KC-LCDL... KC-LCDC...

Electronic Preset Counter

with two presets

Operating instructions

Models
KC-LCDL-48-2R-230VAC KC-LCDL-48-2R-24VDC KC-LCDC-48-2T-230VAC KC-LCDC-48-2T-24VDC KC-LCDC-48-2R-230VAC KC-LCDC-48-2R-24VDC

c

KC-LCDL...
KC-LCDC...

Table of Contents

1 Preface 4
2 Safety instructions and Warnings 4
2.1 Use according to the intended purpose 4
2.2 Mounting in a control panel 4
2.3 Electrical Installation 5
2.4 Cleaning and maintenance 5
3 Description 6
4 Display/Operating elements 6
5 Inputs 6
5.1 INP A, INP B 6
5.2 RESET 6
5.3 GATE 6
5.4 LOCK INPUT 6
5.5 MPI 6
6 Outputs 7
6.1 Output 1 7
6.2 Output 2 7
6.3 Active Outputs 7
7 Programming 7
7.1 Entering the programming 7
7.2 Choice of main menus 7
7.3 Entering a sub-menu 7
7.4 Selecting the menu items 7
7.5 Setting the menu items 7
7.6 Accepting the setting 7
7.7 Ending the programming 7
7.8 Programming Menu 8
7.8.1 Default parameters 8
7.8.2 Table: Parameter Sets 8
7.8.3 Setting the Basic Function 8
7.8.4 Pulse Counter 9
7.8.5 Tacho/Frequency meter 11
7.8.6 Timer 13
7.9 Setting the presets 17
7.9.1 Setting via Decade Keys 17
7.9.2 Setting with Teach-In Function 17
7.9.3 Setting the tracking presets (trail) 17
7.10 Set Function 17
8 Error message 17
9 Connections 17
9.1 Signal and Control Inputs 18
9.2 Supply voltage and Outputs 18
9.2.1 Version with relays 18
9.2.2 Version with Optocouplers 18
10 Technical Data 18
10.1 General Data 18
10.2 Pulse counter 18
10.3 Tacho/Frequency meter 18
10.4 Timer 18
10.5 Signal and Control inputs 19
10.6 Outputs 19
10.7 Supply voltage 19
10.8 Sensor supply voltage 19
10.9 Climatic Conditions 19
10.10EMC 19
10.11 Device safety 19
10.12Mechanical Data 20
10.13Connections 20
11 Scope of Delivery 20
12 Ordering codes 20
13 Frequencies (typical) 20
13.1 Pulse counter 20
13.2 Frequency meter 21
14 Input modes: Pulse counting 22
15 Input modes: Timing 24
16 Input modes: Frequency meter 25
17 Output operations 26
18 Dimensional Drawings 28

1 Preface

Please read this instruction manual entirely and carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2 Safety instructions and Warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times. Defective or damaged devices should be disconnected from the mains immediately and taken out of operation. The device shall not be opened. Use the repair service of the manufacturer. Only connect the device to the electricity networks provided to that purpose.
The safety of the system in which the device is integrated is the responsibility of the installer.
Disconnect all electricity networks prior to any installation or maintenance work.
Use exclusively cables approved in your country and designed for your temperature and power ranges. Installation and service work shall be carried out exclusively by qualified personnel.
The device must compulsorily be protected with approved external fuses. The value of these fuses can be found in the technical information.

This symbol is used on the device to remind of the existence of dangers, which are referred to in this manual.

2.1 Use according to the intended purpose

The preset counter detects and measures pulses, times and frequencies up to max. 60 kHz and offers a wide variety of different operating modes. At the same time, the preset counter processes programmed presets. Use for any purpose over and beyond this will be deemed as not in accordance with its intended purpose and thus not complying with the requirements.

I he application area tor this device iles in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Overvoltages at the terminals of the device must be kept within the limits of Over-voltage Category II. The device must only be operated when mounted in a panel in the correct way and in accordance with the section "Technical Data".

The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1. If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, it is your responsibility to take the appropriate safety measures.

The device has been designed for indoor operation. It may nevertheless be used outdoors, provided the technical data is adhered to. In this case, take care to provide suitable UV protection.

2.2 Mounting in a control panel

Mount the device away from heat sources and avoid direct contact with corrosive liquids, hot steam or similar.

CAUTION

Provide a free space of 10 mm all around the device for its ventilation.

The device should be mounted so that the terminals are out of the reach of the operator and cannot be touched by him. When mounting the device, consider the fact that only the front side is classified as accessible for the operator.

Mounting instructions

1. Remove the mounting clip from the device.
2. Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
3. Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.
Note: In case of proper installation, IP65 can be reached on the front side.

2.3 Electrical Installation

The device must be disconnected from any power supply prior to any installation or maintenance work. Make sure that no more voltages LIABLE TO CAUSE AN ELECTROCUTION are present.

AC-powered devices must only be connected to the low-voltage network via a switch or circuit breaker installed close to the device and marked as their disconnecting device.

Installation or maintenance work must only be carried out by qualified personnel and in compliance with the applicable national and international standards.

Take care to separate all extra-low voltages entering or exiting the device from hazardous electrical conductors by means of a double or reinforced insulation (SELV circuits).

DANGER
The device must be protected externally for its proper operation. Information about the prescribed fuses can be found in the technical information.

The relay outputs are not protected internally in the device. Without suitable protection of the relay outputs, undesired heat development or even fire may occur. The relay outputs must be protected externally by the manufacturer of the plant. It must also be made sure that, even in case of a malfunction, the values stated in the technical data are under no circumstances exceeded.

- During installation, make sure that the supply voltage and the wiring of the output contacts are both fed from the same mains phase, in order not to exceed the maximum permitted voltage of 250 V .
- The cables and their insulation must be designed for the planned temperature and voltage ranges. Regarding the type of the cables, adhere to the applicable standards of the country and of the plant. The cross sections allowed for the screw terminals can be found in the technical data.
- Before starting the device, check the cables for proper wiring and tightening. The screws of
unused screw terminals must be screwed to the stop, so that they cannot loosen and get lost.
- The device has been designed for overvoltage category II. If higher transient voltages cannot be excluded, additional protection measures must be taken in order to limit the overvoltage to the values of CAT II.

