HART Multiplexer Master
HiDMux2700

ISO 9001
CE
SIL 3
Ex

PEPPERL+FUCHS
PROTECTING YOUR PROCESS
With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: “Expanded reservation of proprietorship”
1 Introduction ... 5
 1.1 Manufacturer .. 5
 1.2 Content of this Document .. 5
 1.3 Target Group, Personnel ... 6
 1.4 Symbols Used .. 6

2 Product Specifications .. 7
 2.1 Function ... 7

3 System Description ... 8
 3.1 The Basic Principles of HART Communication 8
 3.2 Possible Applications .. 9
 3.3 Integration into Operating Software 10
 3.4 System Structure ... 10

4 Mounting and Installation ... 14
 4.1 DIN Mounting Rail, on the User Side 14
 4.2 Mounting the Termination Boards 15
 4.3 Mounting the Multiplexer Master 18
 4.4 Connecting the Multiplexer Master 20
 4.5 Termination Board Connection 21
 4.6 Information Regarding Electromagnetic Compatibility 24

5 Commissioning .. 25
 5.1 Data Access to the Connected Field Devices 25
 5.2 Configuration of the Multiplexer Master 25
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.1</td>
<td>Introduction to PACTware Operating Software</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>Software Components</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>PACTware Main Window</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>Connecting with the Device</td>
</tr>
<tr>
<td>6</td>
<td>6.5</td>
<td>Inserting the Communication DTM</td>
</tr>
<tr>
<td>6</td>
<td>6.6</td>
<td>Inserting the Multiplexer Devices</td>
</tr>
<tr>
<td>6</td>
<td>6.7</td>
<td>Displaying Device Information and Setting Parameters</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>HART Scan</td>
</tr>
<tr>
<td>6</td>
<td>6.9</td>
<td>Manually Adding a Multiplexer Master and Multiplexer Slave</td>
</tr>
<tr>
<td>6</td>
<td>6.10</td>
<td>Adding DTMs Manually</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>Device Functions</td>
</tr>
<tr>
<td>7</td>
<td>7.2</td>
<td>Software Functions</td>
</tr>
<tr>
<td>7</td>
<td>7.3</td>
<td>Diagnosis and Troubleshooting</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>Dismounting the Multiplexer Master</td>
</tr>
<tr>
<td>8</td>
<td>8.2</td>
<td>Dismounting the Termination Boards</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>Supported HART Commands</td>
</tr>
<tr>
<td>9</td>
<td>9.2</td>
<td>Bibliography</td>
</tr>
<tr>
<td>9</td>
<td>9.3</td>
<td>Glossary</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Manufacturer

Pepperl+Fuchs GmbH
Lilienthalstraße 200, 68307 Mannheim, Germany
Internet: www.pepperl-fuchs.com

1.2 Content of this Document

This document contains information that you need in order to use your product throughout the applicable stages of the product life cycle. These can include the following:

- Product identification
- Delivery, transport, and storage
- Mounting and installation
- Commissioning and operation
- Maintenance and repair
- Troubleshooting
- Dismounting
- Disposal

Note!
This document does not substitute the instruction manual.

Note!
For full information on the product, refer to the instruction manual and further documentation on the Internet at www.pepperl-fuchs.com.

The documentation consists of the following parts:

- Present document
- Instruction manual
- Datasheet

Additionally, the following parts may belong to the documentation, if applicable:

- EU-type examination certificate
- EU declaration of conformity
- Attestation of conformity
- Certificates
- Control drawings
- Additional documents
1.3 Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Only appropriately trained and qualified personnel may carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the product. The personnel must have read and understood the instruction manual and the further documentation.

Prior to using the product make yourself familiar with it. Read the document carefully.

1.4 Symbols Used

This document contains symbols for the identification of warning messages and of informative messages.

Warning Messages

You will find warning messages, whenever dangers may arise from your actions. It is mandatory that you observe these warning messages for your personal safety and in order to avoid property damage.

Depending on the risk level, the warning messages are displayed in descending order as follows:

Danger!

This symbol indicates an imminent danger. Non-observance will result in personal injury or death.

Warning!

This symbol indicates a possible fault or danger. Non-observance may cause personal injury or serious property damage.

Caution!

This symbol indicates a possible fault. Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

Informative Symbols

Note!

This symbol brings important information to your attention.

Action

This symbol indicates a paragraph with instructions. You are prompted to perform an action or a sequence of actions.
2 Product Specifications

2.1 Function

The HART multiplexer master HiDMux2700 is used to establish a HART connection to analog field devices and thereby maintain the conventional analog 4 mA to 20 mA circuits. The device acts as a gateway between the field devices and the control side.

A maximum of 32 analog field devices can be connected to the HART multiplexer master.

The device can be used as a primary or secondary master.

The device can be used in the Zone 2 explosion-hazardous area or in the non-explosion hazardous area.

The device is mounted on a termination board. There are a number of different termination boards which are specifically tailored to the individual control systems.

The device is supplied with power through the termination board via Power Rail or via terminals with 24 V DC.

Through the termination board, the device is connected to a maintenance station or to the process control system via an RS-485 interface. The transfer rate is max. 57600 baud.

The device address and the transfer rate are set via DIP switch.

The supply, the analog signals, and the RS-485 interface are galvanically isolated from each other. The individual HART channels are decoupled. This does not affect the 4 mA to 20 mA signal.

Using the configuration software, you can search for available field devices automatically and query the HART variables of the field devices automatically.

Figure 2.1 Assembly of the HiDMux2700 HART multiplexer master
3 System Description

3.1 The Basic Principles of HART Communication

The HART protocol is supported by many conventional 4 mA to 20 mA field devices that use it to enable digital communication for configuration and maintenance purposes. Many of the device parameters, and the measured value itself, can be digitally transferred to and from the device. This digital communication runs in parallel to the 4 mA to 20 mA signal on the same line. This is enabled via current modulation, which is superimposed on the desired signal.

The high-frequency HART signal consists of the sine frequencies 1200 Hz and 2200 Hz. The average value of the signal is 0 and can therefore be filtered through the standard circuit of the analog input. This does not affect the analog signal.

The HART protocol is a master-slave protocol. This means that a field device responds only when it is addressed. Burst mode is an exception. The message duration is a few hundred milliseconds, meaning that two to three messages can be transferred per second.

The HART commands are divided into 3 groups:

- Universal commands
 These commands must be supported by all field devices.
- Common practice commands
 These commands correspond to common practice and are suitable for many field devices.
- Device-specific commands
 These commands are only suitable for certain field devices.

All three types of commands are used in the HART multiplexer system. This document includes a list of commands. See chapter 9.1.

Note!
Additional information can be found in /1/, /2/, /3/, see chapter 9.2.
3.2 Possible Applications

General Applications

In process engineering plants, many field devices are distributed over a large area. The characteristic values of these field devices must be monitored and logged or adjusted if process variables are changed.

The HART multiplexer master from Pepperl+Fuchs enables communication between a computer or a process control system and field devices that support the HART protocol. The following figure shows the basic system structure.

![Figure 3.2 Basic structure](image)

HART-compatible field devices allow information such as the measuring range and device address to be saved in the field device itself. Access to this data is usually achieved with a handheld. This means that a connection to the field device must be established manually for each value to be changed.

If certain data has to be logged as part of quality assurance processes, this increases the effort for the process control system. For example, the relevant data has to be requested cyclically and saved in a database by the system.

The HART multiplexer master establishes the connection between the computer and the HART-compatible field devices. All access to the field device takes place parallel to the transmission of the 4 mA to 20 mA signal and therefore has no effect on the processing of measured values by the process control system.

The system provides a subordinate service level. The HART multiplexer master can also detect measured values. For field devices that are mounted in explosion-hazardous areas, the connection takes place on the non-hazardous side of the control unit.

Pepperl+Fuchs offers corresponding control units, e.g., HiC2031, HiC2025. The HART multiplexer master can also be connected to control units from other manufacturers. Existing plants can therefore be extended very easily, taking full advantage of the HART communication.

The HART multiplexer system can be composed of a maximum of 31 HART multiplexer masters, which are operated via an RS-485 interface. A maximum of 32 analog field devices can be connected to each HART multiplexer master. One computer can therefore be used to address up to a maximum of 992 field devices.

Operation using a handheld is still possible, since the HART protocol accepts two masters in one system, e.g., a computer and a handheld.
Maintenance Station

A computer is often used as a maintenance station to operate and maintain the HART multiplexer system. The computer is used to fulfill parameterization functions or logging functions independently of the process control system. For this computer, operating software that fulfills the required purpose is available from various manufacturers. See chapter 3.3.

However, in some cases, no computer is used as a maintenance station. Instead, the process control system communicates with the field devices directly via an RS-485 interface using the HART multiplexer master. The low speed of the HART communication imposes limitations on this method of operation.

3.3 Integration into Operating Software

The full functionality of the HART multiplexer system unfolds through the integration into modern asset management systems such as **PACTware** (open source), SIMATIC PDM (Siemens), AMS (Fisher-Rosemount), Cornerstone (Applied System Technologies), and Valve Manager (Neles Automation). These operating tools integrate the device functions of the devices in the multiplexer system into a standardized interface and convenient operation in the form of menu commands. However, the representation and designation of the functions in the individual operating tools may vary greatly. A representation that is valid generally is not possible at this point.

Information regarding the configuration, parameterization, operation, and diagnostic options of the HART multiplexer system can be found in the manual "Installation and Configuration Device Type Manager (DTM)".

3.4 System Structure

The field devices and the HART multiplexer master are connected to the process control system using termination boards. The following chapters describe three basic connection options. These connection options serve as examples, as there are many other connection options.

Note!

For further information about the connection layout of the termination boards used, see the corresponding datasheets.

The following accessories are available for the HART multiplexer system:

- Universal termination boards, referred to as generic termination boards
- Control-system specific termination boards
- HART cordset HIACA-UNI-FLK34-FLK34-*M* for connecting a HART communication board to a termination board of the H-System
- Interface converter in different variants depending on the available interfaces
- Cordset for the connection between the termination board and the process control system. This cordset is available in different variants depending on the available interfaces and the control system manufacturer.

Note!

Additional information you can find under www.pepperl-fuchs.com.
3.4.1 External Mounting

The multiplexer master is mounted to a termination board. The termination board forwards the signals via screw terminals. The termination board establishes the connection to the multiplexer master in parallel or in series. This type of mounting is independent of the process control system used or any existing field barriers.

Figure 3.3
3.4.2 Mounting Integrated in the Process Control System

The multiplexer master is mounted to a termination board. The termination board forwards the signals to the process control system via system cables. The termination boards are specifically tailored to the individual process control systems. Termination boards for control systems are available from various manufacturers:

- ABB
- Foxboro
- HIMA
- Honeywell
- Triconex
- Yokogawa

![Diagram of multiplexer master setup](image-url)

Figure 3.4
3.4.3 Mounting Integrated in the H-System

If you use this connection option, the signals can be transferred directly from the termination boards of the H-system to the multiplexer master via a system connector.

Figure 3.5

![Diagram of HART Multiplexer Master HiDMux2700](image)
4 Mounting and Installation

Danger!

Explosion hazard from damaged electronic components

Premature wear of electronic components in a device that was previously used in a general electrical installation can cause sparks that can ignite the surrounding potentially explosive atmosphere.

Never install devices that have already been operated in general electrical installations in electrical installations used in combination with hazardous areas!

Danger!

