Brief Instructions

Terminal Boxes

GL***. T

Pepperl+Fuchs GmbH Lilienthalstrasse 200
 68307 Mannheim, Germany
 Tel. $+49621776-0$

Document No.: DoCT-2027G
Copyright Pepperl+Fuchs
fPEPPERL+FUCHS

\square Validity

Specific processes and instructions in this instruction manual require specia provisions to guarantee the safety of the operating personnel

\square Target Group/Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, Responsibility for planning, assembly, coator
and dismounting lies with the plant operator
Mounting, installation, commissioning, operation, maintenance and dismounting of the device may only be carried out by appropriate trained and qualified persol The in

\square Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous ,
The corresponding datasheets, declarations of conformity, EC-typeexamination certificates, certificates and control drawings if applicable (see
datasheet) are an integral part of this do datasheet) are an integral part of this document. You can find this information
\square Mounting/Installation/Maintenance

Observe IEC/EN 60079-17 for maintenance and inspectio

Before opening the enclosure make sure that the built-in components are de energized.
When energized, the enclosure may only be opened for maintenance, if only intrinsically sate circuits are used inside the enclosure
Safety-relevant markings are found on the type label supplied. Ensure that the
The permitted ambient temperatures of the buit-in components must not b
The permitt
exceeded.
If there is a defect, the device must be repaired by Pepperl+Fuchs.
To ensure the degree of protection:
The enclosure must not be damaged, distorted or corroded.

- All seals must be undamaged and correctly fitted.
- All screws of the enclosure/enclosure cover must be tightened with the
appropriate torque
- All cable glands must be suitably sized for the incoming cable diameters.
- All cable glands must be tightened with the appropriate torque.
- All unused cable glands must be sealed or plugged with corresponding
sealing plugs, all unused cable entries have to be closed with appropriate stopping plugs.
The enclosure should be mounted via the through-holes that are exposed when the lid is removed.
If mounting the enclosure on concrete use expansion anchors. When mounting the enclosure to a steel framework use vibration resistant mounting material. Ensure that external ground
not damaged or corroded. not damaged or corroded.
In order to prevent condensation in the enclosure, use suitably certified
breather drains.
When the internal/external ground bolt is supplied loose, the components should be fitted as shown in the figure below.

If cable glands are needed for installation, the following points must be

- The cable glands used must be suitably certified for the application. The temperature range of the cable glands must be chosen according to
The cable glands fitted must not reduce the degree of protection.
- The cable glands fitted must not red

In order to guarantee the temperature classes, ensure that power dissipation is lower than the figure stated in the certificate and in below tables of max. connection capacity. Most of the power dissipation arises from current flowing

Select suitable conductors in order to ensure that the maximum permitted temperature of the conductors fit to the maximum permitted ambien temperature of the terminal box
Ensure that the terminals are in good condition, and are not damaged or corroded.
Use only one conductor per terminal.
Observe the tightening torque of the terminal screws.
Use the shortest possible cable lengths and avoid small core cross-sections. Observe the minimum bending radius of the conductors.
Insulation must extend to within 1 mm of the metalwork of the terminal.
When using stranded conductors, crimp wire end ferrules on the conductor
Unused cables and connection lines must be either connected to terminals or securely tied down and isolated.
Insulation by tape alone is not permitted. required to preserve clearance distances.
Modifications are permitted only if approved in this instruction manual.
When installing additional components, make sure that these components are listed in the EC-type-examination certificate of the terminal box.
Only use suitably certified terminals.
Do not install fuse terminals, relays, miniature circuit breakers, contactors etc. in the enclosure.
The installer is allowed to add terminals in accordance with the maximum
permitted power dissipation shown in the connection capacity tables below. Example
Enclosure GL8*. T with 20 terminals WDU 2.5 (current load: 6 A) and 5 terminals (current load: 16 A).
Assumption
Average conductor length: 0.5 m
Maximum permissible power loss:
$29 \mathrm{WPv}=(0.242 \mathrm{~W} / \mathrm{m} \times 20 \times 2 \times 0.5 \mathrm{~m})+(0.43 \mathrm{~W} / \mathrm{m} \times 5 \times 2 \times 0.5 \mathrm{~m}$
$=4.84 \mathrm{~W}+2.15 \mathrm{~W}=6.99 \mathrm{Wv}=6.99 \mathrm{~W}$

\square Special Conditions for Safe Use

Keep the separation distances between all non-intrinsically safe circuits and intrinsically safe circuits according to IEC/EN 60079-14.

