

PROFINET GATEWAYS

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Inhaltsverzeichnis

PROFINET Gateways

ı	Ellieitulia	
	G	
2	Konformitätserklärung	
2.1	Konformitätserklärung	
2.1	Kontormitatserkiarung	
3	Sicherheit	-
3.1	Sicherheitsrelevante Symbole	
3.2	Allgemeine Sicherheitshinweise	
3.3	Entsorgung	7
4	Inbetriebnahme des AS-i Bus	8
5	Konfiguration und Inbetriebnahme des Sicherheitsmonitors	9
6	PROFINET	10
6.1	Prozessdatenkanal	10
6.1.1	Digitaldaten	
6.1.2	Analogdaten	
6.1.3	Flags + Fehlerbits	
6.1.4	Strombegrenzung	
6.1.5 6.1.6	Liste der KonfigurationsfehlerListe der Peripheriefehler	
6.1.7	Feldbus Bits	
6.1.8	Safety Control/Status	
6.1.9	Monitor und E/A Daten	
6.1.10	Safe Link Diagnose	2
6.2	Diagnosekanal	2
6.2.1	Kanaldiagnosen	
6.2.2	Herstellerspezifische Diagnosen	2
7	PROFIsafe	27
7.1	Prozessdatenkanal	2
7.2	PROFIsafe-Diagnose	28
7.2.1	PROFIsafe Status-Anzeige	
7.2.2	PROFIsafe Kanaldiagnose	
В	Diagnose	30
_		
B.1	Systemdiagnose auf dem PC	30

PROFINET Gateways Inhaltsverzeichnis

8.1.1	Software für Diagnose, Service und Freigabe-Messungen	30
8.1.2	AS-i Control Tools	30
8.1.3	ASIMON	30
8.1.4	Webserver	
8.2	Diagnose in der übergeordneten Steuerung	31
8.2.1	Spontandiagnose	
8.2.2	Diagnose über Prozessdaten	
8.2.2.1	Diagnose der AS-i Kreise	
8.2.2.2	Diagnose des Sicherheitsmonitors	
8.2.3	Diagnose über die Kommandoschnittstelle	
8.3	Fehleranzeige direkt am Gerät	35
8.3.1	LEDs	35
8.3.2	LC-Display	
8.3.3	AS-i Wächter	
8.3.3.1	Doppeladresserkennung	
8.3.3.2	Erdschlusswächter	
8.3.3.3	Störspannungserkennung	
8.3.3.4	Überspannungserkennung	35
9	Anhang	36

1. Einleitung

Herzlichen Glückwunsch

Sie haben sich für ein Gerät von Pepperl+Fuchs entschieden. Pepperl+Fuchs entwickelt, produziert und vertreibt weltweit elektronische Sensoren und Interface-Bausteine für den Markt der Automatisierungstechnik.

Bevor Sie dieses Gerät montieren und in Betrieb nehmen, lesen Sie diese Betriebsanleitung bitte sorgfältig durch. Die in dieser Betriebsanleitung enthaltenen Anleitungen und Hinweise dienen dazu, Sie schrittweise durch die Montage und Inbetriebnahme zu führen und so einen störungsfreien Gebrauch dieses Produktes sicher zu stellen. Dies ist zu Ihrem Nutzen, da Sie dadurch:

- · den sicheren Betrieb des Gerätes gewährleisten
- den vollen Funktionsumfang des Gerätes ausschöpfen können
- Fehlbedienungen und damit verbundene Störungen vermeiden
- Kosten durch Nutzungsausfall und anfallende Reparaturen vermeiden
- die Effektivität und Wirtschaftlichkeit Ihrer Anlage erhöhen.

Bewahren Sie diese Betriebsanleitung sorgfältig auf, um sie auch bei späteren Arbeiten an dem Gerät zur Hand zu haben.

Bitte überprüfen Sie nach dem Öffnen der Verpackung die Unversehrtheit des Gerätes und die Vollständigkeit des Lieferumfangs.

Verwendete Symbole

Dieses Handbuch enthält die folgenden Symbole:

Hinweis!

Dieses Zeichen macht auf eine wichtige Information aufmerksam.

Achtung!

Dieses Zeichen warnt vor einer möglichen Störung. Bei Nichtbeachten können das Gerät oder daran angeschlossene Systeme und Anlagen bis hin zur völligen Fehlfunktion gestört sein.

Warnung!

Dieses Zeichen warnt vor einer Gefahr. Bei Nichtbeachten drohen Personenschäden bis hin zum Tod oder Sachschäden bis hin zur Zerstörung.

Kontakt

Wenn Sie Fragen zum Gerät, Zubehör oder weitergehenden Funktionen haben, wenden Sie sich bitte an:

Pepperl+Fuchs GmbH Lilienthalstraße 200 68307 Mannheim

Telefon: 0621 776-1111 Telefax: 0621 776-271111

E-Mail: fa-info@de.pepperl-fuchs.com

2. Konformitätserklärung

2.1 Konformitätserklärung

Dieses Produkt wurde unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

O Hinweis!

Eine Konformitätserklärung kann beim Hersteller angefordert werden.

Der Hersteller des Produktes, die Pepperl+Fuchs GmbH in D-68307 Mannheim, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

3. Sicherheit

3.1 Sicherheitsrelevante Symbole

Hinweis!

Dieses Zeichen macht auf eine wichtige Information aufmerksam.

Achtung!

Dieses Zeichen warnt vor einer möglichen Störung. Bei Nichtbeachten können das Gerät oder daran angeschlossene Systeme und Anlagen bis hin zur völligen Fehlfunktion gestört sein.

Warnung!

Dieses Zeichen warnt vor einer Gefahr. Bei Nichtbeachten drohen Personenschäden bis hin zum Tod oder Sachschäden bis hin zur Zerstörung.

3.2 Allgemeine Sicherheitshinweise

Das Gerät darf nur von eingewiesenem Fachpersonal entsprechend der vorliegenden Betriebsanleitung betrieben werden.

Eigene Eingriffe und Veränderungen sind gefährlich und es erlischt jegliche Garantie und Herstellerverantwortung. Falls schwerwiegende Störungen an dem Gerät auftreten, setzen Sie das Gerät außer Betrieb. Schützen Sie das Gerät gegen versehentliche Inbetriebnahme. Schicken Sie das Gerät zur Reparatur an den Hersteller.

Der Anschluss des Gerätes und Wartungsarbeiten unter Spannung dürfen nur durch eine elektrotechnische Fachkraft erfolgen.

