FACTORY AUTOMATION

HANDBUCH / MANUAL / MANUEL

VDM18-100/20/122/151 VDM18-100/20/88/122/151 VDM18-300/20/122/151 VDM18-300/20/88/122/151 VDM18-300/21/122/151

CE

Copyright (Deutsch)

Die Wiedergabe bzw. der Nachdruck dieses Dokuments, sowie die entsprechende Speicherung in Datenbanken und Abrufsystemen bzw. die Veröffentlichung, in jeglicher Form, auch auszugsweise, oder die Nachahmung der Abbildungen, Zeichnungen und Gestaltung ist nur auf Grundlage einer vorherigen, in schriftlicher Form vorliegenden Genehmigung seitens Pepperl+Fuchs GmbH, zulässig.

Für Druckfehler und Irrtümer, die bei der Erstellung der Betriebsanleitung unterlaufen sind, ist jede Haftung ausgeschlossen. Liefermöglichkeiten und technische Änderungen vorbehalten.

Erstveröffentlichung August 2004.

Copyright (Englisch)

No part of this document may be reproduced, published or stored in information retrieval systems or data bases in any manner whatsoever, nor may illustrations, drawings and the layout be copied without prior written permission from Pepperl+Fuchs GmbH.

We accept no responsibility for printing errors and mistakes which occurred in drafting this manual. Subject to delivery and technical alterations.

First publication August 2004

Copyright (Français)

Toute reproduction de ce document, ainsi que son enregistrement dans une base ou système de données ou sa publication, sous quelque forme que ce soit, même par extraits, ainsi que la contrefaçon des dessins et de la mise en page ne sont pas permises sans l'autorisation explicite et écrite de Pepperl+Fuchs GmbH.

Nous déclinons toute responsabilité concernent les fautes éventuelles d'impression et autres erreurs qui auraient pu intervenir lors du montage de cette brochure. Sous réserve de modifications techniques et de disponibilité pour livraison.

Première publication Août 2004

CE

Maßzeichnung / Dimensional drawing / Plan coté

Abb. 1 / Illustr. 1 / Fig. 1

2

3

л

Anschluss / Wiring / Raccordement

Option /20 - 2 x PNP

Option /21 - 2 x NPN

Typ / Type / Ref.	Pin 1	Pin 5
VDM18/88	RS485 Y/A	RS485 Z/B

Abb. 2 / Illustr. 2 / Fig. 2

Inhalt / Content / Contenu

Deutsch	
English	
Français	

Inhaltsverzeichnis

Zeichenerklärung	c
	0
	0
	/
Funktionsweise	7
Montage	8
Elektrische Installation	9
Bedienung	10
Allgemeine Bedienung	10
Einstellungen	12
Funktionen	12
Reset	14
Tasten entriegeln	14
Mittelwertbildung	15
Modus Autozero	15
Modus Autocenter	16
Modus Maximum-Hold	16
Modus Differenz-Hold	17
Modus Messwert-Hold	17
Modus Differenzmessung	18
Übertragungsprotokoll	20
Busbefehle	21
Erklärungen zu den Busbefehlen	22
Optische Daten (typ.)	23
Elektrische Daten (typ.)	23
Mechanische Daten	23
Bestellinformationen	24

Zeichenerklärung

Achtung

Dieses Symbol kennzeichnet Textstellen, die unbedingt zu beachten sind. Die Nichtbeachtung kann zu Personen- oder Sachschäden führen.

Achtung Laser

Dieses Symbol steht vor Textstellen, die vor Gefahren durch Laserstrahlen warnen.

Hinweis

Dieses Symbol kennzeichnet Textstellen, die nützliche Informationen enthalten.

Sicherheitshinweise

Vor der Inbetriebnahme des VDM18 diese Anleitung, insbesondere die Sicherheitshinweise, lesen, verstehen und unbedingt beachten.

Anschluss, Montage und Einstellung des VDM18 darf nur durch Fachpersonal erfolgen.

Eingriffe und Veränderungen am Gerät sind nicht zulässig!

Der VDM18 ist gemäß EU-Maschinenrichtlinien kein Sicherheitsbauteil und der Einsatz in Anwendungen, bei denen die Sicherheit von Personen von Gerätefunktionen abhängt, ist nicht zulässig.

Der VDM18 entspricht der Laserschutzklasse 2 nach DIN EN 60825-1, Stand 2008-05. Die technischen Anforderungen genügen der EN 60947-5-2, Ausgabe 2000.

Nicht in den Strahlengang blicken. Lidschlussreflex nicht unterdrücken. Bei länger andauerndem Blick in den Strahlengang kann die Netzhaut im Auge beschädigt werden.

Bei der Montage darauf achten, dass der Strahlengang am Ende möglichst abgeschlossen ist.

Der Laser darf nicht auf Personen (Kopfhöhe) gerichtet werden.

Unterbinden Sie bei der Ausrichtung des VDM18 Reflexionen des Laserstrahls durch spiegelnde Oberflächen.

Ist das Sicherheitsetikett bedingt durch die jeweilige Einbausituation am VDM18 verdeckt, sind weitere Sicherheitsetiketten sichtbar anzubringen. Beim Anbringen des Sicherheitsetiketts darauf achten, dass beim Lesen des Sicherheitsetiketts nicht in den Laserstrahl geblickt werden kann.

Einsatzzweck

Für das Sichern von Personen an Maschinen und technischen Anwendungen ist der VDM18 nicht zugelassen.

Der VDM18 ist ein optischer Sensor und misst berührungslos Abstände. In der Kombination mit einem zweiten VDM18 können auch Objektdicken gemessen werden (nur mit Option /88 Typen möglich, siehe "Bestellinformationen" Seite 24).