Advice on noise immunity

All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines! Interference (e.g. from switchmode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.

Measures to be taken:

- Use only shielded cable and control lines. Connect shield at both ends. The conductor cross-section of the cables should be a minimum of $0.14 \mathrm{~mm}^{2}$.
- The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (lowimpedance).
- Only connect the shields to the control panel, if the latter is also earthed.
- Install the device as far away as possible from noise-containing cables.
- Avoid routing signal or control cables parallel to power lines.

2.4 Cleaning and maintenance

The front side of the unit should only be cleaned using a soft damp (water!) cloth. Cleaning of the embedded rear side is not planned and is the responsibility of the service personnel or of the installer.

In normal operation, this device is maintenancefree. Should the device nevertheless not operate properly, it must be sent back to the manufacturer or to the supplier. Opening and repairing the device by the user is not allowed and can adversely affect the original protection level.

KC-LCDL...
KC-LCDC...

3 Description

6-digit multifunction LCD display
Easy-to-read 2-line LCD-display with annunciators for both the displayed preset and the status of the two outputs
Simultaneous display of the actual value and of the presets or auxiliary counters
Versions with/without backlit display
Add./Sub. Preset counter with two presets
Relay or optocoupler outputs
Easy-to-program
Simple preset entry via the front keys or via the Teach-In function
Step or tracking preset
Pulse, frequency, time or batch counter
Preset counter, Batch counter or Total Counter (cumulative count)
Set function for pulse and time counter Multiplication and division factor (00.0001 .. 99.9999) for pulse counter and frequency meter Averaging and Start Delay for frequency meter Input modes:
Pulse counter: cnt.dir, up.dn, up.up, quad , quad2, quad4, $A / B,(A-B) / A \times 100 \%$
Frequency meter: $A, A-B, A+B$, quad, A / B, (A-B)/Ax100\%
Timer: FrErun, Auto, $\operatorname{InpA} . \operatorname{InpB}, \operatorname{InpB} \cdot \operatorname{InpB}$
Output operations:
Add, Sub, AddAr, SubAr, AddBat, SubBat, AddTot, SubTot, Trail, TrailAr
4-stage RESET-Mode
3-stage keypad locking (Lock)
MPI input for Display Latch, Teach-In function or Set function
Supply voltage $100 \ldots 240$ V AC $\pm 10 \%$ or 10 .. 30 VDC

4 Display/Operating elements

T1-6	Decade key T1 ... T6
P	Prog/Mode key
R	Reset key
8	Current count value / main counter
9	Preset value/ Total count/ Batch counter
10	Run display for Timer
11	Shows which preset value is being displayed
12	Shows which preset output is active
Pr	Keys necessary for programming the parameters (highlighted in grey)

5 Inputs

5.1 INP A, INP B

Signal inputs: function acc. to operating mode. Max. frequency 60 kHz , can be damped in the programming menu to 30 Hz .
Pulse counter: Count inputs
Frequency meter: Frequency inputs
Timer: \quad Start input or Start/Stop inputs

5.2 RESET

Dynamic reset input: resets the pulse counter or timer to zero (adding mode) or to preset value 2 (subtracting mode). The reset input can be inhibited in the programming menu.
Pulse counter: RESET input
Frequency meter: no function
Timer: RESET input

5.3 GATE

Static gate input: function depending on operating mode.
Pulse counter: no counting while active Frequency meter: no counting while active Timer: time measurement while active(Gate.hi) time measurement while not active (Gate.Lo).

5.4 LOCK INPUT

Static keypad lock input for presets or programming. Lock-out level can be set in the programming menu.

5.5 MPI

Input. Programmable as Display Latch, Set or Teach-In input.

6 Outputs

6．1 Output 1

Relay with potential－free make（NO）contact or optocoupler with open emitter and collector

6．2 Output 2

Relay with potential－free make（NO）contact or optocoupler with open emitter and collector．

6．3 Active Outputs

An active output will be shown on the display as -1 or tII ．
For safety switching the relays or optocoupler outputs can be inverted，i．e．the relay will be de－ energized or the optocoupler output disabled when the presets are reached．To do this，the parameters Pr．OUT1 and Pr．OUT2 must be set to $L_{\text {（for }}$ permanent signal）or 乙－or Ш】（for timed signal）．

7 Programming

7．1 Entering the programming

Press the Reset key and Prog／Mode key simultaneously for 3 s

Press key T2 to continue with the programming

Enter the main menu by pressing the Prog／Mode key

7．2 Choice of main menus

The menus are selected using the keys T2（next）and T1（back）

7．3 Entering a sub－menu

The sub－menu is opened with the Prog／Mode key and the first menu item is displayed．

7．4 Selecting the menu items

The Prog／Mode key is used to select a menu item within the sub－menu

7．5 Setting the menu items

The T2 key is used to select the individual settings for the menu items

When setting count values，each decade has a key assigned to it． Each time the key is pressed， the value increments by one

7．6 Accepting the setting

Pressing the Prog／Mode key causes the current setting to be accepted．Programming then switches to the next menu item．

7．7 Ending the programming

During programming，it is possible to exit the programming at each menu item by pressing the reset key．

Press the Reset key

Pressing the Prog／Mode key

 acknowledges this prompt and causes the programming menu to start again from the beginning． The previously－programmed values are preserved．These can now be changed or checked again．Pressing the decade key T2 selects the termination of the programming
$\Rightarrow \quad$ The security prompt appears in the display

KC-LCDL...
KC-LCDC...

5845

Pressing the Prog/Mode key acknowledges this prompt and terminates the programming; the modified settings are saved in the EEPROM.
$\Rightarrow \quad$ The text SAVE is
displayed for 2 s

7.8 Programming Menu

7.8.1 Default parameters

Note: Three default parameter sets have been permanently stored; these can be adapted as required. With each acknowledgment of the parameter sets, all parameters will be reset to the values listed in the table.
The dEFAuL P.USEr can be freely programmed.