Explosion hazard from pollution

An excessively polluted surface of the device can become conductive and consequently ignite a surrounding potentially explosive atmosphere.

Ensure that you install the device only in environments with a pollution degree 2 or better according to IEC/EN 60664–1.

4.1 DIN Mounting Rail, on the User Side

The termination boards are mounted on a 35 mm DIN mounting rail according to EN 60715.

![DIN mounting rail](image)

Figure 4.1 Example: DIN mounting rail (35 mm x 7.5 mm)
4.2 Mounting the Termination Boards

Warning!
Risk of short circuit

Working on live parts can cause injuries and can compromise the function and the electrical safety of the device.
- Before working on the device, always disconnect the supply voltage.
- Connect the device to the supply voltage only after completion of the work.

Mounting the Termination Board with Screw Mounting

The termination boards are mounted on the 35 mm DIN mounting rail.
1. Snap the termination board (2) onto the DIN mounting rail (1).
2. Tighten the mounting screws (3).

The termination board (2) is now properly mounted and secured.

![Figure 4.2 Termination board mounting](image_url)

1. DIN mounting rail
2. Termination board
Mounting the Termination Board without Screw Mounting

The termination boards are mounted on the 35 mm DIN mounting rail.

Snap the termination board (2) onto the DIN mounting rail (1).

The termination board (2) is now properly mounted and secured.
Vertical and Horizontal Mounting

Both mounting options are possible. Unrestricted operation is possible across the entire temperature range of the system in each mounting direction.

Vertical mounting

Horizontal mounting

Figure 4.5
4.3 Mounting the Multiplexer Master

Mounting in a Non-Hazardous Area

Mounting the Multiplexer Master on the Termination Board

Mount the multiplexer master as described in the following section.

Mounting in Areas that Require Equipment Protection Level Ga

Danger!

Explosion hazard from insufficient type of protection

The usage of modules with termination boards with insufficient type of protection can cause sparks or other hazards for potentially explosive atmospheres that can ignite the surrounding atmosphere.

Only use the modules in the hazardous area if the termination boards are also approved for the hazardous area.

Danger!

Explosion hazard from live wiring of circuits

If you connect or disconnect energized circuits in a potentially explosive atmosphere, sparks can ignite the surrounding atmosphere.

Only connect or disconnect energized circuits in the absence of a potentially explosive atmosphere.

Danger!

Explosion hazard from wrong mounting

The device safety can be impaired by external environmental influences and by mechanical stress. That can lead to sparking that can ignite a surrounding potentially explosive atmosphere.

Mount the device in a surrounding enclosure that complies with IEC/EN 60079–0 and that is rated with the degree of protection IP54 according to IEC/EN 60529.
Mounting the Multiplexer Master on the Termination Board

1. Push the Quick Lok bar (1) into the upper position.
2. Center the pins (2) above the contact elements of the termination board. Note the connection direction of the device.
3. Center the locking pins (3) above the locking elements of the termination board.
4. Carefully push the device into the contacts and locking elements.
5. Push the red Quick Lok bar (1) down on either side of the device.

The device is now mounted.

Figure 4.6 Mounting of an H-System isolated barrier

1 Quick Lok Bar
2 Coding pins
3 Adjustment pins
4.4 Connecting the Multiplexer Master

Danger!
Explosion hazard from using of non-intrinsically safe circuits in intrinsically safe circuits

Using non-intrinsically safe devices in intrinsically safe circuits suspends the type of protection. This can ignite the surrounding potentially explosive atmosphere.

Do not use HART multiplexer devices and HART termination boards in intrinsically safe circuits.

Danger!
Explosion hazard from live wiring of circuits

If you connect or disconnect energized circuits in a potentially explosive atmosphere, sparks can ignite the surrounding atmosphere.

Only connect or disconnect energized circuits in the absence of a potentially explosive atmosphere.

The circuits are connected to the multiplexer master via the termination board. When the multiplexer master is mounted to the termination board, the circuits are closed.

See chapter 4.5.

![Diagram](image-url)

Figure 4.7 Connection of the HiDMux2700 HART multiplexer master
4.5 Termination Board Connection

Danger!
Explosion hazard from using of non-intrinsically safe circuits in intrinsically safe circuits

Using non-intrinsically safe devices in intrinsically safe circuits suspends the type of protection. This can ignite the surrounding potentially explosive atmosphere.

Do not use HART multiplexer devices and HART termination boards in intrinsically safe circuits.

Danger!
Explosion hazard from live wiring of circuits

If you connect or disconnect energized circuits in a potentially explosive atmosphere, sparks can ignite the surrounding atmosphere.

Only connect or disconnect energized circuits in the absence of a potentially explosive atmosphere.

Danger!
Explosion hazard from exposed conductors

Exposed conductors of inadequately attached cables can cause sparks that can ignite the surrounding potentially explosive atmosphere.

When installing the device ensure that the cables are adequately attached.

Danger!
Danger to life from electric shock

Absent or insufficient insulation can result in electric shock.

Only connect circuits that provide protection against electric shock (e.g., SELV or PELV).

Danger!
Danger to life from electric shock

Absent or insufficient insulation can result in electric shock.

- Maintain sufficient distance between the connection lines, terminals, housing, and the environment.
- Insulate connection lines, terminals, and the housing from the environment.
Connecting Circuits

1. Connect the field circuit, see chapter 4.5.1.
2. Connect the control circuit, see chapter 4.5.2.
3. Connect the power supply.
4. Connect the HART communication, see chapter 4.4.

4.5.1 Connecting Field Devices to the Termination Board

Pepperl+Fuchs provides special termination boards. Various connection options are available for these termination boards. See the manual “H-System – Isolators and Termination Boards.”

Connecting the Termination Board and Field Devices

1. Connect the HART-compatible field devices to the termination board using screw terminals or spring terminals. See chapter 3.4.1 and 3.4.2. Observe the tightening torque for the terminal screws. The tightening torque is 0.5 Nm to 0.6 Nm.

or

2. Control units are mounted on the termination board. Connect the field devices to the control unit using screw terminals or spring terminals. See chapter 3.4.3. Observe the tightening torque for the terminal screws. The tightening torque is 0.5 Nm to 0.8 Nm.

4.5.2 Connecting the Process Control System to the Termination Board

Pepperl+Fuchs provides special termination boards. Various connection options are available for these termination boards.

Connecting the Termination Board and Process Control System

1. Connect the process control system to the termination board using screw terminals or spring terminals. See chapter 3.4.1. Observe the tightening torque for the terminal screws. The tightening torque is 0.5 Nm to 0.6 Nm.

or

2. Connect the process control system to the termination board via a manufacturer-specific system connector. See chapter 3.4.2 and 3.4.3.
4.5.3 Connecting the Termination Boards to a Computer

The multiplexer master is connected to the computer via the RS-485 interface on the termination board.

Note!
Information on the assignment of the terminals can be found in the datasheets for the termination boards.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Shield</td>
<td>Cable shielding</td>
</tr>
<tr>
<td>Net A</td>
<td>RxD/TxD - (RS-485 B–)</td>
<td>RS-485 differential signal</td>
</tr>
<tr>
<td>Net B</td>
<td>RxD/TxD + (RS-485 B+)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Example connector assignment for the terminals of HiATB01-HART-*X* termination board

Caution!
Risk of electric shock or property damage due to inadequate grounding

If the cable shield is not connected to the protective earth correctly, this may result in potential equalization currents. These currents may injure operating personnel or cause property damage.

Ground the cable shield at only one end of the line. Observe the applicable laws, standards, and directives for the operating location.

Note!
To connect the termination board and computer, you need an interface converter. Different interface converters are required depending on the connection on your computer. We recommend the following converters:

- Interface converter from RS-485 to RS-232: Telebyte model 285, from Telebyte
- Interface converter from RS-485 to RJ45, Com-Server++, from W&T
- Interface converter from RS-485 to USB: I-7561-CR, from ICP
Connecting a Termination Board to a Computer

1. Connect a computer or a process control system to the terminals of the termination board. Observe the tightening torque for the terminal screws. The tightening torque is 0.5 Nm to 0.6 Nm. Do not exceed a maximum cable length of 1200 m. Use a shielded, twisted, two-strand cable.

2. In the case of long cable lengths and high baud rates, install a terminator at each end of the RS-485 line. Use terminators from 120 Ω to 220 Ω. If the RS-485 line ends at the termination board and is not routed to other devices, use the second RS-485 connection to connect a terminator. If you use an interface converter, install a terminator on the interface converter and an interface converter at the other end of the line.

 In the case of short cable lengths and low baud rates, no terminators are required. Observe the RS-485 specifications.

3. Connect additional participants to the second RS-485 connection. Observe the tightening torque for the terminal screws. The tightening torque is 0.5 Nm to 0.6 Nm. Do not exceed a maximum cable length of 1200 m. Use a shielded, twisted, two-strand cable.

4.6 Information Regarding Electromagnetic Compatibility

The device is intended for use in electrically conductive and grounded switch cabinets.

Shielding Cables

1. Shield cables that are leaded into the switch cabinet.

2. Connect the switch cabinet and shield directly in the cable gland.

3. Lead unshielded cables (e. g. supply lines) into the switch cabinet via filter.
5 Commissioning

Checklist for Commissioning

The commissioning of the multiplexer master is summarized in the following checklist. The steps required for commissioning the multiplexer master refer to the chapters where the respective procedure is described.

1. Installation of field devices
2. Selection and connection of the termination boards see chapter 3.4
3. Selection and connection of the control units
4. Connection of the process control system see chapter 4.5.2
5. Connection of the multiplexer master see chapter 4.4
6. Connection of the maintenance station.
 - If necessary, use interface converters, see chapter 4.5.3.
 - Observe the polarity of the RS-485 connection, see chapter 4.5.3.
 - Specify the RS-485 address and the baud rate.
7. Wait for the switch-on process, see chapter 5.2.4.
8. Perform parameterization, see chapter 5.2.5.
9. Specify the multiplexer devices used in the module table, see chapter 7.1.2.
10. Build signal loops, see chapter 7.1.5.
11. If desired, activate the scan function, see chapter 7.1.6.

5.1 Data Access to the Connected Field Devices

The operating tool used determines how data on the connected field devices is accessed.

The field devices are generally found in a project tree beneath the multiplexer slaves. The multiplexer master integrates the slave unit with slave address 0. Device data, device parameters, and device diagnoses can be accessed via the project tree.

For the structure of a project tree, see chapter 6.8.

The data, parameter, and diagnostic windows display the data of the underlying HART commands that differ according to the field device. Only universal commands and common practice commands have the same function for all devices. The information about the devices themselves, the process values, and some diagnostic information can thus be represented in a uniform manner.

5.2 Configuration of the Multiplexer Master

5.2.1 Connection to the Maintenance Station or to the Process Control System

The connection to the maintenance station or to the process control system is via a multidrop-enabled RS-485 interface, see chapter 4.5.3. The baud rate for this interface can be set via the DIP switch. The device address for communication via RS-485 is also set via the DIP switch.

When setting the address, make sure that no address is assigned more than once, as otherwise this may lead to communication faults and even communication failure. The baud rate set must match that of the maintenance station.
5.2.2 DIP Switch Settings

Danger!

Explosion hazard from sparking when using operating elements

Using operating elements in a potentially explosive atmosphere can cause sparks that can ignite the surrounding atmosphere.

Only use operating elements (e.g., switch, slider, button, etc.) in the absence of a potentially explosive atmosphere.

The device is equipped with 8 DIP switches on the front.