Leistungsmerkmale

- Arbeitsbereich VDM18-100: 30 100 mm
- Arbeitsbereich VDM18-300: 80 300 mm
- 2 Schaltausgänge
- Analogausgang 4-20 mA
- Kompakte Bauform 50 x 50 x 17 mm
- Hohe Auflösung (0,1% vom Messbereich)
- · Option /88 Mit serieller Bus-Schnittstelle (RS 485 Halbduplex)
- · Einstellmöglichkeit per "Teach In" auch per Software
- Hoher Funktionsumfang

Funktionsweise

Der VDM18 misst nach dem Triangulationsprinzip. Dabei wird der Abstand zwischen Objekt und Sensor anhand der Position des Lichtflecks auf dem Detektor bestimmt.

Arbeitsbereich (Werkseinstellung)

Abb. 3

Partnummer: 194551

Montage

 \bigcirc

Sensoranordnung

Den VDM18 so positionieren, dass der Abstand zum Objekt innerhalb des Arbeitsbereiches vom Sensor liegt.

Den VDM18 auf den Haltewinkel, z.B. Typ OMH-VDM18 (nicht im Lieferumfang enthalten), oder an eine geeignete Vorrichtung schrauben. Nur die vorhandenen Gehäusebohrungen (siehe Maßzeichnung, Seite 3) dazu verwenden.

Bei Stufen, bewegten oder gestreiften Objekten, den Sensor mit seiner Frontscheibe quer zur Bewegungsrichtung montieren (Abb. 5 + 6).

Bei stark reflektierenden Objekten ist eine geneigte Montage um ca. 5° erforderlich (Abb. 7).

Um die Messungen zu optimieren ist der VDM18 vor Erschütterung konstruktiv zu schützen.

Der VDM18 ist fertig montiert.

Abb. 5 Lineare Bewegung Abb. 6

Abb. 6 Rotierende Bewegung

Abb. 7 Reflektierendes Objekt

Elektrische Installation

Achtung: Pin 1 und Pin 5 dürfen nicht an die Betriebsspannung angeschlossen werden. Bei Nichtbeachtung wird der VDM18 zerstört.

Gerätestecker für das Anschlusskabel entsprechend der Einbaulage so verdrehen (Abb. 1, Seite 3), dass das Anschlusskabel frei und ohne abzuknicken angeschlossen werden kann.

Buchse des Anschlusskabels in den Stecker des VDM18 einstecken und handfest verschrauben.

Anschlusskabel gegen Verrutschen sichern (zum Beispiel mit Kabelbinder).

VDM18 gemäss Abb. 8 anschliessen.

Тур	Pin 1	Pin 5
VDM18/88	RS485 Y/A	RS485 Z/B

Abb. 8 Anschlussbild

Anschluss	Farbe	Verwendung	Bemerkung
1 (WH)	Weiß	RS485 Y/A	Nur Option /88
2 (BN)	Braun	+ UB	
3 (GN)	Grün	Als Schaltausgang Q1, oder Eingang mit optionalen Eingangs- funktionen (siehe "Einstellungen" Seite 12)	Q1
4 (YE)	Gelb	Als Schaltausgang Q ₂ , oder Schaltfunktion Good Target (erkennbares Objekt im Messbereich)	Q2 oder Good Target
5 (GY)	Grau	RS 485 Z/B	Nur Option /88
6 (PK)	Rosa	QA + Analoger Messwert	
7 (BU)	Blau	- UB	
8 (RD)	Rot	QA - Analoge Masse	

Nach dem Anlegen der Betriebsspannung ist der VDM18 nach einem Bereitschaftsverzug (≤ 300 ms) betriebsbereit.

Partnummer: 194551

Bedienung

Bedienfeld

Der VDM18 hat verschiedene Betriebsarten. Mit den Tasten S und T wird der VDM18 konfiguriert.

Taste

Set-Taste: Einstellung ändern bzw. bestätigen oder Schaltpunkt teachen.

Toggle-Taste: Funktion auswählen (weiter zur nächsten Funktion)

Die Kennzeichnung der gewählten Einstellungen und des Signalzustands erfolgt durch LEDs.

BA ZA	LED	Farbe	Verwendung / Beschreibung
	BA	Grün	Betriebsanzeige Ein: betriebsbereit (Run Modus) Blinkt: Einstellmodus (Set Modus) ist aktiv
	ZA	Rot	Zustandsanzeige Funktion aktiviert / nicht aktiviert, oder Bestätigungssignal
	Q1	Gelb	Eingang / Ausgang Q1
\bigcirc	Q2	Gelb	Eingang / Ausgang Q2
\bigcup	Н	Grün	Funktion Q1 Trigger-Eingang oder Q1 Enable-Eingang aktiv
$\overline{(T)}$	ОК	Grün	Good Traget (Objekt erfasst und im Messbereich)
(\cup)	Т	Grün	Die Funktion Impulsverlängerung ist aktiv
\checkmark	Z	Grün	Die Funktion Q1 Autocenter oder Q1 Autozero ist aktiv

Abb. 9

Die Funktionstabelle ab Seite 12 erklärt die weitere Bedeutung der LEDs Q1, Q2, H, OK, T und Z

Allgemeine Bedienung

Für die Konfiguration des VDM18 sind folgende vier Schritte notwendig:

1. Einstellmodus aktivieren

Die Tasten S und T gleichzeitig 3 Sekunden lang gedrückt halten.

Wenn nach Ablauf der Zeit die Betriebsanzeige BA blinkt

⇒ VDM18 einstellen, siehe Abb. 9. Die LEDs zeigen den Zustand der Funktion Nr. 1 (Seite 12) an.

Wenn sofort alle LEDs blinken

⇒ VDM18 entriegeln, siehe Absatz "Tasten entriegeln" Seite 14.

