumière permanente	Erreur de communication
AS-iS 1		éteinte	Pas d'alimentation
		verte, Iumière permanente	Alimentation AS-interface présente
AS-iS 2		éteinte	Fonctionnement normal
		rouge, Iumière permanente	Erreur de communication
1 READY (par circuit de sortie)		éteinte	-
		jaune, Iumière permanente	Blocage au démarrage/redémarrage actif
	-	jaune, clignotante	Test externe nécessaire / validation / retard au démarrage actif

DEL	Coule	eur	Signification
		éteinte	Contacts de l'élément de commutation de sortie ouverts
2 ON (par circuit de sortie)		verte, Iumière permanente	Contacts de l'élément de commutation de sortie fermés
some)	-, 🗖 (-	verte, clignotante	Temps de retard en cours si catégorie d'arrêt 1
3 OFF/FAULT (par circuit de sortie)	deteinte		Contacts de l'élément de commutation de sortie fermés
		rouge, Iumière permanente	Contacts de l'élément de commutation de sortie ouverts
	÷.	rouge, clignotante	Anomalie au niveau des composants AS-inter- face sous contrôle
1 READY 2 ON 3 OFF/FAULT (par circuit de sortie)		clignotant rapidement simultané- ment	Erreur interne de l'appareil, message d'erreur interrogeable par logiciel asi- mon

Remarque !

L'appui sur la touche **Service** est acquitté par l'allumage unique bref de toutes les DEL de l'appareil.

Attention !

Force d'actionnement max. pour la touche Service : 1N !

9.3 Mise en service de l'appareil

Appliquez la tension d'alimentation à l'appareil, le test interne du système se lance. Cet état de fonctionnement est indiqué par l'allumage de toutes les DEL de l'appareil (voir chapitre 9.1.1 « Mode démarrage »).

9.4 Configuration et paramétrage de l'appareil

Pour la configuration et le paramétrage de l'appareil, vous avez besoin du programme asimon.

Le logiciel asimon exécute les tâches suivantes :

- Configuration du moniteur de sécurité AS-interface
- Documentation de la configuration
- Mise en service du moniteur de sécurité AS-interface
- Diagnostic du moniteur de sécurité AS-interface

Remarque !

Vous trouverez la description du programme **asimon** dans le manuel d'utilisation spécifique au logiciel.

Le mode configuration (chapitre 9.1.2) est indiqué par l'allumage à tour de rôle des DEL 1 ... 3 du circuit de sortie 1.

Procédez comme suit :

- Installez le programme sur votre ordinateur.
- Mettez le moniteur de sécurité AS-interface sous tension.

Ο	
Д	

Remarque !

Nous recommandons à l'utilisateur de se décharger (en se mettant à la terre) à un endroit adapté avant de brancher le câble de paramétrage dans le moniteur de sécurité.

- Reliez le PC au moniteur de sécurité AS-interface à l'aide du câble d'interface (RJ45/SubD à 9 pôles) (voir chapitre 2.1.2 « Liaison entre le moniteur de sécurité AS-interface et le PC » du manuel d'utilisation du logiciel).
- Procédez à la configuration du moniteur de sécurité AS-interface puis à la mise en service comme décrit dans le manuel d'utilisation du logiciel.
- Une fois la mise en service terminée, le moniteur de sécurité AS-interface est prêt au fonctionnement.

Attention !

Avant la mise en service de l'appareil **vous devez** en adapter la configuration à votre application spécifique. Pour ce faire, configurez le moniteur de sécurité AS-interface à l'aide du manuel d'utilisation du logiciel, de manière à ce que l'appareil protège la zone de danger concernée.

9.5 Documentation de l'application en matière de sécurité

Attention !

Le protocole de configuration validé et signé par le responsable de la sécurité doit être joint à la documentation relative à la sécurité de l'application.

Remarque !

Vous trouverez une description détaillée de la documentation de la configuration de votre application en matière de sécurité dans le manuel spécifique au programme.

Procédez comme suit :

- · Procédez à la configuration du moniteur de sécurité AS-interface pour votre application.
- Validez la configuration (à faire par le responsable de la sécurité).
- Imprimez le protocole de configuration définitif et éventuellement la vue d'ensemble de la configuration (voir chapitre 5.8 « Documentation de la configuration » du manuel d'utilisation du logiciel).
- Signez le protocole de configuration définitif (à faire par le responsable de la sécurité).
- Joignez le protocole à la documentation de votre application pour les questions de sécurité (papiers de la machine) et conservez-le avec soin.

