PROZESSAUTOMATION

HANDBUCH

DMS-Messumformer KFD2-WAC2-(Ex)1.D

DMS-Messumformer KFD2-WAC2-(Ex)1.D

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

1	Verwendete Symbole	3
2	Überblick	3
3	Sicherheitshinweise	4
4	Explosionsschutz	5
5	Montage und Anschluss	6
5.1	Montage	. 6
5.2	Anschluss	. 7
5.3	Frontseite	. 9
6	Anzeigemodus und Fehlermeldungen	10
7	Gerätedaten bearbeiten	11
7.1	Parametriermodus Bedienfeld	11
7.1.1	Aufruf	11
7.1.2	Passwort	12
7.1.3	Navigationsprinzip	13
7.1.4		14
7.2	Einheit	15
7.3	Sensor	16
7.3.1 7.3.2	Speisespannung, Empfindlichkeit, Zellendaten	18 20
7.4	Justierung	21
7.4.1	Nullpunkt	22
7.4.2	Justage ohne mechanische Belastung	22
7.4.3	Justage mit mechanischer Belastung	22
7.4.4	Justage	22
7.4.5	Hinweise zu Nullpunkt und Justage	23
7.4.6	Bereicn	24 27
,.4./		
1.5	Irigger	25

7.6	Relais	.26
7.6.1	Grenzwert	.27
7.6.2	Schaltverhalten	.28
7.6.3	Schaltpunkt und Hysterese	.29
7.6.4	Ansprechverzögerung	.30
7.6.5	Wiedereinschaltsperre und Halten bei Fehler.	.31
7.6.6	Störmeldung	.31
7.7	Stromausgang	.32
7.7.1	Brutto/Netto, Spanne, Invertiert	.33
7.7.2	Kennlinie	.34
7.7.3	Störstrom	.36
7.8	Service	.37
7.9	Werkseinstellungen	.38
8	RS 485-Schnittstelle	.40
9	Beispiel	.43
9.1	Einheit	.43
9.2	Sensordaten	.44
9.3	Triggereingänge	.45
9.4	Abgleich	.45
9.5	Ausgänge	.46
0.0		40

1 Verwendete Symbole

Dieses Zeichen warnt Sie vor einer Gefahr.

Bei Nichtbeachten drohen Personenschäden bis hin zum Tod oder Sachschäden bis hin zur Zerstörung.

Dieses Zeichen want Sie vor einer möglichen Störung. Bei Nichtbeachten können das Gerät und daran angeschlossene Systeme und Anlagen bis hin zur völligen Fehlfunktion gestört werden.

Dieses Zeichen macht Sie auf eine wichtige Information aufmerksam.

2 Überblick

Die Geräte des K-Systems von Pepperl+Fuchs dienen zur Signalübertragung zwischen den Feldgeräten und dem Prozessleitsystem/der Steuerung.

Die Geräte mit dem Kennzeichen "Ex" in der Typbezeichnung sind dabei für den Anschluss von Feldgeräten aus dem explosionsgefährdeten Bereich geeignet. Die Feldstromkreise bei diesen Geräten sind eigensicher und von den nicht eigensicheren Stromkreisen galvanisch getrennt. Die Geräte bilden somit die elektrotechnische Trennung zwischen dem explosionsgefährdeten und dem sicheren Bereich einer Anlage.

Die Geräte ohne Ex-Kennzeichen können für die Signalübertragung zwischen Feldgeräten im sicheren Bereich und dem Prozessleitsystem/der Steuerung eingesetzt werden.

DMS-Messumformer KFD2-WAC2-(Ex)1.D Sicherheitshinweise

An den Eingang der Messumformer KFD2-WAC2-(Ex)1.D des K-Systems (kurz WAC2) können Widerstandsmessbrücken angeschlossen werden, also Dehnungsmessstreifen, Wägezellen, Kraftmessdosen, Druckaufnehmer, Drehmomentmessweilen und Ähnliches.

Der WAC2 wandelt das Eingangssignal in einen proportionalen Ausgangsstrom um, der z. B. an ein Anzeigegerät oder an einen analogen Eingang des Prozessleitsystems/der Steuerung weitergeleitet werden kann. Mit Hilfe der beiden Relaisausgänge des WAC2 können darüber hinaus zwei verschiedene, frei parametrierbare Grenzwerte des Eingangssignals überwacht werden.

Weitere Angaben (z. B. Zertifikate und das Datenblatt für den WAC2 und die Betriebsanleitung für das K-System) finden Sie auf unserer Internetseite www.pepperl-fuchs.com/pa (Eingabe in der Produktsuche: *WAC2*).

3 Sicherheitshinweise

Die Messumformer KFD2-WAC2-(Ex)1.D dürfen nur von eingewiesenem Fachpersonal entsprechend dem vorliegenden Handbuch betrieben werden.

Der Schutz des Betriebspersonals und der Anlage ist nur gewährleistet, wenn die Geräte entsprechend ihrer bestimmungsgemäßen Verwendung eingesetzt werden. Ein anderer Betrieb als der in diesem Handbuch beschriebene stellt die Sicherheit und Funktion der Geräte und der angeschlossenen Systeme in Frage.

DMS-Messumformer KFD2-WAC2-(Ex)1.D Explosionsschutz

Die Geräte dürfen nur durch eine elektrotechnische Fachkraft außerhalb des explosionsgefährdeten Bereichs montiert, angeschlossen und eingestellt werden.

Können Störungen nicht beseitigt werden, sind die Geräte außer Betrieb zu setzen und gegen versehentliche Inbetriebnahme zu schützen. Die Geräte dürfen nur direkt beim Hersteller Pepperl+Fuchs repariert werden. Eingriffe und Veränderungen in den Geräten sind gefährlich und daher nicht zulässig. Sie machen jeden Anspruch auf Garantie nichtig.

Die Verantwortung für das Einhalten der örtlich geltenden Sicherheitsbestimmungen liegt beim Betreiber.

4 Explosionsschutz

Zum primären Explosionsschutz, also zu Maßnahmen, die die Bildung einer gefährlichen, explosionsfähigen Atmosphäre verhindern oder einschränken, beachten Sie bitte die Richtlinie 94/9/EG bzw. die entsprechenden nationalen Vorschriften.

Zum sekundären Explosionsschutz, also zu Maßnahmen, die bei elektrischen Betriebsmitteln die Zündung einer umgebenden explosionsfähigen Atmosphäre verhindern, stellt Ihnen Pepperl+Fuchs gerne das "Handbuch Ex-Schutz" gegen eine Schutzgebühr zur Verfügung.

Bitte beachten Sie insbesondere EN 60079-0, EN 60079-11 und EN 60079-26 bzw. die entsprechenden nationalen Vorschriften.

Zum Thema Explosionsschutz bietet Pepperl+Fuchs außerdem ein Seminar an.

5 Montage und Anschluss

5.1 Montage

Die Messumformer KFD2-WAC2-(Ex)1.D sind in der Schutzart IP20 aufgebaut und müssen dementsprechend bei widrigen Umgebungsbedingungen (Wasser, kleine Fremdkörper) geschützt werden.

Die Geräte des K-Systems von Pepperl+Fuchs und so auch die Messumformer KFD2-WAC2-(Ex)1.D können auf einer 35 mm Normschiene nach EN 50022 montiert werden. Dabei schnappen Sie die Geräte einfach **senkrecht** auf, keinestalls gekippt/schräg von der Seite.