2. Funktionen auswählen (siehe Seite 12)

Durch Drücken der T-Taste wird die nächste Funktion in der Funktionstabelle gewählt. Die Funktionsnummer wird durch ein eindeutiges LED-Muster dargestellt, der Funktionszustand durch die Zustandsanzeige ZA (LED ein = aktiv, LED aus = inaktiv).

Erst nach dem Loslassen der T-Taste wird zur nächsten Funktion gewechselt.

Findet kein Wechsel statt:

T-Taste länger gedrückt halten.

Nach der letzten Funktion folgt wieder die erste Funktion.

Wurde versehentlich die falsche Funktion gewählt, ist ein direkter Schritt zurück zur letzten Funktionsnummer nicht möglich.

- ⇒ T-Taste mehrmals drücken, bis die gewünschte Funktion wieder erscheint.
- ⇒ Oder, Einstellmodus deaktivieren (siehe Punkt 4.) und Vorgang ab Punkt 1. wiederholen.

3. Zustand der Funktion einstellen

Durch Drücken der S-Taste wird der Zustand der jeweiligen Funktion geändert. Gemäß Funktionstabelle wechselt die Zustandsanzeige. Die Einstellungen sind sofort wirksam, müssen jedoch noch, wie unter Punkt 4. beschrieben, gespeichert werden.

Ändert sich die Zustandsanzeige nicht, oder leuchtet nicht, solange S gedrückt wird:

⇒ Lage des VDM18 hinsichtlich dem Messbereich überprüfen und gegebenenfalls anpassen

Zur Rücknahme der Einstellung S-Taste noch einmal drücken (gilt nicht bei Übernahme eines Messwertes als Schaltpunkt!).

4. Einstellmodus deaktivieren

Erst die T-Taste und dann gleichzeitig die S-Taste drücken. Danach sind alle Einstellungen gespeichert. Nach dem Loslassen der S-Taste befindet sich der Sensor im Run-Modus. Die Betriebsanzeige BA leuchtet wieder dauerhaft.

Bei Ausfall der Betriebsspannung während des Einstellvorgangs, gehen alle bis dahin gemachten Einstellungen verloren.

Einstellungen

Der VDM18 kann mit den Funktionen 1 bis 26 im Einstellmodus (Teach In) konfiguriert werden.

Taste

Funktionen

Nr.	LED Muster	Beschreibung	Zustandsanzeige "ZA"	Werkseinstellung
1	$\begin{array}{c} Q_1 \blacksquare \ \Box \ Q_2 \\ H \Box \ \Box OK \\ T \ \Box \ Z \end{array}$	Modus Ausgang Q1 wählen.	Ein = Q1 ist ein Schaltausgang Aus = Q1 ist kein Schaltausgang	Ein
2	Q₁ □ □ Q₂ H ■ □OK T □ □Z	Übernahme des aktuellen Messwerts als 1. Schaltpunkt des Schaltausgangs Q1.	Ein* = Messwert gültig Aus*= Messwert ungültig	Halber Messbereich
3	Q₁	Schaltfenster: Übernahme des aktuel- len Messwerts als 2. Schaltpunkt des Schaltausgangs Q1. Q1 muss Schalt- ausgang sein (siehe Funktion Nr. 1)	Ein = Messwert gültig Aus = Messwert ungültig	Aus
4	Q₁ □ □ Q₂ H □ □ OK T ■ □ Z	N.C./N.O. Wechsel der Schaltfunktionen für Q1.	Ein = Öffner Aus = Schließer	Schließer
5	Q₁■ □Q₂ H□ □OK T■ □Z	Modus Ausgang Q2	Ein = Q ₂ ist ein Schaltausgang Aus = Q ₂ signalisiert "Good Target"	Aus
6	Q₁⊡ □Q₂ H■ □OK T■ □Z	Übernahme des aktuellen Messwerts als 1. Schaltpunkt des Schaltausgangs Q2. Q2 muss Schaltausgang sein (siehe Funktion Nr. 5)	Ein* = Messwert gültig Aus*= Messwert ungültig	Good Target
7	Q₁ III □ Q₂ H IIII □ OK T IIII Z	Schaltfenster: Übernahme des aktuel- len Messwerts als 2. Schaltpunkt des Schaltausgangs Q2. Q2 muss Schalt- ausgang sein (siehe Funktion Nr. 5).	Ein = Messwert gültig Aus = Messwert ungültig	Aus
8	Q₁ □ ■ Q₂ H □ □ OK T □ □ Z	N.C./N.O.Wechsel der Schaltfunktionen für Q2.	Ein = Öffner Aus = Schließer	Schließer
9	Q₁ ■ ■ Q₂ H □ □ OK T □ □ Z	Impulsverlängerung von Q1 und Q2 um 50 ms.	Ein = Impulsverlängerung ein Aus = Impulsverlängerung aus	Aus
10	Q₁⊡ ■Q₂ H■ ⊡OK T□ □Z	Schaltausgang Q2 zeigt den Zustand "Good Target". Das Schaltsignal kann mit Funktion Nr. 8 invertiert werden.	Ein = Objekt innerhalb Aus = Objekt ausserhalb des Messbereichs	Ein