10 Maintenance

10.1 Contrôler la coupure de sécurité

La personne chargée de la sécurité doit contrôler au moins tous les ans que le moniteur de sécurité AS-interface fonctionne de façon impeccable dans le système protecteur, c'est-à-dire que le déclenchement d'un capteur ou d'un actionneur de sécurité qui lui est affecté provoquera une coupure de sécurité.

Attention !

Pour cela, chaque esclave AS-interface de sécurité doit être actionné au moins une fois par an et le comportement de commutation contrôlé en observant les circuits de sortie du moniteur de sécurité AS-interface.

Attention !

Les valeurs de PFD et de PFH_D indiquées se rapportent à une durée maximale de démarrage de 12 mois et à une durée maximale d'utilisation de 20 ans conformément à EN ISO 13849-1.

11 Affichage d'état, pannes et résolution des erreurs

11.1 Affichage d'état sur l'appareil / Diagnostic des erreurs sur le PC

Une erreur interne ou externe sera signalée par la DEL rouge clignotante **OFF/FAULT** sur le moniteur de sécurité AS-interface (voir chapitre 9.2 « Éléments d'affichage et de commande »).

Remarque !

L'interface de configuration et le logiciel **asimon** permettent un diagnostic plus exact (voir manuel du logiciel).

11.2 Quelques conseils pour la recherche d'erreurs

Erreur	Cause possible		Remède
DEL AS-i 1	Pas d'alimentation de l'AS-inter-	•	Contrôler les connexions des câbles
éteinte	face	٠	Contrôler le bloc d'alimentation du
			moniteur de sécurité AS-interface
DEL AS-i 2	La communication sur le bus AS-	•	Contrôler les connexions des câbles
allumée en rouge	interface est défectueuse	•	Contrôler le maître AS-interface
DEL AS-iS 1	Pas d'alimentation de l'AS-inter-	•	Contrôler les connexions des câbles
éteinte	face	•	Contrôler le bloc d'alimentation du
			moniteur de sécurité AS-interface
DEL AS-iS 2	La communication sur le bus AS-	٠	Contrôler les connexions des câbles
allumée en rouge	interface est défectueuse	•	Contrôler le maître AS-interface
DEL 3 OFF/FAULT	Anomalie au niveau des compo-	٠	Effectuer un diagnostic à l'aide du
est rouge et clignote	sants AS-interface sous contrôle		logiciel asimon
		•	Si nécessaire, remplacer les compo-
			sants AS-interface défectueux
DEL 1 3	Erreur interne de l'appareil	٠	Notez les numéros d'erreur qui s'affi-
clignotent rapidement			chent dans la fenêtre d'avertissement
simultanément			du logiciel asimon et contactez le
			fabricant

11.3 Déverrouillage des erreurs par la touche « Service »

Un moniteur de sécurité dont les erreurs sont verrouillées (DEL **3 OFF/FAULT** rouge clignotante) peut être déverrouillé par actionnement de la touche de « Service ». L'appui sur la touche provoque la réinitialisation du bloc en état d'erreur. Après la réinitialisation, un test au démarrage de ce bloc est nécessaire.

Remarque !

L'appui sur la touche **Service** est acquitté par l'allumage unique bref de toutes les DEL de l'appareil.

11.4 Remplacement des esclaves AS-interface de sécurité défectueux

11.4.1 Remplacement d'un esclave AS-interface de sécurité défectueux

Si un esclave AS-interface de sécurité est défectueux, vous pourrez le remplacer même sans ordinateur et sans nouvelle configuration du moniteur de sécurité AS-interface grâce à la touche **Service** du moniteur de sécurité AS-interface.

Attention !

Force d'actionnement max. pour la touche Service : 1N !

Remarque !

L'appui sur la touche **Service** fait passer le moniteur de sécurité du mode de protection au mode de configuration. Les circuits de sortie sont donc en tout cas coupés.

L'appui sur la touche **Service** est acquitté par l'allumage unique bref de toutes les DEL de l'appareil.

Procédez comme suit :

- 1. Déconnectez l'esclave AS-interface défectueux de la liaison AS-interface.
- 2. Appuyez pendant env. 1 seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisent l'esclave AS-interface de sécurité défectueux.
- 3. Connectez le nouvel esclave AS-interface de sécurité à la liaison AS-interface.
- 4. Appuyez à nouveau pendant env. 1 seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisent l'esclave AS-interface de sécurité remplacé.