Weitere Montagemöglichkeiten, z. B. unter Verwendung der Stromschiene Power Rail, finden Sie in der Betriebsanleitung zum K-System auf unserer Internetseite www.pepperl-fuchs.com/pa (Eingabe in Produktsuche: *WAC2*).

Maße des KFD2-WAC2-(Ex)1.D in mm

281129

DMS-Messumformer KFD2-WAC2-(Ex)1.D Montage und Anschluss

5.2 Anschluss

Die abziehbaren Klemmen der KF-Baureihe vereinfachen den Anschluss und den Schaltschrankbau erheblich. Sie gestatten im Servicefall einen schnellen und fehlerfreien Geräteaustausch.

Die Klemmen sind schraubbar, selbstöffnend, haben einen großzügigen Anschlussraum für einen Aderquerschnitt bis zu 2,5 mm² und kodierte Stecker, so dass ein Vertauschen nicht möglich ist.

An die **blauen** Klemmen 1...6 des KFD2-WAC2-Ex1.D wird der eigensichere Feldstromkreis angeschlossen. Dieser darf mit Verbindungsleitungen nach EN 60079-14 in den explosionsgefährdeten Bereich geführt werden.

An die **grünen** Klemmen 1 ... 6 des KFD2-WAC2-1.D wird der nicht eigensichere Feldstromkreis angeschlossen.

Sie können in beiden Fällen anschließen:

- eine Halbbrücke (Klemmen 1, 3, 4, 5, 6)
- eine Vollbrücke (Klemmen 1 ... 6)

DMS-Messumformer KFD2-WAC2-(Ex)1.D Montage und Anschluss

Die übrigen grünen Klemmen haben die folgenden Funktionen: 12 Klemmen 7/8: Stromausgang 3 Klemme 9: nur für Spannungsausgang (s. u.) Klemmen 10 12: Relais 1 10 Klemmen 13/14: Binär-Eingang 1 5 Klemmen 15/14: Binär-Eingang 2 11 Klemmen 16 18: Belais 2 Klemmen 19 21: BS 485-Schnittstelle 16 (deaktiviert, wenn Stecker in RS 232-Schnitt- 13 Binärstelle) 14 Inputs 17 15 18 Klemme 22: nicht verwendet Klemmen 23/24: Stromversorgung 24 V DC Wenn Sie die Klemmen 7 und 9 mit einer Brücke verbinden, ergibt sich zwischen dieser Brücke **BS 232** (und der Klemme 8 ein Spannungsausgang - 10 V ... + 10 V. Der eingebaute Shuntwiderstand beträgt 500 Ω. Р 21+ Die BS 485-Schnittstelle ist von den anderen Stromkreisen galvanisch getrennt. Sie wird **RS 485** Ν 10deaktiviert, wenn Sie einen Stecker in die Buch-20 GND se der BS 232-Schnittstelle auf der Frontseite des WAC2 stecken. Bitte beachten Sie die Beschreibung in Abschnitt 8. Weitere Angaben zum Anschluss des WAC2 (z. B. zur Verwendung des Power Rail) finden Sie im Datenblatt und in der Betriebsanleitung 23 24 zum K-System auf unserer Internetseite www.pepperl-fuchs.com/pa (Eingabe in Pro-

duktsuche: *WAC2*).

DMS-Messumformer KFD2-WAC2-(Ex)1.D Montage und Anschluss

5.3 Frontseite

Auf der Frontseite des WAC2 finden Sie:

- LED ERR (rot) zur Anzeige
 - einer Sensorstörung (blinkt rot)
 - des Simulationsmodus (nur bei Verwendung von PACT wareTM, blinkt rot)
 - einer Gerätestörung (dauernd rot)

Zu den Fehlermeldungen siehe Abschnitt 6.

- LED PWR (grün) zur Anzeige der Speisespannung
- LED OUT 1 (gelb) zur Anzeige Relais 1 aktiv
- LED OUT 2 (gelb) zur Anzeige Relais 2 aktiv
- ein Display zur Messwert- und Störungsanzeige und zur Anzeige im Parametriermodus
- vier Tasten zur Parametrierung des WAC2
 - 🔺 (Up)

 - ESC (Escape)
 - OK
- Schnittstelle zum Anschluss eines Computers f
 ür die Parametrierung und Diagnose des Ger
 ätes mit der Bediensoftware PACT wurkTM, unter Verwendung des Adapters K-ADP-USB

6 Anzeigemodus und Fehlermeldungen

Messwertanzeige

- Im Normalbetrieb wird auf dem Display der aktuelle Netto-Wert in der gewählten Einheit angezeigt.
- Wenn Sie die ▼-Taste gedrückt halten, wird auf dem Display der aktuelle Brutto-Wert in der gewählten Einheit angezeigt.
- Wenn Sie die ▲-Taste gedrückt halten, wird auf dem Display der vom WAC2 tatsächlich an den Klemmen 1 und 2 gemessene mV-Wert angezeigt.

Erläuterungen

- Zur Auswahl der Einheit siehe Abschnitt 7.2.
- Zur Umrechnung des mV-Messwerts in den Brutto-Wert siehe Abschnitt 7.3.1 und 7.4.4.
- Wie üblich gilt: Netto-Wert = Brutto-Wert Tara
- Zur Festlegung der Tara siehe Abschnitt 7.5.

Meldungen während des Betriebs

- · Wiedereinschaltsperre
- Halten bei Fehler

Zu diesen Funktionen siehe Abschnitt 7.6.5.

Fehlermeldungen

- Err INT: Fehler in der internen Kommunikation des WAC2; kann auch auftreten, wenn kein Sensor angeschlossen ist
- Err MEM: Fehler im Speicher des WAC2
- Err SIM: WAC2 im Simulationsmodus (nur bei Verwendung von PACT ware™)
- Err ZELLE: Sensorbruch oder kein Sensor angeschlossen; zur Auswahl der Überprüfung auf Sensorbruch siehe Abschnitt 7.3.2

Wenn Sie durch eine Kontrolle des Sensors und der Sensorleitungen und durch Aus-/Einschalten des WAC2 keine Abhilfe schaffen können, wenden Sie sich bitte an Pepperl+Fuchs.

Die Relais gehen bei einer Störung in den stromlosen Zustand, es sei denn, Sie haben die Funktion *Halten bei Fehler* ausgewählt (siehe Abschnitt 7.6.5). Zum Verhalten des Stromausgangs bei einer Störung siehe Abschnitt 7.7.3.

7 Gerätedaten bearbeiten

Eine Veränderung der Gerätedaten verändert die Funktion des Geräts! Stellen Sie daher vor der Eingabe neuer Daten ins Gerät sicher, dass dadurch keine Gefahr für die Anlage entstehen kann.

In diesem Handbuch ist die Parametrierung des Geräts über das Bedienfeld beschrieben. Komfortabler ist die Parametrierung mit einem PC. Den notwendigen Adapter K-ADP-USB können Sie bei Pepperl+Fuchs bestellen. Die Bediensoftware **PACT** wur**e™** und das Handbuch können Sie auf unserer Internetseite www.pepperl-fuchs.com unter Software > PACTware abrufen.