Menu Parameter Sets

Default setting
Parameter set 1

Default setting
Parameter set 2

Default setting
Parameter set 3

Freely programmable
User settings

Factory settings are highlighted in grey

7.8.2 Table: Parameter Sets

7.8.3 Setting the Basic Function

Funct Basic function menu

Funct
 Count

Funcki kine

Programming menu
Pulse counter (7.8.4)

Funct
Programming menu
Tacho/Frequency meter (7.8.5)

KC-LCDL...
KC-LCDC...

7.8.4 Pulse Counter

7.8.4.1 Submenu for the Signal and Control inputs

Input polarity

AnPOL

PNP: switching to Plus for all inputs in common
nPPOL
nPO_{n}

NPN: switching to 0 V
for all inputs in common

Filter for the signal inputs InpA and InpB

FiLLEr	Maximum count frequency
FILLEr	Damped to approx. 30 Hz (for control with mechanical contacts)

Count Input mode

(for control with mechanical contacts)

Count Pu nd 4
 Count
 8, b

Count gRo, ob

Quadrature x 4

INP A: count input 0°
INP B: count input 90°
Each pulse edge of INP A and INP B will be counted.
Ratio measurement [A/B]
$\operatorname{lnp} \mathrm{A}$: count input A
Inf B: count input B

Percentage differential

 counting[($\mathrm{A}-\mathrm{B}) / \mathrm{A}$ in \%]
$\operatorname{lnp} A$: count input A
$\operatorname{lnp} \mathrm{B}$: count input B

User input

 RL the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset counter continues counting.
$7 \pi 0^{-}$ tER ch

When the MPI input is activated the current count value for the preset that has just been selected will be adopted as the new preset value. See also 7.9
$970=$ SEt

Lock input
Loci? Proúu

When the Lock input is activated the programming is inhibited.

When the Lock input is activated the setting of the preset values is inhibited.

When the Lock input is activated the setting of the preset values and the programming are both inhibited.

7.8.4.2 Submenu for Output operations

Submenu for determining the operation of the outputs

Count mode ADD

Outputs active when count status \geq preset value
Reset to zero

Miode
Rodidr

PMode Subir

Count mode SUBTRACT
Output 1 active when count status \leq preset value 1
Output 2 active when
count status ≤ 0
Reset to preset 2

Count mode ADDING with automatic reset

Output 1 active when count status \geq preset value 1 Output 2 (timed signal) active when count status = preset value 2

Automatic reset to zero when count status = preset value 2 Reset to zero

Count mode SUBTRACTING with automatic reset

Output 1 active when count status \leq preset value 1 Output 2 (timed signal) active when count status $=0$ Automatic reset to preset 2 when count status $=0$
Reset to preset 2
Count mode ADDING with automatic reset and Batch counter
Output 2 (timed signal) active when main counter = preset value 2
Automatic reset to zero when main counter $=$ preset 2
Batch counter counts the number of automatic repetitions of preset 2

Output 1 active when Batch counter \geq preset 1
Manual reset sets both counters to zero.
Electrical reset only sets the main counter to zero

Count mode SUBTRACTING with automatic reset and Batch counter

Output 2 (timed signal) active when main counter $=$ zero Automatic reset to preset 2 when main counter = zero
Batch counter counts the number of automatic repetitions of preset 2

Output 1 active when Batch counter \geq preset 1 Manual reset sets main counter to preset value 2 , batch counter to zero
Electrical reset only sets the main counter to preset value 2

Count mode ADDING with automatic reset and Total counter
Output 2 (timed signal) active when main counter = preset value 2
Automatic reset to zero when main counter = preset value 2 Total counter counts all the count pulses from the main counter Output 1 active when total counter > preset value 1 Manual Reset sets both counters to zero
Electrical reset only sets the main counter to zero

Count mode SUBTRACTING
with automatic reset and Total counter
Output 2 (timed signal) active
when main counter = zero
Automatic reset to preset value 2
when main counter = zero
Total counter counts (sub from
preset value 1) all count pulses from main counter
Output 1 active when Total
counter s zero
Manual reset sets both counters
to the preset values
Electrical reset sets only main
counter to preset value 2

PMode
 trRit

Tracking Preset mode
When preset 2 is changed then preset 1 automatically tracks it. Reset to zero
Preset 1 relative to preset 2 (see also section 17. Output operations)

Tracking Preset mode with

 automatic resetWhen preset 2 is changed then preset 1 automatically tracks it. Reset to zero.
Automatic reset to zero when main counter = preset value 2. Preset 1 relative to Preset 2
(see also section 17. Output operations)

KC-LCDL...
KC-LCDC...

7.8.4.3 Submenu for configuration

Submenu for matching the input pulses and display

Multiplication factor

 0 :

Multiplication factor can be programmed from 00.0001 to 99.9999.

The setting 00.0000 will not be accepted

Division factor
वí1゙5 50 010000

Division factor can be programmed from 01.0000 to 99.9999 .

The setting <01.0000 will not be accepted

Decimal point setting

Set value

Set value can be programmed from -999999 to 999999 A previously programmed decimal point will be displayed

Display colour (for device KC-LCDC...)

VaLOr	Display colour upper line
red	lower line

CoLor	Display colour upper line	red
rEturn	lower line	green

7.8.4.4 Submenu for reset mode

Setting the reset mode

Manual reset (with red key) and electrical reset (reset input)

No reset possible (red key and reset input inhibited)

Only electrical reset possible (reset input)

Only manual reset possible (red key)

7.8.4.5 Preset 1

See below 7.8.6.5

7.8.4.6 Preset 2

See below 7.8.6.8

7.8.5 Tacho/Frequency meter

7.8.5.1 Submenu for the Signal and Control inputs

n OL Submenu for programming the signal and control inputs

Input polarity

PNP: switching to Plus for all inputs in common

NPN: switching to 0 V for all inputs in common

Filter for the signal inputs $\operatorname{Inp} A$ and $\operatorname{Inp} B$
FILEEF maximum count frequency off

FILLEr damped to approx. 30 Hz (for control with mechanical
Q contacts)

Input mode Frequency Measurement

input Sub b

Simple frequency measurement Inf A: Frequency input Inf B: no function

Differential measurement
[ABB]
Inf A: Frequency input A Inf B: Frequency input B

KC-LCDL...
KC-LCDC...