Die Verantwortung für das Einhalten der örtlich geltenden Sicherheitsbestimmungen liegt beim Betreiber.

Verwahren Sie das Gerät bei Nichtbenutzung in der Originalverpackung auf. Diese bietet dem Gerät einen optimalen Schutz gegen Stöße und Feuchtigkeit.

Halten Sie die zulässigen Umgebungsbedingungen ein.

3.3 Entsorgung

Hinweis!

Verwendete Geräte und Bauelemente sachgerecht handhaben und entsorgen! Unbrauchbar gewordene Geräte als Sondermüll entsorgen!

Die nationalen und örtlichen Richtlinien bei der Entsorgung einhalten!

4. Inbetriebnahme des AS-i Bus

- 1. Schließen Sie das Gerät an die Spannungsversorgung an.
- 2. Schließen Sie das AS-i Kabel an das Gerät an.
- Schließen Sie nacheinander die AS-i Slaves an die AS-i Leitung an und stellen Sie die Slave-Adressen ein.
 - Sie können die Adressen mit Hilfe eines Handadressiergerätes direkt am Slave einstellen oder über die Option [SLAVE ADR TOOL] im Displaymenü Ihres Gateways.
- Wählen Sie im Displaymenü [QUICK SETUP], um die Konfiguration aller an das Gerät angeschlossenen AS-i Kreise zu übernehmen. Bestätigen Sie mit [STORE+RUN].
- 5. Stellen Sie die PROFINET-Adresse ein und verbinden das Gateway mit der übergeordneten Feldbussteuerung.
 - Sie können die Adressen direkt über die Option [PROFINET] im Displaymenü Ihres Gateways einstellen.
 - Eine Parametrierung der Adresse ist auch über die übergeordnete Steuerung möglich.

 $\prod_{i=1}^{n}$

Nähere Informationen entnehmen Sie bitte der Montageanweisung Ihres Gateways.

5. Konfiguration und Inbetriebnahme des Sicherheitsmonitors

Die Konfiguration und Inbetriebnahme des AS-i Sicherheitsmonitors erfolgt über einen PC/Notebook mit der Konfigurationssoftware ASIMON.

Hinweis!

Nähere Informationen entnehmen Sie bitte dem separaten Handbuch der ASIMON Konfigurationssoftware.

Die Konfiguration darf nur von einem Sicherheitsbeauftragten durchgeführt werden. Alle sicherheitstechnisch relevanten Befehle sind über ein Passwort geschützt.

Die korrekte Sicherheitsfunktion des Gerätes muss unbedingt in der Anlage überprüft werden!

Hinweis!

Quick Start Guides für Inbetriebnahme und Service stehen auf der Webseite zum Download zur Verfügung.

Nähere Informationen entnehmen Sie bitte der Montageanweisung Ihres Gateways.

6. PROFINET

6.1 Prozessdatenkanal

Beschreibung der Daten, die über den PROFINET-Prozessdatenkanal übertragen werden.

6.1.1 Digitaldaten

Diese Daten müssen in der Steuerung eingebunden werden, um auf die Slaves in den AS-i Kreisen zugreifen zu können.

Typische GSDML Module

C1:, C2: bei Doppelmastern zur AS-i Kreisauswahl vorangestellt				
16 Byte DE/A (0 31)	16 Byte für Single-/A-Slaves			
16 Byte DE/A (0B 31B)	16 Byte für B-Slaves			
32 Byte DE/A (0 31B)	32 Byte für Single-/A- und B-Slaves			

Tab. 6-1.

Abbild der Ein- und Ausgangsdaten

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	F3	F2	F1	F0	D3	D2	D1	D0
0		. –	ıgs			Slave		
1			2/2A			Slave		
2			4/4A			Slave		
3		Slave	6/6A			Slave		
4		Slave	8/8A			Slave	9/9A	
5		Slave '	10/10A			Slave 1	1/11A	
6		Slave '	12/12A			Slave 1	3/13A	
7		Slave '	14/14A			Slave 1	5/15A	
8		Slave	16/16A			Slave 1	7/17A	
9		Slave '	18/18A			Slave 1	9/19A	
10		Slave 2	20/20A		Slave 21/21A			
11	Slave 22/22A				Slave 23/23A			
12	Slave 24/24A					Slave 2	5/25A	
13	Slave 26/26A					Slave 2	7/27A	
14		Slave 2	28/28A			Slave 2	929A	
15		Slave 3	30/30A			Slave 3	1/31A	
16		rese	rviert			Slave	1B	
17		Slav	e 2B			Slave	3B	
18			e 4B			Slave	-	
19	Slave 6B					Slave	7B	
20	Slave 8B					Slave	-	
21			10B			Slave		
22			12B			Slave		
23			14B		Slave 15B			
24			16B			Slave		
25		Slave	18B			Slave	19B	

Abbild der Ein- und Ausgangsdaten

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
26		Slave	20B			Slave	21B	
27		Slave	22B			Slave	23B	
28	Slave 24B				Slave 25B			
29	Slave 26B					Slave	27B	
30	Slave 28B				Slave	29B		
31		Slave 30B				Slave	31B	

Tab. 6-2.

Flags

	Eingangsdaten	Ausgangsdaten
F0	ConfigError	Offline
F1	APF	LOS-Master-Bit
F2	PeripheryFault	→ geschützter Betriebsmodus
F3	ConfigurationActive	→ Projektierungsmodus

ConfigError:	0 = ConfigOK	1 = ConfigError
APF:	0 = AS-i Power OK	1 = AS-i Power Fail
PeripheryFault:	0 = PeripheryOK	1 = PeripheryFault
ConfigurationActive:	0 = geschützer Betriebsmodus	1 = Projektierungsmodus
Offline:	0 = Online	1 = Offline
LOS-Master-Bit:	0 = Off-Line bei ConfigError	1 = Off-Line bei ConfigError

deaktiviert aktiviert

FPPPERL+FUCHS

6.1.2 Analogdaten

In diesem Abschnitt werden die analogen Prozessdaten beschrieben. Sollten Sie Analog-Slaves in Ihrem AS-i Kreis haben, so binden Sie diese wie folgt beschrieben ein.