Nr.	LED Muster	Beschreibung	Zustandsanzeige "ZA"	Werkseinstellung
11	$\begin{array}{c} Q_1 \blacksquare \blacksquare Q_2 \\ H \blacksquare \blacksquare OK \\ T \blacksquare \blacksquare Z \end{array}$	Modus Q1=Triggereingang: Mit steigender Flanke an Q1 wird der Messwert bis zum nächsten Triggerer- eignis festgehalten.	Ein = Q_1 ist ein Triggereingang Aus = Q_1 ist kein Triggereingang	Aus
12	$\begin{array}{c} \mathbb{Q}_1 \square \blacksquare \mathbb{Q}_2 \\ \mathbb{H} \square \square OK \\ \mathbb{T} \blacksquare \square Z \end{array}$	Modus Q1=Enable-Eingang: Dient zum Ein- und Ausschalten des Laserstrahls. Laserstrahl ist ein, so- lange Q1 = +UB ist. Laserstrahl ist aus, solange Q1 = -UB ist. Letzter Messwert liegt an. Bei erneuter Aktivierung verlän- gert sich die Ansprechzeit entsprechend des eingestellten Mittelwertes.	Ein = aktiv Aus = inaktiv	Aus
13	Q₁ ■ ■ Q₂ H □ □ OK T ■ □ Z	Mittelwertbildung ausschalten: Der erste Messwert wird berücksichtigt. (Seite 15).	Ein = Mittelwertbildung aus	Ein
14	Q₁ □ ■ Q₂ H ■ □ OK T ■ □ Z	Mittelwertbildung 4 ms einschalten: Die ersten 10 Messwerte werden berücksichtigt (Seite 15).	Ein = aktiv Aus = inaktiv	Aus
15	Q₁ ■ Q₂ H ■ OK T ■ Z	Mittelwertbildung 40 ms einschalten: Alle (max. 100 Messwerte) werden berücksichtigt (Seite 15).	Ein = aktiv Aus = inaktiv	Aus
16	Q₁	Analogausgang 0% (4 mA) einstellen: Nach Betätigung der S-Taste entspricht der aktuelle Messwert dem 0%-Wert des Analogausgangs.	Ein* = Objekt innerhalb Aus*= Objekt ausserhalb des Messbereichs	0% = 4 mA = Messbereichsende
17	$\begin{array}{c} Q_1 \blacksquare \ \Box \ Q_2 \\ H \blacksquare \ \blacksquare \ OK \\ T \blacksquare \ \Box \ Z \end{array}$	Analogausgang 100% (20 mA) ein- stellen: Nach Betätigung der S-Taste entspricht der aktuelle Messwert dem 100%-Wert des Analogausgangs.	Ein* = Objekt innerhalb Aus*= Objekt ausserhalb des Messbereichs	100% = 20 mA = Mess- bereichsanfang
18	Q₁ Q₂ H ■ ■OK T □ Z	Modus Autozero Q1: Bewirkt Kennlinien-Verschiebung. Wenn an Q1 +UB anliegt, wird das aktuelle Messsignal auf den Analogwert 0% = 4 mA eingestellt. Die Kennlinien- steigung bleibt gleich. Bei Über- schreitung endet die Kennlinie am Messbereichsende oder -anfang.	Ein = Autozero aktiv Aus = Autozero inaktiv	inaktiv
19	$Q_1 \blacksquare \square Q_2$ $H \blacksquare \blacksquare OK$ $T \square \square Z$	Modus Autocenter Q1: Kennlinienmittelpunkt-Verschiebung. Wenn an Q1 +UB anliegt, wird das aktuelle Messsignal auf den Analog- wert 50% = 12 mA eingestellt. Die Kennliniensteigung bleibt gleich. Bei Überschreitung endet die Kennlinie am Messbereichsende oder -anfang.	Ein = Autocenter aktiv Aus = Autocenter inaktiv	inaktiv

* solange die S-Taste gedrückt wird

Nr.	LED Muster	Beschreibung	Zustandsanzeige "ZA"	Werkseinstellung
20	$\begin{array}{ccc} Q_1 & & \square & Q_2 \\ H & \square & \blacksquare & OK \\ T & \blacksquare & \square & Z \end{array}$	Modus Maximum-Hold Q1: Solange an Q1 +UB anliegt, wird der maximal auftretende Messwert gespei- chert. Wenn an Q1 -UB anliegt, wird der ermittelte Wert am Analogausgang ausgegeben. Durch Invertierung der Analogkennlinie kann ein Minimum- Hold eingestellt werden (Analog 100%- Punkt < Analog 0%-Punkt).	Ein = Maximum-Hold aktiv Aus = Maximum-Hold inaktiv	inaktiv
21	$\begin{array}{c} Q_1 \blacksquare & \Box & Q_2 \\ H & \blacksquare & OK \\ T \blacksquare & \Box Z \end{array}$	Modus Differenz-Hold Q1: Solange an Q1 +UB anliegt, wird die Differenz der auftretenden Messwerte gespeichert. Wenn an Q1 -UB anliegt, wird der ermittelte Wert am Analog- ausgang ausgegeben.	Ein = Differenz-Hold aktiv Aus = Differenz-Hold inaktiv	inaktiv
22	$\begin{array}{ccc} Q_1 \square & \square & Q_2 \\ H \blacksquare & \blacksquare OK \\ T \blacksquare & \square Z \end{array}$	Werkseinstellungen aktivieren: Wird die S-Taste gedrückt, ist die Werkseinstellung aktiviert.	ZA leuchtet solange die S-Taste gedrückt ist	inaktiv
23	$\begin{array}{ccc} Q_1 & \hfill & \square Q_2 \\ H & & & OK \\ T & & \square Z \end{array}$	Tasten verriegeln: Wird die Funktion aktiviert, sind die Tasten nach dem Verlassen des Ein- stellmodus verriegelt. Die Rücknahme der Verriegelung ist mit RESET oder Entriegelungsfunktion möglich (siehe "Tasten entriegeln").	Ein = Verriegelung ist aktiv Aus = Verriegelung ist inaktiv	inaktiv
24	$\begin{array}{ccc} Q_1 \square & \square & Q_2 \\ H \square & \square & OK \\ T \square & \blacksquare Z \end{array}$	Modus Messwert-Hold: Wenn kein Objekt im Messbereich ist (Good Target = aus), wird der letzte Messwert am Analogausgang gehalten.	Ein = Messwert-Hold ist aktiv Aus = Messwert-Hold ist inaktiv	inaktiv
25	$\begin{array}{c} Q_1 \blacksquare & \boxdot Q_2 \\ H \boxdot & \boxdot OK \\ T \blacksquare & \blacksquare Z \end{array}$	Modus Differenzmessung Master: Ein - / ausschalten (nur mit Option /88) Funktionsbeschreibung siehe Modus Differenzmessung (Seite 18).	Ein = Modus Differenzmessung Master ist aktiv Aus = Modus Differenzmessung Master ist inaktiv	inaktiv
26	$\begin{array}{c} Q_1 \square \ \square \ Q_2 \\ H \blacksquare \ \square \ OK \\ T \square \ \blacksquare Z \end{array}$	Modus Differenzmessung Slave: Ein - / ausschalten (nur mit Option /88) Funktionsbeschreibung siehe Modus Differenzmessung (Seite 18).	Ein = Modus Differenzmessung Slave ist aktiv Aus = Modus Differenzmessung Slave ist inaktiv	inaktiv