Technical Specifications

Dissipation of copper cables in W / m

	Current (A)									
Cable CSA	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
$\mathbf{1 \mathbf { m m } ^ { 2 }}$	0.0168	0.0672	0.269	0.605	1.68	4.3	-	-	-	-
$\mathbf{2 . 5 \mathrm { mm } ^ { 2 }}$	0.00672	0.0269	0.108	0.242	0.672	1.72	2.69	4.2	-	-
$4 \mathrm{~mm}^{2}$	0.0042	0.0168	0.067	0.151	0.42	1.08	1.68	2.63	4.3	-
$\mathbf{6 \mathrm { mm } ^ { 2 }}$	0.0028	0.0112	0.045	0.101	0.28	0.717	1.12	1.75	2.87	4.48
$\mathbf{1 0 \mathrm { mm } ^ { 2 }}$	0.00168	0.00672	0.027	0.061	0.168	0.43	0.67	1.05	1.72	2.69

Types	see type code table
Hazardous Area	
ATEX certificate number	SIRA 99 ATEX 3200X
IECEx certificate number	IECEX SIR 06.0106X

CE number $\quad \underset{0102}{\text { C }}$

Cetification coding tor ATEXIIOE

GL**1.T Increased safety termina enclosure	Ex $\\|_{\\| 2 \mathrm{GD}}$	
GL**3.T Intrinsic safety termina enclosure	[Ex $\\|_{\\| 2 \mathrm{GD}}$	$\begin{aligned} & \text { Ex ia IICT* } T^{*} \text { Gb } \\ & \text { Ex tb IIIC } T^{* *} \mathrm{Db} \end{aligned}$
$\overline{\mathrm{GL} *{ }^{*} 5 . \mathrm{T}}$ Increased safety and intrins safety terminal enclosure	[xx ${ }_{\\| 2 \mathrm{GD}}$	

Increased safety and in
safett termina enclosur
Ambient Conditions

$\frac{\text { Ambient Conditions }}{\text { Gas/dust temperature clas }}$

Gas/dust temperature class (T*/ ${ }^{* *}$)	T5/T95 ${ }^{\circ} \mathrm{C}$ @ Ta+ $55^{\circ} \mathrm{C}$ (terminal insulation must be suitable for $100^{\circ} \mathrm{C}$) $\mathrm{T} 4 / \mathrm{T} 130^{\circ} \mathrm{C} @ \mathrm{Ta}+60^{\circ} \mathrm{C}$ (terminal insulation must be suitable for $135^{\circ} \mathrm{C}$) Note: the temperature which a terminal is suitable for is $20^{\circ} \mathrm{C}$ higher than that for which it is certified
Ambient temperature	$\begin{aligned} & -40 \ldots 40^{\circ} \mathrm{C} \\ & \text { optional }-50 . . .60^{\circ} \mathrm{C} \text { : } \\ & \text { below }-40^{\circ} \mathrm{C} \text { with appropriate cable glands } \\ & \text { above } 40^{\circ} \mathrm{C} \text { with ceramic terminals } \end{aligned}$
IP rating	IP66/67
Maximum internal power dissipation (MDP)	Dependent on enclosure size - see certification label
Mechanical	
Material	Glass fiber reinforced polyester
Finish	As moulded
Cover screw torque	2 Nm
Electrical	
Maximum voltage	Dependent on terminals and equipment fitted, but maximum must not exceed 690 V AC (GL1** ... GL4**: 440 V AC max.). See certification label.
Maximum current	Dependent on terminals, cables and equipment fitted, but maximum must not exceed 350 A. (GL1** ... GL4**: 35 A max.).
Conformity	EN 60079-0: 2012 EN 60079-7: 2007 EN 60079-11: 2012 EN 60529 EC 60079-0: Ed 5 IEC 60079-7: Ed 4 IEC 60079-11: Ed 5 IEC 60079-31: Ed 1 EC 60079-31: Ed 1