DIP switch 8 is used for device testing by the manufacturer and must therefore always be in the off position.

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>8</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Off</td>
<td>Normal state</td>
</tr>
</tbody>
</table>

Table 5.1

DIP switches 6 and 7 determine the baud rate of the RS-485 interface.

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>6</th>
<th>7</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Off</td>
<td>Off</td>
<td>9600 baud</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>Off</td>
<td>19200 baud</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>On</td>
<td>38400 baud</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>On</td>
<td>57600 baud</td>
</tr>
</tbody>
</table>

Table 5.2
DIP switches 1 to 5 define the RS-485 address. A value is assigned to each of the DIP switches. The address is calculated from the sum of the values.

<table>
<thead>
<tr>
<th>DIP switch Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>1</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>2</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>3</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>4</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>5</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>6</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>7</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>8</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>9</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>10</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>11</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>12</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>13</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>14</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>15</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>16</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>17</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>18</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>19</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>20</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>21</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>22</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>23</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>24</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>25</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>26</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>27</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>28</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>29</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>30</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>31</td>
</tr>
</tbody>
</table>

Note!

Briefly disconnect the device from the power supply to apply the values set using the DIP switches.
Factory Setting

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Manufacturer test disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baud rate 9600 baud</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RS-485 address 0</td>
</tr>
</tbody>
</table>

Table 5.4

Note!
In the factory setting, the address 0 is set. Ensure that you do not assign any addresses more than once.

5.2.3 LED Indication

The device is equipped with three LEDs which are located on the front of the housing. The LEDs have the following meanings:

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Fault indication, detected during the initialization process</td>
</tr>
<tr>
<td>Green</td>
<td>Operating indication</td>
</tr>
<tr>
<td>Yellow</td>
<td>HART communication with a field device</td>
</tr>
</tbody>
</table>

Table 5.5

LED indication during the initialization process

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Off</td>
<td>Initialization process</td>
</tr>
<tr>
<td>Green</td>
<td>Flashes</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.6

LED indication during the scanning process

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Off</td>
<td>Scanning process</td>
</tr>
<tr>
<td>Green</td>
<td>Lit</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashes</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.7

Note!
For further information about the scanning process, see chapter 5.2.4.

Faulty LED indication during commissioning

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Flashes</td>
<td>If all three LEDs flash one after the other, DIP switch 8 (test) is in the on position. Turn the switch to off and repeat commissioning.</td>
</tr>
<tr>
<td>Green</td>
<td>Flashes</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Flashes</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.8
5.2.4 Switch-On Behavior

When the power supply has been switched on, the multiplexer master performs an initialization process with a self-test. The process is indicated by a flashing green LED. Any faults detected are indicated by a red LED. The multiplexer devices defined in the multiplexer table (command 157) are then scanned for any available HART-compatible field devices. This process is indicated by the flashing yellow LED.

Once the multiplexer master has completed the scanning process, a list of the field devices connected is saved in the device.

Note!

If a field device is connected to the multiplexer device during operation, a scan must be performed afterwards so that the field device can be addressed via HART. This scanning process is triggered automatically when the multiplexer device is switched on, see chapter 7.1.5. The process can also be started manually in the maintenance station, see chapter 7.2.1. The duration of the scan process dependent:

- on the number of connected HART-compatible field devices
- on the loop search type, see chapter 9.1, command 153,
- on the number of message repetitions in the case of a fault, or
- on whether the query has been answered.

The factory setting for the number of message repetitions is set to 2. The search duration is between approximately 30 seconds and several minutes in the case of maximum configuration. On completion of this phase, the yellow LED goes out. Volatile data is set to its default setting. Data stored in non-volatile memory is retained.
5.2.5 Device Parameters, Parameterization

Caution!
Potential device malfunction from change of device function

Changes in the device function can lead to device malfunction. The function of the device is no longer guaranteed.

Before transferring the new device function, make sure that the changed device function does not cause a danger to the device and the plant.

For the identification and parameterization of the multiplexer master, just like other HART field devices, the multiplexer master contains certain parameters that are saved in the non-volatile memory. The following list shows these parameters and how the parameterization must be performed.

- **Unique device identification**, see commands 0 and 11
 The device identification provides information about the device (type, type ID, serial number, revision numbers), and the manufacturer. The device identification cannot be changed.

- **Message**, see commands 12 and 17
 Under this parameter, any text of up to 32 characters can be stored in the device.

- **Tag, description, and date**, see commands 13 and 18
 A tag (8 characters), a measuring point description (16 characters), and a date can be stored under these parameters.

- **Number of preambles in message responses**, see command 59
 This parameter is used to define the number of preambles inserted in the message responses. The default setting is 4, the adjustment range is 2 to 20.

- **Number of message repeats**, see commands 144 and 145
 The number of message repeats can be set separately for repeats in the event of communication faults and in the event of response code *Busy*. The adjustment range is 0 to 11 repeats in each case. In the event of communication faults, the default setting is 2. For response code *Busy*, the default setting is 0.

- **Scan command**, see chapter 7.1.7 and commands 146 and 147
 Of the existing scan parameters, only the scan command is stored in non-volatile memory. The command indicates which HART command (1, 2, or 3) is to be a scan command to the field devices.

- **Master type** (primary or secondary master), see command 151
 This sets the priority for access to the HART field device. A primary master always initiates a connection to a field device. A secondary master initiates a connection to a field device only if the primary master does not access the field device. The default setting for the multiplexer master is primary master. A typical example of a secondary master is a handheld.

- **Loop search type**, see command 153
 The multiplexer master currently does not support multidrop with HART, i.e., only one HART field device is connected to each HART channel. During construction of the signal loop (scanning process, see chapter 7.1.5), the connected field devices are either always searched on polling address 0 (*single analog*) or on polling addresses 0 to 15 in preparation for multidrop operation. In multidrop operation, the first polling address found is addressed (*single unknown*).

- **Module table**, see chapter 7.1.2 and command 157
 This document includes a list of commands. See chapter 9.1.
6 Configuration

Caution!
Potential device malfunction from change of device function
Changes in the device function can lead to device malfunction. The function of the device is no longer guaranteed.
Before transferring the new device function, make sure that the changed device function does not cause a danger to the device and the plant.

Note!
The steps are described using the FDT framework program PACTware 4.1 as an example.

6.1 Introduction to PACTware Operating Software

FDT Concept
The FDT concept (FDT – Field Device Tool) created a standard that can be used to integrate devices in various user interfaces (framework applications such as PACTware).
The FDT concept enables open and continuous device operation from the control level to the field, regardless of the bus systems used. The FDT concept specifies the data exchange between the device-specific driver and the framework application. Every communicating device has a device-specific driver (DTM) that is integrated in the framework application.

PACTware™ Operating Software

PACTware (PACTware – Process Automation Configuration Tool) is a manufacturer-independent operating software for devices. In the past, it was often necessary to use multiple manufacturer-specific programs to be able to operate different devices. PACTware enables you to operate any number of devices with just this software. PACTware is not only a configuration tool, it also offers an interface to HART-compatible field devices as well as to bus systems such as PROFIBUS, MODBUS, and ControlNet. PACTware offers many features that allow users to simplify the plant documentation, to create trend curves, and to monitor signals using HART data.

Device and Communication DTM
The DTM (DTM – Device Type Manager) contains all the data and functions of a device. Every DTM contains its own user interface optimized for the device. The device and communication DTMs can be integrated in any FDT frame application, such as PACTware.
The DTM offers almost no restriction with regard to display and user guidance. This means that all available device functions can be operated according to the user’s needs. Operation is supported by graphics. The DTM technology enables consistent operation of a device in all FDT systems.
Pepperl+Fuchs generates DTMs for HART-compatible devices by converting the device description (DD) of these devices for use with PACTware.
Essentially, there are two different types of DTM:

- **Device DTMs**
 Device DTMs are DTMs for configuring field devices such as transmitter power supplies, signal converters, and trip amplifiers.

- **Communication DTMs**
 Communication DTMs are required for communication with a device via a point-to-point connection or via any network structures. The communication DTMs are available for various interfaces, such as an RS-232 interface or a USB interface.

6.2 Software Components

To configure the device with a user program, you need the following software components:

- **Microsoft® .NET Framework 3.5 or higher**
- **PACTware 4.1 or higher**
 In accordance with FDT Specification 1.2, PACTware is used as a framework program for DTMs supplied by manufacturers of the field devices as configuration software.
- **HART multiplexer DTM**
 The DTM collection comprises all device DTMs required for the parameterization of multiplexer devices. The DTMs are used to establish communication with the field devices using communication protocols such as the HART protocol or PROFIBUS protocol.
- **DTM HART Comm**
 This package contains the HART communication DTM, which is necessary for communication between the host and the HART multiplexer DTM.
- **DTMs of the field devices**
 The manufacturers of field devices provide specific DTMs which allow access to all functions of the respective devices and therefore allow detailed parameterization. For further information, please contact the manufacturer of the field devices used.
- **Generic HART DTM**
 The Generic HART DTM provides the basic HART functionalities of the field devices. If no matching device DTM is available, the Generic HART DTM is used for basic parameterization. Therefore, we recommend that this DTM is always available.

![Diagram of software components](image)

Note!

The latest software components can be found online at www.pepperl-fuchs.com in the product selector under **Products > Software**.
Installing Software Components

1. Install Microsoft® .NET Framework.
2. Install PACTware.
3. Install the HART multiplexer DTM.
4. Install the DTM HART Comm.
5. Install the field device-specific DTM from the manufacturer of the field device.
6. Install the Generic HART DTM if necessary.

Note!
The cross-device properties of the software are described in the manual "Installation and Configuration Device Type Manager (DTM)". You can download this manual free of charge from our website www.pepperl-fuchs.com in the product selector under Products > Software > PACTware > Product list > PACTware 4.1 > Documents.
The following section describes only the device-specific settings for the HART multiplexer master HiDMux2700.
6.3 PACTware Main Window

The main window is divided into the project window and the editing window.

Project window
In the project window, you build the current project tree of your system by adding the various components. In the project window, select the device you want to edit, monitor, diagnose, or simulate. The selected object is highlighted in a different color.

Editing window
In the editing window, various windows required for editing your system are opened. In the first processing step, the selection window with the drivers and devices or the device catalog for the structure of the system is shown. For the configuration and parameterization, the corresponding windows for the drivers and devices are opened in the editing window. For subsequent operation, the menus for diagnosis, measured value, trend, or simulation are opened in the editing window. In addition, the communication monitor for the communication protocol can be opened.

Menu bar
The menu bar contains the following drop-down menus:

- **File**: Here you can create a new project, save the current project, or load an existing project.
- **Edit**: Contains the copy, cut, and paste functions.
- **View**: Here you can display or hide various symbol and status bars, as well as the device catalog, fault monitoring, etc.
- **Project**: Contains the basic project functions, such as loading device(s), writing to device(s), reading the device status.
- **Device**: Contains the functions for editing the device data of the device currently selected in the project tree. Here you can also establish or disconnect the connection to the selected device.
- **Extras**: Here you can manage the device catalog, the users, the options, and the add-ins.
- **Window**: Here you can open the various current view windows.
- **Help**: The PACTware help is called up.

