POSITION ENCODING SYSTEM

WCS
THE SUCCESS STORY OF PEPPERL+FUCHS

1945 Walter Pepperl and Ludwig Fuchs lay the foundation of Pepperl+Fuchs: The opening of a radio repair shop
1948 Manufacture of transformers
1958 Development and production of the first inductive proximity switch
1973 The first foreign subsidiary is formed in England
1979 Pepperl+Fuchs commences production in Singapore
1988 Michael Fuchs and Claus Michael take over the management of the company and Pepperl+Fuchs becomes a limited liability company
1991 Split into Factory Automation and Process Automation divisions, new product group level control through a company acquisition
1996 The purchase of another company establishes the encoder business
1997 New production facilities open at Veszprem/Hungary
2000 Expansion of the Factory Automation activities with the purchase of Visolux GmbH and the Microswitch and Photoswitch interests from Honeywell; at the same time the Process Automation sector is expanded by the takeover of ELCON
2000 Start of manufacture at Bintan/Indonesia
2003 Takeover of the purge and pressurization systems from Bebco Industries EPS in the USA
2004 New Data Matrix Code product range obtained through the acquisition of Omnitron AG and the Position Encoding System, also due to an acquisition
2005 Expansion of the Systems & Solutions business area within the Process Automation division aided by the acquisition of EXTEC

Pepperl+Fuchs will continue this policy of growth.
One company, two divisions

PRODUCT AREAS FACTORY AUTOMATION

- Binary and analog sensors in various technologies
- Inductive and capacitive sensors
- Magnetic sensors
- Ultrasonic sensors
- Photoelectric sensors
- Vision sensors
- Incremental and absolute value rotary encoders
- Counters and secondary switching devices
- RFID Identification systems
- Data Matrix Identification systems
- AS-Interface
- WCS

BRANCHES FACTORY AUTOMATION

- Machine & Plant Engineering
- Print, Paper and Finishing
- Material Handling
- Packaging Industry
- Automotive Industry
- Doors, Gates and Elevators
- Chemical Apparatus
- Commercial vehicles
- Textile Machines
PRODUCT AREAS PROCESS AUTOMATION

- Signal conditioners
- Intrinsically safe interface components
- Remote process interface
- Intrinsically safe fieldbus solutions
- Level control sensors
- Operating systems for hazardous areas
- Purge/Pressurization enclosure systems
- Process measuring and control systems engineering at the interface level
- Ex-protection training

BRANCHES PROCESS AUTOMATION

- Chemical Industry, Pharmaceutics
- Oil, Gas and Petrochemical Industry
- Industrial and communal waste water technology
- Energy Production
- Engineering consultant for Process Automation
Twinsburg

Mannheim

Singapore

WORLDWIDE PRESENCE
WE ARE RIGHT THERE – WHERE OUR CUSTOMERS ARE...

The three centers of excellence are the focal points of the global presence of Pepperl+Fuchs

Mannheim
Mannheim is the traditional headquarters of Pepperl+Fuchs and the center of excellence focusing on engineering. More than 800 specialists support the activities of this principal Pepperl+Fuchs location.

Twinsburg
Since 1983, Twinsburg/Ohio has been the headquarters for the American market. 250 employees on site develop specific solutions for the American customers of Pepperl+Fuchs.

Singapore
More than 700 employees are engaged in the Singapore center of excellence of Pepperl+Fuchs. Since 1979, all activities associated with the Asiatic economic area have been controlled from Singapore. This region is becoming of increasing importance due to the growth market in China.

We create markets
The global presence of Pepperl+Fuchs:
• Technology centers with their own development groups in Berlin, Tuttlingen and Sulbiate/Italy offer customers specific solutions. Furthermore the locations operate highly flexible production in small batch sizes.
• The production facilities in Hungary and Indonesia are equipped for series production in large quantities.
• The worldwide sales network guarantees that we are close to our customers and enforces Pepperl+Fuchs to react swiftly and competently to customer requirements. You are in need of contact addresses of our sales partners? Please try the internet at www.pepperl-fuchs.com/company/presence.
Fields of application of the WCS

The WCS can be used wherever material handling equipment has to be controlled highly precisely down to the very millimeter. The functional principle of the WCS permits use in various applications, such as

- Interruption of the code rail (aisle change, points)
- Applications in curves and circuits
- Use of several vehicles behind each other.

Due to the larger tolerances of the reading head relative to the code rail, the WCS3 system can be used in most applications. In some cases, however, it is of advantage to use the WCS2 in combination with the aluminium profile system (page 18 et seqq.).

Below please find some examples from the vast range of applications possible:

Shelf handling units (high-bay warehouses)

Bogies, lifting gear and transversing carriages are positioned with one reading head each. Independent of the length of the code rail, the positioning is always absolutely reproducible. In case of new high-bay warehouses we recommend the use of the WCS3 system.

For retrofitting elder warehouses, it may be advantages to use WCS2 in combination with the aluminium profile system:

- Easy subsequent installation.
- High mechanical tolerances between measuring system and vehicle is possible.
- Decoupling of travel vibrations.

Automatic cranes

Automatically operated cranes are a typical application for the WCS2 in combination with the aluminium profile system. A reading head is used to position the crane for the crane and trolley travel. The guide trolley guarantees the ideal position of the reading head relative to the code rail in every position, and decouples potential vibrations of the craneway.

Cleaning brushes for the code rails can be attached to the guide trolley as an optional feature. Thus, the WCS2 can also be used in very dusty environments, such as cement works or casting workshops.

Galvanising plants

One or several vehicles behind each other on a straight travel. The vehicles transport the goods to be electroplated to the corresponding bath automatically. On account of the high and adaptable luminous power of the reading heads, the travel code system WCS has proved excellent performance also under difficult conditions.

Apart from the WCS3 system, the WCS2 with an aluminium profile system, which can be supplied with a powder coating as well, can be used as well.

Overhead conveyors

Many vehicles have to be positioned on a belt line - the WCS system offers itself as a solution. Branch lines (points) and bends can be set up. The WCS3 is especially suited for this task.

After a power failure, the current position of the vehicle is transferred to the control without delay without the vehicle having to be moved for the purpose.

The WCS can also be employed for longer travels than 314 meters. We will be pleased to help you find a solution for your special application. Please get in touch with us.
Characteristics of the WCS ... 8
Description of function ... 9
WCS reading head .. 10
WCS2B/WCS3B .. 10
Replacement of previous reading head types by WCS2B/WCS3B reading heads .. 10
Installation of reading head ... 12
Mounting plate .. 13
Replacement of plastic liners .. 13
Code rail .. 14
Laminate code rail .. 14
Stainless steel code rail ... 14
Tensioning device for the stainless steel code rail 15
ID-Pads WCS3-ID70-M1 .. 15
Mounting the code rail ... 15
Mounting the code rail with the mounting bracket system 16
Mounting WCS2 code rails with aluminium profile system 18
Installation of WCS3 code rail with aluminium profile system 22
Integrating WCS code rail into conductor lines 25
Connection of WCS reading head to control 26
Reading head with RS485 interface .. 26
Reading head with CANopen interface ... 28
Reading head with SSI interface ... 29
Features and options .. 30
Detection of dirt accumulation .. 30
Option H - space heating in reading head, type LS...H 30
Option S - velocity output, type LS...S ... 30
Option D - integrated display in reading head, type LS...D 31
LED display on WCS3B reading head .. 31
WCS interface modules ... 32
Interface module with parallel interface .. 33
Interface module with SSI interface .. 34
Interface module with Profinet interface ... 35
Interface module with DeviceNet interface 36
Interface module with CANopen interface 37
Interface module with Ethernet interface 38
Interface module with InterBus-S interface 39
Interface module with Profinet interface 40
Interface module with Modbus-RTU interface 41
Display and diagnosis module .. 42
Connection of RS485 reading heads to interface module/control 44
Cable routing in RS485 bus ... 44
BT111 bus terminal .. 47
Data cables and accessories .. 48
RS485 data cable .. 48
SSI data cable .. 48
Data cables WCS-DCS / WCS-DCF ... 48
Overview of cable sockets and adapter cables 48
Notes for use ... 50
Type summary .. 51
Technical data .. 52
Order information ... 54
Pepperl+Fuchs GmbH worldwide .. 56
Characteristics of the WCS

- Absolute Position Encoding System
- Optoelectronic principle (infrared range)
- Tried-and-tested and tough
- Maintenance-friendly
- No reference points necessary
- No calibration or adjustment necessary
- Not sensitive to power cuts
- Positioning with millimetre accuracy and absolute reproducibility
- Determination of position values in real time and independent of temperature fluctuations
- Reliable reading up to a velocity of 12.5 m/sec
- High resolution = ±0.4 mm
- Variable reading distance: 0.1 m ... 327 m
- Encoding system also suitable for use in bends down to 0.5 m radius
- Varied areas of application, e.g. storage and retrieval machines, traversing carriages, electric overhead conveyors, galvanising plants, automatic and rotary cranes and lifts
- Various systems available for installing the code rail
- Connection to any control equipment possible, directly or via interface module
- Facilities available for connection to many field bus systems
- Support during commissioning and maintenance from extensive system diagnosis facilities
- Extreme reliability in operation thanks to continuous self-diagnosis
- Prewarning of dirt accumulation
- Optional space heating for ambient temperatures down to -40 °C
- Optional digital output of variable limit overspeed

1 = Interface module
2 = Code rail
3 = Reading head
Description of Function

The WCS position encoding system comprises in the main two components: the code rail, which is the information carrier for the absolute code, and the reading head which scans the code rail optoelectronically.

The **code rail** is installed parallel to the runway of the vehicle and thus assigns a clear position to each point on the runway. It is possible to install the code rail only where positioning is required. The system permits the to be installed in bends and branches to be constructed. The code rails are manufactured individually for each order and is supplied in a bundle. Unless ordered otherwise, the code rail always begins with a position value of 0. The maximum length of the code rail is 327 m (WCS2) or 314.5 m (WCS3). Numerous fitting aids are available for speedy installation of the code rail.

The code rail is scanned with a U-shaped **reading head**. The reading head detects a new position value every 0.833 mm (WCS2) or 0.8 mm (WCS3). After being placed onto the code rail, the reading head calculates the position value without reference points and value delay. Scanning the code rail is reproducible, reliable and independent of temperature fluctuations even at very high velocities. The positional value can be transmitted directly from the reading head to the control via a serial RS 485 interface or an SSI interface.

Various interface modules are available for connection to standard interfaces, such as:

- Parallel
- SSI
- Profibus DP
- DeviceNet
- CANopen
- Ethernet
- Interbus-S
- ProfiNet
- Modbus-RTU

Up to four reading heads can be connected simultaneously to all the interface modules apart from the SSI interface.
The housing of the reading head is made of tough plastic (protection class IP54). The mounting plate for attaching the reading head are part of the supply.

On the inside of the reading head there are easily replaceable, transparent plastic liners to protect the reading area from dirt and damage (Fig. 2 and Fig. 3 on page 11). There are identification notches on these liners. These serve to set the zero point for vertical play (z-axis) on the reading head. The reference point is the top edge of the code rail. The reading head can move around the reference point within the specified tolerances (see Table 1):

If the height play (z-axis) is exceeded, the reading head signals "OUT" (reading head outside of the code rail) to the control. The tolerances for lateral play (y-axis) are given by the width of the gap in the reading head.

The positions are reliably detected in both vertical (α: ±10°) and horizontal (β: ±5°) inclined positions, and in bends down to a minimum of 500 mm. If positional value cannot be detected, e.g. because the optical elements are soiled, the reading head transmits a clear error code.

WCS2B/WCS3B

The reading heads were revised on the basis of the well-tried types WCS2A and WCS3A. The new type series was given the designation "B", WCS2B and WCS3B. With the new black and green housing, the new reading heads integrate well into the design of the Pepperl+Fuchs sensors. The electric connection of the reading heads WCS2B and WCS3B is established exclusively by M12 plug connectors. A wide range of connecting sockets and pre-confectioned cables are available for these M12 plug connectors. The hardware and software for devices with SSI interfaces have been revised. Compared to the previous models, it is also new that the current speed can be transmitted to the control by the serial interface apart from the positional value. Compared to the previous type WCS3A, a significant modification in the WCS3B reading heads is that the gap width has been enlarged at identical external dimensions. Due to the free space between the reading head and the code rail which has been increased by 25 per cent, the potential mechanical tolerances in the applications are compensated automatically by the reading head. In addition to the previously integrated interfaces, the CANopen interface is now offered for the WCS3B reading head as well.

Replacement of previous reading head types by WCS2B/WCS3B reading heads

The replacement of a reading head of type WCS2 or WCS2A by a WCS2B or a WCS3 or WCS3A by a WCS3B is possible. The important factor is that the type code is identical, such as LS221. If the reading head to be replaced has no M12 plug connection, the electrical connection had to be adapted to the M12 plug connection of the WCS2B/3B reading head. The manufacturer recommends the modification of the socket on the data cable present. The M12 cable socket required can be obtained from Pepperl+Fuchs as an accessory. If the modification of the plug connection on the data cable is not possible or desirable, corresponding adapter cables can be supplied.

An overview of the recommended M12 cable sockets and adapter cables is rendered in section "Data cables and accessories" on page 48 et seqq.

<table>
<thead>
<tr>
<th></th>
<th>WCS2B</th>
<th>WCS3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-axis</td>
<td>±5 mm</td>
<td>±15.5 mm</td>
</tr>
<tr>
<td>z-axis</td>
<td>±5 mm</td>
<td>±14 mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>±0.42 mm (1200 pos/m)</td>
<td>±0.40 mm (1250 pos/m)</td>
</tr>
<tr>
<td>V_{max}</td>
<td>12.5 pF/m</td>
<td>12.5 pF/m</td>
</tr>
</tbody>
</table>

Table 1
WCS2B reading head

![Diagram of WCS2B reading head]

WCS3B Reading Head

![Diagram of WCS3B reading head]

Position of code rail with respect to reading head

Electric connection plug must point towards ascending positional values!
Installation of reading head

The reading head is generally fitted to the vehicle. However it is also possible to install the reading head in a stationary position and attach a section of code rail to the vehicle (vehicle identification).

A special mounting plate is part of the supply of the reading head. This is attached to the vehicle. If the WCS2 is used with the aluminium profile system and guide trolley, the mounting plate is already integrated into the guide trolley. There are dovetail guides with a quick-action lock on three sides of the reading head housing. Using one of these guides as required, the reading head is snapped into place on the guide bar. Using one of these guides as required, the reading head is snapped into place on the guide bar. Thanks to this quick-action lock, the reading head can be installed very simply without any adjustment, and replaced quickly if required.

The reading head can be installed in any position. It is tough and will function reliably even in a rugged industrial environment. The reading head is not vulnerable to external light sources. During plant project work, it is recommended to ensure that no strong sunlight directly enters the reading head gap.

To ensure long-term fault-free functioning, we recommend ensuring during installation that the gap in the reading head is protected from dirt and any vapours. The reading head must be fitted so that the electric connector plug points in direction of the ascending positional values on the code rail.
Mounting plate
The mounting plate is attached to the vehicle with M4 screws. When designing the system, we recommend providing oblong holes to enable the position of the mounting plate and thus the reading head to be corrected. For installation, the dovetail groove of the reading head pushed over the bar on the mounting plate until the spring tongue snaps into place. To remove the reading head, the spring tongue is released by turning slightly with a screwdriver and the reading head pushed out of the guide.

The mounting plate is for all reading head types identical.

Replacement of plastic liners
The plastic liners of the reading head can be replaced quickly if they are damaged or soiled. Unscrew the two cross-head screws on each liner and pull off the liner. Fit in reverse order. The cross-head screws must be tightened with a max. torque of 0.5 Nm. It is recommended to always replace both liners and also replace the seal.

The plastic liners are available as a spare part.

WCS2B reading head:
2 plastic liners with seal: WCS2-PL2

WCS3B reading head:
2 plastic liners with seal: WCS3B-PL2
Code rail

The code rail, which carries the absolute code, differs for the WCS2 and the WCS3 and thus cannot be interchanged between the two systems. In the case of the WCS3, the height of the code rail is always 70 mm, for the WCS2 the code rail can be supplied 55 mm or 70 mm high. Two different materials which have proven their suitability in practice are available for the code rail: plastic laminate and stainless steel. The code rail is supplied in a coil. Unless ordered otherwise, the code rail always begins with a positional value of 0.

Laminate code rail

The black laminate code rail is made of a special polyester laminate. It is distinguished by excellent physical and chemical characteristics with a low deadweight. The material is highly resistant to rupture, and is neutral with respect to oils, greases and solvents. Thanks to its resistance to acids, lyes and aggressive gases, this material is also suitable for use in galvanising plants. As a standard feature the laminate code rails are supplied with mounting holes (WCS3-CS70-L1, also see the drawing below). If an angle system is used to mount code rails it is recommended to use code rails without mounting holes (WCS3-CS70-L0) as shown, for example, on page 16.

When mounting the laminate code rail, please make sure that grinding dust of collectors cannot fall on to the surface of the code rails directly. For this reason, the laminate code rails should be mounted laterally above the contact lines.

Stainless steel code rail

The stainless steel code rail is manufactured in corrosion-resistant spring steel. It is rust-proof and displays high mechanical stability and low thermal expansion. The stainless steel code rails can be used within a temperature range of -40 °C ... 80 °C.