Lorsque vous appuyez la première fois sur la touche **Service** le système cherche si un seul esclave fait défaut. Celui-ci est alors consigné dans la mémoire d'erreurs du moniteur de sécurité AS-interface. Le moniteur de sécurité AS-interface bascule alors en mode configuration. Lorsque vous appuyez la deuxième fois sur la touche **Service**, le système apprend le code du nouvel esclave et vérifie qu'il est correct. S'il est correct, le moniteur de sécurité AS-interface rebascule en mode protection.

Attention !

Après remplacement d'un esclave de sécurité défectueux, il est impératif de contrôler le fonctionnement correct du nouvel esclave.

11.4.2 Remplacement de plusieurs esclaves AS-interface de sécurité défectueux

Si sur une branche AS-interface plusieurs esclaves AS-interface de sécurité sont défectueux, procédez comme suit pour les remplacer :

Remarque !

L'appui sur la touche **Service** fait passer le moniteur de sécurité du mode de protection au mode de configuration. Les circuits de sortie sont donc en tout cas coupés.

L'appui sur la touche **Service** est acquitté par l'allumage unique bref de toutes les DEL de l'appareil.

Attention !

Force d'actionnement max. pour la touche Service : 1N !

- Déconnectez tous les esclaves AS-interface défectueux de la liaison AS-interface. Raccordez tous les nouveaux esclaves AS-interface de sécurité déjà adressés, sauf un à la liaison AS-interface (Auto_Address ne fonctionne pas dans ce cas).
- Actionnez tous les esclaves qui viennent d'êtres raccordés de telle façon que l'esclave n'envoie pas de table de code (actionner l'arrêt d'urgence, ouvrir la porte, interrompre le réseau optique etc.).

Remarque !

La reconnaissance des erreurs intégrée au moniteur fait qu'un nouvel esclave ne sera accepté que si le 2^{eme} point est respecté sans limite.

- 3. Appuyez pendant env. une seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisaient les esclaves AS-interface de sécurité défectueux.
- 4. Raccordez l'esclave manquant et déjà adressé à la liaison AS-interface.
- 5. Appuyez pendant env. une seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisaient les esclaves AS-interface de sécurité défectueux.
- 6. Déconnectez un des esclaves AS-interface remplacé mais pas encore programmé de la liaison AS-interface.
- 7. Appuyez pendant env. une seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisaient les esclaves AS-interface de sécurité défectueux.
- 8. Reconnectez l'esclave AS-interface que vous venez de déconnecter à la liaison AS-interface.
- 9. Activez l'esclave que vous venez de raccorder. La table de code est maintenant transmise au moniteur de sécurité AS-interface et y est enregistrée.
- 10. Appuyez pendant env. une seconde sur la touche **Service** de tous les moniteurs de sécurité AS-interface qui utilisaient les esclaves AS-interface de sécurité défectueux.
- 11. Répétez cette procédure depuis l'étape 6 jusqu'à ce que tous les esclaves AS-interface soient programmés.

Lorsque vous appuyez la première fois sur la touche **Service** le système cherche si un seul esclave fait défaut. Celui-ci est alors consigné dans la mémoire d'erreurs du moniteur de sécurité AS-interface. Le moniteur de sécurité AS-interface bascule alors en mode configuration. Lorsque vous appuyez la deuxième fois sur la touche **Service**, le système apprend le code du nouvel esclave et vérifie qu'il est correct. S'il est correct, le moniteur de sécurité AS-interface rebascule en mode protection.

Attention !

Après remplacement des esclaves de sécurité défectueux, il est impératif de contrôler le fonctionnement correct des nouveaux esclaves.

11.5 Remplacement d'un moniteur de sécurité AS-interface défectueux

Si un moniteur de sécurité AS-interface est défectueux et qu'il doit être remplacé, il n'est pas absolument nécessaire de reconfigurer complètement le nouvel appareil par voie logicielle avec **asimon** : il est possible de reprendre directement la configuration de l'appareil défectueux dans le nouvel appareil par téléchargement (câble accessoire en option).

Conditions :

П

- Vous disposez d'un câble de téléchargement (voir accessoires dans le chapitre 3.4).
- L'appareil de remplacement n'a pas de configuration valide dans sa mémoire de configuration.

O Remarque !

Si l'appareil de remplacement est un moniteur de sécurité AS-interface qui était utilisé ailleurs auparavant, vous devrez remplacer la configuration actuelle par une nouvelle que vous ne validerez pas.