Lock input
Lacing Praús

Lacíno PrESEL

Locing

 PrupreTotal measurement [A + B]
$\operatorname{Inp} A$: Frequency input A Inp B: Frequency input B

Frequency measurement with direction recognition [Quad]
$\operatorname{lnp} \mathrm{A}$: Frequency input 0° Inp B: Frequency input 90°
Ratio measurement [A/B] Inp A: Frequency input A Inp B: Frequency input B

Percentage differential measurement [(A-B) / A in \%]
Inp A: Frequency input A $\operatorname{lnp} B$: Frequency input B

When the MPI input is activated the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the frequency meter continues running.

When the MPI input is activated the current frequency for the preset that has just been selected will be adopted as the new preset value.
See also 7.9

When the Lock input is activated the programming is inhibited.

When the Lock input is activated the setting of the preset values is inhibited.

7.8.5.2 Submenu for configuration

Submenu for matching the input pulses and display

Multiplication factor

Multiplication factor can be programmed from 00.0001 to 99.9999.

The setting 00.0000 will not be accepted

Division factor

वí1150

nienlav mode thiodt SE[-i
¿PTode
กクin-i

Division factor can be programmed from 01.0000 to 99.9999.

The setting <01.0000 will not be accepted

Calculation and display of the frequency / speed in 1/s

Calculation and display of the frequency / speed in 1/min

Decimal point setting

61^{0}	Decimal point (determines the resolution)	
7		no decimal place 1 decimal place
	0.00	2 decimal places
	0.000	3 decimal places

Moving average

Ri1\% Moving average calculated
RUL AVG 2 over 2 measurements
AVG 5 over 5 measurements AVG 10 over 10 measurements AVG 20 over 20 measurements

Start delay

Start delay

Programmable from 00.0 to 99.9 s

At the start of a measurement the measurement results within this time-period are ignored.

Waiting time

Waiting time
Programmable from 00.1 to
7ก! 99.9 s .
This value specifies how much time should elapse, after the last valid edge, before zero is to be displayed.

Display colour (for device KC-LCDC...)

$\underset{\text { LOLGO }}{\text { CEG }}$| Display colour | |
| :--- | :--- |
| Lowerline | red |

Loíar	Display colour Upperline	red
r Edurn	Lowerline	green

KC-LCDL...
KC-LCDC...

7.8.5.3 Preset 1

See below 7.8.6.5
7.8.5.4 Preset 2

See below 7.8.6.6

7.8.6 Timer

7.8.6.1 Submenu for the Signal and Control inputs

inpuk
inpgol

nPn : switching to 0 V
for all inputs in common

Menu for programming the signal

Filter for the signal inputs $\operatorname{Inp} A$ and $\operatorname{Inp} B$

for electronic control of the signal inputs

on
for mechanical control of the signal inputs(for control with mechanical contacts)
Input mode Time measurement

StRrt
 ingi nb
 Start: Edge to $\operatorname{Inp} \mathrm{A}$
 Stop: Edge to Inp B

Start: 1. Edge to Inp B
Stop: 2. Edge to $\operatorname{Inp} B$

Timing can only be controlled via the Gate input
$\ln p \mathrm{~A}$ and $\operatorname{Inp} \mathrm{B}$: no function

Gate control for Timing

The timer is reset by means of a RESET (to zero when adding, to preset 2 when subtracting) and then starts timing again.

Timing is stopped with adding operations when preset 2 is reached.

User input

Timing is stopped with subtracting operations when zero is reached.
A RESET during the timing process also causes this to stop. $\operatorname{Inp} A$ and $\operatorname{Inp} B$: no function.

fite

 chtelo
fint

 EREEhi

Lintch
Timing takes place when the Gate input is not active.

Timing takes place when the Gate input is active

When the MPI input is activated the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset timer continues counting.
ก70 tERch

When the MPI input is activated the current count value for the preset that has just been selected will be adopted as the new preset value.
See also 7.9

กip,

 $58 t$When the MPI input is activated the preset timer will be set to the value specified in the parameter SEtPt. See also 7.10

Lock input

When the Lock input is activated the programming is inhibited.

When the Lock input is activated the setting of the preset values is inhibited.

When the Lock input is activated the setting of the preset values and the programming are both inhibited.

KC-LCDL...
KC-LCDC...
7.8.6.2 Submenu for the output operations

Submenu for determining the operation of the outputs
 Sub

ModE

 Rododr
Count mode ADD

Outputs active when count status
\geq preset value
Reset to zero
Count mode SUBTRACT
Output 1 active when
count status \leq preset value 1
Output 2 active when
count status ≤ 0
Reset to preset 2
Count mode ADDING with automatic reset
Output 1 active when count status \geq preset value 1 Output 2 (timed signal) active when count status $=$ preset value 2
Automatic reset to zero when count status = preset value 2 Reset to zero

Count mode SUBTRACTING with automatic reset
Output 1 active when count status \leq preset value 1 Output 2 (timed signal) active when count status $=0$ Automatic reset to preset 2 when count status $=0$ Reset to preset 2

Count mode ADDING with automatic reset and Batch counter

Output 2 (timed output) active when main counter $=$ preset value 2
Automatic reset to zero when main counter = preset value 2 Batch counter counts the number of automatic repetitions of preset 2

Output 1 active when batch counter \geq preset 1 manual reset sets both counters to zero electrical reset sets only main counter to zero

Count mode SUBTRACTING with automatic reset and Batch counter
 Output 2 (timed signal) active when main counter $=$ zero Automatic reset to preset 2 when

main counter = zero
Batch counter counts the number of automatic repetitions of preset 2
Output 1 active bei Batchzähler \geq Preset 1

Manual reset sets main counters to preset value 2 and batch counter to zero
Electronic reset only sets the main counter to preset value 2