The specific thermal expansion coefficient is 1.6 x 10⁻⁵ K⁻¹. Protective gloves must be worn when installing the stainless steel code rails.

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 55 x 0.5</td>
<td>55</td>
<td>7.5</td>
<td>25</td>
</tr>
<tr>
<td>Band 70 x 0.5</td>
<td>70</td>
<td>15</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 55 x 0.5</td>
<td>55</td>
<td>7.5</td>
<td>25</td>
</tr>
<tr>
<td>Band 70 x 0.5</td>
<td>70</td>
<td>15</td>
<td>41</td>
</tr>
</tbody>
</table>
Grounding of code rail

During the installation of the laminate or stainless steel WCS code rail, please ensure that it is connected to a low-ohmic potential at a distance of at least every 30 m.

Tensioning device for the stainless steel code rail

Using the tensioning device prevents the stainless steel code rails buckling due to temperature fluctuations after installation. It also facilitates installation. Three holes are punched at the beginning and at the end of the stainless steel rail and can be used to attach the tensioning device.

There are two possibilities when using the tensioning device:
1. The code rail is fixed at one end and tensioned at the other end using the tensioning device.
2. The code rail is fixed in the middle and tensioned at both ends using the tensioning device. The method is of advantage for longer sections (> 50 m).

<table>
<thead>
<tr>
<th>Stainless steel code rail</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS2, 55 mm</td>
<td>6 nm</td>
</tr>
<tr>
<td>WCS2, 70 mm</td>
<td>9 nm</td>
</tr>
<tr>
<td>WCS2, 70 mm</td>
<td>7 nm</td>
</tr>
</tbody>
</table>

ID-Pads WCS3-ID70-M1

In applications where the vehicle numbers in the system have to be recognized, special code rail segments, so-called ID pads, are available for the WCS3 system. In case of these applications, the reading head is firmly mounted in most cases, and the ID pads mounted to the vehicle the reading head at certain points in the system.

The positional value read by the reading head is then used by the control to calculate the integer vehicle number according to a formula. In total, 1,260 different ID pads can be supplied

Vehicle number = INT((WCS positional value 30)/312)+1

The position value determined by the reading head enables the fine positioning of the ID pad in the reading head gap, apart from the calculation of the vehicle number, and thus an exact positioning of the vehicle.

Mounting the code rail

If continuous path measurement of a distance is required, the rail has to be mounted in one piece. Independent of the conditions of use, there a plenty of possibilities of mounting the code rails, basically. The easiest possibility to mount the code rail is to screw it down to a suitable angle. During the installation, please make sure that the tolerance in vertical and horizontal direction is observed as required by the respective reading head.
Mounting the code rail with the mounting bracket system

The angle system is one possibility to mount the laminate or stainless steel code rail. It consists of brackets for installing straight sections (Fig. 1) of the code rail, and brackets for installing the code rail in bends and on circular runways (Fig. 5). The brackets are made of galvanised steel plate and supplied pre-assembled.

The mounting brackets for the installation of the WCS code rail on straight distances can be supplied in three different designs:

WCS-MB: angle for straight section without fixing screws (Fig. 1)
WCS-MB1: angle for straight section with fixing screws (Fig. 2)
WCS-MB2: angle for straight section with mounting system for installation in C profile rail 30 x 32 mm (Fig. 3).

The mounting brackets for installing straight sections are fitted to the substructure at intervals of max. 1.25 m along the runway. The code rail is pushed into the bracket until it makes contact. Subsequently the code rail is slightly tensioned by pulling and tightening of the two hexagonal screws (M6 x 12) in the angle. The torques for these hexagonal screws (M6 x 12):

- for laminate code rail: max. 8 Nm
- for stainless steel code rail: max. 5 Nm

The code rail is tensioned by pulling at the free end. The counternuts of the screws are pressed into the angle sheet which means that the nuts need not be countered. Given correct mounting, the tensioning force on the angles to high that the code rails cannot be pulled out of the angle any more.

In addition to the clamping action, the code rail can be screwed down to the angle. For this purpose, use the two upper free boreholes of the angle (M6). The screw connection produces a reference point between the code rail and the subconstruction. The screws for the reference point do not belong to the scope of delivery.

The use of C profiles is advantageous for angle mounting. They are arranged longitudinally or transversely to the travel intended. Thus, the angles can be mounted and aligned easily in the C profiles.

Powder-coated version

The mounting bracket for straight sections is also available in a powder coated version. In this version, the fixing screws are stainless steel (high grade steel V4A).

Two different variants can be supplied:

WCS-MB-C: Powder-coated angle for straight laying without fixing screws
WCS-MB2-C: powder-coated angle for straight laying with mounting system for installation in C profile rails 30 x 32 mm.
Mounting bracket system for WCS code rail

Bend

To produce bends, the mounting brackets for bends (bend brackets, Figs. 5 and 6) are used together with a special stabilising profile (WCS-SP2). The stabilising profile is supplied as a coil of the length ordered.

The mounting brackets for installation of the WCS code rail on curved distances can be supplied in three different designs:

- WCS-MB-B: Mounting bracket for bend without fixing screws (Fig. 5)
- WCS-MB1-B: Mounting bracket for bend with fixing screws
- WCS-MB2-B: Mounting bracket for bend with mounting system for installation in C profile rail 30 x 32 mm (Fig. 6).

The curved angle has been designed in such a way that no height or transverse offset of the code rail occurs when the straight stretch changes into the curve.

The curve angles are mounted tangentially along the circle / curve bend; maximum support distance 0.7 m (0.5 m recommended). Subsequently the stabilization profile is cut to the length of the curve bend and is laid into the curve angle. The code rail is now pressed right into the groove of the stabilization profile. Subsequently, the clamping screws (M4; hexagon socket) is used to clamp the code rail together with the stabilization profileinto the curve angle, where the cutting screw supplied is used for locking.

Circuit

Given a closed route (circuit, oval, et cetera), the following special features have to be observed: due to the functions of the WCS, the code rail cannot be laid on the whole circuit. A distance of least 85 mm has to be kept between the beginning and the end of the code rail. At the interrupted point of the code rail, the control will receive the value "OUT" - reading head outside of the code rail" from the reading head. When using two reading heads mounted after each other at a distance, continuous travel information is possible at all positions of the circuit. In this case the control switches over to the position value of the second reading head when the "OUT" message has been received.

Installation position of code rail

The code rail can be installed in any position desired (see Fig. 7). When installing the code rail, care must be taken that all the mounting brackets are installed at the same level, i.e. the surface on which the brackets are installed must be flat.
Mounting WCS2 code rails with aluminium profile system

A special aluminium profile system has been developed for fast mounting of the 55 mm code rail made of plastic laminate or stainless steel. The aluminium profile has been designed in such a way that it takes the code rail and the guide trolley. The guide trolley ensures the ideal position of the reading head relative to the code rail and compensates the travel tolerances between the vehicle and the WCS system. At the same time the reading head is decoupled from the vehicle vibrations. The aluminium profile system can be mounted in any position. The profile rails are supplied in segments of 5 m in length and have been provided with a 45 deg. miter at the ends. The aluminium profile rails can be supplied with a powder coating and in curved segments.

Mounting the aluminium profile rail

For mounting the aluminium profile rail, rail holders are available for fast mounting, in which the profile rail snaps in. The rail holders can be supplied in three different variants:
- WCS2-MH: Rail holder without fixing screws
- WCS2-MH1: Rail holder with fixing screw (Fig. 4)
- WCS2-MH2: Rail holder with mounting system for installation in C profile rail 30 x 32 mm (Fig. 5).

The suspension distance for the aluminium profile rail must not exceed 1.5 m (min. 3 rail holders per 5 m section) for both upright and suspended mounting.

If the WCS2 aluminium profile system is mounted laterally, a support spacing of 1.25 m (four rail holders per rail of 5 meters in length) is recommended.

Fig. 1
WCS2 aluminium profile system

Fig. 2
Aluminium profile system WCS2 with C profile rail

Fig. 3
Mounting rail holder

Fig. 4
Screw-on holder
1 rail holder
2 M6 x 30 cheese-head screw
3 M6 hex. nut
4 spring washer

Fig. 5
Holder for C profile WCS-MH2
1 rail holder
2 M6 x 20 cheese-head screw
3 square nut 30 x 25 mm, M6
4 washer R 6.6
Connectors for aluminium profile rails

Connectors are necessary for joining the aluminium profile rails. Each connector (WCS-MC1) consists of two flat aluminium pieces and four self tapping screws (3 mm x 4.5 mm). The flat pieces are pushed into the bottom grooves in the two profile rails to be joined, with drillholes ahead. Then the screws will screwed into the holes of the flat pieces (see drawing at left side). The tips of the screwes will pressed into the aluminium profile and fix the flat pieces in the grooves.

Note: The rail connection must be screwed down on one side only (see Fig. 6).

Stainless steel connectors are used for joining the powder-coated aluminium profile rails (WCS-MC2).

Notes on installing the aluminium profile rail

When assembling the aluminium profile rails with the connectors, it is important to leave a gap to compensate for thermal expansion in case the temperature maximum operating temperature possible should be higher than the temperature during installation. The gap width necessary is calculated as follows:

\[
\text{Gap width in mm} = 0.11 \times \Delta \Omega
\]

\[
\Delta \Omega = \bar{\Omega}_{\text{max. operation}} - \bar{\Omega}_{\text{installation}}
\]

Examples:

\[
\begin{align*}
\Delta \Omega &= 10 \text{ K, gap width } = 1.1 \text{ mm} \\
\Delta \Omega &= 20 \text{ K, gap width } = 2.2 \text{ mm} \\
\Delta \Omega &= 30 \text{ K, gap width } = 3.3 \text{ mm}
\end{align*}
\]

Installing the code rail in the profile rail

First of all, aluminium profile rail is attached to the substructure using the rail holders and aligned. The joints must be produced as described. Then the code rail can be laid fully in the groove of the profile rail. The code rail is ultimately fixed by means of a plastic cord which is pressed into the groove of the profile rail. To do so, the cord is pressed into the groove while simultaneously pressing down the code rail. Pressing it in correctly is extremely important for reliable operation, in particular if the aluminium profile system is suspended.
Fitting tool

A special fitting tool is available for speedy and safe installation of the code rail. The fitting tool is to be recommended particularly if the aluminium profile system is suspended. The tool consists of a housing with wheels similar to the guide trolley. The trolley is pulled along the profile rail. The code rail is held in position by the guide roller and pressure roller and the fixing cord pressed into the groove of the aluminium profile by the pressing wheel. Moving the trolley back and forth ensures that the plastic cord sits in the groove correctly (Fig. 10). If it is installed correctly, the pressure of the fixing cord is only sufficient to prevent the code rail slipping out of the aluminium profile even if it is in a suspended position.

The seating of the plastic cord and the code rail should be checked during maintenance, in particular if the aluminium profile is suspended.

Fixed points

To prevent the aluminium profile rails slipping in the rail holders when installed horizontally, a locking bracket is necessary. The locking bracket (Fig. 11) is fitted around a rail holder in the middle of the runway. During installation, bracket and aluminium profile are joined with the screw supplied. To do this, the aluminium profile must be drilled through at one point (drill 7 mm). If installed vertically, we recommend locking the aluminium profile with a suitable support bracket (by customer). To prevent the code rail slipping in the aluminium profile, it can be fixed in the centre of the runway by inserting a spring dowel pin or self-tapping screw (Fig. 12).

Guide trolley

The guide trolley (Fig. 13 and 14) for the reading head always ensures optimum position of the reading head in relation to the code rail. The mounting plate for the reading head is already prefitted on the trolley so that it only needs to be pushed on. By means of the towing arm moving freely in the oblong hole of the guide trolley (8 mm in diameter), on the one hand the movement between vehicle and reading head is isolated, and on the other hand mechanical tolerances are equalised. When fitting the towing arm installed on the conveyor vehicle, take care that no forces are exerted (no rigid connection between towing arm and guide trolley!). On the guide trolley holes are provided for fitting the cleaning brushes for the code rail (WCS2-GTBR). The cleaning brushes (optional extra) are only necessary, if the code holes in the WCS code rail may be clogged during to the application, such as by leaves or bird feathers. The brushes can be retrofitted. In dusty environments, such as in foundries or in the building materials industry, we recommend the use of guide trolleys fitted with metal rollers (WCS2-GT09-M1).

If the WCS2 aluminium profile system is mounted laterally, the use of the guide trolley with extended guide rails (WCS2-GT09-P2 or WCS2-GT09-M2) is recommended.

The maximum velocity for the reading head with guide trolley is 8 m/sec. The guide trolley is also available powdercoated (WCS2-GT09-P1-C).

Note: Push the guide trolley with the reading head into the profile rail in such a way that the electric plug connector points in the direction of the ascending positional values.
Grounding the aluminium profile

The aluminium profile must be connected up to the low-ohmic potential at a distance of at least every 30 meters (Fig. 15).

Further information

Stainless steel or laminate code rails can be used with the aluminium profile system. The laminate code rail has proved to be suitable for normal industrial applications. In addition to cost advantages, the plastic laminate code rail is of advantage during installation, in particular on long runways, due to its lighter weight.

For extreme operating conditions, e.g. sparking in a welding shop, severe dirt accumulation during operation (e.g. waste incineration) or if cleaning brushes are used on the guide trolley, we recommend using the stainless steel code rail.

Pre-tensioning the code rail is not necessary for the system functions. This is merely useful if high temperature fluctuations may occur within short periods of time.

Attention

The tensioning device can only be used in conjunction with the stainless steel code rail (p.15).

For more information and instructions on the installation of the WCS2 aluminium profile system, please refer to our website on the Internet at http://www.pepperl-fuchs.com.
Installation of WCS3 code rail with aluminium profile system

A special aluminium profile system has been developed for the rapid installation of the 70 mm high WCS3 code rail in plastic laminate or stainless steel. The aluminium profile is designed to take the code rail. It has been designed to provide optimum flexural strength in all directions in spite of its low weight. The aluminium profile system can be fitted in any position. The profile rails are supplied in 6 m sections.

On request, the aluminium profile rail can also be supplied powder-coated and in curved sections.

Installing the aluminium profile rail

Rail holders, into which the profile rail is clipped, are available for rapid installation of the aluminium profile rail. The rail holders are available in three different versions:

- WCS3-MH: Rail holder without mounting screws
- WCS3-MH1: Rail holder with mounting screw (Fig. 5)
- WCS3-MH2: Rail holder with mounting system for installation in C profile rail 30 x 32 mm (Fig. 6).

The recommend spacing is 2.00 m (three rail holder per 6 meter segment); the maximum spacing between supports is 2.50 m.

Rail connectors for aluminium profile rails

Connections are necessary for joining the aluminium profile rails. Each connector (WCS3-MC1) consists of a 170 mm long aluminium extruded section and two selftapping screws M3 x 4.5 mm. The connector is pushed into the bottom grooves in the two profile rails to be joined. Then the screws are screwed into the holes (1.8 mm in diameter), see Fig. 7. The tips of the screws are pressed into the aluminium profile and hold the connector down.

Note: The rail connection may be screwed down on one side only (see Fig. 7).
Notes on installing the aluminium profile rail

When assembling the aluminium profile rails with the connectors, it is important to leave a gap to compensate for thermal expansion. This is necessary if the maximum operating temperature possible should be greater than the temperature during installation. The gap width necessary is calculated as follows:

\[\text{Gap width [mm]} = 0.12 \times \Delta \theta \]

\[\Delta \theta = \theta_{\text{max. operation}} - \theta_{\text{installation}} \]

Examples:
- \(\Delta \theta = 10 \text{ K}, \text{ gap width} = 1.2 \text{ mm} \)
- \(\Delta \theta = 20 \text{ K}, \text{ gap width} = 2.4 \text{ mm} \)
- \(\Delta \theta = 30 \text{ K}, \text{ gap width} = 3.6 \text{ mm} \)

Grounding the aluminium profile system

The aluminium profile must be connected up to the low-ohmic potential at a distance of at least every 30 meters (see Fig. 15 on page 21).

Installing the code rail in the profile rail

First of all, the aluminium profile rail is attached to the substructure using the rail holders and aligned. The joints must be produced as described. Then the code rail can be laid fully in the groove of the profile rail. The code rail is ultimately fixed by means of a plastic cord which is pressed into the groove of the profile rail. To do so, the cord is pressed into the groove while simultaneously pressing down the code rail. Pressing it in correctly is extremely important for reliable operation, in particular if the aluminium profile system is suspended.

Fitting tool

A special fitting tool is available for secure and speedy attachment of the code rail. It is particularly recommended if the aluminium profile system is suspended. The tool consists of a wheeled housing. The trolley is pulled over the profile rail, the code rail being held in position by the guide roller and the fixing cord pressed into the groove of the aluminium profile by the pressing wheel. Moving the mounting trolley back and forth ensures that the fixing cord lies correctly in the groove of the aluminium profile (Fig. 10). If fitted correctly, the pressure from the fixing cord is sufficient to prevent the code rail slipping out of the aluminium profile even when suspended.

The seating of the fixing cord and cord rail must be checked during maintenance, particularly if the aluminium profile is suspended.
Fixed points

To prevent the aluminium profile rails slipping in the rail holders when installed horizontally, the profile must be firmly connected to the substructure. A rail holder in the centre of the runway is rough-drilled on both sides with a drilling 1.8 mm in diameter (Fig. 11). Self-tapping screws (3 x 6 mm) are screwed into these drillings. The self-tapping screws are not supplied. The screws press into the aluminium profile forming a keyed connection (Fig. 12) between rail holder and aluminium profile. We recommend to fix the aluminium profile as described at several points along a runway. An adequate expansion joint between the aluminium profiles must be ensured (see also page 23).