Reset

Q1 Q2 Während des Einschaltvorgangs (Power On) die S-Taste solange gedrückt halten (ca. 10 Sekunden), bis das Blinken der LEDs aufhört und sie ständig leuchten. Die Betriebsanzeige BA leuchtet dabei ständig grün. Nach dem Loslassen der S-Taste ist der Reset durchgeführt, der VDM18 befindet sich nun im Auslieferungszustand und die Werkseinstellungen sind aktiv. (siehe Funktionstabelle Seite 12-14).

Tasten entriegeln

Q1 🗆 Q2 Während des Einschaltvorgangs (Power On) die T-Taste solange gedrückt halten (ca. 10 Sekunden), bis das Blinken der LEDs aufhört und sie ständig leuchten. Die Zustandsanzeige ZA leuchtet dabei ständig rot. Nach dem Loslassen der T-Taste ist der Einstellmodus entriegelt.

Mittelwertbildung

Das Messergebnis (Ausgangssignal) wird durch die Mittelwertbildung geglättet. Hierfür werden die Messwerte forlaufend in einen Speicher gelesen und das arithmetische Mittel gebildet. Die Funktionen 14 und 15 (Seite 13) legen die Anzahl der Messungen (10 oder 100), die zur Mittelwertbildung verwendet werden, fest.

Durch die Abtastrate von 0,4 ms pro Messung liegt die Ansprechzeit zwischen 0,4 ms (ohne Mittelwertbildung) und 40 ms.

Anwendungsbeispiel: Bei der Erfassung von rauen Oberflächen können die hieraus resultierenden Messwertschwankungen ausgeglichen werden.

Modus Autozero

Die Ausgangskennlinie 4 – 20 mA wird mit dieser Funktion verschoben. Ist die Funktion Autozero aktiviert und wird an $Q_1 + U_B$ angelegt, wird der aktuelle Messwert mit dem Ausgangswert von 0% = 4 mA gleichgesetzt. Die Steigung der Kennlinie bleibt gleich und der Minimal- und Maximalwert der Kennlinie wird durch den Messbereich begrenzt.

Der Objektabstand muss innerhalb des Messbereichs liegen.

EPPPERL+FUCHS

Partnummer: 194551

Modus Autocenter

Die Ausgangskennlinie 4 – 20 mA wird mit dieser Funktion verschoben. Ist die Funktion Autocenter aktiviert und wird an Q1 +UB angelegt, wird der aktuelle Messwert mit dem Ausgangswert von 50% = 12 mA gleichgesetzt. Die Steigung der Kennlinie bleibt gleich und der Minimal- und Maximalwert der Kennlinie wird durch den Messbereich begrenzt.

Der Objektabstand muss innerhalb des Messbereichs liegen.

Modus Maximum-Hold

Ist die Funktion Maximum-Hold aktiviert und wird an Q1 die Spannung +UB angelegt, wird mit dieser Funktion der Maximalwert des Messsignals bestimmt und gespeichert.

Wird an Q1, -UB angelegt, wird der letzte Maximalwert am Analogausgang ausgegeben. Anwendungsbeispiel: Bestimmen des Maximalwertes einer Welle.

Durch Invertierung der Analogkennlinie (siehe Funktion 16 und 17) kann auch das Minimum bestimmt werden.

- A) Q1 = +UB = Sample, Messwerte sammeln
- \bigoplus Q1 = -UB = Display, letztes Maximum des Analogsignals liegt am Analogausgang an

Modus Differenz-Hold

Ist die Funktion Differenz-Hold aktiviert und wird an Q1 die Spannung +UB angelegt, wird mit dieser Funktion die Differenz von Minimal- und Maximalwert des Messsignals bestimmt und gespeichert.

Wird an Q1, -UB angelegt, wird der letzte Differenzwert am Analogausgang ausgegeben.

Anwendungsbeispiel: Inhalt von offenen Behältern oder Paketen prüfen.

Modus Messwert-Hold

Ist diese Funktion aktiviert, wird der zuletzt gültige Messwert gespeichert.

Solange kein Objekt im Messbereich ist, wird am Analogausgang der zuletzt gültige Messwert ausgegeben. Erst nachdem wieder ein Objekt im Messbereich ist (OK LED = ein) liegt der aktuelle Wert an. Anwendungsbeispiel: An einer Bearbeitungsmaschine die Position des Werkzeugs während eines Werkstückwechsels halten.