7.1 Parametriermodus Bedienfeld

7.1.1 Aufruf

Sie können von jedem Menüpunkt des Parametriermodus durch (eventuell mehrmaliges) Drücken der ESC-Taste in den Anzeigemodus zurückkehren. Wenn im Parametriermodus 10 Minuten lang keine Taste gedrückt wird, geht das Gerät automatisch in den Anzeigemodus zurück.

7.1.2 Passwort

Sie können die Parametrierung vor unbefugten Änderungen durch ein Passwort schützen (siehe Abschnitt 7.8; bei Auslieferung des WAC2 inaktiv).

Ist der Passwortschutz aktiv, kann man vor Eingabe des Passwortes die verschiedenen Einstellungen im Parametriermodus zwar ansehen, aber nicht verändern. Beim ersten Versuch, eine Einstellung zu verändern, springt das Gerät automatisch zur Passworteingabe.

Sie müssen das Passwort nach jedem Übergang vom Anzeige- in den Parametriermodus einmal eingeben.

Das Passwort ist nicht veränderbar und lautet 1234.

So geben Sie das Passwort ein:

*Wenn Sie die ▲- oder ▼-Taste tippen, ändert sich der Wert schrittweise, wenn Sie die ▲- oder ▼-Taste länger drücken, "rollt" die Einstellung zu höheren oder niedrigeren Werten.

7.1.3 Navigationsprinzip

Die folgende Abbildung zeigt das Prinzip der Navigation im Parametriermodus mit Hilfe der ▲-, ▼-, OK- und ESC-Taste:

7.1.4 Unterste Menüebene: Werte auswählen, Zahlen eingeben

Auf der untersten Menüebene können Sie für die einzelnen Parameter entweder zwischen bestimmten möglichen Werten auswählen oder einen Zahlenwert eingeben.

Dabei gehen Sie so vor:

Bei der Eingabe von Zahlenwerten beachten Sie bitte:

- Wenn Sie die ▲- oder ▼-Taste tippen, ändert sich der Wert schrittweise.
- Wenn Sie die ▲- oder ▼-Taste länger drücken, "rollt" die Einstellung zu höheren oder niedrigeren Werten.
- · Das Vorzeichen wechselt automatisch.
- Der Dezimalpunkt wird automatisch verschoben.
- Es wird automatisch von einer Einheit auf eine höhere umgestellt, z. B. von kg auf t, bzw. ein Faktor eingeblendet, z. B. Faktor 10 f
 ür Zahlen ≥ 10000.

unterste Menüebene

7.2 Einheit

Die folgende Abbildung zeigt das Menü für die Einheit. Menüpunkte der untersten Menüebene sind fett umrandet. Die Einheit wird für die Messwertanzeige (Netto und Brutto) und für alle entsprechenden Einstellungen im Parametriermodus verwendet.

* Werden mehr als 9999 kg eingegeben, springt die Einheit automatisch von kg auf t um!

Der WAC2 misst in mV. Zur Umrechnung in die anderen Einheiten siehe Abschnitt 7.3.1 und 7.4.4, zur Festlegung der Tara, d. h. zur Umrechnung von Brutto in Netto, siehe Abschnitt 7.5.

7.3 Sensor

Die folgenden Abbildungen zeigen die Menüs für die Eingangs-Parameter. Menüpunkte der untersten Menüebene sind fett umrandet. Menüpunkte, die nur erscheinen, wenn Sie an anderer Stelle bestimmte Parameterwerte ausgewählt haben, sind grau unterlegt.

281129

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Sensor

7.3.1 Speisespannung, Empfindlichkeit, Zellendaten

- Die Werte für diese Parameter entnehmen Sie bitte den technischen Daten des Sensors.
- Die Speisespannung besteht zwischen Klemmen 3 und 4.
- Bei Parallelschaltung mehrerer Messzellen sind Speisespannung und Empfindlichkeit zu übernehmen, die Zellendaten zu addieren. Es dürfen nur Zellen gleicher Bauart und gleicher Zellendaten parallel geschlossen werden.
- Bei einem resultieren Gesamtwiderstand der Sensoren mit R < 100 Ω darf die Speisespannung 5 V nicht ausgewählt werden. Die maximal zulässige Speisespannung ergibt sich zu:

Speisespannung = 49 mA x Gesamtwiderstand der Messzellen

 Beim Parameter Zellendaten ist die maximale Zellenlast in kg einzustellen (auch dann, wenn eine andere Einheit ausgewählt wurde).

Die Einstellung der Zellendaten kann ohne angeschlossene Messzelle erfolgen. Danach kann der WAC2 an die Wägezelle angeschlossen werden und ist prinzipiell einsatzfähig. Die von der Wägezelle aufgrund der Belastung erzeugte Spannung wird linear in das entsprechende Bruttogewicht umgerechnet.

Wollen Sie das WAC2 nun ohne Abgleich verwenden, jedoch ein evtl. vorhandenes Totgewicht (z. B. einen leeren Tank oder eine Wägeplattform) bei den Messungen berücksichtigen, so verwenden Sie hierfür nicht die Funktion "Nullpunkt" (Abschnitt 7.4.1) sondern die Funktion "Tara" wie unter Abschnitt 7.5 beschrieben.

Beachten Sie bitte, dass mechanische Einflüsse hier noch nicht berücksichtigt werden (z. B. nicht absolut senkrechte Einbringung der Kräfte auf die Wägezelle) und daher die Wägezeinrichtung nicht ihre optimale Genauigkeit erreicht.

Um mechanische Einflüsse zu berücksichtigen, muss unbedingt ein Abgleich der komplett installierten Wägeeinrichtung durch definierte Lasten durchgeführt werden (siehe Abschnitt 7.4.4).

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Sensor

Ohne Justierung (siehe Abschnitt 7.4) wird der Brutto-Wert berechnet als:

 $Brutto-Wert \ = \ \frac{Messwert \ in \ mV}{Empfindlichkeit \times Speisespannung} \times \frac{Zellendaten}{kg \ / \ Einheit}$

Zur Auswahl der Einheit siehe Abschnitt 7.2, zum Parameter kg/Einheit siehe Abschnitt 7.4.7.

Es ergibt sich also folgende Zuordnung: 0 mV wird in 0 Einheit umgerechnet, das maximale Sensorsignal (= Empfindlichkeit x Speisespannung) in die maximale Zellenlast in der gewählten Einheit, Zwischenwerte proportional.

7.3.2 Rate, Sensorfehler, Glättung

 Wenn Sie bei Rate die Einstellung schnell gewählt haben, erscheinen die Menüpunkte Sensorfehler und Glättung nicht. Überprüfung auf Sensorbruch und Glättung sind dann nicht möglich.

Bei der schnellen Version (KFD2-WAC2-Ex.D-Y*) erscheint der Menüpunkt Sensorfehler nicht.

Hinweis

 Wenn Sie bei Sensorfehler die Einstellung On gewählt haben, wird nach jeder Messung eine Überprüfung auf einen Sensorbruch durchgeführt (Klemmen 1 und 2). Ggf. gibt der WAC2 die Fehlermeldung Err ZELLE aus. Ohne Aktivierung dieser Überprüfung verarbeitet der WAC2 bis zur Erkennung des Sensorbruchs eventuell unkontrollierte Eingangswerte.