Command bar
The command bar is located below the menu bar and contains buttons for all important functions for adding, removing, and editing components within the project. You can also read the device status, edit the device data, and establish or disconnect the connection to the system.
Figure 6.2 **PACTware** main window

Note!
Additional information on **PACTware** can be found in the manual "Installation and Configuration Device Type Manager (DTM)".
6.4 Connecting with the Device

Connecting the Computer to the Device

1. Mount the device. See chapter 4.
2. Connect the device to the power supply.
3. Connect the computer and the device via an interface converter. See chapter 4.5.3.
4. Start PACTware as described in the manual "Installation and Configuration Device Type Manager (DTM)."

 → The PACTware main window is displayed. See chapter 6.3.

Enabling Memory-Optimized Operation

In combination with the DTMs for the multiplexer master, we recommend enabling the Memory-optimized operation option.

1. Open the Extras > Options menu.
2. Enable Use memory-optimized project management.
3. Confirm your selection with OK.

 → You have enabled the memory-optimized operation.
6.5 Inserting the Communication DTM

In a PACTware project, the multiplexer master can only be addressed via the communication DTM HART communication. Information detailing how to create and edit a project can be found in the “Installation and Configuration Device Type Manager (DTM)” manual.

If there is no communication DTM in your project, add a communication DTM from the device catalog.

Note!

Do not use the communication DTM HART Driver FDT. This communication DTM is an obsolete IDL-DTM.

Adding Communication DTMs

1. In the project window, select HOST PC using the right mouse button.
2. In the context menu, select Add device.
3. Select the DTM HART communication from the list.
4. Confirm your selection with OK.

The communication DTM is included in the project. In the project tree, the communication DTM bears the name of the COM port on which the device is physically connected with the computer (e.g. COM8).
Setting Parameters

1. In the project window, double-click the communication DTM. It bears the name of the COM port on which the device is physically connected with the computer (e.g. COM8).

2. Close the Parameters window by clicking the OK button.

 If you have made changes to parameters, these changes will be saved.

The following parameters are adjustable:

- **Communication interface:**
 Select the option HART multiplexer as the interface.

- **Serial interface:**
 Select the COM port to which the multiplexer master is connected.

- **Baud rate:**
 Select the baud rate according to the settings of the DIP switches on the multiplexer master, see chapter 5.2.2.

- **RTS control:**
 Depending on the type of interface converter used, switching the request-to-send control on or off may be necessary to switch cleanly between receive and transmit mode.

- **HART protocol:**
 Master: 2 HART masters may be connected to a HART signal loop, whereby the parameterization must differentiate between the primary master and the secondary master. This setting is defined here.

 Preamble: In accordance with the HART standard, a corresponding number of FF characters must be sent in advance as a preamble. The number of characters is defined here.

 Number of communication retries: Number of repeated attempts to make contact in the event of an fault.

- **Address scan: start address and end address:**
 Here you can set the address range in which the HART communication DTM should search for the multiplexer devices connected to the RS-485 interface.

- **Communication timeout:**
 Here you can set how long the HART communication DTM should search for the multiplexer devices connected to the RS-485 interface.
Figure 6.4 HART communication parameter window
6.6 Inserting the Multiplexer Devices

The connected multiplexer devices can be scanned in the communication DTM via the **Additional functions > Scanlist** function.

Updating the Scan List

1. In the project window, right-click to select the HART communication DTM (e.g. **COM8**).
2. In the context menu select **Additional functions**.
3. Select **Scanlist**.
4. Start the scan by clicking **Update**.

→ The scan list is updated and displayed.

![HART communication window, scan list](image-url)
The multiplexer devices must be added to the project manually.

Adding Multiplexer Devices via the Device Catalog

1. Open the device catalog by clicking **View > Device catalog**.
2. Use drag-and-drop to move the **Mux 2700G** DTM from the device catalog to the HART communication DTM (e.g. **COM8**) in the project tree.

 → The **HiDMux2700** DTM is then added to the project.

Adding Multiplexer Devices via the Context Menu

1. In the project window, right-click to select the HART communication DTM (e.g. **COM8**).
2. In the context menu, select **Add device**.
3. Select the **Mux 2700G** DTM from the list and confirm by clicking **OK**.

 → The **HiDMux2700** DTM is then added to the project.

Note!

To establish the connection to a device in the project tree or to disconnect the connection, right-click to select the corresponding device in the project window. In the context menu, select **Connect** or **Disconnect**.

Alternatively, you can select the device in the project window and click the corresponding field in the command bar.
6.7 Displaying Device Information and Setting Parameters

6.7.1 Loading Device Data

Loading Data and Establishing a Connection

1. In the project window, right-click to select multiplexer master HiDMux2700.
2. Select **Load from device** in the context menu.
3. If no connection has been established previously, a window opens and you are asked whether you want to establish the connection to the device. Select **Yes**.

 The connection to the multiplexer master is established and the device data can be read.

Figure 6.6 Load data from device
6.7.2 Device Information

General information about the device is displayed in the General menu:

Displaying Device Information

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Configuration > General menu.
 ← The General window is displayed.
3. Click Apply to confirm your selection.
4. Select Revert to reset your selection.

Information

General, unchangeable information about the device is displayed in the Information section:

- **Manufacturer**: Manufacturer of the multiplexer device (Pepperl+Fuchs).
- **Device ID**: Type designation of the device.
- **Device type ID**: This number identifies the type of device and is unique depending on the manufacturer. Together with the manufacturer ID, the device type ID can be used to identify the device type uniquely.
- **Serial number**: The serial number of the device.
- **Hardware revision**: Hardware revision of the multiplexer master.
- **Software revision**: Software revision of the multiplexer master.
- **Device revision**: The revision of the devices supported.
- **Date**: The date on which the device parameters were last changed.
- **Configuration changed**: Indicates whether a parameter has been changed in the configuration of the device, see chapter 7.2.5.

Identification

Identification information is displayed in the Identification section. This information can be changed and saved by the user.

- **Tag**: Tag for the identification of the multiplexer master.
- **Descriptor**: Description for the multiplexer master.
- **Message**: Communication without any special function which can be used freely by the user (e.g. for identification).
HART Multiplexer Master HiDMux2700 Configuration

Figure 6.7 General window (device information)
6.7.3 Parameterizing Communication

Displaying Communication Parameters

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Configuration > Communication menu.

→ The Communication window is displayed.
3. Click Apply to confirm your selection.
4. Select Revert to reset your selection.

The communication parameters between the host, the HART multiplexer system, and the field device are displayed and set in the Communication menu:

![Communication with the Multiplexer Master](image)

Figure 6.8

Communication with the Multiplexer Master

In this case, the communication between the host and the HART multiplexer system (HART communication 1) is described.

The Communication to host HART master (as field device) section displays the following information about the device:

- **Address**: The RS-485 address of the multiplexer master is displayed here.
- **Unique identifier**: The unique, non-variable long address of the multiplexer master.
- **HART revision**: HART revision under which the multiplexer master is operated.
- **Minimum number of preambles**: Minimum number of preambles.
Communication with the Field Devices

In this case, the communication between the HART multiplexer system and the field devices (HART communication 2) is described.

The Communication to field devices (as HART master) section displays the information listed below. This information can be changed and saved by the user.

- **Master type**: 2 HART masters may be connected to a HART signal loop, whereby the parameterization must differentiate between the primary master and the secondary master. The setting at this point indicates whether the multiplexer master addresses the field devices as the primary or secondary HART master.

- **Retries on "Busy"**: Number of repeat attempts to establish communication with the field device if the field device reports Busy.

- **Retries on error**: Number of repeat attempts to establish communication with the field device if an fault occurs.

- **Loop scan address range**: This defines the address range in which the field devices on the individual signal loops are searched for, see chapter 6.7.4:
 - **Scan address 0 only**: The multiplexer master uses only address 0 to search for connected devices.
 - **Scan addresses 0 to 15**: The multiplexer master searches for all polling addresses between 0 and 15 and identifies the first device to respond.

![Communication window](image)
6.7.4 Command Caching Function

Cyclical Data Retrieval

With cyclical data retrieval, the HART multiplexer master periodically retrieves data from the connected field devices and stores the data in its internal memory. If the process control system queries the data of the field devices, this data can be forwarded more quickly. The data is no longer read directly from the field device. Instead, it is read directly from the memory of the multiplexer master. See chapter 6.7.3

Displaying the Command Caching Function Settings

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Configuration > Command caching menu.
 - The Command caching window is displayed.
3. Click Apply to confirm your selection.
4. Select Revert to reset your selection.

The command parameters for the multiplexer master are displayed and set in the Command caching menu:

- **Mode**: This switches the Command caching function on or off.
 - Disabled: The function is switched off.
 - Default caching: The function is switched on. This is the default setting. The commands selected are cached, see below.

- **HART command**: Here you can use a drop-down menu to select which values are to be read out from the field devices:
 - Command 1 - Read Primary Variable: Only the primary variable of the field device is read out.
 - Command 2 - Read Loop Current and Percent Of Range: The current value in mA is read out.
 - Command 3 - Read Dynamic Variables and Loop Current: All variables of the field device are read out.
Figure 6.10 Command caching window
6.7.5 Active Multiplexer Devices

Selecting Active Multiplexer Devices

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Configuration > Activated modules menu.
 \[\rightarrow\] The Activated modules window is displayed.
3. Click Apply to confirm your selection.
4. Select Revert to reset your selection.

In the Activated modules window, select the active modules for the multiplexer master. By default, both the multiplexer master and the multiplexer slave integrated into the HiDMux2700 multiplexer master are activated.

- Click Select all to select all multiplexer devices.
- Click Select none to select no multiplexer devices.
- With a single click, you can place or remove individual checkmarks in the list. The checkmarks specify the active multiplexer devices.

Note!
Connected field devices are only accessible to the multiplexer master if their assigned multiplexer module is marked as active in this list.
6.8 HART Scan

6.8.1 Starting the HART Scan Function

The HART scan function can read in the entire project structure connected to the serial interface:

- Multiplexer master
- Multiplexer slave
- Field devices

Starting the HART Scan Function via Menu

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Related tasks > HART scan menu.
 → The HART scan window is displayed.

Starting the HART Scan Function via Context Menu

1. In the project window, right-click to select the multiplexer master HiDMux2700.
2. In the context menu, select Additional functions.
3. In the dropdown list, select HART scan.
 → The HART scan window is displayed.

![Figure 6.12 HART Scan function](image)

Note!

Under certain circumstances, the HART scan function is not supported by all frame applications or is subject to restrictions.
6.8.2 Executing the HART Scan Function

Performing a HART Scan

1. In the **HART scan wizard** section in the **HART scan** window, select one of the following options, see Figure 6.13:
 - **First commissioning**: Select this option to create a complete basic setup of the FDT project. Devices included in the FDT project, such as the multiplexer master, multiplexer slave, and field devices, including the communication settings, are recorded and analyzed. If you select this option, you have to define additional settings in the next steps, see Figure 6.14:
 - **Primary or secondary**: 2 HART masters may be connected to a HART signal loop, whereby the parameterization must differentiate between the primary master and the secondary master. Select one of the options.
 - **Scan address 0 only**: Select this option if you want the multiplexer master to use only the address 0 to search for connected devices.
 - **Scan addresses 0 to 15**: Select this option if you want the multiplexer master to search for all connected devices with polling addresses between 0 and 15.
 - **Retries on "Busy"**: Number of repeat attempts to establish communication with the field device if the field device reports Busy.
 - **Retries on error**: Number of repeat attempts to establish communication with the field device if an fault occurs.
 - **Update modules**: Select this option if a module has been removed or added.
 - **Update field devices**: Select this option if field devices have been removed or added.
 - **Update FDT project**: Select this option to adapt the FDT project to the current HART topology.