Typische GSDML Module

C1:, C2: bei Doppeli	mastern zur AS-i Kreisa	uswahl vorangestellt
n Byte AE	, , , ,	Parameter: erster Analog-Slave.
	Analog-Slave, Anzahl	Gibt die AS-i Adresse des ersten
	Analogslaves.	Slaves an.
	Bsp.: 8 Byte Analog In	
n Byte AO	8 Byte Ausgangsdaten pro	
	Analogslave, Anzahl Ana-	
	logslaves	
n Byte AE (K.Kfg)	2 Byte Eingangsdaten pro	Parameter: erster Analog-Slave.
	Slave, pro Kanal	Gibt die AS-i Adresse des ersten
n Byte AO (K.Kfg)	2 Byte Ausgangsdaten pro	Slaves an.
	Slave, pro Kanal	2. Parameter: Kanal Konfiguration.
		Gibt die Anzahl verw. Kanäle pro
		Slave an.

Tab. 6-3.

n Byte AE/AO

Byte	Bedeutung
0	1. Slave, Kanal 1, high byte
1	1. Slave, Kanal 1, low byte
2	1. Slave, Kanal 2, high byte
3	1. Slave, Kanal 2, low byte
4	1. Slave, Kanal 3, high byte
5	1. Slave, Kanal 3, low byte
6	1. Slave, Kanal 4, high byte
7	1. Slave, Kanal 4, low byte
8	2. Slave, Kanal 1, high byte
9	2. Slave, Kanal 1, low byte
n	

Tab. 6-4.

Hinweis!

A-Slaves bilden ihre Daten in den Kanälen 1 und 2 ab.

B-Slaves bilden ihre Daten in den Kanälen 3 und 4 ab.

n Byte AE/AO (K.Kfg.)

Dist.	4 1/ "1-	0 1/	0.16	4 1/1
Byte	4 Kanäle	3 Kanäle	2 Kanäle	1 Kanal
0	1. Slave, Kanal 1			
1				
2	1. Slave, Kanal 2	1. Slave, Kanal 2	1. Slave, Kanal 2	2. Slave, Kanal 1
3				
4	1. Slave, Kanal 3	1. Slave, Kanal 3	2. Slave, Kanal 1	3. Slave, Kanal 1
5				
6	1. Slave, Kanal 4	2. Slave, Kanal 1	2. Slave, Kanal 2	4. Slave, Kanal 1
7				
n				

Tab. 6-5.

6.1.3 Flags + Fehlerbits

GSDML Modul:

C1:, C2: bei Doppelmastern zur AS-i Kreisauswahl vorangestellt
Flags + Fehlerbits 2 Byte Eingangsdaten (Flags)

Eingangsdaten Byte 0

Bit	Bedeutung
0	Peripheriefehler
1	_
2	
3	_
4	Erdschluss
5	Überspannung
6	Störspannung
7	Doppeladresse

Tab. 6-6.

Eingangsdaten Byte 1

Bit	Bedeutung
0	Konfigurationsfehler
1	Slave mit Adresse '0' entdeckt
2	automatische Adressierung nicht möglich
3	automatische Adressierung verfügbar
4	Projektierungsmodus aktiv
5	im Normalbetrieb
6	AS-i Power Fail
7	AS-i Master ist Offline

Tab. 6-7.

6.1.4 Strombegrenzung

Hinweis!

Verfügbar nur bei Gateways in der Version "1 Gateway, 1 Netzteil für 2 AS-i Kreise".

GSDML Modul:

Leistungs- 2 Byte / 4 Byte Parameter: steuerung Eingangsdaten (Flags) Stromgrenze erster/zweiter AS-i Kreis

Das Einstellen der Strombegrenzung erfolgt in 0,1 A Schritten über die Parameter des GSDML-Moduls:

Eingabe: 0 ... 40

○ 0 A ... 4,0 A

Hinweis!

Bei Gateways mit 1 AS-i Master sind die Eingangsdaten 2 Byte lang und bei 2 AS-i Mastern 4 Byte.

Byte 0/1 bezieht sich auf AS-i Kreis 1 und Byte 2/3 auf AS-i Kreis 2.

Eingangsdaten Byte 0/2

Bit	Bedeutung
0	Peripheriefehler
1	Überstrom
2	
3	Ausfall redundante 24 V AUX (Option Single-Master)
4	Erdschluss
5	Überspannung
6	Störspannung
7	Doppeladresse

Tab. 6-8.

Eingangsdaten Byte 1/3

Bit	Bedeutung
0	Konfigurationsfehler
1	Slave mit Adresse '0' entdeckt
2	automatische Adressierung nicht möglich
3	automatische Adressierung verfügbar
4	Projektierungsmodus aktiv
5	nicht im Normalbetrieb
6	AS-i Power Fail
7	AS-i Master ist Offline

Tab. 6-9.

6.1.5 Liste der Konfigurationsfehler

 \bigcirc

Hinweis!

Verfügbar nur bei Geräten ab Ident.-Nr. ≥ 16223 (siehe seitlicher Geräteaufkleber)!

Die Liste der Konfigurationsfehler enthält die Slaveadressen mit Konfigurationsfehlern.

GSDML Modul:

C1:, C2: bei Doppelmastern zur AS-i Kreisauswahl vorangestellt Konfigurationsfehler 8 Byte Eingangsdaten

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	7A	6A	5A	4A	3A	2A	1A	_
1	15A	14A	13A	12A	11A	10A	9A	8A
		•				•	•	•
7	31B	30B	29B	28B	27B	26B	25B	24B

Tab. 6-10.

6.1.6 Liste der Peripheriefehler

Hinweis!

Verfügbar nur bei Geräten ab Ident.-Nr. ≥ 16223 (siehe seitlicher Geräteaufkleber)!

Die Liste der Peripheriefehler enthält die Slaveadressen, die Peripheriefehler melden. Aus welchem Grund ein AS-i Slave Fehler der angeschlossenen Peripherie meldet (z.B. Drahtbruch), ist aus der Dokumentation des AS-i Slaves zu entnehmen.

GSDML Modul:

C1:, C2: bei Doppelmastern zur AS-i Kreisauswahl vorangestellt Peripheriefehler 8 Byte Eingangsdaten

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	7A	6A	5A	4A	3A	2A	1A	_
1	15A	14A	13A	12A	11A	10A	9A	8A
		•	•		••	•	•	•
7	31B	30B	29B	28B	27B	26B	25B	24B

Tab. 6-11.

6.1.7 Feldbus Bits

 $\mathop{\cap}\limits_{\textstyle\prod}$

Hinweis!

Verfügbar nur bei Geräten mit integriertem Sicherheitsmonitor.

Die Feldbusbits ermöglichen eine Kommunikation zwischen der Steuerung und dem Sicherheitsprogramm. Mit den Feldbus-Bits ist es möglich Quittiersignale oder ähnliches in das Sicherheitsprogramm zu übergeben und Statusinformationen an die Steuerung zu übermitteln.