If installed vertically, we recommend locking the aluminium profile with a suitable support bracket (by customer).

Vertical bend

Beside horizontal bends, also vertical bends are needed, to realize upward/downward gradients. With the help of the aluminium profile rail, together with the laminate code rail, vertical bends up to a minimum radius of 4 m can be made very simply. For this, the aluminium profiles bent with the appropriate radius are clipped into the rail holders. To ensure that the code rail can follow the vertical course of the bend, a cut is made from the start of the bend up to its end, in the distance of approx. 50 mm. The cuts are always made from below, i. e. from the wider side of the code rail until into the code windows (see Fig. 13). In addition, a small triangle is cut off with every cut (see Fig. 14). This prevents the code rail from overlapping in the aluminium profile.

If the code rail was cut as described, it is inserted together with the fixing cord and by means of the fitting tool into the pre-curved aluminium profile.

Breaks in aluminium profile

For some applications, it may be necessary to interrupt the code rail, e. g. for crane crossovers, fire doors or large expansion joints in buildings. The break in the code rail must be at least 85 mm and the two code rail sections must be aligned. The maximum clearance between the end of an aluminium profile rail and the next rail holder must not exceed 0.5 m.
Integrating WCS3 code rail into Vahle VKS 10 power rail

Suspension of stainless steel code rail

When the stainless steel code rail is suspended, in particular if there are frequent temperature fluctuations, it must be secured against falling. Using the tensioning device is sufficient for lengths up to approx. 25 m. Above this, we recommend securing the stainless steel code rail in the aluminium profile every 12 m with a self-tapping screw or a spring dowel pin. The aluminium profile and the code rail are through-drilled from the side (see Fig. 16). Then the self-tapping screw is screwed into this drilling (or the dowel pin pressed in). The self-tapping screw or dowel pin are not supplied.

Further information

The stainless steel or laminate code rails can both be used with the WCS3 aluminium profile system. The laminate code rail has proved to be suitable for normal industrial applications. In addition to cost advantages, the plastic laminate code rail is of advantage during installation, in particular on long runways, due to its lighter weight. With regard to operating conditions, the same applies as for the WCS2 profile system (see p. 18), with one exception: a guide trolley is not used in conjunction with the WCS3 aluminium profile system.

You will find further information and installation hints in "WCS3 special aluminium profile system". This document can be requested from us or downloaded from our Internet home page.

Integrating WCS code rail into conductor lines

In many applications, energy is transmitted to a vehicle by means of conductor lines. Users often request an integrated solution for energy transmission and positional measurement. This demand has been taken into account in developing the new Vahle VKS 10 power rail. The VKS 10 is flexible as regards the number and cross-sections of conductors and enables the WCS code rail to be integrated economically into the plastic base of the conductor line. Special holes for installation, and thus a special code rail, is necessary for installing the WCS3 code rail in the VKS10 system (WCS3-CS70-L2).

The laminate code rail is characterised by high flexibility and tear resistance. Reproducibility of location coordinates is guaranteed by the use of the code rail, independent of the ambient conditions. Reproducibility of location coordinates is guaranteed by the use of the code rail, independent of the ambient conditions.

Grounding the code rail

If During the installation of the WCS code rail in the VKS10 system, the code rail has to be connected to a low-ohmic plant potential at distance of at least every 30 meters. You can obtain further information on the VKS 10 conductor line system from the Vahle sales organisation. You will find the relevant sales office at www.vahle.de.
Connection of WCS reading head to control

The WCS2B and WCS3B reading heads are available in different interface versions: RS 485 interface and SSI interface (serial synchronous interface). The WCS3B reading head is also available with an integrated CANopen interface.

Reading head with RS485 interface

The reading head can be connected directly to the control via a serial RS 485 interface. Various data protocols and data transmission rates are available. Up to four WCS2B and/or WCS3B reading heads can be connected together in an RS 485 bus line. In this case, the reading heads must have different bus addresses. The bus address for the reading head, if it has not been preset, has to be configured in the reading head. The configuration instructions can be downloaded from the Internet website. The reading head address has been preset already, this is indicated by the type designation of the reading head (type plate on the reading head). Please also see pages 44 and 51.

Type of reading head

The reading head type is given by the RS 485 terminating resistor, baud rate and data protocol.
Example: LS221-1 means:
2 ... reading head with RS485 terminating resistor
2 ... baud rate 62.5 kBaud
1 ... data protocol 1 and 2
1 ... reading head address 1
See also types summary on page 51.

Electric connection of the WCS2B reading head with RS 485 interface

The electrical connection of the WCS2B reading head is via a 5-pole M12 plug.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS 485 +</td>
</tr>
<tr>
<td>2</td>
<td>GS</td>
</tr>
<tr>
<td>3</td>
<td>RS 485 -</td>
</tr>
<tr>
<td>4</td>
<td>reserved</td>
</tr>
</tbody>
</table>

*) Speed output in reading heads with option S (see p. 30).
The counter-piece of the plug connector, the 5-pole M12 socket, is not part of the supply of the reading head.

Different pin configurations in WCS2B and WCS3B reading heads

The configuration of the plug connector of the WCS2B is compatible with the WCS2 and WCS2A reading head.
The WCS3B reading head is the first reading head in the WCS3 type series with an M12 plug connector. The configuration of the M12 connector in the WCS3B reading head is thus in keeping with the M12 standard configuration for sensors.

For electrical connection, we recommend confectioned M12 cable sockets or shielded data cable with attached M12 cable sockets provided by Pepperl+Fuchs (see section "Data cables and accessories" on page 48).

The WCSB reading heads have no connection possibilities for the cable shield, either on the plug connector or on the reading head housing. A low-resistance (wide area) connection between the cable shield and the system potential is made in the control panel. In the case of high electromagnetic interference radiation, it is recommended to make a low-resistance connection between the shield of the data cable and the system potential by an earthing clamp in the direct vicinity of the reading head.

WCS2B, RS 485 interface

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS 485 -</td>
</tr>
<tr>
<td>2</td>
<td>UB+</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>RS485 +</td>
</tr>
<tr>
<td>5</td>
<td>n. c.</td>
</tr>
</tbody>
</table>

WCS3B, RS 485 interface

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UB+</td>
</tr>
<tr>
<td>2</td>
<td>RS 485 +</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>RS 485 -</td>
</tr>
<tr>
<td>5</td>
<td>reserved</td>
</tr>
</tbody>
</table>

*) Speed output in reading heads with option S (see p. 30).
Data protocols of WCS reading heads with RS485 interface

Various data protocols and data transmission rates are available for the direct connection of the reading head to the primary control via a serial communication channel. The data protocols and baud rates are identical for the corresponding types of both WCS2 and WCS3 reading heads.

A byte has the following format:

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Start, MSB</td>
</tr>
</tbody>
</table>

The control must always request the reading head to transmit. The data protocols can be selected independent of the baud rate.

The following baud rates are available:

- 187.5 kBaud: reading head type LS21x
- 62.5 kBaud: reading head type LS21x
- 38.4 kBaud: reading head type LS21x
- 31.25 kBaud: reading head type LS21x
- 19.2 kBaud: reading head type LS21x
- 9.6 kBaud: reading head type LS25x
- See also type summary page 51.

Data protocols 1 and 2 use the eighth data bit as a means of differentiating between request byte and response byte. Data protocol 3 is available for controls which do not support direction control through the eighth data bit. Reading heads with RS485 interface and data protocol 3 can be supplied as type LSxx6 = data protocol 3 with parity (even parity), 9 bit/byte or as type LSxx7 = data protocol 3 without parity = 8 bit/byte.

Response times

The minimum response time of the reading head (start transmission of 1st data bytes of response telegram) is dependent on the internal time sequence of the reading head and is 10 ... 180 µsec for data protocols 1 and 2.

For data protocol 3, the response time is one byte time + 10 ... 100 µsec. The byte time is dependent on the baud rate and is calculated from 1/baud rate * 11,000 in µsec.

Example: 38.4 kBaud

Byte time = 1/38.4 * 11,000 = 286.5 µsec.

Data protocol 1

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Response telegram from reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>OUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P16</td>
</tr>
<tr>
<td>Byte 2</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P08</td>
</tr>
<tr>
<td>Byte 3</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>P00</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SST</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
<td>SP0</td>
</tr>
<tr>
<td>Byte 5</td>
<td>OUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P16</td>
</tr>
<tr>
<td>Byte 6</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P08</td>
</tr>
<tr>
<td>Byte 7</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>P00</td>
</tr>
<tr>
<td>Byte 8</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New: Protocol 1 with position and velocity output

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Response telegram from reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>OUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P16</td>
</tr>
<tr>
<td>Byte 2</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P08</td>
</tr>
<tr>
<td>Byte 3</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>P00</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SST</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
<td>SP0</td>
</tr>
</tbody>
</table>

Data protocol 2

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>F0</td>
<td>0</td>
<td>0</td>
<td>A0</td>
</tr>
</tbody>
</table>

Response telegram from the reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>OUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P16</td>
</tr>
<tr>
<td>Byte 2</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P08</td>
</tr>
<tr>
<td>Byte 3</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>P00</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SST</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
<td>SP0</td>
</tr>
</tbody>
</table>

New: Protocol 2 with position and velocity output

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Response telegram from reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>OUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P16</td>
</tr>
<tr>
<td>Byte 2</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P08</td>
</tr>
<tr>
<td>Byte 3</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>P00</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SST</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
<td>SP0</td>
</tr>
</tbody>
</table>

Data protocol 3

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PAR</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0</td>
</tr>
</tbody>
</table>

Response telegram from reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>PAR</td>
<td>0</td>
<td>0</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>OUT</td>
<td>Err</td>
<td></td>
</tr>
<tr>
<td>Byte 2</td>
<td>PAR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>PAR</td>
<td>P15</td>
</tr>
<tr>
<td>Byte 3</td>
<td>PAR</td>
<td>0</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
</tr>
<tr>
<td>Byte 4</td>
<td>PAR</td>
<td>0</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
</tr>
<tr>
<td>Byte 5</td>
<td>PAR</td>
<td>0</td>
<td>SST</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
</tr>
</tbody>
</table>

New: Protocol 3 with position and speed output

Request byte to reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PAR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A0</td>
</tr>
</tbody>
</table>

Response telegram from reading head

<table>
<thead>
<tr>
<th>Byte</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>PAR</td>
<td>0</td>
<td>SST</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>OUT</td>
<td>Err</td>
<td></td>
</tr>
<tr>
<td>Byte 2</td>
<td>PAR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>PAR</td>
<td>P15</td>
</tr>
<tr>
<td>Byte 3</td>
<td>PAR</td>
<td>0</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
</tr>
<tr>
<td>Byte 4</td>
<td>PAR</td>
<td>0</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
</tr>
<tr>
<td>Byte 5</td>
<td>PAR</td>
<td>0</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
</tr>
</tbody>
</table>

Explanation of data bits, see p. 43.
Reading head with CANopen interface

After configuration, the WCS3B reading head with CANopen interface can be connected directly to a CANopen bus. A DIP switch is used for configuration in deenergised state. The CAN interface is galvanically separated. The reading head operates as a CANopen slave in "Predefined connection set" and sends data in TxPDO1 format.

Electrical connection

The connection is established via 5-pole M12 plug. The counterpiece of the plug connector is not part of supply of the reading head.

<table>
<thead>
<tr>
<th>WCS3B, CANopen interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

CAN terminating resistor

A simple DIP switch is located on the middle PCB in the reading head. This switch can be used to switch the 120 Ohm CAN terminating resistor on or off. In delivery condition, the terminating resistor has been switched on.

Baud rate

The baud rate can be changed by means of two switches of the 8 DIP switches located on the middle PCB in the reading head. In delivery condition, the baud rate has been set to 250 kBaud.

<table>
<thead>
<tr>
<th>DIP8-8</th>
<th>DIP8-7</th>
<th>Baud rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>125 kBaud</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>250 kBaud</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>500 kBaud</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>1 MBaud</td>
</tr>
</tbody>
</table>

Node ID

The address in the CANopen bus, the node ID, can be changed by means of the switches 1 to 6 of the 8 DIP switches located on the middle PCB in the reading head. In delivery condition, the node ID has been set to 1.

Transmission mode in the CANopen bus

By means of three switches of the 4 DIP switches on the lateral PCB of the reading head, the transmission mode and the inhibit time can be configured.

Asynchronous

Switch position 0 to 3; see Table 1; the reading head sends data to the CAN bus automatically as soon as they have changed in the reading head. A wait time of at least x ms has to have run down since the last data package, which prevents an overload of the bus. At x = 0 ms no wait time is considered; in this case, the maximum data rate to the CAN bus is about 1.5 to 2 ms. If the data do not change in the reading head, they are sent to the CAN bus every y ms. Thus, the control will receive data also when the vehicle is at a standstill.

Synchronous

Switch position 7; see Table 1. The reading head sends data to the control after having received the SYNC command. The typical delay time after the receipt of the SYNC command is 2 ms; the maximum delay is 5 ms. In delivery condition, switches 1 to 3 = OFF, i.e. the asynchronous data transmission is 0 ms / 10 ms.

<table>
<thead>
<tr>
<th>Switch position</th>
<th>DIP4-3</th>
<th>DIP4-2</th>
<th>DIP4-1</th>
<th>x ms / y ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>0 ms / 10 ms</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>5 ms / 20 ms</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>10 ms / 50 ms</td>
</tr>
<tr>
<td>3</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>20 ms / 50 ms</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>reserved</td>
</tr>
<tr>
<td>5</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>reserved</td>
</tr>
<tr>
<td>6</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>reserved</td>
</tr>
<tr>
<td>7</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>SYNC mode</td>
</tr>
</tbody>
</table>

Table 1

Data protocols

Two data protocols are supported: CAN data protocol 1 and CAN data protocol 2.

The data protocols always have a length of 8 byte. The data protocol is selected by means of the fourth switch of the 4 DIP switches on the lateral PCB of the reading head.

DIP4-4 = OFF: CAN data protocol 1
DIP4-4 = ON: CAN data protocol 2

In delivery condition, the reading head has been set to CAN data protocol 1.

Data protocol 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte +0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
</tr>
<tr>
<td>Byte +1</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
</tr>
<tr>
<td>Byte +2</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>Byte +3</td>
<td>0</td>
<td>0</td>
<td>SST</td>
<td>DB</td>
<td>Err</td>
<td>OUT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +4</td>
<td>0</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
</tr>
<tr>
<td>Byte +5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data protocol 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte +0</td>
<td>0</td>
<td>0</td>
<td>SST</td>
<td>DB</td>
<td>ERR</td>
<td>OUT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +1</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>Byte +2</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
</tr>
<tr>
<td>Byte +3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>Byte +4</td>
<td>0</td>
<td>SP6</td>
<td>SP5</td>
<td>SP4</td>
<td>SP3</td>
<td>SP2</td>
<td>SP1</td>
<td>SP0</td>
</tr>
<tr>
<td>Byte +5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte +7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Explanation of data bits, see p. 43.
Reading head with SSI interface

The reading head with SSI interface can be supplied with Gray (LS311) or binary code (LS310), and is connected directly to the SSI input channel of the respective control.

Electric connection of the WCS2B reading head with SSI interface

The electrical connection of the WCS2B reading head with an SSI interface is established by means of an 8-pole M12 connector.

<table>
<thead>
<tr>
<th>WCS2B, SSI interface</th>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UB+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CLK+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CLK-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DATA+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DATA-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>n. c.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>n. c.</td>
<td></td>
</tr>
</tbody>
</table>

Electric connection of WCS3B reading head with SSI interface

The electrical connection of the WCS3B reading head with SSI interface is via an 8-pole M12 connector.

<table>
<thead>
<tr>
<th>WCS3B, SSI interface</th>
<th>Pin</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UB+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CLK+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CLK-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DATA+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DATA-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>*)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>n. c.</td>
<td></td>
</tr>
</tbody>
</table>

*) Speed output in reading heads with S option (see page 30). In case of reading head without S option this connection has to remain free.

The counter-piece of the plug connector, the 8-pole M12 socket, is not part of the supply of the reading head.

For electrical connection, we recommend confectioned M12 cable sockets or shielded data cable with attached M12 cable sockets provided by Pepperl+Fuchs (see section "Data cables and accessories" on page 48).

The WCS3B reading heads have no connection possibilities for a cable shield, either in the plug connector or in the reading head housing. A low-resistance (wide area) connection between the cable shield and the system potential is made in the control panel. In the case of high electromagnetic interference radiation, it is recommended to make a low-resistance connection between the shield of the data cable and the system potential by an earthing clamp in the direct vicinity of the reading head.

SSI data format

The reading head with SSI interface corresponds as to its data format to a 25 bit absolute value encoder with 4096 revolutions and 4096 increments per revolution. The WCS reading head effectively supplies a maximum of 512 revolutions and 1024 increments per revolution.

The clock-pulse rate between control and reading head can be 100 ... 1.000 kHz. The recommended value is 250 kHz.