Note!
Depending on the selected settings and the number of field devices, a complete HART scan may take up to several hours, because additional addresses are queried and the individual channels are addressed multiple times.

Recommendation:
Initially, select **Scan address 0 only** and keep the number of **Retries on "Busy"** and the number of **Retries on error** as low as possible. If field devices are missing after the HART scan, amend the settings and scan again.

2. Click **Next** to confirm and continue with the HART scan.
 - Before the HART scan starts, you can select which active multiplexer devices are to be searched, see chapter 6.7.5.
 - If you select the option **Automatic**, all multiplexer devices to which field devices are connected are automatically detected and activated.
 - If you select the option **Manual**, you can enable/disable the check boxes to define which active multiplexer devices are to be searched.

3. Confirm your selection by clicking **Next** to start the HART scan.
 - The HART scan is executed. Depending on the selected settings and the number of field devices, a complete HART scan may take from a few seconds to several hours.
Figure 6.13 HART Scan Wizard

HART Scan Wizard

- First commissioning
 Select this option in order to perform a full setup of the device including basic communication settings, module setup, field device setup and FTC project creation.

- Update Modules
 Select this option when Modules were added or removed.

- Update Field Devices
 Select this option when Field Devices have been added or removed.

- Update FTC project
 Select this option in order to adapt the FTC project to the current HART topology.

- ‘Sub device type’ mapping
 If a company has several HART devices all sharing the same manufacturer ID and device type ID, there is a third identification attribute called ‘Sub device type’. The Sub device type is defined in FTC specifications and may be returned by each DTM. For the HART protocol, a Sub device type is not specified and as result there is no standard command to read from device. The file which can be provided here, specifies a mapping between the real result of dedicated HART commands and the related Sub device type. This mapping file has to be provided by device vendors.
Figure 6.14 HART Scan Wizard, communication options
Reading In the XML File for Detection of the Sub Device Type

If a manufacturer has released several devices that have the same manufacturer ID and device type ID, a third identification attribute is required for unique identification. This attribute is referred to as a sub device type. The attribute is defined in the FDT specification and can be detected by any DTM. However, the identification attribute is not defined in the HART protocol and is not recognized in device communication. The file that is read at this point converts the identification attribute so that this information can be read in the DTM. This file must be provided by the device manufacturer.

1. Open the Explorer by clicking the Open file button under the Mapping file field.
2. Select the required XML file.
 → The file path of the XML file is displayed in the Mapping file field.
3. Alternatively, you can enter the file path of the XML file in the Mapping file field directly.
6.8.3 Results of the HART Scan

As the result of the HART scan, a table is output containing the following information about the field devices found:

<table>
<thead>
<tr>
<th>Loop</th>
<th>Device data</th>
<th>Match result</th>
<th>Assigned DTM</th>
<th>DTM action</th>
<th>Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave and loop address of the field device</td>
<td>Name and data of the field device</td>
<td>Specifies whether the HART scan wizard has found a suitable DTM</td>
<td>Suggested DTM</td>
<td>Specifies what the HART scan wizard will do with the selected DTM</td>
<td>Select this check box to apply the changes for this field device.</td>
</tr>
</tbody>
</table>

Table 6.1 Results table for the HART scan

<table>
<thead>
<tr>
<th>Match result</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single green checkmark</td>
<td>The assigned DTM matches the device exactly.</td>
</tr>
<tr>
<td>Two green checkmarks</td>
<td>There are multiple DTMs which match the field device data.</td>
</tr>
<tr>
<td>Single gray checkmark</td>
<td>The Generic HART DTM has been assigned to the device as no device-specific DTM has been found.</td>
</tr>
<tr>
<td>Yellow warning triangle</td>
<td>The assigned DTM does not match the device.</td>
</tr>
</tbody>
</table>

Table 6.2 Explanation of the match result

<table>
<thead>
<tr>
<th>DTM action</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow star</td>
<td>No DTM has been assigned to the field device yet. A new DTM will be created in the project tree.</td>
</tr>
<tr>
<td>Pin</td>
<td>The DTM previously assigned to the device will be replaced by the new DTM selected.</td>
</tr>
<tr>
<td>Red cross</td>
<td>The field device for this DTM which exists in the project is missing. The DTM will be removed from the project tree.</td>
</tr>
</tbody>
</table>

Table 6.3 Explanation of the DTM action
Click on a row in the table to select the corresponding field device and to display additional options in the lower section of the editing window:

In the Assigned DTM dropdown list, you can manually select which DTM is to be used for the field device:
In the table below, the data read out from the field device and the data contained in the selected DTM is compared. This allows a comparison between the field device data and the DTM:

<table>
<thead>
<tr>
<th>Device data</th>
<th>DTM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td>98</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>VEGA</td>
</tr>
<tr>
<td>Device type ID</td>
<td>225</td>
</tr>
<tr>
<td>Device type</td>
<td>VEGA/DEHAT</td>
</tr>
<tr>
<td>Sub device type</td>
<td>31051</td>
</tr>
<tr>
<td>Polling address</td>
<td>0</td>
</tr>
<tr>
<td>Unique identifier</td>
<td>62 62 69 69 62</td>
</tr>
<tr>
<td>Device HART revision</td>
<td>5</td>
</tr>
<tr>
<td>Device hardware revision</td>
<td>1</td>
</tr>
<tr>
<td>Device software revision</td>
<td>1</td>
</tr>
<tr>
<td>Device device revision</td>
<td>1</td>
</tr>
<tr>
<td>DTM description</td>
<td>/-</td>
</tr>
<tr>
<td>DTM version</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Figure 6.18

Confirm your selection by clicking Next to complete the HART scan. The HART topology determined in the HART scan can then be added to the device tree in the project window. You will be prompted to save the project to store the modified HART topology.

Note!

Some manufacturers have different DTMs for the same device family. In this case, you have to select the correct DTM from the dropdown list.

Note!

Some DTMs do not make this information available, meaning that automatic assignment is not possible.
After completion of the HART scan, the devices are added to the device tree in the project window.

Figure 6.19
6.9 Manually Adding a Multiplexer Master and Multiplexer Slave

In addition to the multiplexer master, the HART multiplexer master HiDMux2700 integrates a multiplexer slave with slave address 0. This allows the connection of up to 32 field devices.

The multiplexer master (channel 1) addresses the field devices at terminals 1 to 16.
The multiplexer slave (channel 2) addresses the field devices at terminals 16 to 32.

The multiplexer master and multiplexer slave must first be inserted in the project tree below the actual HiDMux2700 DTM, in order to be able to add field devices.

Example: A field device is connected to terminal 24. To make communication via PACTware possible, the multiplexer slave must be added to the project tree on channel 2.

Adding the Multiplexer Master and Multiplexer Slave via the Device Catalog

1. Open the device catalog by clicking View > Device catalog
2. Use drag-and-drop to move the Mux 2700 Slave DTM from the device catalog under the HiDMux2700 DTM in the project tree.
3. Select the channel of the HART multiplexer master HiDMux2700 to which the new multiplexer slave should be added (channel 1: master, channel 2: slave 1) and click OK to confirm.

![Selection menu for assigning the multiplexer slave](image)

Figure 6.20 Selection menu for assigning the multiplexer slave

→ The Mux 2700 Slave DTM is added to the project.
Adding the Multiplexer Master and Multiplexer Slave via the Context Menu

1. In the project window, right-click to select the HiDMux2700 DTM.
2. In the context menu, select **Add device**.
3. Select the **Mux 2700 Slave** DTM from the list and confirm by clicking **OK**.

4. Select the channel of the HART multiplexer master HiDMux2700 to which the new multiplexer slave should be added *(channel 1: master, channel 2: slave 1)* and click **OK** to confirm.

Figure 6.21 Manual insertion of the multiplexer master and multiplexer slave

Figure 6.22 Selection menu for assigning the multiplexer slave

The Mux 2700 Slave DTM is added to the project.
Note!

To establish the connection to a device in the project tree or to disconnect the connection, right-click to select the corresponding device in the project window. In the context menu, select **Connect** or **Disconnect**.

Alternatively, you can select the device in the project window and click the corresponding field in the command bar.
6.10 Adding DTM\text{s} Manually

For known field devices, you can also add the device-specific DTMs in the project tree manually. Proceed as follows:

Adding a Device-Specific DTM Manually via Device Catalog

Use drag-and-drop to move the device-specific DTM from the device catalog to the DTM of the multiplexer device.

\[\rightarrow\] The device-specific DTM is then added to the project.

Adding a Device-Specific DTM Manually via Context Menu

1. In the project window, right-click to select the DTM of the multiplexer device.
2. In the context menu, select \textbf{Add device}.
3. Select the device-specific DTM from the list and confirm with \textbf{OK}.
4. Select the signal loop that the device is to be connected to and confirm with \textbf{OK}.

\[\rightarrow\] The device-specific DTM is then added to the project.

Figure 6.23 Manual insertion of a DTM
7 Operation

Danger!

Explosion hazard from live wiring of circuits

If you connect or disconnect energized circuits in a potentially explosive atmosphere, sparks can ignite the surrounding atmosphere.

Only connect or disconnect energized circuits in the absence of a potentially explosive atmosphere.

Danger!

Explosion hazard from sparking when using operating elements

Using operating elements in a potentially explosive atmosphere can cause sparks that can ignite the surrounding atmosphere.

Only use operating elements (e.g. switch, slider, button, etc.) in the absence of a potentially explosive atmosphere.

7.1 Device Functions

The software functions described in this chapter are usually integrated in the operating software of the process control system, i.e., the software functions are generally not enabled or disabled via the described HART commands. Instead, the operating software contains functions (menu commands) that take over these processes. Nevertheless, the underlying HART commands are described because the functions may have different names in the individual user interfaces and the underlying basic functions may not always be apparent from the name. For a list of the commands supported, see chapter 9.1.

All Functions at a Glance

The following list shows all the functions of the multiplexer master at a glance:

- 32 channels
- Up to 992 signal loops per interface
- Automatic search of all existing HART-compatible field devices (scan)
- Switchable, independent, cyclical querying of the HART variables (command caching)
- Acts as the primary or secondary multiplexer master
- Fast RS-485 interface (multidrop) with up to 56700 baud
- Integrated modem
- Approved for Zone 2
7.1.1 Number of Channels

In addition to the multiplexer master, the HART multiplexer master HiDMux2700 integrates a multiplexer slave with slave address 0. In doing so, the HART multiplexer master provides 32 channels for connecting field devices or control units that support digital communication according to the HART specification.

7.1.2 Multiplexer Table (Module Table)

The multiplexer master must be labeled as present in a multiplexer table, see chapter 9.1, command 157. Only modules defined as present in this table are included in communication. The multiplexer table consists of 16 bits, 1 bit for each multiplexer address. The default setting is module 0 (multiplexer master) and 1 activated.

7.1.3 Interface

The multiplexer master acts as a transparent gateway between the maintenance station and the field devices. The maintenance station is typically a computer with appropriate software, see chapter 3.2. The maintenance station can address up to 31 multiplexer masters via an RS-485 connection with a speed of up to 57600 baud. Since each multiplexer master can address up to 32 field devices, each RS-485 interface can communicate with up to 992 field devices.

7.1.4 HART Communication

As a digital communication system for maintenance and configuration purposes, the HART protocol is supported by many field devices with conventional analog 4 mA to 20 mA circuits. The HART signal is modulated to the analog current as an FSK signal, see chapter 3.1. The modulator/demodulator circuit (modem) required is integrated in the multiplexer device. Only one HART-compatible field device can be connected to each HART connection of the multiplexer device – there is no multidrop functionality.