Die Zustände der AS-i Safety Ein- und Ausgänge werden über das Eingangsdatenabbild an die Steuerung übertragen (Siehe Absatz <Safety-Diagnose im Eingangsdatenabbild (IDI)>).

GSDML Modul: 2 Byte Feldbus Bits

Ausgangsdaten (Baustein Feldbus-Bit in ASIMON)

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	FB7	FB6	FB5	FB4	SI 4	SI 3	SI 2	SI 1
O	107	1 00	1 55	1 04	FB3	FB2	FB1	FB0
1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8

Tab. 6-12.

Die Bits der Ausgangsdaten werden mit den gleichnamigen Hardwareeingängen auf dem Gerät ODER-verknüpft.

Eingangsdaten (Ausgangszuordnung Feldbus-Bit in ASIMON)

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	FB7	FB6	FB5	FB4	FB3	FB2	FB1	FB0
1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8

Tab. 6-13.

FB: Feldbus-Bit

SI 4, SI 3, SI 2, SI 1 Monitor-Eingänge

6.1.8 Safety Control/Status

 Π

Hinweis!

Verfügbar nur bei Geräten mit integriertem Sicherheitsmonitor.

GSDML Modul: SaW Monitor (n FGKs)

Das Modul beinhaltet die Diagnose der sicheren Ausgänge in Ihrem Sicherheitsmonitor. Dabei entspricht jeder Freigabekreis einem sicheren Ausgang.

Ausgangsdaten

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	reserviert			SI 4/	SI 3/	SI 2/	SI 1/	
·		1000111011			2.Y2	2.Y1	1.Y2	1.Y1
2	reserviert							

Tab. 6-14.

Die Bits der Ausgangsdaten werden mit den gleichnamigen Hardwareeingängen auf dem Gerät ODER-verknüpft.

Eingangsdaten

Byte	Bedeutung
0	Safety Status FGK 1
1	Safety Status FGK 2
n	Safety Status FGK n

Tab. 6-15.

Die Tabelle beschreibt die Farbkodierung, wie in der Software **ASIMON** dargestellt.

Safety Status pro FGK (Freigabekreis)

Bit-Wert [0 2]	State bzw. Farbe	Beschreibung
0	grün dauerleuchtend	Ausgang an
1	grün blinkend	Wartezeit bei Stoppkat. 1 läuft
2	gelb dauerleuchtend	Anlauf / Wiederanlaufsperre aktiv
3	gelb blinkend	externer Test erforderlich / Quittierung / Einschaltverzögerung aktiv
4	rot dauerleuchtend	Ausgang aus
5	rot blinkend	Fehler
6	grau bzw. aus	Ausgang nicht projektiert
7	reserviert	
Bit-Wert [3 5]	State bzw. Farbe	
	reserviert	
Bit-Wert [6]	State bzw. Farbe	
0	Kein Device blinkt gelb	
1	Mindestens ein Device blinkt gelb	
Bit-Wert [7]	State bzw. Farbe	
0	Kein Device blinkt rot	
1	Mindestens ein Device blinkt rot	

Tab. 6-16. Kodierung der Status Bytes

6.1.9 Monitor und E/A Daten

 Π

Hinweis!

Verfügbar nur bei Geräten mit integriertem Sicherheitsmonitor.

GSDML Modul: 7 Byte Monitor und E/A Daten

Das Modul enthält 6 Byte Informationen über die aktuellen Schaltzustände der Lokalen Ein- und Ausgänge auf dem Gateway sowie 1 Byte Monitorinformationen. Diese sind wie folgt aufgeschlüsselt:

Eingangsdaten

Byte	Bedeutung
1	Monitor Info
2	Status SI1/SI2
3	Status SI3/SI4
4	Status SI5/SI6
5	Status SO1/SO2
6	Status SO3/SO4
7	Status SO5/SO6

Kodierung der Monitorinfo

reduction and act morne	
Bit 0	Beschreibung
0	Monitor im Konfigurationsbetrieb
1	Monitor im Schutzbetrieb
Bit 1	Beschreibung
0	24 V fehlen
1	24 V o. k.
Bit [2 5]	Reserviert
Bit 6	Beschreibung
0	Kein Baustein im Zustand Testen (gelb-blinkend)
1	Mindestens ein Baustein im Zustand Testen (gelb-blinkend)
Bit 7	Beschreibung
0	Kein Baustein im Zustand Fehler (rot-blinkend)
1	Mindestens ein Baustein im Zustand Fehler (rot-blinkend)

Kodierung der Statusbytes

reductioning der Otatus	bytes
Bit 0	Beschreibung
0	Je nach Byte SI 1/3/5 oder SO 1/3/5 Ausgeschaltet
1	Je nach Byte SI 1/3/5 oder SO 1/3/5 Eingeschaltet
Bit 1	Beschreibung
0	Je nach Byte SI 2/4/6 oder SO 2/4/6 Ausgeschaltet
1	Je nach Byte SI 2/4/6 oder SO 2/4/6 Eingeschaltet
Bit [2 3]	Beschreibung
	(nur wenn Klemmen als sicherer Eingang genutzt werden)
0	Farbe des zugeordneten sicherheitsgerichteten Bausteins:
	rot, grün oder grau
1	Farbe des zugeordneten sicherheitsgerichteten Bausteins:
	gelb ("warten")
2	Farbe des zugeordneten sicherheitsgerichteten Bausteins:
	gelb-blinkend ("testen")
3	Farbe des zugeordneten sicherheitsgerichteten Bausteins:
	rot-blinkend ("Fehler")
Bit 4	Beschreibung
0	Klemmen als Ausgänge oder Standardeingänge konfiguriert
1	Klemmen für sicherheitsgerichteten Eingang konfiguriert
Bit [5 7]	Reserviert

6.1.10 Safe Link Diagnose

 Π

Hinweis!

Verfügbar nur bei Geräten mit integriertem Sicherheitsmonitor.

Über die Prozessdaten-Diagnose Safe Link können Sie den Zustand der sicheren Kopplung zwischen verschiedenen Gateways in der Steuerung visualisieren.