• Die Einstellungen wirken sich auf die Messzykluszeit aus:

Bei der schnellen Version (KFD2-WAC2-Ex.D-Y*) erscheint der Menüpunkt Rate nicht bzw. kann nur Rate "schnell" eingestellt werden. Dann beträgt die Reaktionszeit ca. 150 ms.

Hinweis

Rate	Sensorfehler	Messzykluszeit	Bemerkung
schnell	-	ca. 150 ms	nur Y*
schnell	-	ca. 300 ms	nicht Y*
normal	Off	ca. 750 ms	nicht Y*
normal	On	ca. 850 ms	nicht Y*

• Mit der Glättung beeinflussen Sie die Reaktion des WAC2 auf stark schwankende Messwerte.

Der WAC2 verarbeitet statt des aktuellen Messwerts den geglätteten Wert. Bei einer eingestellten Glättungszeit von 0 sek wird der Eingangswert direkt weiterverarbeitet. Die größte Glättung wird mit der Einstellung 10 sek erreicht. Beachten Sie bitte, dass sich mit zunehmender Glättung auch die Reaktionszeit des WAC2 verringert.

Die Glättung ist als Tiefpassfilter erster Ordnung ausgeführt. Die einstellbare Glättungszeit ist also die Zeit, die das Ausgangssignal nach einer Sprunganregung benötigt, um von 10 % auf 90 % zu gelangen.

7.4 Justierung

Die folgende Abbildung zeigt die Menüebenen, die auf den Menüpunkt Justierung folgen. Menüpunkte der untersten Menüebene sind fett umrandet. Menüpunkte, die nur erscheinen, wenn Sie an anderer Stelle bestimmte Parameterwerte ausgewählt haben, sind grau unterlegt.

PEPPERL+FUCHS

7.4.1 Nullpunkt

Für Anlagen, bei denen ein Signal von 0 mV nicht dem Messwert 0 in der gewählten Einheit (siehe Abschnitt 7.2) entspricht, kann eine Nullpunktverschiebung gespeichert werden.

- Wenn die Nullpunktverschiebung aus den Daten der Anlage bekannt ist, geben Sie den Wert bitte unter Anzeigen/Einstellen ein.
- Wenn Sie (nach entsprechenden Maßnahmen in der Anlage, z. B. Entfernen aller Gewichte) *Ausführen* und dann *Ja* wählen, wird der aktuelle mV-Messwert als Nullpunkt gespeichert. Der Brut-to-Wert, der Netto-Wert und die Tara (siehe Abschnitt 7.5) werden auf 0 gesetzt.

Zur Speicherung des Nullpunkts mit Hilfe der Trigger, d. h. ohne Verwendung der Bedienfeld-Tasten, siehe Abschnitt 7.5.

7.4.2 Justage ohne mechanische Belastung

Die einfachste Methode zum Abgleich. Allerdings werden nicht alle Glieder der Messkette berücksichtigt, so dass hier Ungenauigkeiten zu erwarten sind.

- Ein Triggereingang ist als Tara zu parametrieren (siehe Abschnitt 7.5)
- Nach Einbau und Anschluss des WAC2 ist der entsprechende Eingang bei entlasteter Messzelle kurzzuschliessen.

7.4.3 Justage mit mechanischer Belastung

Dies ist die genauere Methode zum Abgleich, da die gesamte Messkette mit einbezogen wird. Allerdings oft mit hohem Aufwand verbunden

7.4.4 Justage

Die Justage ist eine genau definierte Erregung des Sensors, z. B. durch ein genau bekanntes Gewicht. Der WAC2 benötigt sowohl den Wert der Justage in der gewählten Einheit (siehe Abschnitt 7.2) als auch das dadurch erzeugte Eingangssignal in mV:

- Geben Sie zunächst unter Gewicht den Justage-Wert in der gewählten Einheit kg, N, cbm oder Stk ein. Falls Sie die Einheit % gewählt haben, ist der Justage-Wert in der Einheit einzugeben, die vor der Auswahl von % gewählt war.
- Wählen Sie nach entsprechender Erregung des Sensors (Auflegen des Gewichts) Ausführen und dann Ja. Dadurch wird der Justage-Wert in mV bestimmt. Die Tara (siehe Abschnitt 7.5) wird auf 0 gesetzt, Brutto- und Netto-Wert sind gleich dem Justage-Wert in der gewählten Einheit.

Zur Bestimmung des Justage-Werts in mV mit Hilfe der Trigger, d. h. ohne Verwendung der Bedienfeld-Tasten, siehe Abschnitt 7.5.

7.4.5 Hinweise zu Nullpunkt und Justage

- Nullpunkt und Justage müssen immer zusammen ausgeführt werden. Das Ausführen nur einer der beiden Aktionen führt zu falschen Messergebnissen.
- Nullpunkt und Justage-Wert müssen in der gleichen Einheit bestimmt werden (kein Wechsel der Einheit, bevor beide Operationen ausgeführt sind).
- Wenn Sie die Justierung in einer anderen Einheit als kg durchführen, ist nach einer Änderung des Werts kg/Einheit (siehe Abschnitt 7.4.7) eine neue Justierung notwendig.
- Wenn Sie einen der Parameter Speisespannung, Empfindlichkeit oder Zellendaten verändern, ist eine neue Justierung notwendig.

Nach einer Justierung wird der Brutto-Wert berechnet als:

Brutto-Wert = <u>Messwert in mV - Nullpunkt</u> × Justage in Einheit

Es ergibt sich also folgende Zuordnung: der Nullpunkt (in mV) wird in 0 Einheit umgerechnet, der Justage-Wert in mV in den Justage-Wert in der gewählten Einheit, Zwischenwerte und Werte jenseits des Justagewerts proportional:

281129 2015-07

7.4.6 Bereich

Dieser Parameter wird für Auswertungen in der Einheit % benötigt.

- Geben Sie unter Anzeigen/Einstellen den Wert ein, der dem Brutto-Wert 100 % entsprechen soll, und zwar in der (vor der Auswahl von %) gewählten Einheit kg, N, cbm oder Stk (siehe Abschnitt 7.2). Es sind Werte zwischen 0 und der maximalen Zellenlast möglich (siehe Abschnitt 7.3.1).
- Alternativ können Sie nach einer entsprechenden Erregung des Sensors (z. B. nach Auflegen eines entsprechendes Gewichts) Ausführen und dann Ja wählen. Dadurch wird der aktuelle Messwert als Bereich gespeichert.

Nach einer Umstellung auf die Einheit % wird der Brutto-Wert berechnet als:

Brutto-Wert in % = $\frac{Brutto-Wert ohne Umstellung auf \%}{Bereich} \times 100 \%$

7.4.7 kg/Einheit

- Dieser Menüpunkt erscheint nur, wenn als Einheit (siehe Abschnitt 7.2) N, cbm oder Stk gewählt wurde oder wenn als Einheit % und vorher N, cbm oder Stk gewählt wurde.
- Der eingegebene Wert bestimmt die Umrechnung von kg in
 - N (etwa 1/9,81 = 0,102)
 - cbm (aus der Anwendung bekannt oder durch Wiegen zu ermitteln)
 - Stk (aus der Anwendung bekannt oder durch Wiegen zu ermitteln).
- Wenn als Einheit % gewählt wurde, ist der Umrechnungsfaktor von kg in die zuvor gewählte Einheit einzugeben.
- Falls die Justierung in einer anderen Einheit als kg durchgeführt wird, muss der Wert kg/Einheit vor der Justierung eingegeben werden. Nach einer Änderung des Werts kg/Einheit ist eine neue Justierung in der Einheit notwendig.