Special procedures with regard to the HART communication:

- On the host side (RS-485), the extended address is always used, except in the case of command 0.
- On the field device side, either the polling address or the extended address is used depending on the need.
- The primary master and secondary master operating modes and the corresponding time responses are supported on the field device side.
- On the host side, only the commands 0 to 3 and 11 to 13 are accepted from the secondary host. Other commands are not accepted or are ignored.
- Commands to connected field devices are only accepted from the primary host.
- Extended messages and messages in burst mode are detected and used but are not generated by the multiplexer device itself.
- A response buffer is available for a delayed response telegram. A message with an initiating command that requires a long execution time can be temporarily stored here.
7.1.5 Constructing the Signal Loop/Scan (Software Function)

When the power supply to the device is switched on, the device searches the multiplexer devices listed in the multiplexer table for the connected HART field devices (command 0 and 4) and, in doing so, generates the internally required access tables. This process can also be performed by the maintenance station connected, as is necessary for communication with newly connected HART-compatible field devices. The length of this process depends:

• on the number of multiplexer devices connected
• on the number of connected HART-compatible field devices
• on the loop search type, see chapter 9.1, command 153,
• on the number of message repetitions in the case of a fault, or
• on whether the query has been answered.

With 32 field devices the duration is between 30 s and 60 s (e. g. with the use of only one multiplexer).

Note!
In the DTM, the parameters for the signal loop construction can be parameterized in the Communication menu in the Communication to field devices (as HART master) section. For a detailed description, see chapter 6.7.3.

During the scanning process, only certain read commands (commands 0, 1, 2, 3, 11, 12, 13, 48, 129) are accepted by the maintenance station. All other commands result in the response Busy until the scanning process is concluded.

7.1.6 Cyclical Data Retrieval/Command Caching (Software Function)

The multiplexer master can read cyclical data from up to 32 field devices. To do this, the scan option (command 137) must be set for the field device and the scan function in the multiplexer must be activated (command 149, function 1). The Scan command option (command 147) defines which data is to be transferred, see chapter 9.1.

Note!
In the DTM, the scan function for cyclic data retrieval can be activated and parametrized in the Command caching menu. For a detailed description, see chapter 6.7.4.

If the scan function is activated, the field devices on which the scan option is activated are regularly checked for data. To do this, the scan command that reads one or more variables from the field device is executed. If a field device does not respond, it is designated as Disappeared (command 129) but it remains in the search list. This means that the field device will be searched for again during the next cycle. If a field device has disappeared but responds correctly during one of the next search commands, it is designated as Appeared. If another field device has responded instead, the Mismatched status appears.

1 Command 4 is also used for field devices that support only older HART specifications up to command 4.
7.1.7 Variant of the Scan Function (Special Scan Function)

The special scan function (command 149, function 2) uses an additional parameter that defines the minimum length of expected data bytes. This parameter can be different for each signal loop but it must be set for each signal loop to be scanned.

Note!

The special scan function cannot be parameterized via the DTM. It can only be parameterized via HART commands from the host.

The scanning process itself takes place as described in the chapter above. However, the response of the field device is compared with the expected data length. If the length of the response is below the specified minimum data length, the response is rejected. If the minimum data length is 0, the response is always stored.

7.2 Software Functions

7.2.1 Field Device List

Scanning Signal Loops

1. Use the mouse to double-click the multiplexer master **HiDMux2700** in the project window.
2. In the editing window, open the *Device actions > Scan loops* menu.

 ![Scan loops for field devices window](image)

In the *Scan loops for field devices* window, you can start a scan to identify all field devices connected to the multiplexer master. Proceed as follows:

- In the left-hand area, select the signal loops that you want to search. If you select slave 1, all signal loops of slave 1 are scanned.
- Selecting the *Scan selected loops* button starts the scan of the signal loops. The scan may take several minutes.

Once the signal loops have been scanned, you will find further information about the connected field devices in the field device list, see chapter 7.2.2.
Figure 7.1 Scan loops window
7.2.2 Field Device List

Selecting the Field Device List

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Related tasks > Connected field devices menu.

The Connected field devices window is displayed.

In the Connected field devices window, a table detailing information on the field devices connected to the multiplexer master is shown:

<table>
<thead>
<tr>
<th>Table column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td>Module to which the field device is connected</td>
</tr>
<tr>
<td>Loop</td>
<td>Signal loop in which the field device is connected</td>
</tr>
<tr>
<td>Polling address</td>
<td>Polling address of the field device</td>
</tr>
<tr>
<td>Unique ID</td>
<td>Unique, unchanging address of the field device</td>
</tr>
<tr>
<td>Device type</td>
<td>Device type</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Manufacturer of the field device</td>
</tr>
<tr>
<td>HART revision</td>
<td>HART revision under which the field device is operated</td>
</tr>
<tr>
<td>Long tag</td>
<td>Long device tag of the field device</td>
</tr>
<tr>
<td>Tag</td>
<td>Tag for identification of the field device</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Description for the field device</td>
</tr>
<tr>
<td>Date</td>
<td>Date of the last change to the identification information</td>
</tr>
<tr>
<td>Message</td>
<td>Any user-created message/comment</td>
</tr>
</tbody>
</table>

Table 7.1 Explanation of the field device list
Figure 7.2 Connected field devices window
7.2.3 Self-test of the Device

Performing a Self-test

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Device actions > Perform self-test menu.

The Perform self-test window is displayed.

In the Perform self-test window, you can perform a self-test of the multiplexer master. To do so, select the Perform self-test button.

The information collected during the self-test can then be retrieved in the diagnosis in the Related tasks > Diagnosis window.

Figure 7.3 Perform self-test window
7.2.4 Device Diagnosis

Selecting a Diagnosis

1. Use the mouse to double-click the multiplexer master **HiDMux2700** in the project window.
2. In the editing window, open the **Related tasks > Diagnosis** menu.

 → The **Diagnosis** window is displayed.

In the **Diagnosis** window, detailed diagnostic information regarding the multiplexer master and the field devices connected to it can be retrieved.

In the **System overview** section, the device tree is displayed on the left-hand side with the connected devices. Click on a device to select it.

The right-hand section displays device-specific, detailed diagnostic information.

Select the **Update diagnosis** button above the **System overview** section to update the diagnostic information.

Note!

For a precise explanation of the diagnostic information, see chapter 7.3.

Figure 7.4 Diagnosis window
7.2.5 **Configuration Flag Reset**

Resetting the Configuration Flag

1. Use the mouse to double-click the multiplexer master **HiDMux2700** in the project window.
2. In the editing window, open the **Device actions > Reset "Configuration changed" flag** menu.

 ![Reset "Configuration changed" flag window](image)

 Figure 7.5 Reset "Configuration changed" flag window

The "Configuration changed" flag is a flag of the standard HART device status. It is always set when a parameter has been changed in the configuration of the device.

In the **Reset "Configuration changed" flag** window, you can reset the "Configuration changed" flag. To do this, select the **Reset "Configuration changed" flag** button.
7.2.6 Device Reset

Resetting the Device

1. Use the mouse to double-click the multiplexer master HiDMux2700 in the project window.
2. In the editing window, open the Device actions > Reset device menu.

→ The Reset device window is displayed.

In the Reset device window, you can reset the multiplexer master. To do so, select the Reset device button.

Note!

Ensure that the multiplexer master restarts after the reset. During the reset, communication to all connected field devices is initially interrupted. After the restart, all signal loops are scanned for any existing HART-compatible field devices. During this time, no communication with the field devices is possible.

For further information about the scanning process, see chapter 5.2.4 and 7.1.5.
7.3 Diagnosis and Troubleshooting

This chapter provides operating instructions to be used if faults occur and describes the possible causes of such faults. Faults and failures are reported via the following means:

- LED indication, see chapter 7.3.1
- Status/response code, see chapter 7.3.2
- Extended device status, see chapter 7.3.3

7.3.1 LED Indication

After you have switched the device on, the following fault states can occur during the initialization process:

<table>
<thead>
<tr>
<th>Red</th>
<th>Green</th>
<th>Yellow</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>• No power supply present. • LED(s) faulty.</td>
<td>• Check the power supply. • Switch on DIP switch 8, briefly disconnect the power supply. LEDs flash one after the other.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Device hardware fault (CPU, ROM)</td>
<td>Send the device to Pepperl+Fuchs for repair.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Device hardware fault (CPU, ROM)</td>
<td>Send the device to Pepperl+Fuchs for repair.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>• Device hardware fault (CPU, ROM) • Device parameterization (command 161) faulty.</td>
<td>• Send the device to Pepperl+Fuchs for repair. • Parameterize the device again. If this is not successful, the device must be sent to Pepperl+Fuchs for repair.</td>
</tr>
</tbody>
</table>

Table 7.2
7.3.2 Status/Response Code

Two status bytes, known as the Response code, are included in each field device message. These include three types of information:

- Communication faults
- Command responses
- Device status

Dependent on bit 7, the first two types are contained in the first byte of the status. The device status is always transferred in the second byte.

Structure of the First Byte (Communication Fault)

If bit 7 is set (1), the first status byte contains a summary of communication faults. This information is coded bit by bit.

If bit 7 is deleted (0), the first status byte contains a summary of command responses. This information is numbered and not coded bit by bit.

Communication Faults

The byte contains information concerning the receipt of a message. The individual bits indicate a detected fault, which has resulted in the message not being accepted. It is therefore not possible to provide a response to the message. This problem can only be avoided by:

- Repeating the command,
- Checking the connection,
- Using terminators, or
- Reducing the baud rate.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5 4 3 2 1 0</td>
<td>Communication fault, if bit 7 = 1, coded bit by bit</td>
</tr>
<tr>
<td>1</td>
<td>Parity fault</td>
</tr>
<tr>
<td>1</td>
<td>Overflow fault</td>
</tr>
<tr>
<td>1</td>
<td>Message fault</td>
</tr>
<tr>
<td>1</td>
<td>Checksum fault</td>
</tr>
<tr>
<td>1</td>
<td>Always 0 (reserved)</td>
</tr>
<tr>
<td>1</td>
<td>Receive buffer overflow</td>
</tr>
<tr>
<td>1</td>
<td>(Undefined)</td>
</tr>
</tbody>
</table>

Table 7.3
Command Responses

The first byte contains information regarding the execution of a command. The command-specific response code documents the execution of the command.

In contrast to the communication faults, the command responses are not coded bit by bit and are instead numbered from 0 to 127.

For command responses reported by multiplexer devices, two instances are warnings (codes 8 and 31). In these cases the processing of the command is continued. In other cases, there are faults indicating that the initiating command could not be correctly executed. The meaning of the codes is explained in the following table.