Moniteur de sécurité AS-interface de version < V2.12 :

Procédez comme suit :

- Mettez le moniteur de sécurité AS-interface défectueux hors tension.
- Reliez l'appareil défectueux via le câble de téléchargement (RJ45/RJ45) à l'appareil de remplacement.
- Raccordez l'appareil de remplacement à la tension d'alimentation.

Vous pouvez constater que la transmission est en cours grâce à la DEL jaune **READY** qui reste allumée en permanence. Quand la transmission est terminée avec succès, les DEL jaune **READY** et verte **ON** s'allument en permanence.

 Mettez le nouveau moniteur de sécurité AS-interface hors tension et détachez le câble de téléchargement des deux appareils. L'appareil de remplacement peut maintenant être utilisé directement à la place de l'appareil défectueux.

Moniteurs de sécurité AS-interface de version \geq V2.12 :

Procédez comme suit :

- Mettez le moniteur de sécurité AS-interface défectueux hors tension et démontez-le.
- Installez le nouveau moniteur de sécurité AS-interface et raccordez-le (connexions L+, M et FE ainsi que AS-i+ et AS-i- et autres connexions selon les besoins).
- Mettez le nouveau moniteur de sécurité AS-interface sous tension. Le moniteur de sécurité ASinterface bascule en mode configuration.
- Reliez le moniteur de sécurité AS-interface défectueux et hors tension au nouveau moniteur de sécurité AS-interface à l'aide du câble de téléchargement (RJ45/RJ45) et appuyez sur la touche Service.
- Le moniteur de sécurité AS-interface redémarre (test des DEL) et la configuration est transmise. La DEL jaune **1 READY** est allumée pendant la transmission.
- Quand la DEL jaune **1 READY** s'éteint, la transmission est terminée. Séparez les deux moniteurs de sécurité AS-interface et appuyez à nouveau sur la touche **Service**.
- Le moniteur de sécurité AS-interface redémarre, il utilise la configuration réengistrée.

Situation : 06/2009

Attention !

Après remplacement d'un moniteur de sécurité AS-interface défectueux, il est impératif de contrôler le fonctionnement correct du nouveau moniteur de sécurité AS-interface.

11.6 Vous avez oublié votre mot de passe ? Que faire ?

Attention !

Seul le responsable de la sécurité a le droit de récupérer un mot de passe de la façon décrite ci-dessous !

Si vous avez perdu le mot de passe nécessaire à votre configuration, procédez comme suit :

- Recherchez le protocole de configuration valide du moniteur de sécurité AS-interface dont vous n'avez pas de mot de passe (exemplaire papier ou fichier). Vous trouverez sur la ligne 10 (Monitor Section, Validated) du protocole de configuration un code à quatre caractères.
 - Si vous ne disposez pas du protocole de configuration ou si le moniteur de sécurité AS-interface ne doit pas être mis en mode configuration, reliez le moniteur de sécurité AS-interface dont vous n'avez plus le mot de passe au PC et lancez le logiciel **asimon**.
 - Sélectionnez la Configuration Neutre et lancez la fonction de diagnostic d'asimon par Moniteur -> Diagnostic. Attendez que la configuration actuelle apparaisse à l'écran. Cela peut durer jusqu'à cinq minutes.
 - Ouvrez la fenêtre Informations concernant le moniteur / le bus (rubrique Éditer -> Informations concernant le moniteur / le bus...). Vous trouverez également le code à quatre caractères sur l'onglet Titre dans la partie de la fenêtre intitulée Temps de chargement.
- 2. Contactez le support technique de votre fournisseur et donnez-lui votre code à quatre caractères.
- 3. Ce code permet de générer un **mot de passe maître** qui vous donne accès à la configuration enregistrée.
- 4. Utilisez ce mot de passe maître pour stopper le moniteur de sécurité AS-interface et entrer un nouveau mot de passe utilisateur. Sélectionnez pour cela dans le menu **Moniteur** du logiciel de configuration **asimon** la rubrique **Changement de mot de passe...**

Attention !

Veuillez noter que l'accès à la configuration enregistrée dans le moniteur de sécurité AS-interface peut avoir des incidences sur la sécurité du fonctionnement de l'installation. Seul le personnel autorisé a le droit de faire des modifications de configurations validées. Toute modification doit être réalisée conformément aux instructions données dans le manuel utilisateur du logiciel de configuration **asimon**.