Count mode ADDING with
automatic reset and Total counter
Output 2 (timed signal) active when main counter $=$ preset value 2
Automatic reset to zero when main counter $=$ preset value 2 Total counter counts all the count pulses from the main counter Output 1 active when total counter \geq preset value 1 Manual Reset sets both counters to zero
Electronic reset only sets the main counter to zero

Count mode SUBTRACTING with automatic reset and Total counter
Output 2 (timed signal) active when main counter $=$ zero
Automatic reset to preset value 2 when main counter = zero Total counter counts (sub from preset value 1) all count pulses from main counter
Output 1 active when Total counter \leq zero
Manual reset sets both counters to the preset values Electronic reset sets only main counter to preset value 2

Tracking preset mode

When preset 2 is changed then preset 1 automatically tracks it. Reset to zero

Preset 1 relative to preset 2 (see also section 17. Output operations)

Tracking Preset mode with automatic reset
When preset 2 is changed then preset 1 automatically tracks it. Reset to zero.
Automatic reset to zero when
main counter = preset value 2. Preset 1 relative to Preset 2
(see also section 17. Output operations)

7.8.6.3 Submenu for configuration

Submenu for matching the time ranges and display

Unit of time

Unit of time: seconds Decimal point setting determines the resolution

Unit of time: minutes Decimal point setting determines the resolution

Unit of time: hours Decimal point setting determines the resolution

Unit of time: Hrs. Min. Sec.

no res
rE5n od Et es rESn od مクRnfe

Manual reset (with red key) and electrical reset (reset input)

No reset possible (red key and reset input inhibited)

Only electrical reset possible (reset input)

Only manual reset possible (red key)

7.8.6.5 Submenu for Preset 1

Pre5
PrE5
on

Submenu for turning preset 1 ON/OFF

Preset 1 ON

Preset 1 OFF and no function

Display colour upper line red lower line green

Set value can be programmed from 000000 to 999999 A previously programmed decimal point will be displayed

Display colour (for device KC-LCDC...)

| LOLGO | $\left.\begin{array}{ll}\text { Display colour } & \\ \text { upper line } & \text { red } \\ \text { lower line } & \text { red }\end{array}\right)$ |
| :---: | :--- | :--- |

 Lalar
 rEdüra

Set value

7.8.6.4 Submenu for reset mode
positive direction)
SUB mode output operations: timed output at Output 1, becomes passive when count \leq Preset 1. (Deactivation only in negative direction).

ADD mode output operations: timed signal at Output1, becomes active with positive direction and when count \geq Preset 1 and subsequently active with negative direction and when count \leq Preset 1 SUB mode output operations: timed signal at Output 1, becomes active with negative direction and when count \leq Preset 1 and subsequently active with positive direction and when count \geq Preset 1

ADD mode output operations: timed signal at Output1, becomes passive with positive direction and when count \geq Preset 1 and subsequently passive with negative direction and when count \leq Preset 1 SUB mode output operations: timed output at Output 1, becomes passive with negative direction and when count \leq Preset 1 and subsequently passive with positive direction and when count \geq Preset 1

Duration of timed signal of Output 1, programmable from 00.01 to 99.99 s .

Timed signal is post-triggered

7.8.6.6 Submenu for Preset 2

ADD mode output operations: permanent signal at Output 2, becomes active when count \geq Preset 2
SUB mode output operations: permanent signal at Output 2, becomes active when count \leq zero

ADD mode output operations: permanent signal at Output 2, becomes passive when count \geq Preset 2
SUB mode output operations: permanent signal at Output 2,
becomes passive when count \leq zero

ADD mode output operations: timed signal at Output 2, becomes active when count \geq Preset 2 (Activation only in positive direction).
SUB mode output operations: permanent signal at Output 2, becomes active when count \leq zero (Activation only in negative direction)

ADD mode output operations: timed signal at Output 2, becomes passive when count \geq Preset 2 (Deactivation only in positive direction) SUB mode output operations: permanent signal at Output 2, becomes passive when count \leq zero (Deactivation only in negative direction).

ADD mode output operations: timed signal at Output 2, becomes active with positive direction and when count \geq Preset 2 and subsequently with negative direction and when count \leq Preset 2 SUB mode output operations: timed signal at Output 2, becomes active with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero
ADD mode output operations:
timed signal at Output 2,
becomes passive with positive direction and when count \geq Preset 2 and subsequently with negative direction and when count \leq Preset 2
SUB mode output operations: timed signal at Output 2, becomes passive with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero
Duration of timed signal of Output 1, programmable from 00.01 to 99.99 s .

Timed output is post-triggered.

Active:
Relay or optocoupler are activated when the preset value is reached.

Passive:
Relay becomes de-energized or the optocoupler disabled when the preset value is reached.

7.9 Setting the presets

7.9.1 Setting via Decade Keys

In programming mode Preset 2 will always be displayed in the lower line. This is except for the output operations AddBat, SubBat,AddTot and SubTot.

\Rightarrow Display switches to the editor mode

7.9.2 Setting with Teach-In Function

Press the Prog/Mode key to
confirm the value and save it confirm the value and save it
\Rightarrow Display switches to the editor mode of the next preset RR2 or RR1

Approx. 3 s after the last press of the decade keys or by pressing the Reset key the new preset value will be accepted and the counter will switch back to operating mode.
Set the desired preset value using the decade keys
$\boldsymbol{\Pi ח O}_{1}^{-}$Program the MPI input to tEAch tERch

In programming mode, select the preset to be changed using the Prog/Mode key

Briefly activate the MPI (NPN or PNP input logic)
\Rightarrow The current count value will be adopted as the new preset value

The preset value can subsequently be further modified via the decade keypad.

7.9.3 Setting the tracking presets (trail)

If a tracking preset has been programmed, the value for Preset 2 can be set either via the decade keypad or via the Teach-IN function. However, the value for Preset 1 must be entered via the decade keypad. In this instance, it is not possible to use the Teach-In function.

7.10 Set Function

Both the pulse counter and the timer can be set to a default value by means of the Set function.