\square Max. Connection Capacity
Max. Connection Capacity for GL* Enclosures
Max. number of conductors in relation to the cross-section and the permissible continuous current, based on terminal type WDU. GL1 ${ }^{* *}$... GL4*** based on erminal type AKZ.
Enclosure GL1*.T ($\mathrm{P}_{\max } 7.5 \mathrm{~W}$):
GL1*T maximum permitted power disisipation to be buitit in: 7.5 W

 N/A NA N/A N/A NA NA 100000 63 N/ NA NA NA NA NA NA NA 100 N/A N/A NA NA

Enclosure GL2*. ${ }^{(}\left(\mathrm{P}_{\max } 8 \mathrm{~W}\right)$

GLL2:T T maximum permited power disisipation to be built in: 8 W																			
										AIm									
Current $[$ A $]$	0.5	0.75	1	1.5	1.5	2.5	4	6	10		16	25	35				${ }^{95}{ }^{15}$		
3	28	28	28	28	28	28	0	0			0	0	0	0	0		N/	NA	
6	28	28	28	28	28	28	0	0			0	0	0	0	0		0 N/	NA N	N/A
10	N/	NA	28	28	28	28	0	0			0	0	0	0	0		N/	NA	N/A
16	NA	N/	N/A	A 28	28	28	0	0			0	0	0	0	0		N/	NA	N/A
20	NA	NA	N/A	A N/	NA	28	0	0	0		0	0	0	0	0		N/	NA	N/A
25	N/	NA	N/A		N/ N	NA	0	0	0		0	0	0	0	0		N/	NA	N/A
35	N/	NA	N/A		NA	NA	NA	0			0	0	0	0	0		N/	NA	N/A
50	NA	N	N/A	A N/	NA	NA	NA	N/	A		0	0	0	0	0		N/	NA	
63	NA	NA	N/A	A N/	N/ N	N/	N/	N/	N/		0	0	0	0	0		N/	N/	N/A
80	N/	N/	N/A	A N/	VA	NA	NA	N/A	A N/		N/	0	0	0	0		N/	N/A	N/A
100	N/	N/	N/A	A N/	NA	N/	N/	N/A	A $/$ A		NA	N/	0	0	0		N/	N/	NA
125	NA	NA	N/	A N/	NA	NA	N/	N/	A		NA	N/	NA	0	0		0 N/	N/	NA
160	N/A	N/	N/A	A N/	N/ N	N/	N/	N/A	A		NA	N/A	N/	N/A	0		0 N/	N/	NA
200	N/	N/	N/A		NA N	NA	NA	N/A	A N/		NA	N/A	NA	N/A	N/		0 N/		
250	N/A	N/	N/A	A N/	NA	N/A	N/	N/A	A			N/A	N/	N/A	N/A		NA NA		

Enclosure GL3*.T ($\mathrm{P}_{\max } 8 \mathrm{~W}$)
GL3*T:T maximum permited power disisipation to be builitin: $: 8$

$$
\begin{aligned}
& \text { Enclosure GL4*.T (} \left.\mathrm{P}_{\max } 9 \mathrm{~W}\right)
\end{aligned}
$$

| 3 | 58 | 58 | 58 | 58 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/ | N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6	58	58	58	58	58	0	0	0	0	0	0	0	0	0	N/A N A

25 N/A NA N/A NA N/A 0
$35 \quad$ N/A N/A N/A N/A N/A N/A 00
50 N/ NA N/A NA N/A NA N/A 0
N/A N/A N/A N/A N/A N/A N/A N/A 0

Enclosure GL5*.T (P $\mathrm{P}_{\max } 9.4 \mathrm{~W}$)

GLL5":T maximum permitted power dissipation to be built in $: 9.4 \mathrm{~W}$

| Current A$]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 3 | 30 | 30 | 30 | 30 | 30 | 24 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathrm{~N} / \mathrm{A}$ | N / A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 30 | 30 | 30 | 30 | 30 | 24 | 18 | 0 | 0 | 0 | 0 | 0 | | | | |

 | 10 | 30 | 30 | 30 | 30 | 30 | 24 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N/ | | | | | | | | | | | | | | | |
| 16 | 30 | 30 | 30 | 30 | 30 | 24 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N |

20	NA	N/	N/	NA	30	24	18	0	0	0	0	0

 125 N/A N/A NA NA N/A NA NA NA NA NA NA 0

Enclosure GL6*T(P ${ }^{9.4}$ W)