Remarque !

Tant qu¹aucune configuration valide n'a été enregistrée dans le moniteur de sécurité AS-interface, le mot de passe standard est « SIMON ».

12 Diagnostic par AS-interface

12.1 Déroulement général

Remarque !

 \bigcirc

Une adresse esclave AS-interface doit impérativement être affectée au moniteur de sécurité AS-interface pour pouvoir effectuer un diagnostic du moniteur de sécurité AS-interface sur le maître AS-interface.

Le bus AS-interface permet de réaliser le diagnostic du moniteur de sécurité AS-interface et des blocs configurés depuis le maître AS-interface, généralement un automate programmable avec module maître.

Mais pour que la transmission des données de diagnostic soit fiable et leur évaluation efficace, il est impératif que toute une série d'exigences soit satisfaite :

- En particulier si un autre système de bus est utilisé entre automate et AS-interface, il peut arriver que les temps de transmission des messages soient relativement longs. Comme la transmission est asynchrone dans le maître, si deux appels de données identiques se suivent, l'automate ne peut pas forcément reconnaître quand le moniteur de sécurité AS-interface répond au nouvel appel. Dans le cas de deux appels de données consécutifs différents, les réponses doivent donc se distinguer par au moins un bit.
- Les données de diagnostic doivent être consistantes, c'est-à-dire que les informations d'état émises par le moniteur de sécurité AS-interface doivent être en rapport avec les états réels des blocs, et ce en particulier si le temps de transmission vers l'automate est supérieur au temps d'actualisation dans le moniteur de sécurité AS-interface (env. 30 ... 150ms).
- Suivant le mode de fonctionnement du moniteur de sécurité AS-interface, un relais coupé d'un circuit de sortie correspond ou non à l'état normal. Mais le diagnostic dans l'automate ne doit être lancé que si l'état n'est pas l'état normal.

La procédure de diagnostic décrite ci-dessous satisfait à ces exigences, elle doit donc impérativement être respectée.

Déroulement du diagnostic

L'automate interroge toujours le moniteur de sécurité AS-interface à l'aide de deux appels de données (0) et (1) en alternance. Ces appels apportent l'information de base nécessaire au diagnostic (état des circuits de sortie, mode de protection/configuration). Le moniteur de sécurité AS-interface répond aux deux appels en envoyant les mêmes données utiles (3 bits, D2 ... D0). Le bit D3 est un bit de commande, il est semblable sans être identique à un bit-bascule. Pour tous les appels de données pairs (0), D3 = 0 ; pour tous les appels impairs (1), D3 = 1. L'automate peut ainsi reconnaître un changement de la réponse.

Les appels de données (0) et (1) délivrent la réponse X000 quand l'état est normal (mode protection, tout est ok). Les appareils ayant seulement un circuit de sortie et dans les cas de deux circuits de sortie dépendants, le circuit de sortie 2 est toujours marqué comme étant ok. Dans le cas de deux circuits de sortie indépendants, un circuit non configuré est également signalé comme étant ok. Pour pouvoir interpréter ce qui est ok et ce qui ne l'est pas, l'utilisateur doit bien connaître sa configuration.

Lors du passage de l'appel de données de (0) à (1), le jeu de données est enregistré dans le moniteur

de sécurité AS-interface. Mais le bit D3 de la réponse reste à zéro jusqu'à ce que la procédure soit terminée. L'automate pense donc encore recevoir des réponses à l'appel de données (0). Lorsque D3 est mis à un, le jeu de données est consistant.

Si, le bit D3 étant à un, la réponse du moniteur de sécurité AS-interface indique la coupure d'un circuit de sortie, il est maintenant possible de demander des informations de diagnostic détaillées dans l'état enregistré à l'aide des appels de données plus ciblés (2) ... (B). Selon le réglage dans la configuration du moniteur de sécurité AS-interface, les appels de données (4) ... (B) délivrent des informations de diagnostic des blocs triées par sortie (voir paragraphe 12.2.2) ou non triées (voir paragraphe 12.2.3).

C)
]]

Remarque !

Si le moniteur de sécurité AS-interface est en mode de configuration, la demande des informations de diagnostic détaillées à l'aide des appels de données (2) ... (B) n'est pas possible.

Un nouvel appel de données (0) met fin à l'état enregistré.

12.2 Messages

12.2.1 Diagnostic du moniteur de sécurité AS-interface

État des circuits de sortie, mode de fonctionnement

Remarque !