GSDML Modul: 10 Byte Diagnose für die sichere Querkommunikation

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
1	St. Adr 4		St. Adr 3	St. Adr 3		St. Adr 2		St. Adr 1	
2	St. Adr 8		St. Adr 7	St. Adr 7		St. Adr 6		St. Adr 5	
3	St. Adr 1	2	St. Adr 1	St. Adr 11		St. Adr 10		St. Adr 9	
4	St. Adr 1	St. Adr 16		St. Adr 15		St. Adr 14		St. Adr 13	
5	St. Adr 2	St. Adr 20		St. Adr 19		St. Adr 18		St. Adr 17	
6	St. Adr 2	4	St. Adr 23		St. Adr 2	2	St. Adr 2	21	
7	St. Adr 2	8	St. Adr 27		St. Adr 26		St. Adr 25		
8	reserviert		St. Adr 3	St. Adr 31		0	St. Adr 2	29	
9	Node Status			Node Address					
10	Domain No.			Manager Adr					

Tab. 6-17.

St. Adr: Node Status einer Adresse, aus der Liste 'Node Overview':

Bit-Kombination	Bedeutung
11	aktiv
01	nicht aktiv
10	nicht gelernt (nur im Manager, Meldung mit der höchsten Priorität)
00	nicht verwendet

node address: Knotenadresse innerhalb der Safe Link Gruppe

manager address: Knotenadresse des Managers der Safe Link Gruppe

domain no.: Safe Link Gruppenadresse

Bei der 'domain no.' werden nur die hinteren 3 Bit der Adresse

angegeben!

6.2 Diagnosekanal

Beschreibung der Diagnosedaten, die über den PROFINET-Diagnosekanal geschickt werden.

6.2.1 Kanaldiagnosen

Slot	Kanal	Code	Meldung	Hilfstext
0	AS-i Master 0: Kreis 1 1: Kreis 2	16	Konfigurations- fehler	Aktuelle und projektierte AS-i-Konfiguration stimmen nicht überein, oder der AS-i-Master ist im Hochlaufbetrieb
		17	Slave 0 gefun- den	An AS-i wurde ein Slave mit Address Null entdeckt
		18	kein automati- sches Adres- sieren	Das automatische Adressieren ausge- fallener AS-i Slaves ist nicht möglich
		19	automatisches Adressieren möglich	Sobald ein passender AS-i-Slave ange- schlossen wird, wird dessen Adresse automatisch eingestellt
	20 21 22		Konfigurations- modus	Der AS-i-Master ist im Konfigurations- modus
			kein Normalbe- trieb	Der AS-i-Master ist im Hochlaufbetrieb
			AS-i Power Fail	Die Spannungsversorgung an AS-i ist nicht ausreichend
		23	Off-Line	Der AS-i-Master schickt keine AS-i Telegramme
		24 Peripher ler		Mindestens ein AS-i-Slave meldet einen Peripheriefehler, oder der AS-i Master ist im Hochlaufbetrieb
		25	Slave 0 gefun- den	An AS-i wurde ein Slave mit Address Null entdeckt
	26		kein automati- sches Adres- sieren	Das automatische Adressieren ausge- fallener AS-i-Slaves ist nicht möglich
	Adressi		automatisches Adressieren möglich	Sobald ein passender AS-i-Slave ange- schlossen wird, wird dessen Adresse automatisch eingestellt
		28	Konfigurations- modus	Der AS-i-Master ist im Konfigurations- modus

Tab. 6-18.

6.2.2 Herstellerspezifische Diagnosen

AS-i Flags

Struktur 0xA0: Kreis 1 Struktur 0xA1: Kreis 2

Byte	Bit	Meldung			
0	0	Konfigurationsfehler			
0	1	Slave 0 gefunden			
0	2	kein automatisches Adressieren			
0	3	automatisches Adressieren möglich			
0	4	Konfigurationsmodus			
0	5	kein Normalbetrieb			
0	6	AS-i Power Fail			
0	7	Off-Line			
1	0	Peripheriefehler			
1	1	_			
1	2	_			
1	3	_			
1	4	Erdschluß			
1	5	Überspannung			
1	6	Rauschen			
1	7	Doppeladdressierung			

Tab. 6-19.

Liste der Konfigurationsfehler

Struktur 0xA2: Kreis 1 Struktur 0xA3: Kreis 2

Byte	Bit	Meldung
0	0	Slave 0: Konfig Fehler
0	1	Slave 1/1A: Konfig Fehler
0	2	Slave 2/2A: Konfig Fehler
3	7	Slave 31/31A: Konfig Fehler
4	0	_
4	1	Slave 1B: Konfig Fehler
7	7	Slave 31B: Konfig Fehler

Tab. 6-20.

Liste der Peripheriefehler

Struktur 0xA4: Kreis 1

Struktur 0xA5: Kreis 2

Byte	Bit	Meldung
0	0	_
0	1	Slave 1/1A: Peripheriefehler
0	2	Slave 2/2A: Peripheriefehler
3	7	Slave 31/31A: Peripheriefehler
4	0	_
4	1	Slave 1B: Peripheriefehler
7	7	Slave 31B: Peripheriefehler

Tab. 6-21.

Safety Status (Single- und A-Slaves)

Struktur 0xA8: Kreis 1
Struktur 0xA9: Kreis 2

Byte	Bit	Meldung
0	0	SaW Konfigurationsbetrieb
0	1	Slave 1/1A: Gelb Blinken
0	2	Slave 2/2A: Gelb Blinken
3	7	Slave 31/31A: Gelb Blinken
4	0	SaW Monitorfehler
4	1	Slave 1/1A: Rot Blinken
4	2	Slave 2/2A: Rot Blinken
7	7	Slave 31/31A: Rot Blinken

Tab. 6-22.

Safety Status (B-Slaves)

Struktur 0xAA: Kreis 1
Struktur 0xAB: Kreis 2

Byte	Bit	Meldung
0	0	_
0	1	Slave 1B: Gelb Blinken
0	2	Slave 2B: Gelb Blinken
3	7	Slave 31B: Gelb Blinken
4	0	_
4	1	Slave 1B: Rot Blinken
4	2	Slave 2B: Rot Blinken
7	7	Slave 31B: Rot Blinken

Tab. 6-23.

PROFINET Gateways PROFINET

Jedes Element der herstellerspezifischen Diagnose (EC-Flags und Slavelisten) kann über ein Bit im Parametertelegramm abgeschaltet werden.

ExtDiag wird gesetzt, wenn mindestens eines der folgenden Ereignisse eingetreten ist:

- ConfigError = 1
- APF = 1
- PeripheryFault = 1
- Erdschluss = 1
- Doppeladresse = 1

Sowohl über die PROFINET-Parameter als auch über die Kommandoschnittstellen kann das Auswerten dieser Ereignisse einzeln an- und abgeschaltet werden.