$\begin{gathered} n \pi 0_{1} \\ 5 E L \end{gathered}$	Programme the MPI input to SEt

SELTL Set menu item SEtPt to the 99999 desired value

Briefly activate the MPI (NPN or PNP input logic)
\Rightarrow For add. output operations the pulse counter or timer will be set to the SEtPt default value
\Rightarrow For sub. output operations the pulse counter or timer will be set to the difference between the value of Preset 2 and the value of SEtPt .

8 Error message

Err 1 Set value is outside the permitted range

9 Connections

KC-LCDL...
KC-LCDC...

9.1 Signal and Control Inputs

\mathbf{N}°	Designation	Function
1	AC: 24 VDC/80 mA DC: UB connected through	Sensor supply voltage
2	GND (0 VDC)	Common connection Signal and Control inputs
3	INP A	Signal input A
4	INP B	Signal input B
5	RESET	Reset input
6	LOCK	Keypad lock
7	GATE	Gate input
8	MPI	User input

9.2 Supply voltage and Outputs

9.2.1 Version with relays

\mathbf{N}°	Designation	Function
9	Relay contact C. 1	Output 1
10	Relay contact N.O. 1	Output 2
11	Relay contact C. 2	
12	Relay contact N.O. 2	Supply voltage
13	Relay contact N.C. 2	Supply voltage
14	AC: $100 \ldots 240$ VAC $\pm 10 \% ~ N \sim$ DC: $10 . .30$ VDC	
15	AC: $100 \ldots 240$ VAC $\pm 10 \% ~ L \sim$ DC: GND $(0$ VDC $)$	

9.2.2 Version with Optocouplers

N°	Designation	Function
9	Collector 1	Output 1
10	Emitter	
11	Emitter 2	Output 2
12	Not connected	
13	Collector 2	
14	AC: $100 \ldots 240$ VAC $\pm 10 \% ~ N \sim$ DC: $10 . .30$ VDC	Supply voltage
15	AC: 100 ... $240 \mathrm{VAC} \pm 10 \% \mathrm{~L} \sim$ DC: GND (0 VDC)	Supply voltage

10 Technical Data

10.1 General Data

Display

Digit height

Overload/
Underload
Data retention Operation

LCD positive or negative, backlit 2×6-digit upper line $\quad 9 \mathrm{~mm}$ lower line $\quad 7 \mathrm{~mm}$ special characters 2 mm Blinking, 1 s Counter loses up to 1 decade no pulses >10 years, EEPROM 8 keys

10.2 Pulse counter

Count frequency max. 55 kHz (see section 13 . frequencies typ.)
Response time of the outputs:
Relays

Add/Sub/Trail	$<13 \mathrm{~ms}$
With automatic repeat	$<13 \mathrm{~ms}$
A/B; (A-B)/A	$<34 \mathrm{~ms}$
couplers	
Add/Sub/Trail	$<1 \mathrm{~ms}$
With automatic repeat	$<1 \mathrm{~ms}$
A/B; (A-B)/A	$<23 \mathrm{~ms}$

10.3 Tacho/Frequency meter

Frequency range	$0,01 \mathrm{~Hz}$ to 65 kHz (see
	section 13. frequencies typ.)
	In case of frequencies < 10
	Hz , the waiting time must be
	increased accordingly to obtain the display of a value.
Measuring principle	$\leq 76.3 \mathrm{~Hz}$ Time interval (period measurement)
	$>76.3 \mathrm{~Hz}$ Gate time
	Gate time approx. 13.1 ms
Measuring error	< 0.1\% per channel
Response time of the outputs:	
1-channel operation	< 100 ms @ 40 kHz
	$<350 \mathrm{~ms}$ @ 65 kHz
2-channel operation	$<150 \mathrm{~ms}$ @ 40 kHz
	<600 ms @ 65 kHz

10.4 Timer

Seconds	$0.001 \mathrm{~s} \ldots 999999 \mathrm{~s}$
Minutes	$0.001 \mathrm{~min} \ldots 999999 \mathrm{~min}$
Hours	$0.001 \mathrm{~h} . .999999 \mathrm{~h}$
h.min.s	$00 \mathrm{~h} .00 \mathrm{~min} .01 \mathrm{~s} \ldots$
	99 h .59 min .59 s
Min. time measurable	$500 \mu \mathrm{~s}$
Measuring error	$<50 \mathrm{ppm}$

KC-LCDL...
KC-LCDC...

Response time of the outputs:
$\begin{array}{ll}\text { Relays } & <13 \mathrm{~ms} \\ \text { Optocoupler } & <1 \mathrm{~ms}\end{array}$

10.5 Signal and Control inputs

SELV circuits, reinforced / double insulation
Polarity: programmable NPN/PNP for all inputs in common
Input resistance $5 \mathrm{k} \Omega$
Pulse shape any
Switching level with AC supply:

HTL level	Low:	$0 \ldots 4$ VDC
	High:	$12 \ldots 30$ VDC
$4-30 ~ V ~ l e v e l ~$	Low:	$0 \ldots 2 \mathrm{VDC}$
	High:	$3,5 \ldots 30$ VDC

Switching level with DC supply:

HTL level	Low:	$0 \ldots 0,2 \times$ UB
	High:	$0,6 \times$ UB $\ldots 30$ VDC
$4-30 ~ V ~ l e v e l ~$	Low:	$0 \ldots 2 \mathrm{VDC}$
	High:	$3,5 \ldots 30 \mathrm{VDC}$

Minimum pulse length of the Reset input: 1 ms Minimum pulse length of the Control inputs: 10 ms

10.6 Outputs

Output 1
Relay with make contact
Prescribed fuse: 3A programmable as NC or NO
Switching voltage max. 250 VAC/ 110 VDC
Switching current max. 3 A AC/ V DC min. 30 mA DC
Switching capacity max. 750 VA/ 90 W