Error signal

If the reading head detects an error, the error bit KB is set and the error code is transmitted to the control:

\[
\begin{align*}
KB &= 1 \\
POS^{0} \ldots ^{2^{2}} &= \text{error number} \\
POS^{2^{3}} \ldots ^{2^{18}} &= 0
\end{align*}
\]

For detailed description of errors, see p. 43.

Reading head outside of code rail

A distinction is made between two different states:

1. The code rail is in the gap in the reading head, but outside of the possible tolerances (see also page 8). In this case, the control receives the following bit pattern:

\[
\begin{align*}
KB &= 0 \\
OA &= 0 \\
POS^{0} \ldots ^{2^{18}} &= 1 (= \text{positional value 524287})
\end{align*}
\]

2. There is no code rail in the gap in the reading head. In this case, the bit OA = 1 (out all) is set in addition to the bit pattern rendered above.

On the reading head with data output in Gray code, the value in the data bits \(2^{5} \ldots ^{2^{18}}\) is output in Gray code.

Soiling message (warning)

If dirt accumulation on the reading head is detected, the bit DB = 1 (diagnose bit) is set in the data protocol.
Features and options

Detection of dirt accumulation

The reading heads WCS2B and WCS3B continuously check the condition of the optics. If the light output of the infrared transmitter is reduced, e. g. due to dirt accumulation on the transparent liners, the reading head automatically increases the light intensity. If too much dirt accumulates, a warning signal is transmitted to the primary control (diagnosis bit DB=1). The automatic light adjustment in the reading head provides adequate time to clean the reading head during the next maintenance.

The condition “dirt accumulation detected” is also signalled optically on the WCS3A reading head - the yellow and red LEDs on the face of the reading head flash alternately.

In order to clean the optics, the reading head must be removed from the code rail (pulled off the mounting plate). After cleaning the transparent liners, the dirt accumulation signal is automatically deleted by the reading head. If the signal is not deleted in spite of careful cleaning or replacement of the plastic liners, there might be a defect. In this case the reading head must be sent for inspection.

Option H - space heating in reading head, type LS...H

For applications where there is a risk of dewing (fast temperature fluctuations from cold to warm, high relative humidity), the WCS reading head can be equipped optionally with space heating. The heating is powered by the reading heat, i. e. no additional electric connection is necessary for the space heating. The cross-section of the supply cable to the reading head must be suitably dimensioned (see also data cable, page 48).

The space heating is switched on immediately when the voltage is connected to the reading head, the power consumption is 7 VA in the WCS2B and 9 VA in the WCS3B. A controller is used in the WCS3B space heating which switches off automatically at temperatures above 60 °C measured at the transparent liners of the reading head. The space heating option permits the reading head to be used in temperature range from -40 °C ... 60 °C.

Option S - velocity output, type LS...S

(only WCS3B)

On the WCS3A reading head with velocity output, exceeding a limit velocity is signalled via an additional 24 V DC output. The limit speed can be configured at the 4 DIP switches in the reading head. The limit velocity can be configured on the 4-fold DIP switch in the reading head.

\[U_{\text{out}} = U_{B^+}: \text{vactual} < v_{\text{limit}} \]
\[U_{\text{out}} = \text{floating}: \text{vactual} > v_{\text{limit}} \]

Note: Significance of the yellow LED in reading head altered. See page 31

<table>
<thead>
<tr>
<th>DIP switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Option D - integrated display in reading head, type LS...D
(only WCS3B)
The WCS3B reading head may be supplied with an optional six-digit display module. The current position value is indicated on the 7 segment display. After the reading head has been switched on,
- reading head type, e.g. "LS-221"
- reading head address, e.g. "Addr0"
- software version, e.g. "PR1.01"
is displayed one after the other. In standstill, the reading head switches to the "Information" mode. Cyclically, the following data are displayed:
- "12:34:56", internal clock (hh:mm:ss)
- "Good" or "Bad"

Condition of the optics/optoelectronics
- "LE - - -", no error signal
 or "LE 1", reading head has detected error 1
- "Lo ---", reading head was not outside code rail or "Lo xxx", reading head was outside code rail xxx times (xxx = 1 ... 255).
 Example: "Lo 34", reading head was outside code rail 34 times.
- "LS ---", limit velocity was not exceeded or "LS xxx" limit velocity was exceeded xxx times (xxx = 1 ... 255).
 Example: "LS 128" limit velocity was exceeded 128 times (only in reading heads with velocity output option)

All values are reset when the voltage is switched on.
The maximum time is 99:59:59, then the time restarts at 00:00:00 again.
The maximum reading for Lo and LS is 255.
The display position can be adapted to the installation position of the reading head (reading head gap down or up). In order to alter the display position, the housing cover must be removed from the reading head, and the switch on the display p.c.b. has to be set to "on" or "off". The display position setting is not marked on the rating plate of the reading head.

LED display on WCS3B reading head
The WCS3A reading head has three LEDs on the front with the following significance:
green continuous: internal voltage present
yellow continuous: data transmission is active
red is flashing: reading head outside code rail
red is lit: reading head is reporting error
yellow/red are flashing alternately: dirt accumulated on reading head optics (f=1.5 Hz)
All LEDs are activated for 2 sec after switching on or reset.

LED display on WCS3B reading head with velocity output
yellow continuous: limit speed is not exceeded
yellow is not lit: limit speed has been exceeded
red is flashing: reading head outside of the code rail or reading head soiled

Date of issue: 16. May. 2007
WCS interface modules

Apart from the possibility to poll data directly from the reading head(s), various interface modules (interface converter) are offered. The interface modules query the position values of the reading head(s) permanently, and thus always have the current data of the reading heads. The update cycle for a reading head is approx. 1 ms. The respective interface is used to transmit the reading head data to the control.

The following interface modules are available:
- parallel
- SSI
- Profibus DP
- DeviceNet
- CANopen
- Ethernet
- Interbus-S
- Profinet
- Modbus-RTU

When the reading head(s) is connected to a WCS interface module, the type of reading head is determined by the interface module. The corresponding reading head type is listed in the description of the respective interface module. Up to four reading heads with RS485 interfaces can be connected up to the interface modules. If several reading heads are connected, the reading heads have to be provided with different addresses. An exception to this rule is the interface module with an SSI interface. Due to the SSI interface, only one reading head can be connected which always has to have the address 0. If the data bus is not connected to the respective WCS interface module by means of terminals, the counter piece of the plug connector is not part of the delivery range of the interface module. The data cable for the connection to the control or the interface module is not part of the scope of supply of the reading head either.

The WCS catalog contains an overview of the interface modules. A detailed description of the respective interface module is available on the Internet in the product selector of the Pepperl+Fuchs website at http://www.pepperl-fuchs.com. Special configuration files or configuration programs can be downloaded there as well, if the respective data bus requires this action.
Interface module with parallel interface

With the interface module with parallel interface, the data are transmitted serially with RS 485 interface between the reading head(s) and the interface module and in parallel from the interface module to the control. The data can be transmitted to the control in binary (IP110) or Gray code (IP111). The interface module is available with or without RS 485 terminating resistor. A maximum of four reading heads of type LS211 (or LS111) can be connected. If more than two reading heads are connected, the number of reading heads must be stated when ordering the interface module..

Dimensions and attachment

- 100 x 118 x 74 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to control

Output of the position value

The position value is transmitted to the control by nineteen digital outputs (P00 to P18). The 24 VDC outputs of the interface module operate as push-pull power amplifiers (driver output 15 mA) and are connected directly to the corresponding I/O assembly of the control. P00 is the least significant bit (LSB) and P18 the most significant bit (MSB) of the output word.

Error bit (ERR)

If an error is detected in the WCS system, it is transmitted to the control as follows:

\[
\text{ERR} = 1 \\
P00 \ldots P04 = \text{error code.}
\]

Address lines (A01 and A00)

If several reading heads are operated on one interface module, the reading head whose data are to be transmitted to the outputs must be selected via the two address inputs. If only one reading head (with address 0) is connected to the interface module the address inputs are not connected.

Store bit (STO)

Input for storing the outputs of the interface module. A “1” means that the outputs are no longer being changed, “0” means that the outputs are actualised in a 1 ms-cycle. The store signal is active immediately, i.e. the outputs are no longer actualised after the interface module has detected the signal at the input.

Electrical connection

Dimensions
Interface module with SSI interface

On the interface module with SSI interface, the data are transmitted serially with RS 485 interface between the reading head and the interface module, and with SSI protocol (serial synchronous interface) from the interface module to the control. The data are transmitted to the control in binary code (WCS-IS310/320) or in Gray code (WCS-IS311/321). Only one reading head can be connected up to the interface module. The reading head always has to have the address 0. A reading head type LS211-0 is connected to interface module WCS-IS310/311, and a reading head type LS221-0 to interface module WCS-IS320/321. The interface module is always supplied with RS 485 terminating resistor.

Properties

When the data cable are laid in the area of electromagnetic fields, the clock-pulse-edge controlled SSI data transmission is more susceptible to failure compared to the asynchronous data transmission process. When using the SSI interface module, the data are transmitted asynchronously from the reading head to the interface module by means of the RS485 interface; the conversion to the SSI protocol takes place directly next to the control. Thus the data transmission is more stable and less susceptible to failure. Other advantages of the interface module are the position value indication and the possibility to diagnose the reading heads by means of the device display.

Dimensions and installation

- 100 x 118 x 74 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to the control

Four lines are used for the connection to the control: two clock lines and two data lines.

With respect to the data format the interface module with an SSI interface corresponds to a 25 bit absolute encoder with 4,096 revolutions and 4,096 increments/revolution. Effectively the WCS interface module supplies a maximum of 512 revolutions and 1,024 increments/revolution.

The cycle rate between control and reading head may amount to between 100 and 1,000 kHz; recommended value: 250 kHz.

Electrical connection

Dimensions
Interface module with Profibus DP interface

The interface module WCS-PG210 operates as a Profibus DP slave. It is used as an interface between the WCS reading head and the Profibus DP. The data are transmitted between the reading head(s) and the WCS-PG210 to the control via the RS485 interface, and between WCS-PG210 and the control via the Profibus DP. A maximum of four WCS reading heads of type LS221 (or LS121) can be connected. The number of reading heads connection is configured by the GSD file. The module has the following configuration:

- Baud rate: max. 12 MBaud (automatic recognition)
- Diagnose data: max. 8 Byte
- Sync: supported
- Freeze: supported
- Id No.: 0x2079

Dimensions and attachment

- 90 x 127 x 55 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to the control

The connection to the Profibus DP is effected by means of a 9-pole connector in keeping with the Profibus standard. A 9-pole Sub D connector is used which is plugged to the 9-pole Sub D socket of the device. This connector is not part of the scope of supply of the interface module. The Profibus address is set hexadecimally by means of the rotary switches “Profibus ID” “High” and “Low”.

Example: Address 19 (=13h): High = 1, Low = 3. The terminating resistor in the Profibus is switched on or off via the sliding switch “Termination”.

Data exchange with the Profibus DP master

For configuring the master, a disk is supplied containing the configuration file (GSD file). This file can be downloaded from the website. The configuration data permit the selection of one, two, three or four reading heads connected. Independent of the number of reading heads selected, a byte is reserved for the activation of the reading head(s) in the master, 4 bytes per reading head are reserved for the response data. (Configuration data with 4 reading heads: 0x20, 0xD1, 0xD1, 0xD1).

Response of the reading head(s)

Data format of interface module for one reading head (4 bytes)

The significance of the data bits is explained on page 43.

Electrical connection
Interface module with DeviceNet interface

The WCS-DG210 acts as interface between the WCS reading head and the DeviceNet bus. The data are transmitted via the RS 485 interface between the reading head(s) and the DG210 and via the DeviceNet protocol from the DG210 to the control. A maximum of four reading heads of type LS221 (or LS121) can be connected. The DG210 complies with the conditions as per "DeviceNet Specification Release 2.0" and functions as a DeviceNet "Group 2 only slave". (Vendor ID: 272, Device type: 12)

The interface module permits data transmission rates up to 500 kBaud in the DeviceNet.

Dimensions and attachment

- 90 x 127 x 55 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to control

Connection to the DeviceNet via the 5-pole plug connector with screw terminals. The MAC-ID of the DeviceNet address is set with the 6-pole DIP switch "Node ID". MAC-ID "0" is not permissible.

The terminating resistor in the DeviceNet can be switched on or off with the sliding switch "Termination".

The data transmission rate in the DeviceNet is set on the WCS-DG210 by means of two switches.

Data exchange in the DeviceNet

The DG210 acts as “Group 2 Only Slave” in the DeviceNet. The access procedures “Polling”, “Bit-Strobe” and “Change of state” are supported. If more than two reading heads are connected to the WCS-DG210, the data can only be interrogated via polling access. Transmitting a function byte from the control to the WCS-DG210 also is only possible in polling mode. The data content for reading heads not connected has been defined with 0x00.

Polling

In polling, a function byte is transmitted to the DG210 by the master. The DG210 then returns 16 data bytes. The 16 byte contain the data of the 4 reading heads (4 x 4 bytes).

Bit-strobe

With bit-strobe access, the command "bit-strobe" is transmitted by the master without any further data. The master then always receives 8 data bytes as a response from the interface module. The 8 data bytes contain the data of the reading heads with address 0 and 1 (2 x 4 bytes).

Change of state

In this procedure, the DG210 transmits 8 data bytes to the master without being requested as soon as the content of the data is changed. The data format corresponds to that for bit-strobe access. If the data of the reading heads change constantly, e. g. if the reading head is traveling fast, the data are transmitted every 5 ms. In this case the rest time is necessary to avoid overloading the Device-Net bus.

Function byte for activating the reading head(s) in polling

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P9</td>
</tr>
<tr>
<td>Word</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DB</td>
<td>Err</td>
<td>OUT</td>
<td>A1</td>
<td>A0</td>
</tr>
</tbody>
</table>

Data format of interface module for one readinghead

The meaning of the data bits is explained on p. 43.

Electrical connection

![Electrical connection diagram](image-url)
Interface module with CANopen interface

The WCS-CG210 interface module acts as interface between the WCS reading head and the CAN bus. The data are transmitted between the reading head(s) and the WCS-CG210 via the RS485 interface, and from the WCS-CG210 via the CANopen protocol. A maximum of four reading heads of type LS221 (or LS121) can be connected. The interface module WCS-CG210 functions as CANopen slave in the “Predefined connection set” and permits data transmission rates of between 10 kBaud and 1 MBaud.

Dimensions and attachment
- 90 x 127 x 55 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to control

The connection to the CANopen bus is via a 9-pole plug connector. The counterpiece, the 9-pole SUB-D socket, is not part of the supply of the interface module. The module ID of the CANopen address is set via the 6-pole DIP switch “Node ID” (the most significant bit of the 7-digit module ID is "0"). Node ID "0" is not permissible. The terminating resistor in the CANopen bus can be switched on or off by means of the sliding switch “Termination”

Data exchange in the CANopen bus

The “Transmission type” can be configured in the WCS-CG210 by means of rotary switches.

Asynchronous
In this mode WCS-CG210 transmits data automatically if the data of the reading head change.

Synchronous
In this mode CG210 transmits after receipt of the SYNC command. The typical delay in SYNC is 2 ms, the maximum delay is 5 ms.

The CG210 functions as CANopen slave in the “Predefined connection set”. 5 objects are defined for the data of the WCS reading heads:

- Object 0x2000: 1 byte - function byte for response of the reading heads - object 0x2001: 4 bytes data of reading head, address 0
- Object 0x2002: 4 bytes - data of reading head, address 1
- Object 0x2003: 4 bytes - data of reading head, address 2
- Object 0x2004: 4 bytes - data of reading head, address 3

The data format of the objects 0x2001...0x2004 is identical. Access to the objects is via the PDO (process data object). Here,

- TxPDO1: Objects 0x2001 and 0x2002 being transmitted
- TxPDO2: Object 0x2003 and 0x2004 being transmitted
- RxPDO1: Object 0x2000 being received
- RxPDO2: not assigned

Object 0x2000 - function byte for activating the reading head(s)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Address 3</th>
<th>Address 2</th>
<th>Address 1</th>
<th>Address 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>F0</td>
<td>0</td>
<td>F0</td>
<td>0</td>
</tr>
</tbody>
</table>

Object 0x2001...0x2004 - 4 byte data of reading head

<table>
<thead>
<tr>
<th>Bit</th>
<th>Word n</th>
<th>Word n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>P07</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>P06</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>P05</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>P04</td>
</tr>
<tr>
<td>11</td>
<td>P15</td>
<td>P14</td>
</tr>
<tr>
<td>10</td>
<td>P16</td>
<td>P13</td>
</tr>
<tr>
<td>9</td>
<td>P17</td>
<td>P12</td>
</tr>
<tr>
<td>8</td>
<td>P18</td>
<td>P11</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>P10</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>P09</td>
</tr>
<tr>
<td>5</td>
<td>DB</td>
<td>P08</td>
</tr>
<tr>
<td>4</td>
<td>Err</td>
<td>OUT</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>A0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The meaning of the data bits will be explained on page 43.
Interface module with Ethernet interface

The WCS-EG210 acts as interface between the WCS reading head and the Ethernet protocols TCP/IP or UDP/IP. The data are transmitted between the reading head(s) and the WCS-EG210 to the control with RS485 interface and between WCS-EG210 and the control via the configured Ethernet protocol. A maximum of four reading heads of type LS221 (or LS121) can be connected. The baud rate in the Ethernet bus is detected automatically and is 10 MBit/s or 100 MBit/s. The IP addresses and the Subnet mask are set by a Windows program which can be downloaded from the website.