Abbildung: Verhalten des Analogausgangs mit und ohne Messwert-Hold

Modus Differenzmessung

Zur Differenzmessung können ausschließlich VDM18 in der Ausführung mit Option /88 benutzt werden.

Ein gleichzeitiger Anschluss zu einer SPS-Steuerung oder einem Personal Computer über die RS 485 –Schnittstelle ist bei der Differenzmessung nicht möglich.

Bei diesem Messverfahren werden zwei VDM18.../88 miteinander gekoppelt. Die Messbereiche können dabei überlappen 1, direkt angrenzen 2 oder auseinanderliegen 3 (Abb. 18).

Für die optimale Ausnutzung des Messbereichs, das Messobjekt möglichst in der Mitte des Messbereichs ausrichten

Abb. 18

Folgende Arbeitsschritte sind zur Differenzmessung durchzuführen:

- 1. Montage beider VDM18.../88 Typen.
- 2. Sensoren nach Anschlusszeichnung verbinden und elektrisch anschließen.

Master

Abb. 19

3. Einen der Sensoren als Slave konfigurieren, dazu Funktion Nr. 26 aktivieren (siehe "Einstellungen" Seite 12)

- Referenz-Objekt mit bekannter Breite in den Messbereich einlegen Achtung: LED "OK" (Good Target) muss bei beiden Sensoren leuchten.
- 5. Zweiten VDM18.../88 als Master konfigurieren, dazu Funktion Nr. 25 (Seite 14) aktivieren.
- Achtung: Sensor lässt sich nur als Master konfigurieren, wenn sich das Objekt bei beiden Sensoren innerhalb des Messbereichs befindet (siehe 4.)
- 6. Analogwert am Master entspricht der gemessenen Referenzbreite und dem 50% Wert (Funktion Autocenter) von 12 mA. Zudem beziehen sich nun alle am Master konfigurierbaren Funktionen auf die Dickendifferenz.
- 7. Zur Messung Objekte in den Messbereich bringen.
- Der Messwert liefert die Differenz zur Referenzbreite und liegt am Analogausgang des Master an. Am Analogausgang des Slave liegt der Abstand zum Objekt an.

о Л Wir empfehlen vor der Konfiguration der Sensoren als Master, respektive Slave, die Sensoren in den Werksauslieferungszustand (Funktion 22, Seite 14) zu setzen.

Durch die Verwendung von 2 Sensoren ist bei der Differenzmessung die Auflösung und die Linearitätsabweichung mit dem Faktor 2 zu mulitiplizieren.

Sensorkonfiguration mit der Software VDMConfig

Zur komfortablen Parametrierung der Sensortypen VDM18.../88 ist eine Bediensoftware "VDMConfig" lieferbar, die im Simulationsmodus auch die für den jeweiligen Fall korrekten Busbefehle anzeigt. Siehe Hinweise hierzu auf unserer Homepage: www.pepperl-fuchs.de und in den Bestellinformationen auf Seite 24.

Übertragungsprotokoll

Übertragungsrahmen (frame)

Die busfähige RS 485 Schnittstelle des VDM18.../88 arbeitet im Halbduplex-Mode (1 Stoppbit, keine Parität). Grundsätzlich ist der VDM18.../88 ein Slave und sendet nur auf Aufforderung von einer übergeordneten Steuerung (Master) Daten (Ausnahme bei der Differenzmessung).

Für die Datenübertragung ist eine Baudrate von 38,4 KBaud und folgendes Protokoll einzuhalten:

 7 Datenbit + 1 Adressbit (MSB) 	MSB	61 LSB
	Adressbit	7 Daten / Adressbits

Ablauf:

Wenn das Adressbit gesetzt ist, vergleicht der VDM18.../88 die anliegende Adresse auf dem Bus mit der eigenen. Bei Übereinstimmung interpretiert der VDM18.../88 alle weiteren Daten und sendet eine entsprechende Rückmeldung.

Dabei gilt folgender Übertragungsrahmen:

1. Byte	2. Byte	3. Byte		Letztes Byte	
Anfrage vom Master	Anfrage vom Master				
Adresse vom Slave	Länge	Befehl	Parameter	Prüfsumme	
Antwort vom Slave					
Adresse vom Slave	Länge	Befehl	Parameter	Prüfsumme	

Länge = Anzahl der Zeichen inkl. Prüfsumme und Adressbyte

Befehl = siehe Tabelle Busbefehle auf Seite 21

Parameter = Parameterbyte 0 bis n, je nach Befehl. Der Slave sendet die angeforderten Daten in diesem Bereich.

Prüfsumme = Exklusive-OR aller gesendeten Zeichen inkl. Adressbyte

Slave Antworten:

Adresse vom Slave	4	N*1	Prüfsumme	
Adresse vom Slave	4	Y*2	Prüfsumme	
Adresse vom Slave	4 + n	Y	 Parameter, 2. Parameter, Parameter,, n. Parameter 	Prüfsumme

*1 not acknowledge wird gesendet, wenn ein unbekannter / ungültiger Parameter oder Befehl vorliegt.

*2 acknowledge wird gesendet, wenn der Befehl ausgeführt wurde.