7.5 Trigger

Die folgende Abbildung zeigt die Menüs für Trigger 1 und Trigger 2. Menüpunkte der untersten Menüebene sind fett umrandet. Zu den Binäreingängen siehe auch Abschnitt 5.2.

Binäreingang für Trigger 1: Klemmen 13/14

Binäreingang für Trigger 2: Klemmen 15/14

- Bei der Einstellung Tara führt ein Signal von mindestens 100 ms am Binäreingang dazu, dass der aktuelle Messwert vom WAC2 als (neuer) Wert für die Tara gespeichert wird. Wie üblich gilt: Netto = Brutto - Tara
- Bei der Einstellung Abgleich führt ein Signal von mindestens 100 ms am Binäreingang dazu, dass der aktuelle Messwert vom WAC2 als Wert für die Justage übernommen wird (siehe Kapitel 7.4.4).
- Bei der Einstellung Null führt ein Signal von mindestens 100 ms am Binäreingang dazu, dass der aktuelle Messwert vom WAC2 als Wert für den Nullpunkt übernommen wird (siehe Kapitel 7.4.1).

Die Speicherung von Justage und Nullpunkt mit Hilfe der Trigger ist z. B. dann sinnvoll, wenn Bedienhandlungen am WAC2 vermieden werden sollen.

7.6 Relais

Von den Menüpunkten *Relais 1* und *Relais 2* gelangen Sie mit der OK-Taste jeweils zu einem Menü, in dem Sie für das ausgewählte Relais eigene Parameter eingeben können. Die beiden Menüs sind völlig gleich aufgebaut und werden daher nur einmal beschrieben.

Die aktivierte Funktion eines Relais (*Grenzwert* oder *Störmeldung*) ist durch *On* gekennzeichnet. Wenn Sie eine andere Funktion aktivieren wollen, rufen Sie diese zunächst mit den ▲- und ▼-Tasten auf. Dann drücken Sie zweimal die OK-Taste. Nach dem ersten OK können Sie mit ESC abbrechen.

7.6.1 Grenzwert

Die folgenden Abbildungen zeigen die Menüebenen, die auf den Menüpunkt Grenzwert folgen. Menüpunkte der untersten Menüebene sind fett umrandet.

Wenn die Funktion Grenzwert aktiviert ist (On), gelangen Sie mit der OK-Taste vom Menüpunkt Grenzwert zum Menüpunkt Min/Max. Wenn Sie die Funktion Grenzwert neu aktivieren (siehe Abschnitt 7.6), befinden Sie sich nach dem zweiten Drücken der OK-Taste sofort am Menüpunkt Min/Max.

7.6.2 Schaltverhalten

Als Schaltrichtung ist *Max* oder *Min* einstellbar, als Wirkungsrichtung *Aktiv* oder *Passiv* (siehe Abschnitt 7.6.1). Anwendungsbereiche:

- Schaltrichtung Max, Wirkungsrichtung Aktiv: Alarm bei Grenzwertüberschreitung, z. B. Hupe ein; Schutz vor Überfüllung, z. B. Abfluss in Ausweichtank öffnen
- Schaltrichtung Max, Wirkungsrichtung Passiv: Schutz vor Überfüllung, z. B. Förderband/Pumpe aus; bei großer Hysterese Min-/Max-Betrieb, z. B. Förderband/Pumpe ein/aus
- Schaltrichtung Min, Wirkungsrichtung Aktiv: Alarm bei Grenzwertunterschreitung, z. B. Hupe ein; Schutz vor Unterschreitung der Sicherheitsreserve, z. B. Förderband/Pumpe ein
- Schaltrichtung Min, Wirkungsrichtung Passiv: Schutz vor Unterschreitung der Sicherheitsreserve, z. B. Abpumpen aus; bei großer Hysterese Min-/Max-Betrieb

Das genaue Schaltverhalten des WAC2 zeigt das folgende Bild:

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Relais

7.6.3 Schaltpunkt und Hysterese

Bitte beachten Sie bei der Eingabe der Werte für Schaltpunkt und Hysterese:

- Mit dem Parameter Brutto/Netto legen Sie fest, ob der Wert f
 ür den Schaltpunkt ein Brutto-Wert ist
 oder ein Netto-Wert (Brutto-Wert minus aktuelle Tara, siehe Abschnitt 7.5).
- Schaltpunkt und Hysterese sind in der gewählten Einheit einzugeben (siehe Abschnitt 7.2).
 - Der Minimalwert f
 ür den Schaltpunkt ist 0, der Minimalwert f
 ür die Hysterese 0,1.
 - Wenn Sie Brutto gewählt haben, ist die maximale Zellenlast (siehe Abschnitt 7.3.1)der Maximalwert f
 ür Schaltpunkt und Hysterese.
 - Wenn Sie Netto gewählt haben, ist der Wert maximale Zellenlast minus aktuelle Tara (siehe Abschnitt 7.5) der Maximalwert f
 ür Schaltpunkt und Hysterese.

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Relais

- Wie die Darstellung des Schaltverhaltens in Abschnitt 7.6.2 zeigt, muss Folgendes gelten:
 - bei der Schaltrichtung Max: Schaltpunkt Hysterese ≥ 0
 - bei der Schaltrichtung Min: Schaltpunkt + Hysterese ≤ Obergrenze Schaltpunkt

Diese Grenzen werden vom WAC2 automatisch vorgegeben.

 Die Hysterese sollte > 1 % des Schaltpunktes gewählt werden, um ein Flattern des Relais zu vermeiden.

7.6.4 Ansprechverzögerung

Wenn Sie eine Zeit > 0 sek einstellen, verhindern Sie, dass kurzzeitige Grenzwertverletzungen einen Alarm auslösen.

- Das Relais schaltet erst dann, wenn der Schaltpunkt ohne Unterbrechung länger als die Verzögerungszeit über-/unterschritten wird.
- Das Relais schaltet erst dann zurück, wenn Schaltpunkt -/+ Hysterese ohne Unterbrechung länger als die Verzögerungszeit unter-/überschritten wird.
- Kürzere Über-/Unterschreitungen haben keine Auswirkungen.

Das folgende Bild zeigt das Schaltverhalten am Beispiel Schaltrichtung Max, Wirkungsrichtung Aktiv.

7.6.5 Wiedereinschaltsperre und Halten bei Fehler

 Mit der Wiedereinschaltsperre verhindern Sie, dass kurzzeitige Grenzwertverletzungen vom Bedienpersonal nicht bemerkt werden.

Ist Wiedereinschaltsperre On gewählt worden, bleibt nach dem Schalten des Relais der neue Zustand erhalten, bis die ESC-Taste gedrückt oder das Gerät neu gestartet wird. Durch diese Aktionen wird das Relais zurückgesetzt, es sei denn, die Grenzwertverletzung liegt weiterhin vor.

· Mit der Funktion Halten bei Fehler verhindern Sie, dass das Relais bei einer Störung abfällt.

Ist Halten bei Fehler On gewählt worden, bleibt bei einer Störung (Abschnitt 6) der Zustand des Relais erhalten, bis die Fehlermeldung aufgehoben ist. Danach nimmt das Relais die normale Funktion wieder auf.