L'émission en alternance des appels de données (0) et (1) est indispensable à la consistance de la transmission des données. Voir « Déroulement du diagnostic » page 49.

Les valeurs binaires des appels de données se rapportent au niveau AS-interface, il est possible dans certaines conditions qu'elles soient inversées au niveau automate.

Appel de données	Réponse	Signification
/ valeur	D3 D0	
(0) / 1111	0000	Mode protection, tout est ok
État moniteur		(des circuits de sortie inexistants, non configurés ou dépen-
		dants sont signalés comme étant ok).
	0001	Mode protection, circuit de sortie 1 coupé.
	0010	Mode protection, circuit de sortie 2 coupé.
	0011	Mode protection, deux circuits de sortie coupés.
	0100	Mode configuration : Power On.
	0101	Mode configuration
	0110	Réservé / non défini
	0111	Mode configuration : erreur fatale de l'appareil,
		RAZ ou remplacement de l'appareil requis.
	1XXX	Pas d'information de diagnostic actuelle, veuillez attendre
		svp.

Appel de données	Réponse	Signification
/ valeur	D3 D0	
(1) / 1110	1000	Mode protection, tout est ok
Enregistrer l'infor-		(des circuits de sortie inexistants, non configurés ou dépen-
mation de diagnos-		dants sont signalés comme étant ok).
tic (état moniteur)	1001	Mode protection, circuit de sortie 1 coupé.
	1010	Mode protection, circuit de sortie 2 coupé.
	1011	Mode protection, deux circuits de sortie coupés.
	1100	Mode configuration : Power On.
	1101	Mode configuration
	1110	Réservé / non défini
	1111	Mode configuration : erreur fatale de l'appareil,
		RAZ ou remplacement de l'appareil requis.

État des DEL de l'appareil

Les appels de données (2) et (3) donnent une reproduction simplifiée des DEL des circuits de sortie sur le moniteur de sécurité AS-interface (voir chapitre 9.2).

Si la réponse à l'appel de données (1) = 10XX :

Appel de	Réponse	Signification
données / valeur	D3 D0	
(2) / 1101	0000	Vert = contacts du circuit de sortie fermés
État DEL circuit de	0001	Jaune = blocage au démarrage/redémarrage actif
sortie 1	0010	Jaune clignotant ou rouge = contacts du circuit de sortie
		ouverts
	0011	Rouge clignotant = anomalie au niveau des composants AS-
		interface contrôlés
	01XX	Réservé

Appel de	Réponse	Signification	
données / valeur	D3 D0		
(3) / 1100	1000	Vert = contacts du circuit de sortie fermés	
État DEL circuit de	1001	Jaune = blocage au démarrage/redémarrage actif	
sortie 2	1010	Jaune clignotant ou rouge = contacts du circuit de sortie	
		ouverts	
	1011	Rouge clignotant = anomalie au niveau des composants AS-	
		interface contrôlés	
	11XX	Réservé	

Codage des couleurs

Remarque !

La couleur d'un bloc correspond à la couleur de la DEL virtuelle dans la fenêtre de diagnostic du logiciel de configuration **asimon**. Un bloc qui n'est associé à aucun circuit de sortie est toujours représenté en vert.

Code CCC	Couleur	Signification
(D2 D0)		
000	verte,	Le bloc est dans l'état ON (actif)
	lumière permanente	
001	verte,	Le bloc est dans l'état ON (actif) mais déjà en cours de
	clignotante	passage dans l'état OFF (ex. temporisation d'arrêt)
010	jaune,	Le bloc est prêt mais il attend encore une condition man-
	lumière permanente	quante, comme p. ex. un acquittement local ou un appui
		sur la touche de lancement
011	jaune,	Condition temporelle dépassée, l'action doit être répétée
	clignotante	(ex. le temps de synchronisation est dépassé)
100	rouge,	Le bloc est dans l'état OFF (inactif)
	lumière permanente	
101	rouge,	Le verrouillage des erreurs est actif, déverrouillage par
	clignotante	l'une des actions suivantes :
		 Acquittement par la touche de service
		Power OFF/ON
		 Bus AS-interface OFF/ON
110	grise,	Pas de communication avec l'esclave AS-interface
	éteinte	

Tableau 12.1 :Codage des couleurs

0]]

Remarque !