<table>
<thead>
<tr>
<th>Code</th>
<th>Designation</th>
<th>Meaning</th>
<th>Can occur in the case of a command</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Invalid selection</td>
<td>Invalid selection: The selected code/index is not permitted.</td>
<td>147, 149, 151, 153</td>
</tr>
<tr>
<td>3</td>
<td>Passed parameter too large</td>
<td>The parameter value was too large.</td>
<td>59, 129, 155</td>
</tr>
<tr>
<td>4</td>
<td>Passed parameter too small</td>
<td>The parameter value was too small.</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Too few data bytes received</td>
<td>The message has no faults but contains fewer bytes than expected for the execution of the command.</td>
<td>17, 18, 59, 129 to 141, 145, 147, 149, 151, 153, 154, 155, 157</td>
</tr>
<tr>
<td>8</td>
<td>Warning</td>
<td>Here (132): Preamble length is not within the range of 5 to 20 and has been set to 5 or 20</td>
<td>132</td>
</tr>
<tr>
<td>9</td>
<td>1st parameter too large</td>
<td>The first of the two parameters is too large.</td>
<td>145</td>
</tr>
<tr>
<td>11</td>
<td>2nd parameter too large</td>
<td>The second of the two parameters is too large.</td>
<td>145</td>
</tr>
<tr>
<td>16</td>
<td>Access restricted</td>
<td>The command was ignored because the current state of the device does not permit the correct execution of the command.</td>
<td>6, 17, 18, 38, 41, 42, 48, 59, 106, 128 to 157</td>
</tr>
<tr>
<td>17</td>
<td>Too many items requested</td>
<td>Too many items have been requested.</td>
<td>131, 132, 133, 135 to 141, 154</td>
</tr>
<tr>
<td>31</td>
<td>Warning</td>
<td>Here (137): Scan value has not been changed as it is identical.</td>
<td>137</td>
</tr>
<tr>
<td>32</td>
<td>Busy</td>
<td>The device is executing a function that cannot be interrupted by this command.</td>
<td>6, 17, 18, 38, 41, 42, 59, 106, 128, 130 to 157</td>
</tr>
<tr>
<td>64</td>
<td>Command not implemented</td>
<td>Command does not exist and therefore cannot be executed. This fault message is also output if an fault occurs that cannot be specified more precisely by the device.</td>
<td>almost all</td>
</tr>
<tr>
<td>65</td>
<td>Not specified</td>
<td>Parameter is not within the permissible range.</td>
<td>132, 137</td>
</tr>
</tbody>
</table>

Table 7.4

Note!
Additional information can be found in /1/, see chapter 9.2.
Structure of the Second Byte (Device Status)

If a communication fault is reported in the first byte (bit 7 = 1), the second byte described here has no significance (always 0). Otherwise it contains the overall status of the field device, i.e. regardless of the commands. The individual bits have the following meanings:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Designation</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Malfunction of the field device</td>
<td>Hardware fault. The extended device status may provide further information, see chapter 7.3.3.</td>
<td>• Read extended device status, see chapter 7.3.3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Check LEDs, see chapter 7.3.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Parameterize device again.</td>
</tr>
<tr>
<td>6</td>
<td>Configuration changed.</td>
<td>A write command has been executed.</td>
<td>This bit can be deleted using command 38.</td>
</tr>
<tr>
<td>5</td>
<td>Switch-on process is running.</td>
<td>The power supply has been switched on or a reset has been triggered.</td>
<td>Wait for the switch-on process and then parameterize the device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volatile data is reset to the default setting.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Extended device status available.</td>
<td>Further status messages are available and can be called up,</td>
<td>Read extended device status, see chapter 7.3.3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see chapter 7.3.3.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analog output current cannot be changed (primary variable).</td>
<td>The primary variable is set to the requested value and no longer follows the process.</td>
<td>Always 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Has no function on the multiplexer device as there is no analog output.</td>
</tr>
<tr>
<td>2</td>
<td>Analog output current has reached its limit (primary variable).</td>
<td>The primary variable is outside its limit values and therefore no longer corresponds to the process value.</td>
<td>Always 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Has no function on the multiplexer device.</td>
</tr>
<tr>
<td>1</td>
<td>Variable (not the primary) outside the range.</td>
<td>The data detected by the sensor – not the data for the primary variable – lies outside the operating range. The extended device status may provide further information, see chapter 7.3.3.</td>
<td>Always 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Has no function on the multiplexer device.</td>
</tr>
<tr>
<td>0</td>
<td>Primary variable outside the range.</td>
<td>Primary variable outside the range. The measured value detected by the sensor is outside the operating range.</td>
<td>Always 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Has no function on the multiplexer device.</td>
</tr>
</tbody>
</table>

Table 7.5

Note!

Additional information can be found in /1/, see chapter 9.2.
7.3.3 Extended Device Status

The extended device status can be retrieved using command 48. The command provides 5 byte of information which are arranged thematically:

First Byte

The operation is currently in progress

The byte indicates which operation is currently running. The information is coded bit by bit. The coding is shown in the following table:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Operation in progress</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reset</td>
<td>Switch-on operation is running and must be completed.</td>
</tr>
<tr>
<td>6</td>
<td>Rebuild</td>
<td>Rebuild operation is running and must be completed.</td>
</tr>
<tr>
<td>5</td>
<td>Internal EEPROM write operation</td>
<td>Switching off the power supply may result in the loss of parameterization.</td>
</tr>
<tr>
<td>4</td>
<td>Scan</td>
<td>Scanning process is running and must be completed.</td>
</tr>
<tr>
<td>3</td>
<td>Self-test (command 41)</td>
<td>Performs the device self-test, such as when switching on the supply voltage. If no fault occurs, the status message Malfunction is deleted if the message has been set.</td>
</tr>
<tr>
<td>2 to 0</td>
<td>Reserved</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

Table 7.6

Second Byte

Hardware fault

The byte indicates which operation is currently running. The information is coded bit by bit. The coding is shown in the following table:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Detected hardware fault</th>
<th>Meaning/remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Signal loop</td>
<td>OR link of all detected hardware faults in the signal loops. Check the field devices and their cabling, then run Scan loops, see chapter 7.2.1.</td>
</tr>
<tr>
<td>6</td>
<td>ROM fault</td>
<td>Send the device to Pepperl+Fuchs for repair.</td>
</tr>
<tr>
<td>5</td>
<td>EEPROM fault</td>
<td>Send the device to Pepperl+Fuchs for repair.</td>
</tr>
<tr>
<td>4 to 0</td>
<td>Reserved</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

Table 7.7
Third Byte

Scan fault

The byte indicates an OR link for all the faults detected during the scanning process.

Example: If one field device is detected as Disappeared and another as Mismatched, these two bits are set at the same time. The bit by bit coded information is shown in the following table:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Status</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>Reserved.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Searching</td>
<td>Field device is searched for due to the Disappeared report.</td>
<td>• Check the cabling. • Check the field device.</td>
</tr>
<tr>
<td>5</td>
<td>Disappeared</td>
<td>Field device is no longer responding.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Appeared</td>
<td>Field device is responding again.</td>
<td>Check the cabling.</td>
</tr>
<tr>
<td>3</td>
<td>Mismatched</td>
<td>Another field device has responded instead.</td>
<td>Field device was replaced with another field device. Check the field device, rebuild signal loops.</td>
</tr>
<tr>
<td>2 to 0</td>
<td>Reserved</td>
<td>Reserved.</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.8

Note!

Additional information can be found in /1/, see chapter 9.2.
Dismounting, Maintenance, and Repair

Danger!
Explosion hazard from live wiring of circuits

If you connect or disconnect energized circuits in a potentially explosive atmosphere, sparks can ignite the surrounding atmosphere.

Only connect or disconnect energized circuits in the absence of a potentially explosive atmosphere.

Danger!
Explosion hazard from changing the fuse

The changing of the fuse under voltage can cause sparks. This can ignite the surrounding potentially explosive atmosphere.

De-energize the device before changing the fuse.

Danger!
Danger to life from using damaged or repaired devices.

Using a defective or repaired device can compromise its function and its electrical safety.

- Do not use a damaged or polluted device.
- The device must not be repaired, changed or manipulated.
- If there is a defect, always replace the device with an original device from Pepperl+Fuchs.

Disconnecting Circuits

1. Disconnect the power supply.
2. Disconnect the field circuit.
3. Disconnect the control circuit.
4. Disconnect the HART communication.
8.1 Dismounting the Multiplexer Master

Dismounting the Multiplexer Master from the Termination Board

1. Pull the red Quick Lok bar (1) up on each side of the device.
2. Carefully pull the device out from the contacts and locking elements.

Figure 8.1 Dismounting of an H-System isolated barrier

1 Quick Lok Bar
2 Coding pins
3 Adjustment pins
8.2 Dismounting the Termination Boards

Warning!
Risk of short circuit

Working on live parts can cause injuries and can compromise the function and the electrical safety of the device.

- Before working on the device, always disconnect the supply voltage.
- Connect the device to the supply voltage only after completion of the work.

Dismounting the Termination Board with Screw Mounting

1. Loosen the fastening screws (3).
2. Remove the termination board (2) from the DIN mounting rail (1).

Figure 8.2 Termination board fixing

1 DIN mounting rail
2 Termination board
3 Fastening screw
Dismounting the Termination Board without Screw Mounting

Use for dismounting of the device a suitable slotted screwdriver

1. Insert the screwdriver (4) into the groove of the mounting slider (3).
2. Pull back the mounting slider (3) with the screwdriver (4) until the mounting slider (3) releases the DIN mounting rail (1).
3. Repeat these steps for the other mounting sliders of the device.
4. Remove the termination board (2) from the DIN mounting rail (1).
9 Appendix

9.1 Supported HART Commands

The following tables show the HART commands supported by the HART multiplexer system. The HART commands are divided into 3 groups:

- Universal commands
- Common practice commands
- Device-specific commands

Note!
The universal commands and common practice commands are described in detail in /1/, see chapter 9.2. At this point, only the functions are explained, not the underlying data structures of the HART protocol.

9.1.1 Universal Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Read unique device identification.</td>
<td>A 12 byte device identification is given in response.</td>
</tr>
<tr>
<td>1</td>
<td>Read HART variables (data).</td>
<td>Commands are only supported by the HART multiplexer system for compatibility purposes and have no significance. However, in the field devices (e.g. scan function) they have the following meanings:</td>
</tr>
<tr>
<td></td>
<td>• 1: Read primary variable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Read primary variable as a current (mA) and percentage of the measuring range.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Read primary variable as a current (mA) and four (pre-defined) dynamic variables.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Set polling address.</td>
<td>This command will not be accepted and the messages Access restricted or Busy will be returned.</td>
</tr>
<tr>
<td>11</td>
<td>Read unique device identification using the tags.</td>
<td>A 12 byte device identification is given in response if the specified tag corresponds to the tag stored in the HART multiplexer system.</td>
</tr>
<tr>
<td>12</td>
<td>Read message.</td>
<td>The 32-digit message is read, see also command 17.</td>
</tr>
<tr>
<td>13</td>
<td>Read the tag, description, and date.</td>
<td>Read the 8-digit tag, the 16-digit description, and the date.</td>
</tr>
<tr>
<td>17</td>
<td>Save message.</td>
<td>The 32-digit message is written, see also command 12.</td>
</tr>
<tr>
<td>18</td>
<td>Save the tag, description, and date.</td>
<td>Save an 8-digit tag, a 16-digit description, and a date.</td>
</tr>
</tbody>
</table>