Dimensions and attachment
- 90 x 127 x 55 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to control
Connection to the control is via 8-pole RJ45 socket. Data cable of category 5 have to be used. The number of connected reading heads and the Ethernet protocol, TCP/IP or UPD/IP are set by means of the rotary switch.

TCP/IP Protocol
In case of the TCP protocol, the interface module sends a data package to the client the connection of which has been opened automatically everytime the reading head data have changed.

UDP/IP protocol
If UDP protocol is used it is is necessary that the station sends a request byte to cause a response of the reading heads. Subsequently the WCS-EG210 returns a data package to this station everytime the reading head data have changed.

Data exchange in Ethernet

Response of the reading head(s)

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>F0</td>
<td>0</td>
<td>F0</td>
<td>0</td>
<td>F0</td>
<td>0</td>
<td>F0</td>
</tr>
</tbody>
</table>

Data format of interface module for one reading head

<table>
<thead>
<tr>
<th>Byte address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
<td>P16</td>
</tr>
<tr>
<td>Address + 1</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
</tr>
<tr>
<td>Address + 2</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>Address + 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DB</td>
<td>Err</td>
<td>OUT</td>
<td>A1</td>
<td>A0</td>
</tr>
</tbody>
</table>

The significance of the data bits is explained on page 43.

Electrical connection

![Electrical connection diagram](image-url)
Interface module with InterBus-S interface

The interface module WCS-IG110 is used as an interface between the WCS reading head and the InterBus-S (Interbus-S remote bus). The data are transferred serially between the reading head(s) and the interface module WCS-IG110 (with RS485 interface) and from the interface module WCS-IG110 to the control by means of the InterBus-S protocol. One or two reading heads of type LS221 (or LS121) can be connected. On request, the connection of up to four reading heads is possible. The data can be transmitted in binary or Gray code. The bus baud rate can be switched over between 500 kBaud and 2 MBaud.

Dimensions and attachment
- 90 x 127 x 55 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection of Interbus-S

There are two 9-pole Sub-D plug connectors on the front of the device for connecting the InterBus-S line.

InterBus-S receiving (IBS-IN)
The incoming InterBus cable is connected via the 9-pole Sub-D plug on the front of the interface module. The 9-pole socket as counterpart to the plug is not part of the supply.

InterBus-S continuing (IBS-OUT)
The outgoing InterBus cable is connected via the 9-pole Sub-D socket on the front of the interface module. The 9-pole plug as counterpart to the socket is not part of the supply.

Data exchange in the InterBus-S

Two data words (4 bytes) are reserved for each connected WCS reading head in the InterBus. The module transmits the data from the reading heads to the master. The reading head data transmitted are not delayed as the reading head(s) are continuously interrogated by the interface module independent of the InterBus-S.

Activation of interface module by master

Response of interface module

The meaning of the data bits is explained on page 43.

Replacement module for interface module type WCS-IS2xx

WCS-IG110 may replace the previously supplied interface module of type WCS-IS2xx. Additional information is render on the internet or upon request.

Electrical connection
Interface module with Profinet interface

The interface module WCS-PNG110 acts as interface between the WCS reading head and the Profinet RT. The data are transmitted between the reading head(s) and the WCS-PNG110 to the control via the RS485 interface, and between WCS-PNG110 and the control via the Profinet protocol.

A maximum of four reading heads of type LS221 (or LS121) can be connected. The number of reading heads connected is configured by the hardware project setting using the GSDML file.

The Profinet-IO controller configures the interface module during the startup phase. It is only after faultfree termination of the startup phase that the WCS-PNG110 starts the data traffic to the reading heads connected.

Dimensions and installation

- 23 x 100 x 117 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to the control

The connection to the control is established by an 8-pole RJ45 socket. Data cable of category 5 have to be used.

Data exchange in the Profinet

Response of the reading head(s)

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
<td>F0</td>
</tr>
</tbody>
</table>

Data format from interface module for a reading head

<table>
<thead>
<tr>
<th>Byte address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>Address + 1</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
</tr>
<tr>
<td>Address + 2</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>Address + 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DB</td>
<td>En</td>
<td>OUT</td>
<td>A1</td>
<td>A0</td>
</tr>
</tbody>
</table>

The significance of the data bits will be explained on page 43.

Electrical connection
Interface module with Modbus-RTU interface

The interface module WCS-MBG210 acts as interface between the WCS reading head and the Modbus-RTU. The data are transmitted between the reading head(s) and the WCS-MBG110 to the control by via the RS485 interface, and between WCS-MBG110 and the control via the Modbus-RTU protocol. The data transmission to the Modbus is via the RS485 interface. The baud rate in the Modbus can be configured and is either 19.2 or 38.4 kbps.

A maximum of four reading heads of type LS221 (or LS121) can be connected. The number of reading heads connected is set with rotary switches.

Data format of interface module

<table>
<thead>
<tr>
<th>Address Holding Register</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>40001h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40002h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40003h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40004h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40005h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40006h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40007h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40008h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
</tbody>
</table>

Reading head address 0: Holding register 40001h and 40002h, A0=0, A1=0
reading head address 1: Holding register 40003h and 40004h, A0=1, A1=0
reading head address 2: Holding register 40005h and 40006h, A0=0, A1=1
reading head address 3: Holding register 40007h and 40008h, A0=1, A1=1

The significance of the data bits is explained on page 43.

Electrical connection

Dimensions and attachment
- 23 x 100 x 117 in mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

Connection to control
The Modbus address is set via rotary switches on the front side of the device.

Data exchange in the Modbus-RTU
The reading head data are saved each in two Address Holding Registers. The contents of the register is 0x00 in case no reading heads are connected. The access to the Address Holding Register is possible by means of function 3.

Data format of interface module

Address Holding Register | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40001h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40002h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40003h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40004h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40005h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40006h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
<tr>
<td>40007h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CUT</td>
<td>Err</td>
<td>A1</td>
<td>A0</td>
<td>DB</td>
<td>P18</td>
<td>P17</td>
</tr>
<tr>
<td>40008h</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
<td>P09</td>
<td>P08</td>
<td>P07</td>
<td>P06</td>
<td>P05</td>
<td>P04</td>
<td>P03</td>
<td>P02</td>
<td>P01</td>
<td>P00</td>
</tr>
</tbody>
</table>

Reading head address 0: Holding register 40001h and 40002h, A0=0, A1=0
reading head address 1: Holding register 40003h and 40004h, A0=1, A1=0
reading head address 2: Holding register 40005h and 40006h, A0=0, A1=1
reading head address 3: Holding register 40007h and 40008h, A0=1, A1=1
Display and diagnosis module

The WCS-DDM1 display module is used for the display and extended diagnosis of WCS reading head data. It is connected to the reading head(s) and passively logs the data communication between the reading head(s) and the control or the interface module. In addition to the current positional value of the reading head(s) other diagnostic data can be displayed on the six-figure seven-segment display. The data are called up by means of the hex rotary switch next to the display.

Dimensions and attachment

- 100 x 118 x 74 mm (W x H x D)
- Clip-on attachment on 35 mm top-hat rail (EN 50022-35)

The display module has three display modes which can be selected automatically dependent upon number and type of reading heads connected.

The individual diagnostic values such as current position, highest priority error, time of error signal and last valid position when error occurred (not in display mode 1) can be called up for each reading head connected. When the display module is switched on, first a functional test is performed (all segments illuminated), then the reading head type (e.g. LS211) and finally the device code are displayed. Then the display changes to the value set by the rotary switch. The current switch position is shown on the seven-segment display to the right of the rotary switch.

Functions of HEX switch

The following table the allocation of diagnostic values to switch position in each display mode.

<table>
<thead>
<tr>
<th>HEX switch</th>
<th>Display mode 1</th>
<th>Display mode 2</th>
<th>Display mode 3 (ext. protocol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Data address 0</td>
<td>Data address 0</td>
<td>Data address 0</td>
</tr>
<tr>
<td>1</td>
<td>Error address 0</td>
<td>Error address 0</td>
<td>Velocity addr. 0</td>
</tr>
<tr>
<td>2</td>
<td>Time of error addr. 0</td>
<td>Time of error addr. 0</td>
<td>Error address 0</td>
</tr>
<tr>
<td>3</td>
<td>Data address 1</td>
<td>Last position addr. 0</td>
<td>Time of error addr. 0</td>
</tr>
<tr>
<td>4</td>
<td>Error address 1</td>
<td>Data address 1</td>
<td>Last position addr. 0</td>
</tr>
<tr>
<td>5</td>
<td>Time of error addr. 1</td>
<td>Error address 1</td>
<td>Data address 1</td>
</tr>
<tr>
<td>6</td>
<td>Data address 2</td>
<td>Time of error addr. 1</td>
<td>Velocity addr. 1</td>
</tr>
<tr>
<td>7</td>
<td>Error address 2</td>
<td>Last position addr. 1</td>
<td>Error address 1</td>
</tr>
<tr>
<td>8</td>
<td>Time of error addr. 2</td>
<td>Data address 2</td>
<td>Time of error addr. 1</td>
</tr>
<tr>
<td>9</td>
<td>Data address 3</td>
<td>Error address 2</td>
<td>Last position addr. 1</td>
</tr>
<tr>
<td>a</td>
<td>Error address 3</td>
<td>Time of error addr. 2</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>Time last error addr. 3</td>
<td>Last position addr. 2</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>Last system error</td>
<td>Last system error</td>
<td>Last system error</td>
</tr>
<tr>
<td>d</td>
<td>Time last system error</td>
<td>Time last system error</td>
<td>Time last system error</td>
</tr>
<tr>
<td>e</td>
<td>Device code</td>
<td>Device code</td>
<td>Device code</td>
</tr>
<tr>
<td>f</td>
<td>Toggle Info</td>
<td>Toggle Info</td>
<td>Toggle Info</td>
</tr>
<tr>
<td>g</td>
<td>Delete Error memory (5 sec.)</td>
<td>Delete Error memory (5 sec.)</td>
<td>Delete Error memory (5 sec.)</td>
</tr>
</tbody>
</table>

Diagnosis output at terminals

The diagnosis bits DB, ERR and OUT of the individual bus addresses are output for at least 40 ms, or as long as a signal is present, at outputs P00 to P18 and can thus be processed optionally by an SPC. In the case of system errors, the error output is energized (also for at least 40 ms). The outputs are allocated as follows:

<table>
<thead>
<tr>
<th>Diagnosis output at terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus address 3</td>
</tr>
<tr>
<td>P18</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Electrical connection

Subject to reasonable modifications due to technical advances.

Copyright Pepperl+Fuchs, Printed in Germany

Date of issue: 16. May. 2007

Pepperl+Fuchs Group • Tel.: Germany +49 621 776-0 • USA +1 330 4253555 • Singapore +65 67799091 • Internet http://www.pepperl-fuchs.com

42
Description of protocol data

Activation of reading head

<table>
<thead>
<tr>
<th>F0</th>
<th>A1</th>
<th>A0</th>
<th>Read.head address</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
<td>Read.head address 0</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>Read.head address 1</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>0</td>
<td>Read.head address 2</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>1</td>
<td>Read.head address 3</td>
</tr>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Send position value</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>Send results of diagnosis</td>
</tr>
</tbody>
</table>

Data from reading head

Function number for reading head F0 = 0 (Transmitting positional value)

<table>
<thead>
<tr>
<th>Err</th>
<th>DB</th>
<th>OUT</th>
<th>SST</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>Current positional value in P00...P18, binary coded</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>Reading head outside code rail, no positional value (see OUT message)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>Current positional value in P00...P18, binary coded</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>No positional value, reading head outside code rail (see OUT message)</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>No positional value, error signal from reading head, error number in P00...P04, binary coded</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>Current speed unknown, last speed in SP0...SP6 *)</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>Current speed in SP0...SP6 *)</td>
</tr>
</tbody>
</table>

*) Speed information

SP0...SP6...

- Speed in 0.1 m/s, binary coded
- 0: Speed less than 0.1 m/s
- 126: Speed higher than 12.5 m/s
- 127: Speed unknown

Examples:

<table>
<thead>
<tr>
<th>SP0...SP6</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Speed 0.1 m/s</td>
</tr>
<tr>
<td>37</td>
<td>Speed 3.7 m/s</td>
</tr>
<tr>
<td>112</td>
<td>Speed 11.2 m/s</td>
</tr>
</tbody>
</table>

Diagnosis function F0=1

The reading head can be requested to perform a diagnosis of the optoelectronics by means of the request byte. The reading head must be outside the code rail. On reading head types WCS2B and WCS3B, the degree of dirt accumulation on the optical unit is monitored automatically during operation and the diagnosis bit (DB) set if dirt accumulation is too high. Thus the specific request for diagnosis to the reading head via F0 in the request byte is no longer necessary. However for reasons of downwards compatibility this function is also supported by the new reading heads.

Diagnosis bit DB

<table>
<thead>
<tr>
<th>Err</th>
<th>DB</th>
<th>OUT</th>
<th>Description</th>
<th>State optical system reading head</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Diagnosis invalid, reading head not outside code rail</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Diagnosis result in P16...P18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P16...P18 = 0</td>
<td>good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P16...P18 > 0</td>
<td>bad</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>Error signal from reading head, error no. in P00...P04, binary coded</td>
<td>-</td>
</tr>
</tbody>
</table>

OUT signal

<table>
<thead>
<tr>
<th>Err</th>
<th>DB</th>
<th>OUT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>P00...P18 = 0 -> Reading head is partially out of the code rail</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>P00 =1,P02...P18 = 0 -> Reading head is complete out of the code rail</td>
</tr>
</tbody>
</table>

OUT means that the positional value cannot be determined as the position of the code rail in the reading head gap is not correct.

OUT A (A=All) means that no code rail is located in the reading head gap; all light barriers of the reading head report signal.

The "OUT" message may be requested and desired, when the code rail is interrupted, for example, and the WCS (or the reading head) sends this information to the control between the individual rail sections. If the "OUT" message must not occur, the following test steps have to be carried out:

<table>
<thead>
<tr>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of code rail is outside tolerance range of reading head</td>
</tr>
<tr>
<td>Align code rail exactly</td>
</tr>
<tr>
<td>Align reading head</td>
</tr>
<tr>
<td>Use guide system for reading head</td>
</tr>
</tbody>
</table>

If these measures do not solve the problem, the reading head must be sent for repair.

ERR signal

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reading head cannot calculate positional value because:</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Optical unit is dirty</td>
<td>Provide for optical system to be cleaned</td>
</tr>
<tr>
<td>3</td>
<td>Plastic liners are scratched</td>
<td>Align reading head and code rail correctly.</td>
</tr>
<tr>
<td>4</td>
<td>Light barriers have failed.</td>
<td>Replace the plastic shells</td>
</tr>
<tr>
<td>5</td>
<td>Direction of reading head relative to code rail incorrect</td>
<td>Install reading head correctly, see p. 10ff et seqq.</td>
</tr>
<tr>
<td>6</td>
<td>Data transmission error between reading head and interference module, data transmission is disturbed</td>
<td>Check cable connection from reading head to interface module; check shielding concept; check EM compatibility of system</td>
</tr>
<tr>
<td>7</td>
<td>Reading head cannot be activated by interface module</td>
<td>Check cable connection from reading head to the interface module; check operating voltage of the reading head</td>
</tr>
<tr>
<td>8</td>
<td>Reading head is in initialising or diagnosis routine</td>
<td>Wait completion of initialising; end diagnosis (set selector switch on the interface module to 0 ... 7)</td>
</tr>
<tr>
<td>9</td>
<td>Interface module is not been for communication with several reading heads</td>
<td>Send interface module in for correct configuration to be set</td>
</tr>
<tr>
<td>10</td>
<td>RAM error in the interface module</td>
<td>Send interface module in for repair</td>
</tr>
<tr>
<td>11</td>
<td>EPROM error in the interface module</td>
<td>Send interface module in for repair</td>
</tr>
</tbody>
</table>
Connection of RS485 reading heads to interface module/control

The RS485 interface, which permits several end/of/line devices to be interconnected via a bus line has proved extremely successful in practice. Due to its reliability, it is used with many bus systems such as Profibus. In the WCS system, the RS 485 interface is used for data communication between reading head and control. Also when Pepperl+Fuchs interface modules are used, data transmission between the reading heads and the interface module takes place via an RS 485 interface.

Reading head addresses

If several devices are interconnected in a bus, the bus users have to have different addresses. The data in the bus can then be clearly assigned by means of the relevant bus address. The WCS bus is designed in such a way that the control or interface module functions as master. The WCS reading heads are slave users and are cyclically polled by the master.

If only one reading head is connected to the control or interface module, this reading head always receives the address 0.

A maximum of four WCS reading heads (addresses 0 ... 3) can be connected to an interface module or an RS485 interface of the control by an RS485 bus line.

The reading head is available with four different addresses. The reading head address is included in the type designation (see also p. 51). WCS2 and WCS3 reading heads can be connected up in one bus line.

Example:

LS221-0: Reading head with the address 0
LS221-1: Reading head with the address 1.

If the address is not clearly stated, e. g. LS221, this synonymous with address 0. The master does not require an address of its own, however it must know the number of reading heads connected. On this point, see the description of the relevant interface module.

Information and installation hints for configuration of the reading head address can be requested from us or downloaded from our Internet home page.