		CSA [mm															
Current A]	0.5	0.75			1.5	2.5	4	6	10	16	25	35	50	70	95	150	
3	68	68	68	86	88	68	56	44	0	0	0	0	0	0	0	NA	NA
6	54	68	68	88	68	68	56	44	0	0	0	0	0	0	0	N/	A
10	NA	NA	39	9 5	59	68	56	44	0	0	0	0	0	0	0	N/	N/
16	N/	NA	N/	NA 2	23	38	56	44	0	0	0	0	0	0	0	NA	N/A
20	N/	NA	N/	NA N	NA	24	39	44	0	0	0	0	0	0	0	NA	NA
25	N/	N/	N/		NA	N/	25	37	0	0	0	0	0	0	0	N/	N/
35	N/	N/	N/		NA	N/	NA	19	0	0	0	0	0	0	0	N/	NA
50	N/	N/	N/		NA N	N/	N/	N/	0	0	0	0	0	0	0	NA	N/
63	NA	N/	N/		NA N	NA	N/A	N/A	N/	0	0	0	0	0	0	NA	A
80	N/	N/A	N/	NA N	N/ N	N/A	N/A	N/A	N/A	NA	0	0	0	0	0	N/	A
100	NA	NA	N/		NA N	NA	NA	NA	NA	NA	NA	0	0	0	0	NA	N/
125	N/	NA	N/		NA N	N/A	N/	N/A	N/A	NA	NA	N/		0	0	N/	N/A
160	NA	NA	N/	NA N	NA	N/A	N/	NA	NA	NA	NA	N/	NA	0	0	N/	
200	N/	N/	N/	NA	NA	N/A	N/	N/A	N/	NA	N/	N/	NA	N/	0	N/	
250					NA	N/	NA	NA		NA	N/A	NA	N/		NA	N/	

Enclosure GL7**T($\mathrm{P}_{\text {max }} 10.4 \mathrm{~W}$)
GL7*:T maximum permitted power dissipation to be built in: 10.4 W

Current AA	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150	240

 $\begin{array}{llllllllllllllll} \\ 10 & \text { N/A } & \text { NA } & 44 & 44 & 44 & 38 & 28 & 22 & 18 & 14 & 0 & 0 & 0 & 0 & \text { N/A NA }\end{array}$

20	$\mathrm{~N} / \mathrm{A}$	NA	N / A	NA	29	38	28	22	18	14	0	0	0

 80

Enclosure GL8*.T ($\mathrm{P}_{\text {max }} 12 \mathrm{~W}$)

GL8.:T maximum permitted power dissipation to be buitit in: 12 W

Current $[A]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150

 | 6 | 58 | 84 | 84 | 84 | 84 | 70 | 54 | 42 | 36 | 26 | 0 | 0 | 0 | 0 | N/A | N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | | 20 | N/ A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 100 N/A NA N/A NA N/A NA N/ NA N/A NA 100 NA NA N/A NA N/ NA N/ NA NA NA

Enclosure GL9*T ($\mathrm{P}_{\text {max }} 13.8 \mathrm{~W}$)

$\begin{array}{r}\text { alo.:T maximum permited power dissipation to be built in: } 13.8 \mathrm{~W} \\ \hline \text { CSA }\left[m \mathrm{~m}^{2}\right]\end{array}$

Current $[A]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150	240
3	122	122	122	122	122	102	80	62	52	38		0	0			
6	5	120														