In der Konfigurationsdatei sind folgende Voreinstellungen eingetragen:

- Mit der Diagnose werden EC-Flags, Deltaliste, LPF, Erdschluss und Doppeladresse übertragen
- ExtDiag wird bei ConfigError = 1 und APF = 1 erzeugt, nicht bei PeripheryFault = 1, Erdschluss = 1 und Doppeladresse = 1.

7. PROFIsafe

7.1 Prozessdatenkanal

GSDML Modul: 8 Byte PROFIsafe-Daten

Die Belegung der Ein- und Ausgangsdatenbits ist abhängig von der Konfiguration im Sicherheitsmonitor. Wir empfehlen die Verwendung der automatischen Konfiguration.

Bei der automatischen Konfiguration werden die Daten wie im folgenden beschrieben zugeordnet:

Abbild der Eingangsdaten

	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5.1	0	Slave 7	Slave 6				Slave 2	Slave 1	-
AS-i Kreis	1	Slave 15	Slave 14					Slave 9	Slave 8
. <u>T</u>	2	Slave 23	Slave 22					Slave 17	Slave 16
AS	3	Slave 31	Slave 30	Slave 29				Slave 25	Slave 24
2	4	Slave 7	Slave 6				Slave 2	Slave 1	-
	5	Slave 15	Slave 14					Slave 9	Slave 8
Kreis	6	Slave 23	Slave 22					Slave 17	Slave 16
AS-i	7	SI 1,2	SI 3,4	SI 5,6	SO 1,2	SO 3,4	SO 5,6	Slave 25	Slave 24
	′	Slave 31	Slave 30	Slave 29	Slave 28	Slave 27	Slave 26	Clave 25	Slave 24

Abbild der Ausgangsdaten

	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	0	Slave 7	SO 6	SO 5	SO 4	SO 3	SO 2	SO 1	_
Kreis	O	Glave 1	Slave 6	Slave 5	Slave 4	Slave 3	Slave 2	Slave 1	
	1	Slave 15	Slave 14					Slave 9	Slave 8
AS-i	2	Slave 23	Slave 22					Slave 17	Slave 16
⋖	3	Slave 31	Slave 30			•••	•••	Slave 25	Slave 24
s 2	4	Slave 7	Slave 6				Slave 2	Slave 1	-
Kreis	5	Slave 15	Slave 14					Slave 9	Slave 8
	6	Slave 23	Slave 22					Slave 17	Slave 16
AS	7	Slave 31	Slave 30	Slave 29				Slave 25	Slave 24

7.2 PROFIsafe-Diagnose

Die PROFIsafe-Kommunikation kann über die F-CPU "activated", in den Ruhezustand versetzt ("passivated") oder abgeschaltet ("inactive") werden.

7.2.1 PROFIsafe Status-Anzeige

Im geschützten Betriebsmodus erscheint bei passiverter PROFIsafe-Kommunikation im Geräte-Display die Meldung "PS" mit der Unterzeile "Profisafe passivated" oder einer entsprechenden Fehlermeldung:

Status-Meldung	Bedeutung	Bedingung ¹
Profisafe activated	PROFIsafe Kommunikation	activate_FV=0 und
	aktiv	FV_activated=0
Profisafe	Safety Monitor	Monitor gestoppt
Gateway stopped	gestoppt	
Profisafe passivated	PROFIsafe-Daten passiviert	activate_FV=1
Profisafe inactive	keine	sonstige
	PROFIsafe-Kommunikation	
Profisafe address fault	falsche	Diagnose=0x40
	PROFIsafe-Adresse	
Profisafe	PROFIsafe	WDT-Timeout=1
Watchdog-Timeout	Watchdog-Zeit abgelaufen	

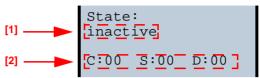
Tab. 7-24. Bedeutung der PROFIsafe Status-Meldungen

Befindet sich das Gateway im Projektierungsmodus wird bei aktivierter PROFIsafe-Kommunikation "PS" mit "Profisafe activated" angezeigt.

Wenn im I/O-Bereich des Gateways kein PROFIsafe-Modul gewählt ist, wird keine PROFIsafe-Meldung erzeugt.

Status-Meldung	Geschützter Betriebsmodus	Projektierungsmodus
PROFIsafe-Modul gewählt,	keine Meldung	PS
PROFIsafe aktiv		Profisafe activated
PROFIsafe-Modul gewählt,	PS	keine Meldung
PROFIsafe nicht aktiv	Profisafe passivated	
PROFIsafe-Modul	keine Meldung	
nicht gewählt		

Tab. 7-25.


Befindet sich bei einem Gateway mit zwei AS-i Mastern einer der beiden Master im Projektierungsmodus, behandelt Profisafe das gesamte Gerät als im Projektierungsmodus befindlich.

^{1.} Bedingungen siehe PROFIsafe-Spezifikation.

Über das Display-Menü kann ebenfalls der Status der PROFIsafe-Kommunikation abgefragt werden:

Hauptmenü || SAFETY || PROFISAFE || STATUS

Unter [1] wird der aktuelle Status der PROFIsafe-Kommunikation angezeigt; darunter [2] wird der Inhalt des PROFIsafe Status-Bytes [S], des Control-Bytes [C] und des Diagnostewortes (nur Low-byte) [D] dargestellt.

7.2.2 PROFIsafe Kanaldiagnose

Slot	Kanal	Code	Meldung
PS ¹ 0		64	falsche Zieladresse
		65	ungültige Zieladresse
		66	ungültige Quelladresse
		67	ungültige Watchdogzeit
		68	übergebene SIL-Klasse zu hoch
	69		ungültige CRC2-Länge
		70	ungültige PROFIsafe-Version
		71	CRC1-Fehler
		72	Parametrierung inkonsistent
		75	ungültige iParCRC

Tab. 7-26.

1. PS: Steckplatz des PROFIsafe-Moduls

8. Diagnose

8.1 Systemdiagnose auf dem PC

8.1.1 Software für Diagnose, Service und Freigabe-Messungen

Die intuitiv bedienbare Software für Diagnose, Service und Freigabe-Messungen erlaubt die PC-gestützte Messung unter Verwendung der überlegenen, in den AS-i Mastern eingebauten Messtechnik.

Die speziell entwickelte Software unterstützt sowohl den Maschinen-/Anlagebauer bei Freigabemessungen und prophylaktischer Fehlersuche als auch den Endkunden bei der vorbeugenden Wartung sowie bei der schnellen und eigenständigen Fehlerbehebung. Optional können die Analysedaten auch an unseren technischen Support als Grundlage für schnelle und zuverlässige Hilfe bei der Problembehandlung versendet werden.