Cable routing in RS485 bus

The data cable must be installed in such a way that an in-line connection always results between the first and the last bus user. This in-line connection must be terminated at the beginning and the end by a terminating resistor (resistance value: 120 ... 150 Ohm).

The RS485 terminating resistors are integrated into the WCS reading heads and the WCS interface modules and can be activated or deactivated.

In the case of interface modules with field bus interface (Profibus, DeviceNet, CAN-open), the terminating resistors can be activated or deactivated from outside. This is not possible in the case of the interface module with parallel interface and the WCS reading heads due to the type of housing and protection class. Thus when ordering, it must be stated whether the device is to be supplied with or without RS 485 terminating resistor.

In the simplest case, only one reading head is connected to the control or the interface module. In this case, there is one device at the beginning and one device at the end of the data line. The RS485 terminating resistor is activated on both devices.

If two reading heads are connected to a serial communications channel or interface module, two wiring versions are possible:
Version A:
The RS 485 terminating resistor is activated on both reading heads. In this case, there is a reading head both at the beginning and the end of the data line, the interface module is in between.
It has no terminating resistor.
In this version, each reading head is connected to the interface module with a separate data cable.

Version B:
The interface module is at the beginning of the data line, with the RS 485 terminating resistor activated.
The RS485 terminating resistor is also activated on the reading head at the end of the data line. The second reading head has no terminating resistor. is connected to the in-line connection between the interface module and the first reading head with a short spur line (length <1 m). The BT111 bus terminal is used to connect the spur line (see p. 47).
The decision as to which of the wiring versions is more suitable must be taken dependent on the individual application.
If three or four reading heads are used on the same interface module, they must be connected between the end-of-line devices to the in-line connection via spur lines (as in version b).

Examples:

Example 1:
The longitudinal and vertical travel of a transport vehicle is to be measured. The control and the interface module are on the vehicle, i.e. the control travels together with the vehicle. The length of the data cable between the reading heads and the interface module is relatively short. In this case it is an advantage to connect each reading head to the interface module with a separate data cable. Both reading heads are equipped with RS 485 terminating resistors, the interface module has no resistor (version a).

Example 2:
On a crane, the travel along the crane runway and the crane bridge is to be measured. The control and the interface module are in a control centre, i.e. the control is stationary (Fig. 2). The distance between the interface module and the reading heads is great. In this application, it is advisable to connect both reading heads to the interface module with one data cable. The reading head on the crane bridge and the interface module are equipped with the RS 485 terminating resistor. The second reading head on the crane runway has no terminating resistor. It is connected to the data cable via a short spur line (version b).
BT111 bus terminal

The bus terminal is used as terminal connection when a reading head is connected to the RS 485 data line via a spur line (see also p. 45).

It can also be used to reduce the cross-section of data cables, e.g., if due to the diameter of a cable (festoon cable) it is possible to connected the reading head directly to the incoming data cable. The bus terminal provides an optimum connection of the data lines and the shielding so that reliable data transmission is always ensured.

The PG glands on the bus terminal are suitable for cable diameters of 5 ... 9 mm.

BT111 terminal connection

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UB+</td>
<td>UB+ (24 V DC)</td>
</tr>
<tr>
<td>SDA</td>
<td>Data line RS 485+</td>
</tr>
<tr>
<td>SDB</td>
<td>Data line RS 485</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>PE</td>
<td>Protective earth</td>
</tr>
</tbody>
</table>

Dimensions of the bus terminal BT 111

The housing of the bus terminal must be connected to PE.
Data cables and accessories

RS485 data cable
A 4-wire paired shielded data cable must be used for the RS 485 data transmission. One pair of wires is used for the supply voltage and one pair for the RS 485 data connection. The maximum length of the cable depends on the one hand on the capacity of the data cable (wire to wire) for data transmission, on the other hand on the cross-section of the cables for the voltage supply of the reading heads. A small wire cross-section and thus a low cable capacity is an advantage for data transmission, however for the voltage supply as great a cross-section as possible is desirable. The table below illustrates the cable lengths possible dependent on the cable cross-section.

The calculations are based on the most unfavourable case: All the reading heads are at the end of the data line. In the case of long cable lengths and if several WCS2 reading heads with heating facility are connected, 6-wire data cables (3 x 2) can be used. In this case, two pairs are used for voltage supply (doubling the cable cross-section) and one pair for the RS 485 data line.

The table shows the cable lengths possible dependent on the cable capacity (wire to wire). The number of reading heads connected is immaterial.

SSI data cable
A 6-wire shielded data cable (3 x 2 paired) must be used for the SSI data transmission. One pair of wires is used for the voltage supply, one pair for the CLK and one pair for the DATA data line. The cable lengths technically possible can be seen from the tables.

Data cables WCS-DCS / WCS-DCF
Two types of data cable are offered:
• WCS-DCS for stationary installation
• WCS-DCF installation in festoon systems and chains

The data cables are paired and have a tinned braided cable shield. The braiding encloses all the wire pairs. The parameters of the data cables suitable for RS 485 and SSI data transmission are listed in the table below.

overview of cable sockets and adapter cables
Confectionable cable sockets M12 x 1

Shielded connection cable with cable sockets M12 x 1

Other connection cables on request
Data cables and accessories

To be used for	Order designation	Description
WCS2 - WCS2B | # V19-G-1M-PUR ABG-V423-G | M12 cable socket, 8-pole / connector, 6-pole
WCS2A - WCS2B | | |
SSI interface | | M12 cable socket, 5-pole / SUBD connector, 9-pole
WCS3 - WCS3B | V15-G-0,5M-PUR-ABG-SUBD9 | |
WCS3A - WCS3B | | |
RS485 interface | | M12 cable socket, 8-pole / SUBD connector, 9-pole
SSI interface | V19-G-0,5M-PUR-ABG-SUBD9 | |

The data sheets of the connecting and adapter cables can be downloaded from the Pepperl+Fuchs website at http://www.pepperl-fuchs.com.

Cable installation

The precondition for trouble-free data transmission is that the data cables are installed in such a way as to prevent interference from electromagnetic fields and other disturbances. In order to install the cables to ensure EMC, it is necessary to divide them into groups and install these groups separately.

Group A
- shielded data cables (also analogue)
- unshielded cables for direct and alternating voltages 0 V to 60 V
- shielded cables for direct and alternating voltages 0 V to 230 V
- coaxial cables for monitors

Group B
- unshielded cables for direct and alternating voltages 60 V to 400 V

Group C
- unshielded cables for direct and alternating voltages greater than 400 V

Shielding of cables

Shielding is a means of reducing electromagnetic interference. To prevent these error currents themselves becoming a source of interference, a low-ohm or low-impedance connection to the protective earth is particularly important. Use only cables with shielding braided shield (avoid foil shields). The shield is brought into contact on both sides, i.e. in the panel box and on the reading head (via the cable lug on the reading head housing).

In exceptional cases, connecting the shield on one side only may be better, if
- no equipotential cable is or can be installed and/or
- a foil shield is used.

The following points must also be observed for shielding:
- Use metal cable clips which enclose the shield over a large area.
- Bring the cable shield into contact with the earth bar immediately after its entry into the panel box.
- Lead protective earth connections to a point in star form.
- Use the largest cable cross-sections possible for grounding.

Note:

- Shielding is an essential part of the installation process.
- Ensure that the cables are properly shielded to prevent interference.
- Use the largest possible cable sections to reduce impedance and improve grounding.
- Follow the manufacturer’s instructions for proper installation.
Notes for use

Break in code rail

The WCS principle permits a break in the code rail. A minimum gap of 85 mm between two code rail sections must be observed. The reading head recognises that it is leaving the code rail and signals "OUT" to the control.

![Fig. 1 Break in code rail](image)

Due to the length of the reading head, the total width of the OUT window is:

\[B = A + 160 \text{ mm} \]

Replacing a code rail

If a code rail is bent or destroyed, it can be remedied as follows: Try to bend the code rail back into shape. Make sure that the reading head does not brush against the code rail when travelling over this section. If it is not possible to bend the code rail back into shape, the complete rail or a section of it must be replaced. On short runways, it is preferable to replace the complete code rail, on longer runways it is possible to replace the damaged section only.

Calculate the beginning and end position of the code rail to be replaced. The section of code rail is ordered stating these two positional values and the type of code rail (WCS2, WCS3, stainless steel, laminate, height).

Replacing the complete code rail

The method of replacing the code rail is analogous to that for initial installation. To avoid having to reprogram the stopping positions in the control, the following sequence is to be recommended:

1. Move reading head to a defined position, fix it in position and read positional value
2. Remove code rail
3. Insert code rail and move it until the reading head signals the same position to the control as for the old code rail.
4. Fix the code rail in position

Replacing a section

If a section is replaced, the replacement section must overlap the installed code rail at the beginning and the end by approx. 10 cm. This additional length at the beginning and the end must be taken into account when calculating the beginning and end position of the code rail to be replaced.

Cut out the faulty section of code rail. Place the replacement section onto the code rail so that the code pattern of both rails matches. Join the replacement section to the existing code rail. Recommended method of joining the code rails:

- Stainless steel: spot welding, riveting
- Laminate: riveting, stapling

Repair set for code rails

A repair set is available to order for WCS3 code rails - WCS3-CS70-REP. This repair set can be used to replace defective sections of a code rail up to 900 mm. The repair set contains a 1 meter transparent code strip, which contains the raster of the code rail, as well as a black strips of various width for the code webs of the code rail. The code raster of the defective code, which is still recognizable as a rule even in case of a destroyed code rail, is copied by sticking the transparent carrier. The finished copy is than placed into the existing code rail.

Difficult ambient conditions

The WCS scans the code rail opto-electronically. The optical system prevents use in paint cabins or in installations with water vapour or spray. However the WCS2 has proved successful in dusty ambiances (e. g. foundries). In these ambiances, we recommend using the WCS2 reading head with the aluminium profile system (see p. 18 et seqq.). The WCS2 reading head will receive additional protection from being installed in a guide trolley. Due to the installation in the guide trolley, the WCS2 reading head is protected additionally. As an option, brushes for cleaning the code rail may also be attached to the guide trolley.

Cleaning the reading head

The quick-action lock on the mounting plate enables the reading head to be removed within a few seconds. After removal, the transparent protective liners which protect the reading area of the reading head are cleaned using a clean cotton rag. If they are very soiled, the liners can also be easily removed and cleaned with warm water (if necessary with the addition of washing-up liquid). If the surface is scratched, the protective liners must be replaced (see also page 13).

Outdoor use

For WCS applications in the open air we recommend the WCS2 system:

- Use of the WCS2 reading head with space heating facility
- Installing code rail with aluminium profile system (see p. 18 et seqq.)
- Aluminium profile system suspended, i. e. code rail points downwards (any dirt falls downwards)
- Use of stainless steel code rail (increased temperature range of stainless steel code rail)
- Guide trolley with cleaning brush option (additional enclosure for reading head and code rail cleaned if it should become soiled) and steel wheels
- Instal WCS system in a sheltered position or protect with a suitable roof (do not install on weather side, rain or snow must not enter gap in reading head)

You will find further notes for use on our Internet homepage http://www.pepperl-fuchs.com.
Type summary

Type summary for reading heads

<table>
<thead>
<tr>
<th>WCS-LS</th>
<th>Reading head address</th>
<th>Option(s)</th>
<th>Data protocol</th>
<th>Baud rate</th>
<th>Hardware</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B</td>
<td>WCS2B reading head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>WCS3B reading head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baud rate
- Reading head with RS 485 interface
 1. 14.75 kBaud
 2. 62.50 kBaud
 3. 31.25 kBaud
 4. 19.20 kBaud
 5. 9.60 kBaud
 6. 38.40 kBaud
- Reading head with SSI interface
 1. 100 ... 1,000 kHz
- Reading head with CANopen interface
 1. 125, 250, 500 kBaud, 1 MBaud

Data protocol
- Reading head with RS 485 interface
 1. Data protocol 1, data protocol 2 (*)
 6. Data protocol 3 with even parity (9 Bit/Byte)
 7. Data protocol 3 without parity (8 Bit/Byte)
- Reading head with SSI interface
 0. Data output in binary code
 1. Data output in Gray code
- Reading head with CANopen interface
 0. Data output in binary code

Option(s)
- Reading head with option heating
- Reading head with option velocity output
- Reading head with option integrated display

Reading head address
- Reading head address 0
- Reading head address 1
- Reading head address 2
- Reading head address 3

(* Data protocol as per request byte to reading head

Information and installation hints for configuration of the reading head address can be downloaded from our website http://www.pepperl-fuchs.com.

Type summary for interface modules

Reading heads type LS211 are connected to interface modules type "I".

Note: The "2" in types WCS-IS320 and IS321 means that a reading head type LS221-0 is connected.

<table>
<thead>
<tr>
<th>WCS-I</th>
<th>Number of reading heads</th>
<th>Data output</th>
<th>Terminating resistor</th>
<th>Hardware</th>
<th>Interface</th>
<th>Interface module type "I"</th>
</tr>
</thead>
</table>

Interface
- P Parallel interface
- S Serial interface

Hardware
- Parallel interface
- Serial interface

Terminating resistor
- With RS 485 terminating resistor
- Without RS 485 terminating resistor

Data output
- 0 Binary code
- 1 Gray code
Technical data

Code rail

<table>
<thead>
<tr>
<th>Code rail</th>
<th>Aluminium profile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS2</td>
<td>Aluminium profile rail</td>
</tr>
<tr>
<td>Minimum radius of bend</td>
<td>Material</td>
</tr>
<tr>
<td>Length</td>
<td>Weight</td>
</tr>
<tr>
<td>Height</td>
<td>Temperature range</td>
</tr>
<tr>
<td>WCS3</td>
<td>-40 °C ... 70 °C</td>
</tr>
<tr>
<td>Minimum radius of bend</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td>Length</td>
<td>Minimum radius of bend</td>
</tr>
<tr>
<td>Height</td>
<td>WCS3: 700 mm</td>
</tr>
</tbody>
</table>

Stainless steel code rail

<table>
<thead>
<tr>
<th>Code rail</th>
<th>Aluminium profile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Joint for aluminium profile rail</td>
</tr>
<tr>
<td>X 12 Cr Ni 17 7</td>
<td>Material</td>
</tr>
<tr>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>0.5 mm</td>
<td>Rail holder</td>
</tr>
<tr>
<td>Weight</td>
<td>Material</td>
</tr>
<tr>
<td>55 mm: 175 g/m</td>
<td>WCS3: POM</td>
</tr>
<tr>
<td>70 mm: 240 g/m</td>
<td>Weight</td>
</tr>
<tr>
<td>Storage and operating temperature</td>
<td>Fixing cord</td>
</tr>
<tr>
<td>-40 °C ... 80 °C</td>
<td>Material</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>Weight</td>
</tr>
<tr>
<td>1.6 x 10⁻⁵ K⁻¹</td>
<td>Powder-coated version</td>
</tr>
</tbody>
</table>

Aluminium profile system

<table>
<thead>
<tr>
<th>Aluminium profile rail</th>
<th>WCS2 guide trolley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>WCS2 guide trolley for aluminium profile system</td>
</tr>
<tr>
<td>WCS2</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Weight</td>
</tr>
<tr>
<td>WCS3</td>
<td>Wheels Diameter: 21.5 mm</td>
</tr>
<tr>
<td>Wheels with ball-bearing (2RS bearings)</td>
<td>Temperature range</td>
</tr>
<tr>
<td>WCS3</td>
<td>Speed</td>
</tr>
<tr>
<td>Joint for aluminium profile rail</td>
<td>Powder-coated version</td>
</tr>
<tr>
<td>Material</td>
<td>Material</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Weight</td>
</tr>
<tr>
<td>WCS2 code rail</td>
<td>BT111 bus terminal</td>
</tr>
<tr>
<td>55 mm: 4,500 N</td>
<td>Housing</td>
</tr>
<tr>
<td>70 mm: 6,500 N</td>
<td>Weight</td>
</tr>
<tr>
<td>WCS3 code rail</td>
<td>Protection to EN 60 529</td>
</tr>
<tr>
<td>5,000 N</td>
<td>Operating temperature</td>
</tr>
<tr>
<td>WCS2 guide trolley</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>Material</td>
<td>Connection</td>
</tr>
<tr>
<td>WC52</td>
<td>No. of PG glands</td>
</tr>
<tr>
<td>Material</td>
<td>External diameter of connection cable</td>
</tr>
</tbody>
</table>

Mounting bracket

<table>
<thead>
<tr>
<th>Mounting bracket</th>
<th>BT111 bus terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>BT111 bus terminal</td>
</tr>
<tr>
<td>Galvanized steel sheet, thickness 2 mm</td>
<td>Housing</td>
</tr>
<tr>
<td>Temperature range</td>
<td>Weight</td>
</tr>
<tr>
<td>-40 °C ... 100 °C</td>
<td>Protection to EN 60 529</td>
</tr>
<tr>
<td>Weight without fastening screws</td>
<td>Operating temperature</td>
</tr>
<tr>
<td>Straight: 125 g for curves: 85 g</td>
<td>Relative humidity</td>
</tr>
</tbody>
</table>