Table 9.1
9.1.2 Common Practice Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>![Command Icon] Reset the status</td>
<td>Delete status message, see chapter 7.3.2.</td>
</tr>
<tr>
<td></td>
<td>![Configuration Changed Icon] Configuration changed.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>![Device Self-Test Icon] Perform device self-test.</td>
<td>Performs the device self-test, such as when switching on the power supply. If no fault occurs, the status message Malfunction is deleted if it has been set, see chapter 7.3.2.</td>
</tr>
<tr>
<td>42</td>
<td>![Device Reset Icon] Perform device reset.</td>
<td>Immediately after the command confirmation, the device processor is reset.</td>
</tr>
<tr>
<td>48</td>
<td>![Read Extended Device Status Icon] Read extended device status.</td>
<td>See chapter 7.3.3.</td>
</tr>
<tr>
<td>59</td>
<td>![Define Number of Response Preambles Icon] Define the number of response preambles.</td>
<td>The number of preambles inserted in message responses can be set to between 2 and 20. The default setting is 4.</td>
</tr>
<tr>
<td>106</td>
<td>![Delete All Delayed Responses Pending for the Master Icon] Delete all delayed responses pending for the master.</td>
<td>The pending response messages are deleted. As only one response message buffer exists, the buffer is always deleted in accordance with the specification regardless of the requesting master.</td>
</tr>
</tbody>
</table>

Table 9.2

9.1.3 Device-Specific Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>![Read Parameters Icon] Read the parameters of the multiplexer device.</td>
<td>The current parameterization is read from the multiplexer device.</td>
</tr>
</tbody>
</table>
| 129 | ![Read Status of Signal Loop Icon] Read the status of the signal loop. | This command can be used to query the status of each signal loop. The following information is provided:
 • Existing hardware faults
 • Scan is in progress.
 • Scan activated for this signal loop.
 • Field device is being searched for due to the **Disappeared** designation.
 • Field device is no longer responding (**Disappeared**).
 • Field device responds again (**Appeared**).
 • Another field device has responded instead (**Mismatched**). |
| 130 | ![Read Field Device List Icon] Read field device list (maximum of 49 entries, starting with the specified index). | The extended addresses of up to 49 field devices are returned from the specified list entry. |
| 131 | ![Read Static Data Icon] Read static data from up to 22 field devices. | For the specified extended addresses, the function returns the following field device data:
 • Number of the signal loop (0 to 15)
 • Polling address
 • Supported HART revision
 • Required minimum number of preambles (5 to 20) |
<p>| 132 | ![Write Static Data Icon] Write static data from up to 22 field devices. | Write the static data, see command 131. A preamble length outside the range of 5 to 20 is set to 5 or 20. |
| 133 | ![Delete Field Devices Icon] Delete field devices from the field device list (max. 35 simultaneously). | Field devices with the specified extended address are deleted from the field device list (and the scan list). |
| 134 | ![Read Scan List Icon] Read scan list (max. 49 entries, starting with the specified index). | The extended addresses of up to 49 field devices are returned from the specified list entry. |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 135 | Read dynamic data from up to 7 field devices. | For the specified extended addresses, the function returns the following data:
- The specified scan command
- Extended address
- HART data |
| 136 | Read scan status of up to 31 field devices. | For the specified extended addresses, the function returns the scan status of the field device (0 = deactivated, 1 = activated). |
| 137 | Write scan status of up to 31 field devices. | Set the scan status for the specified extended addresses (0 = deactivated, 1 = activated). |
| 138 | Read fault overview of up to 27 field devices. | The fault overview provides an OR combination of communication faults and status bits. |
| 139 | Delete fault overview of up to 35 field devices. | Fault overview is deleted. |
| 140 | Read the number of command requests and command faults from up to 16 field devices. | Communication statistics on received or bad messages are returned. |
| 141 | Delete the number of command requests and command faults from up to 16 field devices. | Communication statistics are deleted. |
| 142 | Read all communications of the multiplexer devices. | The communication statistics concerning the multiplexer devices are returned. |
| 143 | Delete all communications of the multiplexer devices. | The communication statistics concerning the multiplexer devices are deleted. |
| 144 | Number of message repeats. | • Repetitions in the event of Busy report: 0 to 11, default setting is 0
- Repetitions in event of communication faults: 0 to 11, default setting is 2 |
| 145 | Write the number of message repeats. |
- Repetitions in event of communication faults: 0 to 11, default setting is 2 |
| 146 | Read the specified scan command. | During the scan, the HART commands 1, 2, or 3 (see above) can be executed. |
| 147 | Specify scan command. |
- 0: Scan function is deactivated, default setting after a device reset.
- 1: Normal scan function is activated.
- 2: Special scan function is activated, see command 158, 159. |
| 148 | Read scan status. | This reads or specifies the status of the scan function, see chapter 7.3.3.
- 0: Scan function is deactivated, default setting after a device reset.
- 1: Normal scan function is activated.
- 2: Special scan function is activated, see command 158, 159. |
| 149 | Write scan status. |
- 0: Scan function is deactivated, default setting after a device reset.
- 1: Normal scan function is activated.
- 2: Special scan function is activated, see command 158, 159. |
| 150 | Read master type. | • 1 = Primary master, default setting
- 0 = Secondary master |
| 151 | Write master type. |
- 0 = Secondary master |
| 152 | Read loop search type. | The loop search type defines which polling address is used to search for a device that has not responded after repeated requests, (disappeared, see also command 129):
- 0: Single field device, 4 mA to 20 mA (single analog), only polling address 0, default setting
- 1: Single field device, unknown (single unknown), first of the polling addresses 0 to 15
- 2: Reserved for multidrop |
| 153 | Write loop search type. |
- 0: Single field device, 4 mA to 20 mA (single analog), only polling address 0, default setting
- 1: Single field device, unknown (single unknown), first of the polling addresses 0 to 15
- 2: Reserved for multidrop |
Command 154
Scan up to 83 specified signal loops.
see chapter 7.1.5 and 7.2.1.

Command 155
Pass through host command to the device and response to the host.
This enables any command to be sent to a field device and its response evaluated by the multiplexer device without any changes.

Command 156
Read multiplexer table.
(16 multiplexer devices)
Reads the specified multiplexer table, see command 157.

Command 157
Write multiplexer table.
(16 multiplexer devices)
Determines which multiplexer devices (multiplexer master and up to 15 multiplexer slaves) are assigned (2 byte, coded bit by bit).

Command 158
Read special scan parameters.
The current special parameters and the field device data (if available) for the specified signal loop is provided. These include:
- Number of the signal loop
- Fault flag (0 = OK, 1 = special scan is not active)
- Polling address, always 0, as there is no multidrop
- The minimum number of data bytes for the special scan
- The scan command used
- Extended address
- Number of available data bytes
- Data byte content

Command 159
Write special scan parameters.
For the specified signal loop and the polling address (must always be 0), the minimum number of data bytes (0 to 62) and the scan command to be used can be written.

Command 160
Read delay period for channel change.
When changing the communication channel (0 to 255), the multiplexer can include a waiting period (0 ms to 300 ms) before HART commands are sent to the channel.

Command 161
Write delay period for channel change.

1 The search process is 16 times longer with no field device connected, as all 16 polling addresses are checked.
9.2 Bibliography

/1/
HART Communication Foundation: HART Communication Protocol Specification
HCF_SPEC-13, Revision 7.5
https://fieldcommgroup.org/hart-specifications

/2/
HART Communication Foundation: HART Application Guide
HCF_LIT-039 Rev. 7.1

/3/
Romilly Bowden
Fisher-Rosemount
9.3 Glossary

Address
In communication systems, an address is used to identify the device to which a message is addressed. HART uses two addressing modes: a polling address in the range 0 to 15 and the extended address consisting of 38 bit. The polling address 0 is reserved for 4 mA to 20 mA analog field devices in point-to-point connections. The polling addresses 1 to 15 are reserved for field devices in multidrop connections.

Broadcast mode
See burst mode

Burst mode
A communication mode in which the multiplexer master instructs field devices to continuously transmit process values – for example, the primary variable – to the multiplexer master without further instruction. The multiplexer master recognizes and supports this mode but does not put field devices in this mode itself.

Extended address
See Address

DTM
The DTM (DTM – Device Type Manager) contains all the data and functions of a device. Every DTM contains its own user interface optimized for the device. The device and communication DTMs can be integrated in any FDT frame application, such as PACTware.

The DTM offers almost no restriction with regard to display and user guidance. This means that all available device functions can be operated according to the user’s needs. Operation is supported by graphics. The DTM technology enables consistent operation of a device in all FDT systems.

Pepperl+Fuchs generates DTMs for HART-compatible devices by converting the device description (DD) of these devices for use with PACTware.

Essentially, there are two different types of DTM:

- Device DTMs
 Device DTMs are DTMs for configuring field devices such as transmitter power supplies, signal converters, and trip amplifiers.

- Communication DTMs
 Communication DTMs are required for communication with a device via a point-to-point connection or via any network structures. The communication DTMs are available for various interfaces, such as an RS-232 interface or a USB interface.
FDT

The FDT concept (FDT – Field Device Tool) created a standard that can be used to integrate devices in various user interfaces (framework applications such as PACTware). The FDT concept enables open and continuous device operation from the control level to the field, regardless of the bus systems used. The FDT concept specifies the data exchange between the device-specific driver and the framework application. Every communicating device has a device-specific driver (DTM) that is integrated in the framework application.

FSK

Abbreviation for Frequency Shift Keying. Method of encoding the digital information 0 or 1 with two different frequencies.

HART

Abbreviation for Highway Addressable Remote Transducer. Designation for communication according to the HART protocol. HART is a master-slave system.

Host

Higher-level system, e. g., maintenance station, computer, or process control system.

Polling address

See Address

Master

A device (e. g., the control system) in a master-slave system which initiates all transmission requests and commands.

Master-slave system

Communication system in which a master initiates all transmission requests and commands and a slave responds to the transmission requests and commands.

Multidrop

In contrast to point-to-point connections, several (field) devices may be connected to one segment (core pair). To allow each device to be addressed individually, the device must have a unique address. As communication can only take place with one field device at a time, cycle times increase in proportion to the number of field devices. In HART multidrop operation, field devices fix their current consumption at 4 mA to enable parallel operation of up to 15 devices.

Multi master

HART allows the connection of two masters, a primary master and a secondary master. The main station is configured as the primary master. This is generally the control system or the main control. A second station is configured as secondary master. This can be a handheld or a maintenance station. The difference between the primary and secondary masters is the priority of access, i. e., the primary master has a higher priority than the secondary master. Messages sent by the masters are characterized by a master bit so that the masters can assign the message responses to their own messages.
PACTware™

PACTware (PACTware – Process Automation Configuration Tool) is a manufacturer-independent operating software for devices. In the past, it was often necessary to use multiple manufacturer-specific programs to be able to operate different devices. PACTware enables you to operate any number of devices with just this software. PACTware is not only a configuration tool, it also offers an interface to HART-compatible field devices as well as to bus systems such as PROFIBUS, MODBUS, and ControlNet. PACTware offers many features that allow users to simplify the plant documentation, to create trend curves, and to monitor signals using HART data.

Point-to-point connection

In point-to-point connections, only two communication participants can be connected to one segment (core pair). A point-to-point connection is, for example, the master-slave connection of multiplexer device to field device.

Primary variable

This variable is a process measured value of the field device. The unit differs according to the HART command (see commands 1, 2 and 3). The primary variable of a pressure transducer may be, for example, the measured process pressure in bar.

Primary master

See Multi master

Secondary variable

This variable is a further, additional process measured value of the field device. Up to 4 additional values are supported via HART. This variable can only be read using HART command 3.

Secondary master

See Multi master

Slave

A device in a master-slave system that receives commands from a master. A slave cannot initiate a transmission request.

Smart field device

Intelligent, programmable field device with microprocessor and memory which is able to perform calculations, integrated diagnostics, and fault reports and can communicate with a remote control.

Tag

Unique identifier of the C&I point (Control and Instrumentation technology) of the field device within a process plant.