1	The maximum values shall in no case be exceeded!

Mechanical service life (switching cycles)	2×10^{7}
$\mathrm{~N}^{\circ}$ of switching cycles at $3 \mathrm{~A} / 250 \mathrm{VAC}$	1×10^{5}
$\mathrm{~N}^{\circ}$ of switching cycles at $3 \mathrm{~A} / 30 \mathrm{~V}$ DC	1×10^{5}

or NPN optocoupler
Switching capacity
$30 \mathrm{VDC} / 10 \mathrm{~mA}$
$U_{\text {CESAT }}$ for IC $=10 \mathrm{~mA}$:
max. 2.0 V
$U_{\text {Cesat }}$ for $I C=5 \mathrm{~mA}$:
max. 0.4 V

Output 2

Relay with changeover contact
Prescribed fuse: 3A
Switching voltage max. 250 VAC/ 150 VDC
Switching current max. 3 A AC/ A DC
min. 30 mA DC
Switching capacity max. $750 \mathrm{VA} / 90 \mathrm{~W}$

Mechanical service life (switching cycles) 20×10^{6}
N° of switching cycles at $3 \mathrm{~A} / 250 \mathrm{~V}$ AC 5×10^{4} N° of switching cycles at $3 \mathrm{~A} / 30 \mathrm{~V}$ DC 5×10^{4}
or NPN optocoupler
Switching capacity 30 V DC/10 mA
$U_{\text {CESAT }}$ for IC $=10 \mathrm{~mA}: \quad \max .2 .0 \mathrm{~V}$
$\mathrm{U}_{\text {CESAT }}$ for IC $=5 \mathrm{~mA}: \quad \max .0 .4 \mathrm{~V}$

10.7 Supply voltage

AC supply: $\quad 100 \ldots 240 \mathrm{~V} \mathrm{AC} /$ max. 15 VA $50 / 60 \mathrm{~Hz}$, Tolerance $\pm 10 \%$ ext. fuse protection: T 0.1 A
DC supply: $\quad 10 \ldots 30 \mathrm{~V}$ DC/ max. 5 W reverse polarity protection SELV, CLASS II (Limited Power Source) ext. fuse protection T 0.2 A

10.8 Sensor supply voltage

(Voltage output for external sensors)
SELV circuits, reinforced / double insulation
for AC supply: $\quad 24 \mathrm{~V}$ DC $\pm 15 \%, 80 \mathrm{~mA}$ for DC supply: max. 80 mA , external voltage supply is connected through

10.9 Climatic Conditions

Operating temperature: $-20^{\circ} \mathrm{C} . .+65^{\circ} \mathrm{C}$
Storage temperature: $-25^{\circ} \mathrm{C} . .+75^{\circ} \mathrm{C}$
Relative humidity: RH. 93% at $+40^{\circ} \mathrm{C}$,
non-condensing
Altitude: to 2000 m

10.10 EMC

Noise immunity:
with shielded signal and control cables

10.11 Device safety
Protection Class: Protection Class 2 (front side)

Application area:
Pollution level 2 over-voltage Category II
Insulation: Front: double insulation, Rear side: basic insulation, Signal inputs and und sensor power supply: SELV

KC-LCDL...
KC-LCDC...

10.12 Mechanical Data

Housing:
Dimensions:
Panel cut-out: Installation depth:
Weight:
Protection:
Housing material:
Polycarbonate UL94 V-2
Vibration resistance: $10-55 \mathrm{~Hz} / 1 \mathrm{~mm} / \mathrm{XYZ}$
(EN 60068-2-6):
30 min in each direction
Shock resistance:
EN 60068-2-27
Panel-mount housing to DIN 43 700, RAL 7021
$48 \times 48 \times 91 \mathrm{~mm}$ $45^{+0,6} \times 45^{+0,6} \mathrm{~mm}$ ca. 107 mm incl. terminals ca. 125 g
IP65 (front, device only)
$100 \mathrm{G} / 2 \mathrm{~ms} / \mathrm{XYZ}$

3 times in each direction
$10 \mathrm{G} / 6 \mathrm{~ms} / \mathrm{XYZ}$
2000 times in each direction

10.13 Connections

Supply voltage and outputs:
Plug-in screw terminal, 7-pin, RM5. 08
Core cross section, max. $2.5 \mathrm{~mm}^{2}$
Signal and control inputs:
Plug-in screw terminal, 8-pin, RM 3.81
Core cross-section, max. $1.5 \mathrm{~mm}^{2}$

11 Scope of Delivery

Delivery includes:

Preset counter
Mounting clip
Instruction manual

12 Ordering codes

230 V AC backlighting, Relay:
KC-LCDL-48-2R-230VAC
24 V DC backlighting, Relay:
KC-LCDL-48-2R-24VDC

230 V AC Multicolour, Optocoupler:
KC-LCDC-48-2T-230VAC

24 V DC Multicolour, Optocoupler:
KC-LCDC-48-2T-24VAC

230 V AC Multicolour, Relay:
KC-LCDC-48-2R-230VAC

24 V DC Multicolour, Relay:
KC-LCDC-48-2R-24VDC

13 Frequencies (typical)

13.1 Pulse counter

HTL level

AC supply	typ. Low	$2,5 \mathrm{~V}$
DC supply 12V	typ. High	22 V
	typ. Low	2 V
DC supply 24V	typ. High	10 V
	typ. Low	$2,5 \mathrm{~V}$
	typ. High	22 V

	Add Sub Trail	AddAr SubAr AddBat SubBat TrailAr	AddTot SubTot
Cnt.Dir	55 kHz	$2,8 \mathrm{kHz}$	$2,7 \mathrm{kHz}$
Up.Dn Up.Up	29 kHz	$2,8 \mathrm{kHz}$	$2,7 \mathrm{kHz}$
Quad Quad 2	28 kHz	$1,4 \mathrm{kHz}$	$1,3 \mathrm{kHz}$
Quad 4	18 kHz	$1,2 \mathrm{kHz}$	$0,9 \mathrm{kHz}$
A/B (A-B)/A	29 kHz		

4-30 V level

typ. Low	$1,0 \mathrm{~V}$
typ. High	$4,0 \mathrm{~V}$

	Add Sub Trail	AddAr SubAr AddBat SubBat TrailAr	AddTot SubTot
Cnt.Dir	9 kHz	$2,7 \mathrm{kHz}$	$2,4 \mathrm{kHz}$
Up.Dn Up.Up	9 kHz	$2,7 \mathrm{kHz}$	$2,4 \mathrm{kHz}$
Quad Quad 2	9 kHz	$1,2 \mathrm{kHz}$	$1,2 \mathrm{kHz}$
Quad 4	9 kHz	$1,2 \mathrm{kHz}$	$0,9 \mathrm{kHz}$
A/B (A-B)/A	9 kHz		

KC-LCDL...
KC-LCDC...