Stabilizing profile

<table>
<thead>
<tr>
<th>Stabilizing profile</th>
<th>BT111 bus terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilizing profile for curves</td>
<td>BT111 bus terminal</td>
</tr>
<tr>
<td>Material</td>
<td>Housing</td>
</tr>
<tr>
<td>PVC</td>
<td>Weight</td>
</tr>
<tr>
<td>Storage and operating temperature</td>
<td>Protection to EN 60 529</td>
</tr>
<tr>
<td>-40 °C ... 60 °C</td>
<td>Operating temperature</td>
</tr>
<tr>
<td>Weight</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>100 g/m</td>
<td>Connection</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>No. of PG glands</td>
</tr>
</tbody>
</table>

Aluminium profile system

<table>
<thead>
<tr>
<th>Aluminium profile rail</th>
<th>Aluminium profile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Aluminium profile rail</td>
</tr>
<tr>
<td>WCS2</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Weight</td>
</tr>
<tr>
<td>WCS3</td>
<td>Temperature range</td>
</tr>
<tr>
<td>-40 °C ... 70 °C</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Minimum radius of bend</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>WCS2: 1.000 mm</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Fixing cord</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Weight</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Powder-coated version</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Film thickness</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>WCS2 guide trolley</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>WCS2 guide trolley</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>WCS2 guide trolley for aluminium profile system</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Weight</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Wheels Diameter: 21.5 mm</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Wheels with ball-bearing (2RS bearings)</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Speed</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Powder-coated version</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Film thickness</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Mounting bracket</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium profile system</td>
<td>Temperature range</td>
</tr>
</tbody>
</table>

Aluminium profile system

<table>
<thead>
<tr>
<th>Aluminium profile rail</th>
<th>Aluminium profile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Aluminium profile rail</td>
</tr>
<tr>
<td>WCS2</td>
<td>Material</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Weight</td>
</tr>
<tr>
<td>WCS3</td>
<td>Temperature range</td>
</tr>
<tr>
<td>-40 °C ... 70 °C</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Minimum radius of bend</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>WCS2: 1.000 mm</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Fixing cord</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Material</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Weight</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Powder-coated version</td>
</tr>
<tr>
<td>Stabilizing profile</td>
<td>Film thickness</td>
</tr>
</tbody>
</table>
WCS2B / WCS3B reading head

<table>
<thead>
<tr>
<th>Property</th>
<th>WCS2B / WCS3B reading head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>Plastic</td>
</tr>
<tr>
<td>Weight</td>
<td>500 g</td>
</tr>
<tr>
<td>Protection to EN 60529</td>
<td>IP 54</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>90% at 20 °C, 50% at 40 °C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C ... 60 °C</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>10 ... 30 VDC</td>
</tr>
<tr>
<td>Power consumption</td>
<td>2 VA</td>
</tr>
<tr>
<td>Interference immunity</td>
<td>EN 61000-6-2</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>EN 60068-2-6</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>EN 60068-2-27</td>
</tr>
<tr>
<td>Resolution 1</td>
<td>1,200 positions/m = 0.833 mm</td>
</tr>
<tr>
<td>Resolution 2</td>
<td>1,250 positions/m = 0.80 mm</td>
</tr>
<tr>
<td>Speed</td>
<td>Max. 12.5 m/s</td>
</tr>
</tbody>
</table>

SSI interface

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pulses h</td>
<td>25 or 26</td>
</tr>
<tr>
<td>Number of revs</td>
<td>4,096, effective 512</td>
</tr>
<tr>
<td>Resolution/rev.</td>
<td>4,096, effective 1,024</td>
</tr>
<tr>
<td>Positional output</td>
<td>19 Bit binary code or 19 Bit Gray code</td>
</tr>
<tr>
<td>Rest period</td>
<td>tp = min. 20 µs</td>
</tr>
<tr>
<td>Double interrogation same pos.</td>
<td>possible, if tp < 10 µs</td>
</tr>
</tbody>
</table>

Input stage	Optocoupler input
Input voltage	± 3 ... 5 mA
Input current	7 ... 20 mA
Input frequency	100 ... 1,000 mA

Interface module

<table>
<thead>
<tr>
<th>Property</th>
<th>Interface module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>Plastic</td>
</tr>
<tr>
<td>Weight</td>
<td>200 g</td>
</tr>
<tr>
<td>Protection to EN 60529</td>
<td>IP 20</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C ... 40 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>90% at 20 °C, 50% at 40 °C/ 55 °C, non-dew</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>24 VDC ± 20 %</td>
</tr>
<tr>
<td>Power consumption</td>
<td>2 VA (without reading head)</td>
</tr>
<tr>
<td>Interference immunity</td>
<td>EN 61000-6-2</td>
</tr>
<tr>
<td>Emitted interference</td>
<td>EN 55011, Cl. A</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>EN 60068-2-6 sinus, 10...500 Hz, 4g, 10 cycles</td>
</tr>
<tr>
<td>Shock resistance</td>
<td>EN 60068-2-27 half-sinus, 15g, 11 ms</td>
</tr>
</tbody>
</table>

Switching type	RS 485
Output voltage	≤ 5 V
Output current	Max. 60 mm
Code rail

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS2 code rail</td>
<td></td>
</tr>
<tr>
<td>WCS2 code rail, 55 mm, plastic laminate</td>
<td>WCS2-CS55-L1</td>
</tr>
<tr>
<td>WCS2 code rail, 70 mm, plastic laminate</td>
<td>WCS2-CS70-L1</td>
</tr>
<tr>
<td>WCS2 code rail, 55 mm, stainless steel</td>
<td>WCS2-CS55-M1</td>
</tr>
<tr>
<td>WCS2 code rail, 70 mm, stainless steel</td>
<td>WCS2-CS70-M1</td>
</tr>
<tr>
<td>WCS3 code rail</td>
<td></td>
</tr>
<tr>
<td>WCS3 code rail, 70 mm, plastic laminate, without mounting bracket holes</td>
<td>WCS3-CS70-L0</td>
</tr>
<tr>
<td>WCS3 code rail, 70 mm, plastic laminate, with standard mounting bracket holes</td>
<td>WCS3-CS70-L1</td>
</tr>
<tr>
<td>WCS3 code rail, 70 mm, plastic laminate, with Vahle VKS mounting bracket holes</td>
<td>WCS3-CS70-L2</td>
</tr>
<tr>
<td>WCS3 code rail, 70 mm, stainless steel, with standard mounting bracket holes</td>
<td>WCS3-CS70-M1</td>
</tr>
</tbody>
</table>

Repair set for WCS3 code rail

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair set for WCS3 code rail</td>
<td>WCS3-CS70-REP</td>
</tr>
</tbody>
</table>

Tensioning device for stainless steel code rail

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensioning device for stainless steel code rail</td>
<td>WCS3-MT1</td>
</tr>
</tbody>
</table>

Mounting bracket system for WCS code rail

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting bracket, straight section</td>
<td>WCS-MB</td>
</tr>
<tr>
<td>Screw-on mounting bracket, straight section</td>
<td>WCS-MB1</td>
</tr>
<tr>
<td>Mounting bracket for C profile, straight section</td>
<td>WCS-MB2</td>
</tr>
<tr>
<td>Mounting bracket, bend</td>
<td>WCS-MB-B</td>
</tr>
<tr>
<td>Screw-on mounting bracket, bend</td>
<td>WCS-MB1-B</td>
</tr>
<tr>
<td>Mounting bracket for C profile, bend</td>
<td>WCS-MB2-B</td>
</tr>
<tr>
<td>Stabilising profile for WCS code rail (for mounting bracket, bend)</td>
<td>WCS-SP2</td>
</tr>
<tr>
<td>Powder-coated version</td>
<td></td>
</tr>
<tr>
<td>Mounting bracket, straight section</td>
<td>WCS-MB-B-C</td>
</tr>
<tr>
<td>Mounting bracket for C profile, straight section</td>
<td>WCS-MB2-B-C</td>
</tr>
</tbody>
</table>

WCS2 aluminium profile system

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS2 aluminium profile complete with 55 mm laminate code rail and fixing cord</td>
<td>WCS2-CS55-L1-PS1 SET</td>
</tr>
<tr>
<td>WCS2 aluminium profile complete with 55 mm stainless steel code rail and fixing cord</td>
<td>WCS2-CS55-M1-PS1 SET</td>
</tr>
<tr>
<td>WCS2 aluminium profile rail</td>
<td>WCS2-PS1</td>
</tr>
<tr>
<td>Fixing cord</td>
<td>WCS-MF1</td>
</tr>
<tr>
<td>Connector</td>
<td>WCS2-MC1</td>
</tr>
<tr>
<td>Screw-on holder</td>
<td>WCS2-MH</td>
</tr>
<tr>
<td>Screw-on holder for screw connections</td>
<td>WCS2-MH1</td>
</tr>
<tr>
<td>Rail holder for installation in C profile rail</td>
<td>WCS2-MH2</td>
</tr>
<tr>
<td>Locking angle for aluminium profile rail</td>
<td>WCS2-LB1</td>
</tr>
<tr>
<td>Guide trolley for reading head</td>
<td>WCS2-GT09-P1</td>
</tr>
<tr>
<td>Optional cleaning brushes for guide trolley</td>
<td>WCS2-GT-BR</td>
</tr>
<tr>
<td>Fitting tools for WCS2 aluminium profile system</td>
<td>WCS2-FT1</td>
</tr>
<tr>
<td>Powder-coated version</td>
<td></td>
</tr>
<tr>
<td>WCS2 aluminium profile powder-coated, complete with 55 mm stainless steel code rail and fastening cord</td>
<td>WCS2-CS55-M1-PS1-C SET</td>
</tr>
<tr>
<td>WCS2 aluminium profile powder-coated, complete with 55 mm laminate code rail and fixing cord</td>
<td>WCS2-CS55-L1-PS1-C SET</td>
</tr>
<tr>
<td>Rail connection for powder-coated aluminium profile rail made of stainless steel</td>
<td>WCS2-MC2</td>
</tr>
<tr>
<td>Locking angle for powder-coated aluminium profile rail</td>
<td>WCS2-LB1-C</td>
</tr>
<tr>
<td>Powder-coated guide care for reading head</td>
<td>WCS2-GT09-P1-C</td>
</tr>
</tbody>
</table>

WCS3 aluminium profile system

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCS3 aluminium profile complete with 70 mm laminate code rail and fixing cord</td>
<td>WCS3-CS70-L1-PS1 SET</td>
</tr>
<tr>
<td>WCS3 aluminium profile complete with 70 mm stainless steel code rail and fixing cord</td>
<td>WCS3-CS70-M1-PS1 SET</td>
</tr>
<tr>
<td>WCS3 aluminium profile rail</td>
<td>WCS3-PS1</td>
</tr>
<tr>
<td>Fixing cord</td>
<td>WCS-MF1</td>
</tr>
<tr>
<td>Rail connection for aluminium profile rails</td>
<td>WCS3-MC1</td>
</tr>
<tr>
<td>Screw-on holder</td>
<td>WCS3-MH</td>
</tr>
<tr>
<td>Screw-on holder for screw connections</td>
<td>WCS3-MH1</td>
</tr>
<tr>
<td>Screw-on holder for installation in C profile</td>
<td>WCS3-MH2</td>
</tr>
<tr>
<td>Fitting tools for WCS3 aluminium profile system</td>
<td>WCS3-FT1</td>
</tr>
</tbody>
</table>

Subject to reasonable modifications due to technical advances. Copyright Pepperl-Fuchs, Printed in Germany

Pepperl+Fuchs Group • Tel.: Germany +49 621 776-0 • USA +1 330 4253555 • Singapore +65 67799091 • Internet http://www.pepperl-fuchs.com
Interface modules

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface module with parallel interface Binary code, with RS 485 terminating resistor</td>
<td>WCS-IP110</td>
</tr>
<tr>
<td>Interface module with parallel interface Binary code, without RS 485 terminating resistor</td>
<td>WCS-IP120</td>
</tr>
<tr>
<td>Interface module with parallel interface Gray code, with RS 485 terminating resistor</td>
<td>WCS-IP111</td>
</tr>
<tr>
<td>Interface module with parallel interface Gray code, without RS 485 terminating resistor</td>
<td>WCS-IP121</td>
</tr>
<tr>
<td>Interface module with SSI interface For reading head type LS211, binary code</td>
<td>WCS-IS310</td>
</tr>
<tr>
<td>Interface module with SSI interface For reading head type LS211, Gray code</td>
<td>WCS-IS311</td>
</tr>
<tr>
<td>Interface module with SSI interface For reading head type LS221, binary code</td>
<td>WCS-IS320</td>
</tr>
<tr>
<td>Interface module with SSI interface For reading head type LS221, Gray code</td>
<td>WCS-IS321</td>
</tr>
<tr>
<td>Interface module with Profibus DP interface</td>
<td>WCS-PG210</td>
</tr>
<tr>
<td>Interface module with DeviceNet interface</td>
<td>WCS-DG210</td>
</tr>
<tr>
<td>Interface module with CANopen interface</td>
<td>WCS-CG210</td>
</tr>
<tr>
<td>Interface module with InterBus-S interface</td>
<td>WCS-IG110</td>
</tr>
<tr>
<td>Interface module with Profinet interface</td>
<td>WCS-PNG110</td>
</tr>
<tr>
<td>Interface module with Modbus-RTU interface</td>
<td>WCS-MBG110</td>
</tr>
</tbody>
</table>

WCS2B reading heads, selection

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading head with RS 485 interface, 187.5 kBaund With RS 485 terminating resistor</td>
<td>WCS2B-LS211</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 187.5 kBaund Without RS 485 terminating resistor</td>
<td>WCS2B-LS211</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 62.5 kBaund With RS 485 terminating resistor</td>
<td>WCS2B-LS221</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 62.5 kBaund Without RS 485 terminating resistor</td>
<td>WCS2B-LS212</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 19.2 kBaund Data protocol 3, with RS 485 terminating resistor</td>
<td>WCS2B-LS246</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 19.2 kBaund Data protocol 3, without RS 485 terminating resistor</td>
<td>WCS2B-LS246</td>
</tr>
<tr>
<td>Reading head with SSI interface Binary code</td>
<td>WCS2B-LS310</td>
</tr>
<tr>
<td>Reading head with SSI interface Gray code</td>
<td>WCS2B-LS311</td>
</tr>
</tbody>
</table>

Options for WCS2B reading heads

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option heating</td>
<td>WCS2B-LS...H</td>
</tr>
</tbody>
</table>

WCS3B reading heads, selection

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading head with RS 485 interface, 187.5 kBaund, with RS 485 terminating resistor</td>
<td>WCS3B-LS211</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 187.5 kBaund, without RS 485 terminating resistor</td>
<td>WCS3B-LS111</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 62.5 kBaund, with RS 485 terminating resistor</td>
<td>WCS3B-LS221</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 62.5 kBaund, without RS 485 terminating resistor</td>
<td>WCS3B-LS121</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 19.2 kBaund, with RS 485 terminating resistor, data protocol 3</td>
<td>WCS3B-LS246</td>
</tr>
<tr>
<td>Reading head with RS 485 interface, 19.2 kBaund, without RS 485 terminating resistor, data protocol 3</td>
<td>WCS3B-LS146</td>
</tr>
<tr>
<td>Reading head with SSI interface, binary code</td>
<td>WCS3B-LS310</td>
</tr>
<tr>
<td>Reading head with SSI interface, Gray code</td>
<td>WCS3B-LS311</td>
</tr>
<tr>
<td>Reading head with CANopen interface</td>
<td>WCS3B-LS410</td>
</tr>
<tr>
<td>Reading head with RS485 interface, 62.5 kBaund with RS485 terminating resistor, with optional speed output and integrated display</td>
<td>WCS3B-LS221SD</td>
</tr>
</tbody>
</table>

Options for WCS3B reading heads

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option heating</td>
<td>WCS3B-LS...H</td>
</tr>
<tr>
<td>Option integrated position display</td>
<td>WCS3B-LS...D</td>
</tr>
<tr>
<td>Option digital velocity output</td>
<td>WCS3B-LS...S</td>
</tr>
</tbody>
</table>

Spare parts for reading heads

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liners with sealing (packaging unit = 2 pcs) for reading heads WCS2, WCS2A and WCS2B, SSI interface</td>
<td>WCS2-PL2</td>
</tr>
<tr>
<td>Liners with sealing (packaging unit = 2 pcs) for reading heads WCS3 and WCS3A.</td>
<td>WCS3-PL2</td>
</tr>
<tr>
<td>Liners with sealing (packaging unit = 2 pcs) for WCS3B reading heads</td>
<td>WCS3B-PL2</td>
</tr>
<tr>
<td>Mounting plates for all types of reading head</td>
<td>WCS-MP1</td>
</tr>
</tbody>
</table>

Adapter cable

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12 cable socket, 8-pole for plug, 8-pole Use for WCS2 - WCS2B and WCS2A - WCS2B, SSI interface</td>
<td>V19-G-1M-PUR-ABG-V423-G</td>
</tr>
<tr>
<td>M12 cable socket, 5-pole for SUBD plug, 9-pole Use for WCS3 - WCS3B and WCS3A - WCS3B, RS 485 interface</td>
<td>V15-G-0,5M-PUR-ABG-SUBD9</td>
</tr>
<tr>
<td>M12 cable socket, 8-pole for SUBD plug, 9-pole Use for WCS3 - WCS3B and WCS3A - WCS3B, SSI interface</td>
<td>V19-G-0,5M-PUR-ABG-SUBD9</td>
</tr>
<tr>
<td>Bus terminal with 3 PG glands</td>
<td>WCS-BT111</td>
</tr>
<tr>
<td>Flexible 6-core data cable (3 x 2) for RS485 and SSI interface (for stationary use)</td>
<td>WCS-DCS</td>
</tr>
<tr>
<td>Highly flexible 6-core data cable (3 x 2) for RS485 and SSI interface (for use as festoon cable)</td>
<td>WCS-DCF</td>
</tr>
</tbody>
</table>