Partnummer: 194551

Busbefehle

Befehl (ASCII)	Hex	Befehl Bezeichnung	Master- Parar 5. Byte und fo	neter olgende) hex
1		Schaltausgang Q1	1	Highbyte Schaltpunkt 1, siehe 1) Seite 22.
			2	Lowbyte Schaltpunkt 1, siehe 1) Seite 22.
	31		3	Konfiguration: D0: 1 = Schließer, 0 = Öffner D1: 1 = Impulsverlängerung, 0 = Aus, siehe 2) Seite 22.
			4	Highbyte Schaltpunkt 2, siehe 1) Seite 22.
			5	Lowbyte Schaltpunkt 2 Wird für High- und Lowbyte 00 gesendet, gibt es keinen 2. Schaltpunkt, siehe 1) Seite 22.
		Schaltausgang Q2	1	Highbyte Schaltpunkt 1, siehe 1) Seite 22.
			2	Lowbyte Schaltpunkt 1, siehe 1) Seite 22.
2	32		3	Konfiguration: D0: 1 = Schließer, 0 = Öffner D1: 1 = Impulsverlängerung, 0 = Aus, siehe 2) Seite 22.
			4	Highbyte Schaltpunkt 2, siehe 1) Seite 22.
			5	Lowbyte Schaltpunkt 2 Wird für High- und Lowbyte 00 gesendet, gibt es keinen 2. Schaltpunkt siehe 1) Seite 22.
G	47	Good Target		·
Т	54	Q1 ist Triggereingang		
E	45	Q1 ist Enable-Eingang		
	42	Mittelwertbildung	D0 = 1	= 0,4 ms (Mittelwertbildung aus)
В			D1 = 1	= 4 ms (10 Messwerte)
			D2 = 1	= 40 ms (100 Messwerte)
N	4E	Kennlinie 0% Punkt	siehe 1) Seite	22
н	48	Kennlinie 100% Punkt	siehe 1) Seite	22
Z	5A	Q1 ist Autozero		
С	43	Q1 ist Autocenter		
X	58	Maximumsuche		
M	4D	Minimumsuche		
D	44	Differenzsuche		
w	57	Werkseinstellung	Eine tellen non	
v	56	Tastenverriegelung	Linstellungen siehe 2) Seite 22 D0 = 0 inaktiv D0 = 1 aktiv	
S	53	EEPROM speichern		
Q	51	Q1-Eingang Softwarebe- stätigung Erklärung	Einstellungen siehe 2) Seite 22 D0 = 0 Q1 = aus D0 = 1 Q2 = ein	
Α	41	Abstandsmesswerte	siehe 3) Seite	22
1	49	Betriebsmesswerte	siehe 3) Seite	22
F	46	schnelle Messwertausgabe	siehe 4) Seite 22	
L	4G	Slave-Adresse ändern	siehe 2) Seite	22
?	3F	Sensoreinstellung lesen	siehe 5) Seite	22

Erklärungen zu den Busbefehlen

1) Highbyte Lowbyte 0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 D0 - D11 = Abstandswert 0 - 4095 (entsprechend des eingestellten Messbereiches) 2) Byte 0 D6 D5 D4 D3 D2 D1 D0 3) **Highbyte** Lowbyte 0 GT D11 D10 D9 D8 D7 D6 0 Q1 D5 D4 D3 D2 D1 D0 D0 - D11 = Abstandswert (0 - 4095) Q1 = Zustand von Q1 GT = Good Target 4) Highbyte Lowbyte D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 0 0 0 D0 1 D0 - D11 = Abstandswert (0 - 4095) Bit6 = 1: Highbyte

Bit6 = 0: Lowbyte

5)

Nach Eingabe des "?" wird die Sensoreinstellung folgendermaßen ausgegeben:

Euclidean 1	
Highbyte	D8. Inggereingang D9:Q1 lst Enable-Eingang
	D10: A D11: Movimum Hold
	D11: Maximum-noid
	D12: Dilletenz-Hold
	D13. Q1 Ist Softwareenigarig
Funktion 1	D14. Schliele Wessweitausgabe
Loubuto	D1. Q1 ist Schaltfonster
Lowbyte	D2: O1 ist Schaltzusgang invertieren (1 = Öffner)
	D3: O1 ist Schaltausgang Impulsverlängerung
	D4: Minimum-Hold
	D5: Autozero
	D6: Autocenter
Funktion 2	D8 D14: Variantenkennung
Highbyte	bo b r n fanantonikonnang
Funktion 2	D0: Q1 ist Schaltausgang
Lowbyte	D1: Q1 ist Schaltfenster
	D2: Q1 ist Schaltausgang invertieren (1 = Öffner)
	D3: Q1 ist Schaltausgang Impulsverlängerung
	D4: Q2 ist Good Target-Ausgang
	D5 D6: X
Funktion 3	D8: Messwert-Hold
Highbyte	D9, D10: X
	D11: Tastenverriegelung
	D12 D14: X
Funktion 3	D0: Mittelwert 0,4 ms
Lowbyte	D1: Mittelwert 4 ms
	D2: Mittelwert 40 ms
	D3 D6: X
Kennlinie 0% Highbyte	siehe 1)
Kennlinie 0% Lowbyte	siehe 1)
Kennlinie 100% Highbyte	siehe 1)
Kennlinie 100% Lowbyte	siehe 1)
Schaltschwelle Q1 Highbyte	siehe 1)
Schaltschwelle Q1 Lowbyte	siehe 1)
Schaltfenster Q1 Highbyte	siehe 1)
Schaltfenster Q1 Lowbyte	siehe 1)
Schaltschwelle Q2 Highbyte	siehe 1)
Schaltschwelle Q2 Lowbyte	siehe 1)
Scholtfongtor On Highbuto	sishe 1)
	Siene I)
	Funktion 1 Lowbyte Funktion 1 Lowbyte Funktion 2 Highbyte Funktion 2 Highbyte Funktion 2 Lowbyte Funktion 3 Highbyte Funktion 3 Lowbyte Funktion 3 Lowbyte Kennlinie 0% Highbyte Kennlinie 10% Lowbyte Schattschwelle Q1 Highbyte Schattschwelle Q1 Highbyte Schattschwelle Q2 Highbyte Schattschwelle Q2 Lowbyte

Optische Daten (typ.)

