Speed monitors are inductive proximity switches in which both the damping status and the act of exceeding or falling short of a reference frequency is signalled. The reference frequency is adjusted via a built-in potentiometer. If the actual frequency f_{act} measured by the proximity switch is smaller than f_{nom}, the output is switched off. If the measured actual frequency f_{act} is greater than f_{nom}, the output is closed (switched on).

This mode of operation has the advantage of reducing the reaction time to the lowest possible value, i.e. $1/f_{\text{act}}$.

The speed monitor is available for the following frequency and rotational speed ranges:

- $0.1 \text{ Hz} \ldots 1 \text{ Hz}$, i.e. $6 \text{ min}^{-1} \ldots 60 \text{ min}^{-1}$,
- $1 \text{ Hz} \ldots 10 \text{ Hz}$, i.e. $60 \text{ min}^{-1} \ldots 600 \text{ min}^{-1}$,
- $10 \text{ Hz} \ldots 100 \text{ Hz}$, i.e. $600 \text{ min}^{-1} \ldots 6000 \text{ min}^{-1}$.

The speed monitors are equipped with a start-up override: once the operating voltage is applied, the output is switched on for the duration of the start-up override.