An overview of the confectionable cable sockets M12 x1 and screened connecting cables with cable sockets M12 x1 is rendered in page 48.
Austria
Pepperl+Fuchs GmbH
Industriestraße B 13
2345 BRUNN/GEB.
Telephone +43-2236-33441
Telefax +43-2236-31682
info@at.pepperl-fuchs.com

Bahrain
Texas Technical Services
(FA + PA Representation)
#1273 Road 422
SALMABAD 704
Telephone +973-1778955
Telefax +973-1778966
textech@batelco.com.bh

Baltic States
ELEKOMS Ltd.
(PA Distributor)
Turaidas Str. 10
LV-1012 RIGA, Latvija
Telephone +371-7336444
Telefax +371-7336448
elekom@apollo.lv

Belgium
Pepperl+Fuchs N.V.
Metropoolstraat 11
2900 SCHOTEN
Telephone +32-3-6442500
Telefax +32-3-6442441
sales@be.pepperl-fuchs.com

Bulgaria
Process Control
(PA Distributor)
Tzanichina Str. 1
1505 SOFIA
Telephone +359-2-703549
Telefax +359-2-703549
processcontrol@bulmail.net

Croatia
EL-PRO D.O.O.
(FA + PA Distributor)
Fallerovo Setaliste 22
10000 ZAGREB
Telephone +385-1-3680047
Telefax +385-1-3667428
el-pro@zg.htnet.hr

Czech Republic
Pepperl+Fuchs s.r.o.
Sokolovská 79
18600 PRAG 8
Telephone +420-221115-540
Telefax +420-221115-550
info@cz.pepperl-fuchs.com

Denmark
Pepperl+Fuchs A/S
Stamholmen 173
2650 HVIDOVRE
Telephone +45-70104210
Telefax +45-70104211
info@dk.pepperl-fuchs.com

Egypt
Pepperl+Fuchs Egypt (LLC)
(FA + PA Office)
9 Abdel Hamied Lotfy Street, Zone 8
Nasr City
CAIRO
Telephone +20-2-2721097
Telefax +20-2-2756096
mesmat@eg.pepperl-fuchs.com

Finland
SensoNor Oy
Kartanontie 20
00330 HELSINKI
Telephone +358-9-4777200
Telefax +358-9-47772020
joel.patrikka@sensonor.fi

France
Pepperl+Fuchs SARL
12 Avenue des Tropiques
91955 COURTABOEUF CEDEX
Telephone +33-1-60921313
Telefax +33-1-60921325
commercial@fr.pepperl-fuchs.com

Germany
Pepperl+Fuchs Drehgeber GmbH
Föhrenstraße 33
78532 TUTTLINGEN
Telephone +49-7461-9298-0
Telefax +49-7461-9298-22
info@de.pepperl-fuchs.com

Pepperl+Fuchs EXTEC GmbH
Schorndorfer Straße 55
73730 ESSLINGEN
Telephone +49-711-315455-0
Telefax +49-711-315455-29
info@extec.de

Great Britain
Pepperl+Fuchs GB Ltd.
(FA + PA Distributor)
77 Ripponden Road
OLDHAM OL1 4EL, Lancashire
Telephone +44-161-6336431
Telefax +44-161-6246537
sales@gb.pepperl-fuchs.com

Greece
Uteco A.B.E.E.
5, Mavrogenous Street
18542 PIRAEUS
Telephone +30-211-1206-900
Telefax +30-211-1206-999
uteco@uteco.gr

Hungary
Pepperl+Fuchs Kft.
(FA)
Kistó Utca 16-18
8200 VESZPRÉM
Telephone +36-88-560473
Telefax +36-88-560473
info@hu.pepperl-fuchs.com

Iceland
Tölvusalan ehf.
Suourlandsbraut 20
P.O. Box 8960
128 REYKJAVIK
Telephone +354-5-500450
Telefax +354-5-500454
Telefax +354-5-500402

Iran
Farayand Pas
(PA Representation)
Flats 5 & 6, 2nd Floor,
Ferdose Build, No. 156
Mollasadra Ave., Vanak Sq.
14359114981 TEHRAN
Telephone +9821-8806-7866
Telefax +9821-8806-5190
rvali@ae.pepperl-fuchs.com

Omnitron AG
Aktiengesellschaft für
optoelektronische Geräte
Im Leuschnerpark 4
64347 GRIESHEIM
Telephone +49-6155-8740-0
Telefax +49-6155-8740-12
info@de.pepperl-fuchs.com

Visolux, Zweigniederlassung
der Pepperl+Fuchs GmbH
Kitzingstraße 25-27
12277 Berlin/Germany
Telephone: +49 30 616 72-0
Telefax:+49 30 616 72-468
info@de.pepperl-fuchs.com

Visolux, Zweigniederlassung
der Pepperl+Fuchs GmbH
Kitzingstraße 25-27
12277 Berlin/Germany
Telephone: +49 30 616 72-0
Telefax:+49 30 616 72-468
info@de.pepperl-fuchs.com

Zentrale weltweit
Worldwide Head Office
Pepperl+Fuchs GmbH
Königsberger Allee 87
68307 MANNHEIM
Telephone +49-621-776-0
Telefax +49-621-776-1000
info@de.pepperl-fuchs.com

Zentrale weltweit
Worldwide Head Office
Pepperl+Fuchs GmbH
Königsberger Allee 87
68307 MANNHEIM
Telephone +49-621-776-0
Telefax +49-621-776-1000
info@de.pepperl-fuchs.com
Dominica
Address see
USA Head Office
Pepperl+Fuchs Inc.

Dominican Republic
Garlas Controls
(FA Distributor)
Euclides Morillo No. 55 Aroyo Hondo
SANTO DOMINGO
Telephone +1-809-5633226
Telefax +1-809-5633498
garlas.control@codetel.net.do

P.A.S. Technologies
(PA Representation)
9 West, Pedro Arzuaga St.
00987 CAROLINA (Puerto Rico)
Telephone +1-787-752-2370
Telefax +1-787-768-3260
sale dpt@pastechnologies.com

Ecuador
Sistemas y Equipos Industriales S.A
(PA Representation)
Checoslovaquia E10-53 y Av. 6 de Diciembre
QUITO
Telephone +593-2-2268661
Telefax +593-2-2242802
ines.jurado@sein.com.ec

Soltec
(FA + PA Distributor)
Av. Napo. Mult. Luluncoto
Bloque Illiniza A, Dept. 102
QUITO
Telephone +593-2-2607096
Telefax +593-2-2323718
soltec@cosinet.net

Sistemas y Equipos Industriales S.A
(PA Representation)
Rumipamba E2-64 y Av. República
Ed. Axix. Ofic. 202
QUITO
Telephone +593-2-22459859
Telefax +593-22444278

El Salvador
Proyect Asesoria Industrial
S.A. de C.V.
(FA + PA Distributor)
Av. Los Diplomáticos 1318
Barrio San Jacinto
SAN SALVADOR
Telephone +503-2802221
Telefax +503-2701731
Elsalvador@GrupoProyect.com

Elvatron S.A.
(PA Representation)
400 Metros Norte de la Agencia
del Banco de Costa Rica, La Uruca
SAN JOSE (Costa Rica)
Telephone +506-2961060
Telefax +506-2190298
elkin.suarez@elvatron.com

Guatemala
Proyect Asesoria Industrial
S.A. de C.V.
(FA + PA Distributor)
43 Calle A 5-01 Zona 12
Col. Monte Maria II
GUATEMALA
Telephone +502-4794120
Telefax +502-4791430
guatemala@grupoproyect.com

Prysa
(FA + PA Distributor)
Edificio Condominio Medico,
Primer Nivel, Oficina C-1
SANTA CATARINA PINULA
Telephone +502-2332-5804
Telefax +502-2362-6904
alvaro.monzon@prysaguatemala.com

Equipos y Servicios Industriales S.A.
(PA Representation)
20 Calle 9-63 Z. 11
MARISCAL
Telephone +502-4424606
Telefax +502-4424605
jorge.munoz@esinsa.com

Honduras
Proyect Asesoria Industrial
S.A. de C.V.
(PA Distributor)
43 Calle A 5-01 Zona 12
Col. Monte Maria II
GUATEMALA
Telephone +502-4794120
Telefax +502-4791430
proyect@navegante.com.sv

Cilasa
(FA Distributor)
Barrio los andes entre 14 y 15
avenida 7, calle A, contiguo a
PecosBill
SAN PEDRO ZULA
Telephone +504-5571146
Telefax +504-5571149
remorale@mayanet.hn

Inelsa
(FA Distributor)
Colonia San Carlos de Sula
Casa #18 Bloque 33
SAN PEDRO ZULA
Telephone +504-5540988
mianzel@sulanet.net

Equipos y Servicios Industriales S.A.
(PA Representation)
20 Calle 9-63 Z. 11
MARISCAL (Guatemala)
Telephone +502-4424606
Telefax +502-4424605
jorge.munoz@esinsa.com

Jamaica
Address see
USA Head Office
Pepperl+Fuchs Inc.

Martinique
Address see
USA Head Office
Pepperl+Fuchs Inc.

Mexico
Pepperl+Fuchs México, S.A. de C.V.
(Head Quarter)
Blvd. Xola 613, Ph-4
Col. Del Valle
03100 MEXICO D.F.
Telephone +52-55-56398865
pfmexico@mx.pepperl-fuchs.com

Montserrat
Address see
USA Head Office
Pepperl+Fuchs Inc.
Nicaragua
Equpos y Servicios Industriales S.A.
(PA Representation)
20 Calle 9-63 Z. 11
MARISCAL (Guatemala)
Telephone +502-4424606
Telefax +502-4424605
jorge.munoz@esinsa.com

Panama
Doger Technology Development S.A.
(FA Distributor)
Cuidad del Saber, Clayton, Ancon
Building 215, Office #218
P.O. Box 0843-2807
BALBOA-ANCON
Telephone +507-317-1989
Telefax +507-317-1990
ronaldhernandez@doger.com

Peru
Desimat Peru S.A.
(PA Representation)
Av. Enrique Salazar Barreto 280
LIMA
Telephone +51-1-2731892
Telefax +51-1-2720054
ventasperu1@desimat.cl

Puerto Rico
Hi-Tech Products
(FA Distributor)
Ave Sanchez Osorio #2
00983 CAROLINA
Telephone +1-787-2571707
Telefax +1-787-2761888
hi-tech@hi-techproducts.com

P.A.S. Technologies
(PA Representation)
#9 West, Pedro Arzuaga St.
00985 CAROLINA
Telephone +1-787-752-2370
Telefax +1-787-768-3260
sale dpt@pastechnologies.com

St. Kitts & Nevis
Address see
USA Head Office
Pepperl+Fuchs Inc.

St. Lucia
Address see
USA Head Office
Pepperl+Fuchs Inc.

St. Martin
Address see
USA Head Office
Pepperl+Fuchs Inc.

St. Vincent
Address see
USA Head Office
Pepperl+Fuchs Inc.

Trinidad & Tobago
Industrial System & Controls
(FA Distributor)
Isaac Street
COUVA
Telephone +1-868-6368704
Telefax +1-868-6360948
fidel.ramquar@iscl.co.tt

Plant Solutions Limited
(PA Representation)
#1265 Batchiya Village,
S.S. Erin Road
PENAL
Telephone +1-868-6472182
Telefax +1-868-6475974
plantsol@tstt.net.tt

Turks & Caicos
Address see
USA Head Office
Pepperl+Fuchs Inc.

Venezuela
Empresas Norte-Sur C. A.
Innovantis Technologies
(PA Representation)
Ave. Rio Caura Torre Humbolt
Of. 12-12, Prados del Este
CARACAS
Telephone +58-212-9750355
Telefax +58-212-9750082
ruben.fabbro@innovantis.biz

GPM Instrumentación
(FA Distributor)
Urbanización Unare II Paseo
Caroni Torre INCA, Piso 2 Off 3
PUERTO ORDAZ
Telephone +58-286-9524884
Telefax +58-286-9524796
gpmins@telcel.net.ve

Suplidora Instrumatic C.A.
(FA Representation)
Urb Industrial Carabobo
Avenida Norte 17-18 #86-41
VALENCIA
Telephone +58-241-8327311
Telefax +58-241-8329819

P.A.S. Technologies
(PA Representation)
9 West, Pedro Arzuaga St.
00985 CAROLINA (Puerto Rico)
Telephone +1-787-752-2370
Telefax +1-787-768-3260
sale dpt@pastechnologies.com
Zentrale Asien
Asia Pacific Head Office
Pepperl+Fuchs PTE Ltd.
P+F Building
18 Ayer Rajah Crescent
139942 SINGAPORE
Company registration no. 199003100E
Telephone +65-67799091
Telefax +65-68731637
sales@sg.pepperl-fuchs.com

Pepperl+Fuchs Pte. Ltd.
Shanghai Representative Office
(PA Rep. Office)
Room 302, No. 555 West Nanjing Road
SHANGHAI, 200041
Telephone +86-21-62534920
Telefax +86-21-62539435
info@cn.pepperl-fuchs.com

Pepperl+Fuchs Automation Co. Ltd.
Guangzhou Office of Shanghai
(PA & FA Office)
Room 2809, Floor 28
Middle Dongfeng Road
GUANGZHOU, 510030
Telephone +86-20-83373159
Telefax +86-20-83374123
info@cn.pepperl-fuchs.com

HongKong
Unicorn International Trading Co.
(FA + PA Representation)
Room 1208 Shui On Centre
6 - 8 Harbour Road
Wanchai
Hong Kong
Telephone +852-2528-3558
Telefax +852-2528-9371
fooberhk@netvigator.com

Pepperl+Fuchs (India) Pvt. Ltd.
(Regional Sales Office - South)
(Tamilnadu & Kerala)
No. 4, First Floor, X 70,
Sindur Shopping Complex,
2nd Avenue, Anna Nagar
CHENNAI 600040
Telephone +91-44-26212265
Telefax +91-44-26190129
cro@in.pepperl-fuchs.com

Pepperl+Fuchs (India) Pvt. Ltd.
(Regional Sales Office - East)
Room No. 221, II Floor "LORDS"
7/1, Lord Sinha Road
KOLKATA 700071
Telephone +91-33-22828539
Telefax +91-33-22828777
ero@in.pepperl-fuchs.com

Pepperl+Fuchs (India) Pvt. Ltd.
(Regional Sales Office - West)
No. 401, A-Wing, Subham Ctr. 1, 4th fl.
Cardinal Gracias Road, Chakala
Andheri (East)
MUMBAI - 400099
Telephone +91-22-2831946
Telefax +91-22-2831947
wro@in.pepperl-fuchs.com

Pepperl+Fuchs India Pvt. Ltd.
(Hyderabad Area Sales Office)
Hi Tech Business Centre, 4th Floor,
Topaz Bldg.
Amrutha Hills, Punjagutta
HYDERABAD 500082
Telephone +91-40-23407053
Telefax +91-40-23407093
hyderabad@in.pepperl-fuchs.com

China
Pepperl+Fuchs Automation Co. Ltd.
Shanghai (FA Head Office)
No. 219 Jiang Chang 3 Road
Shibei Industrial Park
SHANGHAI, 200436
Telephone +86-21-66303939
Telefax +86-21-66300883
info@cn.pepperl-fuchs.com

Pepperl+Fuchs Beijing Rep. Office
(PA Head Office)
Prime Tower, Room 2007
No. 22 Chao Yang Men Wai Street
BEIJING 100020
Telephone +86-10-65885143
Telefax +86-10-65885144
pf-china@public3.bta.net.cn

Pepperl+Fuchs (India) Pvt. Ltd.
(Vadodara Area Sales Office)
UG28 Upper Ground Floor
“Concorde” R.C. Dutt Road
Opp. Alkapuri Petrol Pump,
Alkapuri Vadodara
GUJARAT 390005
Telephone +91-26-55522516
Telefax +91-26-55522516
vadodara@in.pepperl-fuchs.com

Pepperl+Fuchs (India) Pvt. Ltd.
(Pune Area Sales Office)
Roof & Services, Ground Floor
Veer Savarkar Udyog Bhavan
Shivaji Nagar, Maharashtra
PUNE 411005
Telephone +91-20-25538658
Telefax +91-20-25538757
pune@in.pepperl-fuchs.com

Pepperl+Fuchs (India) Pvt. Ltd.
(Karnataka & Andhra Pradesh)
C-328, 3rd Main, 1st Stage,
Peenya Industrial Estate
BANGALORE 560058
Telephone +91-80-28371225
Telefax +91-80-28378031
info@in.pepperl-fuchs.com
FACTORY AUTOMATION – SENSING YOUR NEEDS

Pepperl+Fuchs sets the standard in quality and innovative technology for the world of automation. Our expertise, dedication, and heritage of innovation have driven us to develop the largest and most versatile line of industrial sensor technologies and interface components in the world. With our global presence, reliable service, and flexible production facilities, Pepperl+Fuchs delivers complete solutions for your automation requirements – wherever you need us.