8.1.2 AS-i Control Tools

Mit der Software AS-i Control Tools haben Sie alle wichtigen Test- und Konfigurationsmöglichkeiten Ihres AS-i Kreises übersichtlich am PC zur Verfügung

Über eine grafische Darstellung Ihres AS-i Netzwerkes erhalten Sie einen schnellen Überblick über den Zustand Ihres Systems, so werden z.B. fehlende Slaves und nicht projektierte Slaves angezeigt. Weiterhin werden Peripheriefehler und die Zustände der in den Master integrierten "AS-i Wächter" gemeldet. Der **Diagnosepuffer** (nicht bei allen Geräten verfügbar!) speichert bis zu 1024 Ereignisse in einem Ringspeicher mit Zeitstempel. Vor allem aber bietet die AS-i Control Tools-Software einen einfachen und bequemen Weg neue AS-i Kreise zu konfigurieren oder bereits bestehenden Konfigurationen abzuändern. Diese Software ist auch Bestandteil der ASIMON-Software.

8.1.3 ASIMON

Mit der Software ASIMON wird die sichere Einheit konfiguriert. Bereits konfigurierte Systeme können mit der Software live diagnostiziert werden. Der Zustand sämtlicher Ein- und Ausgänge wird graphisch dargestellt, ebenso die Ergebnisse der Vorverarbeitung.

In der Projektierung hat der Anwender die Möglichkeit, den einzelnen Bausteinen eindeutige Bezeichner zuzuweisen. Diese erscheinen so auch im Zusammenhang mit Fehlermeldungen im Display der Geräte. Um Fehler bereits bei der Projektierung zu vermeiden warnt die ASIMON-Software frühzeitig an relevanten Punkten.

Die Software AS-i Control Tools ist ebenfalls Bestandteil der ASIMON.

8.1.4 Webserver

Die Geräte mit Ethernet-Schnittstelle stellen sämtliche Diagnosedaten über einen Webserver bereit. Dies erlaubt es zur Not auch ohne zusätzliche Software die Systeminformationen über jeden an das Netzwerk angeschlossenen PC mit Standard-Internetbrowser und Java abzurufen.

Um den vollen Umfang der Diagnosefunktionen und Konfigurationsmöglichkeiten der AS-i Master nutzen zu können, benötigen Sie jedoch die ASIMON-Software mit integrierten AS-i Control Tools und idealerweise zusätzlich die Software für Diagnose, Service und Freigabemessung.

8.2 Diagnose in der übergeordneten Steuerung

Alle Diagnoseinformationen werden auch auf der übergeordneten Steuerung zur Verfügung gestellt.

8.2.1 Spontandiagnose

Bei den PROFINET Gateways werden die meisten Diagnose-Informationen über die Norm-Diagnose übertragen und damit als Klartext-Meldung in der Hardware-Konfiguration der Projektierungssoftware angezeigt.

8.2.2 Diagnose über Prozessdaten

Die Diagnose über die Prozessdaten stellt einen sehr einfachen Weg dar Diagnose-Informationen ins Steuerungsprogramm einzubinden und auf einem Bedienpanel anzuzeigen.

Für eine aussagekräftige Diagnose empfehlen wir folgende Module einzubinden:

8.2.2.1 Diagnose der AS-i Kreise

- Gateways der Version "1 Gateway, 1 Netzteil für 2 AS-i Kreise" Strombegrenzung (siehe Kap. 6.1.4)
- □ Für alle anderen Gateways

 Flags + Fehlerbits (siehe Kap. Kap. 6.1.3).
- ☐ Liste der Konfigurationsfehler (siehe Kap. 6.1.5)
- ☐ Liste der Peripheriefehler (Kap. 6.1.6)

Wenn ein Konfigurationsfehler gemeldet wird, z.B. weil ein AS-i Slave ausgefallen ist, kommuniziert der AS-i Master weiter mit den vorhandenen Slaves. In vielen Fällen ist es jedoch eine gute und einfache Lösung die Abarbeitung des SPS Programms im Falle eines Konfigurationsfehlers zu unterbrechen.

8.2.2.2 Diagnose des Sicherheitsmonitors

- □ Safety Diagnose im Eingangsdatenabbild
 Diagnose über die Zustände der sicheren AS-i Ein-/ und Ausgänge. Um
 Diagnoseinformationen über einen sicheren AS-i Ausgang zu erhalten
 muss die zugehörige Diagnose-Slave-Adresse eingebunden werden (siehe
 Absatz <A>).
- □ Safety Control/Status

 Diagnose der Zustände der Freigabekreise (siehe Kap. 6.1.8)
- ☐ Monitor und E/A Daten
 Status des Sicherheitsmonitors und der lokalen sicheren Ein-/und Ausgänge (siehe Kap. 6.1.9)

- □ Feldbus-Bits
 - Anwenderspezifische Diagnose (siehe Kap. 6.1.7)
- □ Safe Link Diagnose

Falls die sichere Kopplung mehrerer Sicherheitsmonitore über Safe Link verwendet wird (siehe Kap. 6.1.10).

Absatz A: Safety-Diagnose im Eingangsdatenabbild (IDI)

□ Diagnose der sicheren AS-i Eingänge

Die Diagnose im IDI ist eine Möglichkeit die wichtigsten Diagnosefunktionen in die Steuerung zu übertragen. Die Übertragung der Diagnoseinformation erfolgt im Abbild der Eingangsdaten, codiert auf die Eingangsbits der Adresse des sicheren Eingangsslaves (Siehe Kap.<Digitaldaten>).

In den Bits 0 und 1 wird der Schaltzustand der Kanäle 1 und 2 des sicheren Eingangs optimal schnell dargestellt und ist direkt ablesbar:

Bit 3	Bit 2	Bit 1	Bit 0	Beschreibung
X	X	0	0	Beide Kanäle offen
X	Х	0	1	Kanal offen, 1. Kanal geschlossen
X	Х	1	0	Kanal geschlossen, 1. Kanal offen
X	Х	1	1	Beide Kanäle geschlossen

Tab. 8-27.