13.2 Frequency meter

HTL level

AC supply	typ. Low	$2,5 \mathrm{~V}$
	typ. High	22 V
DC supply 12 V	typ. Low	2 V
	ty. tigh	10 V
DC supply 24 V	typ. Low	$2,5 \mathrm{~V}$
	typ. High	22 V

4-30 V level

typ. Low	$1,0 \mathrm{~V}$
typ. High	$4,0 \mathrm{~V}$

	$\mathbf{H T L}$	$\mathbf{5 V}$
A	65 kHz	9 kHz
A-B		
A + B	65 kHz	9 kHz
A/B		
(A-B)/A	30 kHz	9 kHz
Quad		

NOTE: Switching levels of the input
Switching levels with AC supply:

HTL level	Low:	$0 \ldots 4 \mathrm{VDC}$
	High:	12.30 VDC
$4-30 \mathrm{~V}$ level	Low:	$0 . .2 \mathrm{VDC}$
	High:	$3,5 . .30$ VDC

Switching levels with DC supply:
HTL level
Low: 0 .. $0,2 \times$ UB
High: $0,6 \times$ UB .. 30 VDC
$4-30 \mathrm{~V}$ level
Low: $0 . .2$ VDC
High: $\quad 3,5$.. 30 VDC

KC-LCDL...
KC-LCDC...

14 Input modes: Pulse counting

KC-LCDL...
KC-LCDC...

Function	Diagram Note: No counting when GATE input is active											PNP: Count on rising edge NPN: Count on falling edge
Quad 4	INP A INP B ADD SUB	 0 1 $P \mid$ $P+1$	$\begin{array}{\|c\|} \hline 2 \\ \hline \mathrm{P}+2 \\ \hline \end{array}$	3 $+3$	 4 5 		$\begin{gathered} 7 \\ \hline P+7 \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline 5 \\ \hline+5 \\ \hline \end{array}$	4 P+4	$\begin{array}{r} \hline 3 \\ \hline \mathrm{P}+3 \\ \hline \end{array}$	A $90^{\circ} \mathrm{B}$ Inp A: Count input Count on rising and on falling edges Inp B: Count input Count on rising and on falling edges, Reverse direction Add: Display 0 --> Preset Sub: Display Preset -> 0
A/B	INP A Counts A INP B Counts B Display		\square 1 1 1	1 2 0,5		2 3 0,66	2 3 4 4 4	4 4 1				Inp A: Count input 1 Inp B: Count input 2 Formula: A/B
(A-B)/A	INP A Counts A INP B Counts B Display	0 0 0%	1 1 0\%	1 \square 2 -100%		2 3 -50%	2 4 4 4	4 4 0%				Inp A: Count input 1 Inp B: Count input 2 Formula: $(A-B) / A \times 100$

KC-LCDL...
KC-LCDC...

15 Input modes: Timing

Function	Diagram	PNP: Count on rising edge NPN: Count on falling edge
InA.InB		$\operatorname{Inp} \mathrm{A}$: Start Inp B: Stop Add: Display 0 --> Preset Sub: Display Preset -> 0
InB.InB		Inp A: no function Inp B: Start/Stop Add: Display 0 --> Preset Sub: Display Preset -> 0
FrRrun		Inp A: no function Inp B: no function Control of the timing only via the GATE input Add: Display 0 --> Preset Sub: Display Preset -> 0
Auto		Inp A: no function Inp B: no function Control of the timing via RESET (manual or electrical) Add: Display 0 --> Preset Sub: Display Preset -> 0

KC-LCDL...
KC-LCDC...

16 Input modes: Frequency meter

KC-LCDL...
KC-LCDC...

17 Output operations

Mode	Diagram	Mode	Diagram
	Only in the mode $\boxed{\square}$ and	\leftrightarrow	$\mathrm{t}_{+} \mathrm{t}_{\text {in the mode }} \boldsymbol{\Pi}_{\text {and }}$ ■■
Add		Sub	
AddAr		SubAr	
AddBat		SubBat	
AddTot		SubTot	

KC-LCDL...
KC-LCDC...

KC-LCDL...
KC-LCDC...

18 Dimensional Drawings
Dimensions in mm [inch]

Panel cut-out

Your automation, our passion.

Explosion Protection

- Intrinsic Safety Barriers
- Signal Conditioners
- FieldConnex ${ }^{\circledR}$ Fieldbus
- Remote I/O Systems
- Electrical Ex Equipment
- Purge and Pressurization
- Industrial HMI
- Mobile Computing and Communications
- HART Interface Solutions
- Surge Protection
- Wireless Solutions
- Level Measurement

Industrial Sensors

- Proximity Sensors
- Photoelectric Sensors
- Industrial Vision
- Ultrasonic Sensors
- Rotary Encoders
- Positioning Systems
- Inclination and Acceleration Sensors
- Fieldbus Modules
- AS-Interface
- Identification Systems
- Displays and Signal Processing
- Connectivity

```
Pepperl+Fuchs Quality
Download our latest policy here:
www.pepperl-fuchs.com/quality
```


Weltweit
Pepperl+Fuchs SE
Lilienthalstraße 200
68307 Mannheim
Deutschland
Telefon: +49 621 776-0
E-Mail: info@de.pepperl-fuchs.com
https://www.pepperl-fuchs.com
Änderungen vorbehalten - © Pepperl+Fuchs Printed in Germany • DOCT-1810B - 10/2023 R60318/9446 - Index 5