 35 NA NA NA NA N/
 63 N/A NA NA N/A NA NA N/A NA 15 24 200000

Enclosure GL10*T ${ }^{*}\left(\mathrm{P}_{\max } 13.8 \mathrm{~W}\right)$

GL10 0° T maximum permitted power dissipation to be built in: 13.8 W																	
	CSA [mm]																
Current [A]	0.5	0.7		1.	1.5	2.5	4	6	10	16	25	35				150	
3	145	202	220	202	202	202	168	130	104	86	64	0	0	0	,	N/	N/
6	36	54		7210	109	182	168	130	104	86	64	0	0	0	0	NA	N/
10	N/	N/	26	26	39	65	104	130	104	86	64	0	0	0	0	N/A	N/A
16	N/A	N/		NA	15	25	40	61	102	86	64	0	0	0	0	N/	N/
20	NA	N		NA N	N/	16	26	39	65	86	64	0	0	0	0	N/A	N/A
25	N/A	N/		NA N	NA	NA	16	25	41	67	64	0	0	0	0	N/A	N/A
35	N/A	N/		NA N	NA	NA	NA	12	21	34	53	0	0	0	0	N/A	N/A
50	NA	N/		NA N	NA	NA	NA	NA	10	16	26	0	0	0	0	N/A	N/
63	NA	N/		NA N	NA	NA	NA	NA	NA	10	16	0	0	0	0	N/A	N/
80	NA	N/		NA N	NA	NA	NA	NA	NA	NA	10	0	0	0	0	N/A	NA
100	NA	N/		NA N	NA	N/A	NA	NA	NA	NA	N/A	0	0	0	0	NA	N/A
125	N/	N/		NA	NA	N/A	NA	NA	NA	NA	N/A	N/	0	0	0	N/A	N/
160	NA	N/		NA	N/	N/A	NA	NA	NA	NA	N/A	N/	N/	0	0	N/	N/
200	NA	N/		NA		N/A	NA	NA	NA	NA	N/A	N/	N/A	N/	0	NA	N/A
250		N/		NA		N/A	NA	NA	NA	NA	N/A	N/A	N/A	N/A			

Enclosure GL11*.T ($\mathrm{P}_{\text {max }} 15.5 \mathrm{~W}$)
GL14:T maximum permited power dissipation to be built in: 15.5 W

N/A	NA	NA	NA	NA	NA	N/	17	28	26	26	22	20	14	NA

Enclosure GL.13*T ($\left.\mathrm{P}_{\max } 31.4 \mathrm{~W}\right)$

Current $[A]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150	240

 $25 \quad$ N/A NA N/A NA N/A 38 38 58 96

 25 N/A 0

Enclosure GL14*T($\mathrm{P}_{\max } 31.4 \mathrm{~W}$)
GL14:T maximum permitted power dissipation to be built in: 31.4 W

 200 N/A N/A

Enclosure GL12*. ($_{\text {max }} 15.5 \mathrm{~W}$)

$\begin{array}{\|l\|} \hline \text { aLL2:T T maxin } \\ \hline \text { Curent }[A] \end{array}$	${ }^{\text {CSAA }}$ [m²]															
	0.5	50.75	1	1.5	2.5	4	6	10	${ }^{16}$	25	35	50			5	
3	198	276	276	276	276	225	5176	76	58	44	0	0	0	0	N/	N
6	49	74	99	148	247	228	8176	70	58	44	0	0	0	0	N/A	N/
10	NA	NA	35	53	89	142	176	670	58	44	0	0	0	0	NA	N/
16	NA	N/	N/A	20	34	55	83	70	58	44	0	0	0	0	NA N	$\mathrm{N} /$
20	NA	NA	N/A	N/	A 22	35	53	70	58	44	0	0	0	0	NA	N/
25	NA	NA	N/A	N/A	A NA	22	34	57	58	44	0	0	0	0	N/	
35	NA	NA	N/A	N/A	A NA	N/A	A 17	29	46	44	0	0	0	0	N/	
50	NA	NA	N/A	N/A	A NA	N/A	A NA	A 14	22	35	0	0	0	0	N/A	
${ }^{63}$	NA	NA	N/A	N/A	A NA	N/A	A NA	A NA	A 14	22	0	0	0	0	N/A	
80	NA	NA	N/A	N/A	A NA	N/A	A NA	A NA	A NA	13	0	0	0	0	NA	
100	NA	NA	N/A	N/A	A NA	N/A	A NA	A NA	A N/	NA	0	0	0	0	N/A	
125	NA	NA	N/A	N/	A NA	N/	A NA	A NA	A NA	NA	NA	0	0	0	NA N	N/
160	NA	N/	N/A	N/A	A N/	N/A	A NA	A NA	A NA	NA	NA	NA	0	0	N/A	N/
200	NA	NA	N/A	N/A	A NA	N/	A NA	A NA	A NA	NA	NA	NA	N/	0	N/A	
250	NA	N/	N/A	N/A	A NA	NA	A NA	A NA		NA	N/	NA				

\square Type Code

Enclosure Type	
GL	Glass fiber reinforced polyester GRP
	Enclosure Size