7.6.6 Störmeldung

Die folgende Abbildung zeigt die Menüebenen, die auf den Menüpunkt Störmeldung folgen. Menüpunkte der untersten Menüebene sind fett umrandet.

Wenn die Funktion Störmeldung aktiviert ist (On), gelangen Sie mit der OK-Taste vom Menüpunkt Störmeldung zum Menüpunkt Wiedereinschaltsperre. Wenn Sie die Funktion Störmeldung neu aktivieren (siehe Abschnitt 7.6), befinden Sie sich nach dem zweiten Drücken der OK-Taste sofort am Menüpunkt Wiedereinschaltsperre.

Ein Relais mit der Funktion Störmeldung ist im Normalbetrieb angezogen. Erkennt das Gerät eine Störung (siehe Abschnitt 6), fällt das Relais ab.

7.7 Stromausgang

Die folgenden Abbildungen zeigen die Menüebenen, die auf den Menüpunkt *lout* folgen. Menüpunkte der untersten Menüebene sind fett umrandet.

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Stromausgang

7.7.1 Brutto/Netto, Spanne, Invertiert

- Mit dem Parameter Brutto/Netto legen Sie fest, ob der Wert f
 ür die Spanne ein Brutto-Wert ist oder ein Netto-Wert (Brutto-Wert minus aktuelle Tara, siehe Abschnitt 7.5).
- Mit dem Parameter Spanne legen Sie den Messwertebereich fest, der durch den Stromausgang dargestellt wird (siehe Abschnitt 7.7.2).
 - Die Spanne ist in der gewählten Einheit einzugeben (siehe Abschnitt 7.2).
 - Wenn Sie Brutto gewählt haben, können Sie Werte zwischen 1 % und 100 % der maximalen Zellenlast (siehe Abschnitt 7.3.1) eingeben.
 - Wenn Sie Netto gewählt haben, können Sie Werte zwischen 1 % der maximalen Zellenlast und dem Wert maximale Zellenlast minus aktuelle Tara eingeben.
- Wenn Sie Invertiert → normal wählen, wird der Messwert 0 in den Anfangswert des Stromausgangs umgesetzt und die Spanne in den Endwert (beim WAC2 immer +20 mA). Wenn Sie Invertiert → invertiert wählen, wird die Spanne in den Anfangswert des Stromausgangs umgesetzt und der Messwert 0 in den Endwert.

7.7.2 Kennlinie

Die Einstellungen haben (bei Invertiert → normal, siehe Abschnitt 7.7.1) die folgende Bedeutung:

Gewählte Einstellung 20.20 -/+mA

Bei dieser Einstellung wird der Messwert 0 in -20 mA umgesetzt (d. h. in 20 mA bei vertauschter Polung an den Klemmen 7 und 8; siehe Abschnitt 5.2), die Spanne (siehe Abschnitt 7.7.1) wird in +20 mA umgesetzt (Klemme 7 -, Klemme 8 +), Zwischenwerte proportional.

Bei Unterschreitung des Messwerts 0 sinkt der Ausgangsstrom linear auf minimal -20,5 mA (-1,25 % des Messbereiches). Weitere Unterschreitungen können nicht ausgewertet werden (Ausgabe -20,5 mA). Bei Überschreitung der Spanne steigt der Ausgangsstrom linear auf maximal +20,5 mA (101,25 % des Messbereiches). Weitere Überschreitungen können nicht ausgewertet werden (Ausgabe +20,5 mA).

Gewählte Einstellung 4 ... 20 NE 43

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Stromausgang

Bei dieser Einstellung wird der Messwert 0 in 4 mA umgesetzt, die Spanne (siehe Abschnitt 7.7.1) in 20 mA, Zwischenwerte proportional.

Bei Unterschreitung des Messwerts 0 sinkt der Ausgangsstrom linear auf minimal 3,8 mA (-1,25 % des Messbereiches). Weitere Unterschreitungen können nicht ausgewertet werden (Ausgabe 3,8 mA). Bei Überschreitung der Spanne steigt der Ausgangsstrom linear auf maximal 20,5 mA (ca. 103 % des Messbereiches). Weitere Überschreitungen können nicht ausgewertet werden (Ausgabe 20,5 mA).

Gewählte Einstellung 12.20 -/+mA

Bei dieser Einstellung wird der Messwert 0 in -12 mA umgesetzt (d. h. in 12 mA bei vertauschter Polung an den Klemmen 7 und 8; siehe Abschnitt 5.2), die Spanne (siehe Abschnitt 7.7.1) wird in +20 mA umgesetzt (Klemme 7 -, Klemme 8 +), Zwischenwerte proportional.

Bei Unterschreitung des Messwerts 0 sinkt der Ausgangsstrom linear auf minimal -12,5 mA (ca. -1,6 % des Messbereiches). Weitere Unterschreitungen können nicht ausgewertet werden (Ausgabe - 12,5 mA). Bei Überschreitung der Spanne steigt der Ausgangsstrom linear auf maximal 20,5 mA (ca. 102 % des Messbereiches). Weitere Überschreitungen können nicht ausgewertet werden (Ausgabe 20,5 mA).

Gewählte Einstellung 0 ... 20 mA (b)

Bei dieser Einstellung wird der Messwert 0 in 0 mA umgesetzt, die Spanne (siehe Abschnitt 7.7.1) in 20 mA, Zwischenwerte proportional.

Eine Unterschreitung des Messwerts 0 kann nicht ausgewertet werden (Ausgabe 0 mA). Bei Überschreitung der Spanne steigt der Ausgangsstrom linear auf maximal 20,5 mA (102,5 % des Messbereiches). Weitere Überschreitungen können nicht ausgewertet werden (Ausgabe 20,5 mA).

7.7.3 Störstrom

Die folgende Tabelle zeigt, was der Stromausgang je nach gewählter Einstellung bei einer Störung ausgibt (Fehlermeldungen siehe Abschnitt 6):

Einstellung	Kennlinie 20.20 -/+mA	Kennlinie 4 20 NE 43	Kennlinie 12.20 -/+mA	Kennlinie 0 20 mA (b)	
Min (downscale)	-21,5 mA	2,0 mA	-21,5 mA	0 mA (nicht von Messung ≤ 0 zu unterscheiden)	
Max (upscale)	+21,5 mA	21,5 mA	+21,5 mA	21,5 mA	
Hold	letzter Messwert vor der Störung				
Up/down	bei Err Zelle: downscale; in allen anderen Fällen: upscale				

7.8 Service

Die folgende Abbildung zeigt die Menüs für die Service-Parameter. Menüpunkte der untersten Menüebene sind fett umrandet.

RS 485: Stellen Sie hier die Adresse des WAC2 für die Kommunikation über die RS 485-Schnittstelle ein (siehe Abschnitt 8).

Reset: Wenn Sie bei blinkendem *ja* die OK-Taste betätigen, werden alle Einstellungen des WAC2 auf die Werkseinstellungen zurückgesetzt (siehe Abschnitt 7.9; Ausnahmen: Sprache und Passwort-Aktivierung). Alle Eingaben, die Sie irgendwann im Parametriermodus gemacht haben, und die Justierung gehen verloren.