Arbeitsbereich VDM18-100 Messbereich VDM18-100 Arbeitsbereich VDM18-300 Messbereich VDM18-3000 Auflösung*1 Lichtart Lichtart Lichtfleckgröße Fremdlichtgrenze Laserschutzklasse

Elektrische Daten (typ.)

Betriebsspannung UB Stromaufnahme ohne Last Schaltausgänge Ausgangsstrom Q₁, Q₂ Schaltfrequenz Q₁, Q₂ Ansprechzeit Q₁, Q₂, Q_A Max. kapazitive Last Q₁, Q₂ Impulsverlängerung Q₁, Q₂ Analogausgang Q_A Schnittstelle Nichtlinearität Temperaturdrift Schutzschaltungen VDE Schutzklasse *⁵

Bereitschaftsverzug

Mechanische Daten

Genausemateriai
Frontscheibe
Schutzart
Umgebungstempe
Lagertemperaturb
Anschlussart
Gewicht

*1 kleinste messbare Änderung
*2 bei Umgebungstemperatur : +40 °C
*3 Grenzwerte
*4 empfohlene Bürde ≤ 500 Ohm
*5 Bemessungsspannung 50 V DC
*6 bei angeschraubter Leitungsdose

PMMA IP 67*6 emperaturbereich -10 ... +60 °C aturbereich -20 ... +80 °C M12 Stecker, 8-polig ca. 43 g

Bemessungsspannung 50 V DC	
bei angeschraubter Leitungsdose	
ũ ũ	

- 30 ... 100 mm 70 mm 80 ... 300 mm 220 mm <0,1% vom Messbereich Gepulstes Laserlicht, rot 650 nm, MTBF>50.000h *² siehe Abb. 4 Seite 8 Gleichlicht 5000 lux nach EN 60947-5-2 2 (EN 60825/1)
- $18-30 V DC *^{3}$ $\leq 40 mA bei 24 V DC$ $Q_{1}/Q_{2} (PNP oder NPN, N.O./ N.C. umschaltbar)$ $\leq 100 mA$ $\leq 1 kHz$ 0,4 ms (wenn Mittelwertbildung = aus) / 4ms / 40ms < 100 nF 50 ms (wenn aktiviert) $4-20 mA^{*4}$ RS485 (nur mit Option /88) <0,25% vom Messbereich $< 0,02\% / ^{\circ}C$ Verpolungsschutz, Kurzschlussschutz (nicht RS 485)
- ≤ 300 ms

ABS, schlagfest

Partnummer: 194551

Bestellinformationen

Sensorentyp	Beschreibung
VDM18-100/20/122/151	Abstandssensor, 30 100 mm, Aufl. 0,1% vom Messbereich, 2 x PNP, N.O./N.C., 4 20 mA, Stecker M12 8-Pol
VDM18-100/20/88/122/151	Abstandssensor, 30 100 mm, Aufl. 0,1% vom Messbereich, 2 x PNP, N.O./N.C., 4 20 mA, RS485, Stecker M12 8-Pol
VDM18-300/20/122/151	Abstandssensor, 80 300 mm, Aufl. 0,1% vom Messbereich, 2 x PNP, N.O./N.C., 4 20 mA, Stecker M12 8-Pol
VDM18-300/20/88/122/151	Abstandssensor, 80 300 mm, Aufl. 0,1% vom Messbereich, 2 x PNP, N.O./N.C., 4 20 mA, RS485, Stecker M12 8-Pol
VDM18-300/21/122/151	Abstandssensor, 80 300 mm, Aufl. 0,1% vom Messbereich, 2 x NPN, N.O./N.C., 4 20 mA, Stecker M12 8-Pol

Zubehör (Nicht im Lieferumfang enthalten)

Zubehör	Beschreibung
V17-G-5M-PUR	Anschlusskabel M12, 8-polig, Länge 5 m, gerade, PUR
V17-G-2M-PUR	Anschlusskabel M12, 8-polig, Länge 2 m, gerade, PUR
OMH-VDM18-01	Empfohlener Haltewinkel
OMH-VDM18-02	Empfohlener Haltewinkel
VDMConfig	Software
Interface Cable RS232-RS485	Schnittstellenkonverter RS 485/422 zu RS 232
Interface Cable RS232-USB	Schnittstellenkabel inkl. CD-ROM USB-RS 232

о П

C

Voraussetzung für den Betrieb des VDM18 an einem Personal Computer (PC) ist eine RS 485 Schnittstelle am PC. Gegebenenfalls ist eine vorhandene Schnittstelle (RS 232, USB, etc.) mit einem Adapter anzupassen.

Wenn Ihr PC über eine RS 232 Schnittstelle verfügt, empfehlen wir Ihnen den RS 232 Konverter Interface Cable RS232-RS485 zu verwenden.

Verfügt Ihr PC nur über eine USB Schnittstelle benötigen Sie zusätzlich das USB-RS 232 Schnittstellenkabel Interface Cable RS232-USB.

*Artikelnummer siehe Zubehörliste

Datenblätter, Bedienungsanleitungen und Software stehen unter www.pepperl-fuchs.com zum Download bereit.

RS485 / RS422 <-> RS232 - Konverter Setup

FACTORY AUTOMATION – SENSING YOUR NEEDS

Worldwide Headquarters

Pepperl+Fuchs GmbH · Mannheim · Germany E-mail: fa-info@pepperl-fuchs.com

USA Headquarters

Pepperl+Fuchs Inc. · Twinsburg, OH · USA E-mail: fa-info@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd · Singapore Company Registration No. 199003130E E-mail: fa-info@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

Subject to modifications without notice Copyright Pepperl+Fuchs · Printed in Germany L

Г

PEPPERL+FUCHS SENSING YOUR NEEDS

DOCT-1314A

194551 08/2011

_