Même en mode de protection normal, il y a des blocs qui ne sont pas dans l'état vert. Lors de la recherche de la cause d'une coupure, le bloc d'index de bloc le plus faible est le plus important. D'autres coupures ne sont éventuellement survenues qu'en conséquence (exemple : l'appui sur l'arrêt d'urgence fait également passer le bloc de démarrage et le temporisateur dans l'état d'arrêt).

Une programmation adaptée du bloc fonctionnel dans l'automate peut guider l'utilisateur directement vers la cause primaire de l'erreur. Pour l'interprétation d'autres informations, des connaissances plus précises de la configuration et du mode de fonctionnement du moniteur de sécurité AS-interface sont nécessaires.

Comme les numéros de bloc peuvent changer lors de modifications de la configuration, il est recommandé d'utiliser l'affectation des index de diagnostic.

12.2.2 Diagnostic des blocs trié par circuit de validation

Si tel en est le réglage dans la configuration, les appels de données (4) ... (B) délivrent les informations de diagnostic des blocs triées par circuit de sortie.

Remarque !

Veillez au réglage correct du type de diagnostic dans la boîte de dialogue **Informations** concernant le moniteur / le bus du logiciel de configuration asimon pour le moniteur de sécurité AS-interface.

Les valeurs obtenues en réponse aux appels (5) et (6) ainsi que (9) et (A) se rapportent à l'index de diagnostic du bloc dans le logiciel de configuration et non à une adresse AS-interface.

Exécutez toujours les appels de données (4) ... (7) et (8) ... (B) ensemble et les uns à la suite des autres pour chaque bloc.

Diagnostic trié des blocs, circuit de sortie 1

Si la réponse à l'appel de données (1) = 10X1 :

Appel de données /	Réponse	Signification
valeur	D3 D0	
(4) / 1011	0XXX	XXX = 0 : pas de bloc, réponses aux appels de don-
Nombre de blocs de		nées (5) (7) pas importantes.
couleur non verte		XXX = 1 6 : nombre de blocs dans le circuit de sortie 1
circuit de sortie 1		XXX = 7 : nombre de blocs est > 6 dans le circuit de
		sortie 1
Appel de données /	Réponse	Signification
valeur	D3 D0	
(5) / 1010	1HHH	HHH = I5,I4,I3 : index de diagnostic du bloc dans le circuit de
Adresse bloc HIGH		sortie 1 de la configuration
circuit de sortie 1		(HHHLLL = index de diagnostic)
Appel de données /	Réponse	Signification
valeur	D3 D0	
(6) / 1001	OLLL	LLL = I2,I1,I0 : index de diagnostic du bloc dans le circuit de
Adresse bloc LOW		sortie 1 de la configuration
circuit de sortie 1		(HHHLLL = index de diagnostic)
Appel de données /	Réponse	Signification
valeur	D3 D0	
(7) / 1000	1CCC	CCC = couleur (voir tableau 12.1 page 52)
Couleur bloc circuit		
de sortie 1		

Diagnostic trié des blocs, circuit de sortie 2

Si la réponse à l'appel de données (1) = 101X :

Appel de données /	Réponse	Signification	
valeur	D3 D0		
(8) / 0111	0XXX	XXX = 0 : pas de bloc	c, réponses aux appels de don-
Nombre de blocs de		nées (5)	(7) pas importantes
couleur non verte		XXX = 1 6 : nombre de	blocs dans le circuit de sortie 2
circuit de sortie 2		XXX = 7 : nombre de	blocs est > 6 dans le circuit de
		Sol tie 2	
Appel de données /	Réponse	Signification	
valeur	D3 D0		
(9) / 0110	1HHH	HHH = 15,14,13 : index de di	agnostic du bloc dans le circuit de
Adresse bloc HIGH		sortie 2 de	la configuration
circuit de sortie 2		(HHHLLL =	index de diagnostic)
Appel de données /	Réponse	Signification	
valeur	D3 D0		
(A) / 0101	OLLL	LL = I2,I1,I0 : index de di	agnostic du bloc dans le circuit de
Adresse bloc LOW		sortie 2 de	la configuration
circuit de sortie 2		(HHHLLL =	index de diagnostic)
Appel de données /	Réponse	Signification	
valeur	D3 D0		
(B) / 0100	1CCC	CCC = couleur (voir tableau 12.1 page 52)	
Couleur bloc circuit			
de sortie 2			

Remarque !

Les appels de données (C) 0011 à (F) 0000 sont réservés.