In den Bits 2 und 3 wird der Zustand des sicheren Eingangs (die Devicefarbe der ASIMON) übertragen:

Bit 3	Bit 2	Bit 1	Bit 0	Beschreibung
0	0	X	Χ	Devicefarbe: rot, grün oder grau
0	1	Х	Χ	Devicefarbe: gelb ("warten")
1	0	X	Χ	Devicefarbe: gelb blinkend ("testen")
1	1	Х	Х	Devicefarbe: rot blinkend ("Fehler")

Tab. 8-28. Zustand des sicheren Eingangs

□ Diagnose der sicheren AS-i Ausgänge

Die Übertragung der Diagnoseinformationen eines sicheren AS-i Ausgangs erfolgt im Abbild der Eingangsdaten. Die Diagnoseinformation des sicheren Ausgangs wird auf die Eingangsdaten des Diagnose Slaves des jeweiligen sicheren Ausgangs kodiert.

Bitbelegung der Eingänge des Diagnose-Slaves

Bit	AS-i Eingang
E0	
E1	Diagnose (siehe Tabelle Device-Farben)
E2	
E3	reserviert für EDM-Eingang

Tab. 8-29. Bitbelegung der Eingänge des Diagnose-Slaves

Device-Farben

Die Farben beziehen sich auf die Diagnose in der ASIMON.

Wert	Farbe	Beschreibung	Zustandswechsel	LED "OUT" ¹
0	grün	Ausgang an	_	an
1	grün blinkend	_	_	_
2	gelb	Wiederanlaufsperre	Hilfssignal 2	1 Hz
3	gelb blinkend	_	_	_
4	rot	Ausgang aus	_	aus
5	rot blinkend	Warten auf Fehlerentriegelung	Hilfssignal 1	8 Hz
6	grau	Beschaltungs- oder interner Fehler	nur durch Power On am Gerät	alle LEDs blitzen
7	grün/gelb	Ausgang freigegeben, aber nicht eingeschaltet	Einschalten durch set- zen des Ausgangsbits ¹	aus

Tab. 8-30. Device-Farben

Siehe Dokumentation des AS-i Slaves.

Achtung!

Folgende Punkte sind bei der Auswertung zu beachten:

- Die Informationen von Schaltzustand und Fehlerzustand werden nicht zeitsynchron verarbeitet.
- Bei einem Konfigurationsfehler werden alle Bits mit Wert 0 übertragen, dies muss bei der Auswertung der Daten beachtet werden.
- Bei gestopptem Monitor ist die Devicefarbe "grau".
- Als Übergangszustand kann beim regulären Schalten der Zustand "gelb blinkend" erkannt werden. Dies hängt von der eingestellten Baustein Bauart ab. Dieser Zustand darf erst dann als Testanforderung verstanden werden, wenn er stabil gemeldet wird (siehe Monitorinfo bzw. Safety Control/Status Byte). Dies ist erst dann der Fall, wenn Bit 6 in der Monitorinfo bzw. im Safety Control/Status Byte gesetzt wird ("Mindestens ein Baustein im Zustand Testen"). Somit dient die Diagnoseinformation im Eingangsdatenabbild nicht als Trigger für eine Testanforderung, sondern lediglich als detaillierte Information nachdem anhand der Monitorinfo bzw. des Safety Control/Status Bytes erkannt wurde, dass mindestens ein Baustein eine Testanforderung gemeldet hat.

Verändern der Grundeinstellung

Die Einstellung bzw. Veränderung der Diagnoseart erfolgt über das Display des Geräts ([SAFETY]->[AS-I SAFETY]->[SAFE SUBST VAL]).

Eine weitere Möglichkeit des Einstellens der Diagnoseart erfolgt per Parameter "IDI Substitution Mode" der Gerätebeschreibungsdatei.

8.2.3 Diagnose über die Kommandoschnittstelle

Alle Diagnosedaten lassen sich auch einzeln azyklisch über die Befehle der Kommandoschnittstelle abfragen. Diese Vorgehensweise ist jedoch mit einem größeren Programmieraufwand verbunden.

8.3 Fehleranzeige direkt am Gerät

8.3.1 LEDs

Die am Gerät angebrachten LEDs erlauben auf einen Blick den Zustand der wichtigsten Funktionsparameter abzulesen, wie z.B. Betriebsspannung, Kommunikation mit der übergeordneten Steuerung, Kommunikation am AS-i Kreis und Zustand der sicheren Ein- und Ausgänge.

8.3.2 LC-Display

Im Display der Gateways werden spontan Meldungen im Klartext über erkannte Fehler angezeigt (z.B. fehlende Slaves, Erdschluss, Doppeladresse...).

8.3.3 AS-i Wächter

Umfangreiche in die AS-i Master serienmäßig eingebaute Messtechnik ermöglicht es, selbst nur sporadisch auftretende, auf die AS-i Kommunikation einwirkende Konfigurationsfehler und Störquellen einfach zu lokalisieren

8.3.3.1 Doppeladresserkennung

Der Master erkennt, wenn zwei Slaves mit der gleichen Adresse im AS-i Kreis vorhanden sind.

8.3.3.2 Erdschlusswächter

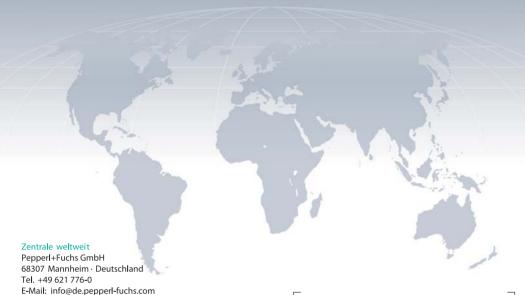
Der Erdschlusswächter überprüft die Symmetrie der AS-i Spannung. Ist die AS-i Spannung nicht mehr ausreichend symmetrisch ist die Störsicherheit der Datenübertragung eingeschränkt.

8.3.3.3 Störspannungserkennung

Störspannungen auf der AS-i Leitung können Telegrammfehler erzeugen. Daher überwacht die Störspannungserkennung den AS-i Kreis auf Wechselspannungen, die weder vom AS-i Master noch von den Slaves erzeugt werden.

8.3.3.4 Überspannungserkennung

Normalerweise verhalten sich UASi+ und UASi- symmetrisch zur Anlagenerde. Wird dieses Potential stark angehoben, detektiert und meldet dies die Überspannungserkennung.


9. Anhang

Quick Start Guides für Inbetriebnahme und Service stehen auf der Webseite zum Download zur Verfügung.

FABRIKAUTOMATION -SENSING YOUR NEEDS

Zentrale USA

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1330 4253555

E-Mail: sales@us.pepperl-fuchs.com

Zentrale Asien

Pepperl+Fuchs Pte Ltd. Singapur 139942 Tel. +65 67799091

E-Mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

Änderungen vorbehalten Copyright PEPPERL+FUCHS · Printed in Germany