7.9 Werkseinstellungen

Menü	Parameter	Werkseinstellung	Eigene Einstellung
Hauptmenü	Einheit	kg	
Eingang Sensor	Speisespannung	5V	
	Empfindlichkeit	2.000 mV/V	
	Zellendaten	1000 kg	
	Rate	normal	
	Sensorfehler	On	
	Glättung	0 sek.	
Eingang Justierung	Nullpunkt	0.000 mV	
	Justage	1000 kg	
	Bereich	1000 kg	
Eingang	Trigger 1	Null	
	Trigger 2	Null	
Ausgang Relais 1	Grenzwert	On (= ausgewählt)	
	Min/Max (= Schaltrichtung)	Max	
	Schaltpunkt	10.00 kg	
	Hysterese	10.00 kg	
	Wirkungsrichtung	Passiv	
	Brutto/Netto	Netto	
	Ansprechverzögerung	0 sek.	
	Wiedereinschaltsperre	Off	
	Halten bei Fehler	Off	
	Störmeldung	nicht ausgewählt	

DMS-Messumformer KFD2-WAC2-(Ex)1.D Gerätedaten bearbeiten: Werkseinstellungen

Parameter	Parameter	Werkseinstellung	Eigene Einstellung	
Ausgang Relais 2	Grenzwert	On (= ausgewählt)		
	Min/Max (= Schaltrichtung)	Max		
	Schaltpunkt	10.00 kg		
	Hysterese	10.00 kg		
	Wirkungsrichtung	Passiv		
	Brutto/Netto	Netto		
	Ansprechverzögerung	0 sek.		
	Wiedereinschaltsperre	Off		
	Halten bei Fehler	Off		
	Störmeldung	nicht ausgewählt		
Ausgang I _{out}	Kennlinie	20.20 -/+mA		
	Brutto/Netto	Netto		
	Spanne	20.00 kg		
	Störstrom	Max		
	Invertiert	Normal		
Service	Passwort	Off		
	Sprache	Eng		
	RS 485	1		
	Reset	nein		

8 RS 485-Schnittstelle

Der WAC2 kann über die Klemmen 19 ... 21 oder über das Power Rail an einen RS 485-2-Draht-Bus angeschlossen werden (siehe Abschnitt 5.2). Ein solcher Bus ist im Prinzip wie folgt aufgebaut:

Achten Sie beim Anschluss auf die richtige Polung! Eine falsche Polung führt zur Invertierung der Datensignale und verhindert so das korrekte Funktionieren des Busses.

Eigenschaften der RS 485-Schnittstelle des WAC2:

- Baudrate 9600
- 1 Start-Bit, 8 Datenbits, kein Paritätsbit, 1 Stopp-Bit

DMS-Messumformer KFD2-WAC2-(Ex)1.D RS 485-Schnittstelle

Abfragen über die RS 485-Schnittstelle sind <u>nicht</u> für zeitkritische oder sicherheitskritische Anwendungen geeignet.

Folgende Informationen können z. B. von einem PC oder von einer SPS über die RS 485-Schnittstelle vom WAC2 abgefragt werden (jeweils mit 3 Nachkommastellen):

- Netto-Messwert (in der eingestellten Einheit, siehe Abschnitt 7.2)
- Brutto-Messwert (in der eingestellten Einheit, siehe Abschnitt 7.2)
- mV-Messwert (siehe Abschnitt 7.2)
- Ausgabewert Stromausgang (in mA, siehe Abschnitt 7.7.2)

Für die Abfragen stehen folgende Befehle zur Verfügung:

- Null: Empfangsspeicher des abfragenden Geräts löschen
- · Check_1: Prüfen, ob WAC2 (mit der entsprechenden Adresse) angeschlossen ist
- Get_value_ch1: Netto-Messwert abfragen
- · Get_value_ch2: Brutto-Messwert abfragen
- · Get_value_ch3: mV-Messwert abfragen
- · Get_current: Ausgabewert Stromausgang abfragen

Senden Sie zu Beginn jeder RS 485-Kommunikation die Abfrage Check_1. Die RS 485-Schnittstelle wird deaktiviert, wenn ein Stecker in die Programmierbuchse (RS 232-Schnittstelle) gesteckt wird (siehe Abschnitt 5.2). Nach Abziehen des Steckers stellt erst die Abfrage Check_1 wieder auf RS 485-Kommunikation um.

PEPPERL+FUCHS

Befehl	1. Byte	2. Byte	3. Byte	4. Byte	5. Byte	6. Byte
Null	0	0	0	0	0	0
Check_1	Adresse	1	Checksum			
Get_value_ch1	Adresse	B _{Hex}	Checksum			
Get_value_ch2	Adresse	C _{Hex}	Checksum			
Get_value_ch3	Adresse	10 _{Hex}	Checksum			
Get_current	Adresse	D _{Hex}	Checksum			

Die Befehle sind wie folgt zu kodieren:

Der WAC2 gibt folgende Antworten:

Befehl	1. Byte	2. Byte	3. Byte	4. Byte	5. Byte	6. Byte
Check_1	Adresse	9	Checksum			
Get_value_ch1	Adresse		Wert			Checksum
Get_value_ch2	Adresse	Wert			Checksum	
Get_value_ch3	Adresse	Wert			Checksum	
Get_current	Adresse	۷	Vert	Checksum		

Erläuterungen:

- Adresse: Die Adresse ist zu berechnen als 128 + Einstellung unter Service → RS 485 (siehe Abschnitt 7.8). Es sind Werte von 128 + 0 ... 128 + 31, d. h. von 10000000_{Bin} ... 10011111_{Bin} möglich.
- Checksum: Die Checksumme wird berechnet als 100_{Hex} (1. Byte + ... + vorletztes Byte der Kodierung), z. B. f
 ür Check_1 bei Adresse 17: 100_{Hex} (91_{Hex} + 1) = 6E_{Hex} = 01101110_{Bin}
- Die Zahl 9 in der Antwort auf Check_1 kennzeichnet den Gerätetyp WAC2.
- Wert: im Datenformat signed long (4 Byte bzw. 2 Byte)

DMS-Messumformer KFD2-WAC2-(Ex)1.D Beispiel

9 Beispiel

Es soll das Gewicht einer LKW-Ladung bestimmt werden. Die Leermasse des LKWs kann zwischen 7,5 t und 15 t liegen, die zu messende Ladung bis zu 20 t. Um eine Überladung des LKWs zu vermeiden, soll ab einem Gewicht von 20,5 t ein Alarm ausgelöst werden.

Die LKW-Waage ruht auf 4 Wägezellen, die am Eingang des WAC2 parallel geschaltet sind. Jede Wägezelle hat folgende Daten:

- Speisespannung: 5 V
- Empfindlichkeit: 2 mV/V
- Maximallast: 15 t
- Innenwiderstand: 350 Ω

Die Masse der LKW-Waage beträgt 10 t.

9.1 Einheit

Das Gewicht soll in der Einheit Tonnen dargestellt werden. Im Menü Einheit ist hier kg einzustellen. Erreicht das Gewicht 1000 kg schaltet das Gerät automatisch auf t um.