12.2.3 Diagnostic des blocs non trié

Si tel en est le réglage dans la configuration, les appels de données (4) ... (B) délivrent les informations de diagnostic des blocs non triées pour tous les blocs.

Remarque !

Veillez au réglage correct du type de diagnostic dans la boîte de dialogue **Informations** concernant le moniteur / le bus du logiciel de configuration asimon pour le moniteur de sécurité AS-interface.

Les valeurs obtenues en réponse aux appels (5) et (6) ainsi que (9) et (A) se rapportent à l'index de diagnostic du bloc dans le logiciel de configuration et non à une adresse AS-interface.

Exécutez toujours les appels de données (4) ... (7) et (8) ... (B) ensemble et les uns à la suite des autres pour chaque bloc.

Diagnostic non trié des blocs pour tous les blocs

Si la réponse à l'appel de données (1) = 1001, 1010 ou 1011 :

Appel de données /	Réponse	Signification	
valeur	D3 D0		
(4) / 1011	0XXX	XXX = 0 : pas de bloc, réponses aux app	els de don-
Nombre de blocs de		nées (5) (7) pas importantes	S.
couleur non verte,		XXX = 1 6 : nombre de blocs de couleur no	on verte.
lumière permanente		XXX = 7 : nombre de blocs de couleur no	n verte est > 6
		(couleurs voir tableau 12.1 pag	je 52).
Appel de données /	Réponse	Signification	
valeur	D3 D0		
(5) / 1010	1HHH	HHH = I5,I4,I3 : index de diagnostic du bloc dar	ns la configura-
Adresse bloc HIGH		tion (HHHLLL = index de diagr	nostic)
Appel de données /	Réponse	Signification	
Appel de données / valeur	Réponse D3 … D0	Signification	
Appel de données / valeur (6) / 1001	Réponse D3 D0 OLLL	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar	ns la configura-
Appel de données / valeur (6) / 1001 Adresse bloc LOW	Réponse D3 D0 OLLL	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagr	ns la configura- nostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données /	Réponse D3 D0 OLLL Réponse	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagn Signification	ns la configura- nostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données / valeur	Réponse D3 D0 OLLL Réponse D3 D0	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagn Signification	ns la configura- iostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données / valeur (7) / 1000	Réponse D3 D0 0LLL Réponse D3 D0 1CCC	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagn Signification CCC = couleur (voir tableau 12.1 page 52)	ns la configura- nostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données / valeur (7) / 1000 Couleur bloc	Réponse D3 D0 0LLL Réponse D3 D0 1CCC	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagn Signification CCC = couleur (voir tableau 12.1 page 52)	ns la configura- iostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données / valeur (7) / 1000 Couleur bloc Appel de données /	Réponse D3 D0 OLLL Réponse D3 D0 1CCC Réponse	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagr Signification CCC = couleur (voir tableau 12.1 page 52) Signification	ns la configura- nostic)
Appel de données / valeur (6) / 1001 Adresse bloc LOW Appel de données / valeur (7) / 1000 Couleur bloc Appel de données / valeur	Réponse D3 D0 0LLL Réponse D3 D0 1CCC Réponse D3 D0	Signification LLL = I2,I1,I0 : index de diagnostic du bloc dar tion (HHHLLL = index de diagn Signification CCC = couleur (voir tableau 12.1 page 52) Signification	ns la configura- nostic)

Appel de données /	Réponse	Signification	
valeur	D3 D0	-	
(9) / 0110	1HHH	HHH = 15,14,13 : ind	dex de diagnostic du bloc dans la configura-
Adresse bloc HIGH		tion	n (HHHLLL = index de diagnostic)
Appel de données /	Réponse	Signification	
valeur	D3 D0	-	
(A) / 0101	OLLL	LLL = 12,11,10 : ind	dex de diagnostic du bloc dans la configura-
Adresse bloc LOW		tion	n (HHHLLL = index de diagnostic)
Appel de données /	Réponse	Signification	
valeur	D3 D0		
(B) / 0100	10XX	XX = 00 : bloc	c du prétraitement
Affectation au circuit		XX = 01 : bloc	c du circuit de sortie 1
de sortie		XX = 10 : bloc	c du circuit de sortie 2
		XX = 11 : bloc	c des deux circuits de sortie

Remarque !

Les appels de données (C) 0011 à (F) 0000 sont réservés.

12.3 Exemple : demande pour le diagnostic trié par circuit de validation

Figure 12.1 : Principe de demande dans le cas du diagnostic trié par circuit de sortie