PEPPERL+FUCHS

9.2 Sensordaten

Da die LKW-Waage auf 4 Messzellen ruht, sind die Parameter jeder einzelnen Messzelle zusammenzufassen: Es sind nun folgende Eintragungen im Menü **Sensor** zu machen:

· Speisespannung:

Hier ist der resultierende Gesamtwiderstand der Parallelschaltung der 4 Sensoren zu berücksichtigen. Fällt der resultierende Widerstand der parallel geschalteten Sensoren unter 100 Ω , so ist aufgrund des maximal lieferbaren Stromes eine kleinere Speisespannung zu wählen. Die maximal zulässige Speisespannung errechnet sich aus:

Gesamtwiderstand x 49 mA = Maximale Speisespannung

- 4 Messzellen mit jeweils 350 Ω = 87,5 Ω
- 87,5 Ω x 49 mA = 4,2875 V

Stellen Sie die Speisespannung auf 4 V ein.

Der maximal zulässige Gesamtwiderstand der Sensoren ist 10 kΩ.

· Empfindlichkeit:

Die Empfindlichkeit der einzelnen Zellen kann 1:1 übernommen werden.

Beispiel:

4 Zellen mit jeweils 2 mV/V, Eintrag in Empfindlichkeit = 2 mV/V

· Zellendaten:

Max. Zellenlast: Die Zellenlast des einzelnen Sensors ist mit der Anzahl der Sensoren zu multiplizieren.

Beispiel:

4 Sensoren mit jeweils 15 t, Eintrag in Zellenlast = 60 Tonnen).

Erklärung:

Wenn z. B. nur eine Zelle mit Ihrer einzelnen Maximallast belastet wird, so wird Sie ihre maximale Spannung ausgeben. Die anderen 3 Sensoren hängen an dieser Spannungsquelle und werden zu Verbrauchern, was die Spannungsquelle belastet und einen Spannungsabfall zur Folge hat. Erst wenn alle 4 Zellen mit Ihrer jeweiligen Maximallast belastet werden, geben Sie gleichermaßen Ihre jeweilige Maximalspannung ab, die dann parallel vom WAC2 gemessen wird. Alle ungleichmäßigen Belastungen zwischen diesen Extremen verhalten sich linear, weshalb man die Parallelschaltung als eine Messzelle ansehen kann.

9.3 Triggereingänge

Ein Triggereingang ist als "Tara" zu parametrieren, um später eine Nullpunktsetzung zu ermöglichen (siehe Abschnitt 9.4 (Abgleich Offline) und 9.6)

9.4 Abgleich

Der Abgleich kann Offline erfolgen oder Online kalibriert werden.

Offline

Die Kalibrierung ohne mechanische Belastung ist die einfachste Art, der WAC2 abzugleichen. Allerdings sind hier Ungenauigkeiten zu erwarten, da nicht die gesamte Messkette in den Abgleichvorgang mit einbezogen wird.

Bei leerer Wågevorrichtung ist über den unter "Triggereingang" als Tara parametrierten Eingang eine Nullpunktsetzung der gesamten Anlage möglich. Hierbei wird die Kennlinie der Wägezelle beibehalten und lediglich der Ursprung angepasst.

Der WAC2 ist nun abgeglichen. Da die Messzellen in der Regel werksseitig kalibriert und sehr streng linear sind, werden die Messwerte mit guter Genauigkeit ermittelt.

Online

Der Online-Abgleich ist genauer als der Offline-Abgleich, da er die gesamte Messkette zu 100 % mit einbezieht. Dabei wird die Messzelle definiert belastet und der WAC2 auf diese Punkte abgeglichen.

Die Zelle liefert bei leerer Wägeplattform 1,43 mV. Im Menüpunkt Eingang > Justierung > Justage > Nullpunkt > Ausführen wird ein Nullpunktabgleich durchgeführt, d. h. die 1,43 mV werden 0 kg zugeordnet, die der WAC2 nun auch anzeigt.

Nun ist ein definiertes Gewicht auf die Zelle einzubringen, z. B. 5 t.

Unter Menüpunkt **Eingang > Justierung > Justage > Gewicht** ist nun das aufgebrachte Gewicht einzugeben (5 t) und durch **Ausführen** der Abgleich durchzuführen. Der WAC2 zeigt nun 5 t an.

Die Vorgänge **Nullpunktabgleich** und **Justage** müssen immer zusammen ausgeführt werden, wobei die oben beschriebene Reihenfolge nicht eingehalten werden muss (es kann also erst **Justage** und dann **Nullpunkt** abgeglichen werden.

Da die zu messende Gesamtmasse jedoch größer ist, ist noch die Spanne einzugeben. Unter Eingang > Justierung > Spanne > Set ist das zu messende Gewicht einzugeben, im Beispiel 35 t. Mit dieser Einstellung wird bei Umstellung auf Einheit % der Wert 100 % bei 35 t angezeigt.

Der WAC2 ist nun unter Einbezug der gesamten Messkette kalibriert.

2015-07

9.5 Ausgänge

Stromausgang

Der Stromausgang soll nur den Nettowert (das Gewicht der Ladung) repräsentieren. Deshalb ist im Menü Ausgang > I_{out} > Brutto/Netto die Option Netto zu wählen.

Die einstellbare Spanne bezieht sich auf die maximale Zellenlast. Da die maximale Zellenlast bei vollem Tank nicht erreicht wird (voller LKW = 20 t, Maximallast der Zellen = 60 t) ist hier der Wert 20 t einzugeben.

Relaisausgänge

Zur Vermeidung von Überladung soll ein Relais als Grenzwertrelais bei Überschreitung 20,5 t schalten. Das Relais ist also als Grenzwertschalter mit Schaltrichtung "Max" zu parametrieren, als Schaltpunkt sind die 20,5 t einzugeben. Als Hysterese empfiehlt sich ein Wert von ca. 1 % der Spanne, also 250 kg (0,25 t). Das Relais soll nach Überschreiten des Schaltpunktes anziehen, als Wirkungsrichtung ist hier also "aktiv" anzugeben.

Um ein Schalte des Relais während des Auffahrens des LKWs auf die Waage zu verhindern, kann unter Menüpunkt Relais > Grenzwert > Ansprechverzögerung eine Zeit von 60 s eingestellt werden. Grenzwertberschreitungen, die kürzer als 60 s sind, werden damit ausgeblendet.

9.6 Betrieb

Ein unbeladener LKW fährt auf die Waage. Durch Kurzschließen der Eingänge des zuvor als "Tara" parametrierten Triggereinganges wird nun ein Nullpunktabgleich durchgeführt. Nun wird der LKW beladen und der WAC2 zeigt nur das Gewicht der Ladung an.

Am Stromausgang wird das Gewicht der Ladung repräsentiert durch 4 mA für den leeren LKW und 20 mA für den voll beladenen LKW.

Über die RS 485-Schnittstelle kann das Ladungsgewicht (Nettogewicht) mittels des Befehls Get_value_ch_1 von einem PLS abgefragt und numerisch weiterverarbeitet werden.

DMS-Messumformer KFD2-WAC2-(Ex)1.D Notizen

DMS-Messumformer KFD2-WAC2-(Ex)1.D Notizen

PROZESSAUTOMATION-PROTECTING YOUR PROCESS

Zentrale weltweit

Pepperl+Fuchs GmbH 68307 Mannheim · Deutschland Tel. +49 621 776-0 E-Mail: info@de.pepperl-fuchs.com

Ihren Ansprechpartner vor Ort finden Sie unter www.pepperl-fuchs.com/contact

www.pepperl-fuchs.com

Änderungen vorbehalten Copyright PEPPERL+FUCHS · Printed in Germany

281129

DOCT-0747G 07/2015