Pepperl+Fuchs GmbH Lilienthalstrasse 200
68307 Mannheim, Germany
Tel. +49 621 776-0 Fax $+49621776-1000$

Document No.: DOCT-2035G

Copyright Pepperl+Fuchs

PPEPPERL+FUCHS

\square Validity

Specific processes and instructions in this instruction manual require specia provisions to guarantee the safety of the operating personnel

\square Target Group/Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, Responsibility for planning, assembly, couto
and dismounting lies with the plant operator
Mounting, installation, commissioning, operation, maintenance and dismounting of the device may only be carried out by appropriate trained and
qualified personnel. The instruction manual must be read and understood.

\square Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous ,
The corresponding datasheets, declarations of conformity, EC-typeexamination certificates, certificates and control drawings if applicable (see datasheet) are an integral part of this document. You can find this information
\square Mounting/Installation/Maintenanc

Observe IEC/EN 60079-17 for maintenance and inspection

Before opening the enclosure make sure that the built-in components are de energized
When energized, the enclosure may only be opened for maintenance, if only intrinsically safe circuits are used inside the enclosure
Safety-relevant markings are found on the type label supplied. Ensure that the
The permitted ambient temperatures of the buit-in components must not b
The permitt
exceeded.
If there is a defect, the device must be repaired by Pepperl+Fuchs.
To ensure the degree of protection:
The enclosure must not be damaged, distorted or corroded.

- All seals must be undamaged and correctly fitted.
- All screws of the enclosure/enclosure cover must be tightened with the
appropriate torque.
All cable glands must be suitably sized for the incoming cable diameters.
- All cable glands must be tightened with the appropriate torque.
- All unused cable glands must be sealed or plugged with corresponding
sealing plugs, all unused cable entries have to be closed with appropriate stopping plugs.
If mounting the enclosure on concrete use expansion anchors. When mounting
the enclosure to a steel framework use vibration resistant mounting material.
Ensure that external ground connections exist, are in good condition, and are
not damaged or corroded. not damaged or corroded
sation in the enclosure, use suitably certified
When the intern
When Ie in fiteral/external ground bolt is supplied loose, the components should be fitted as shown in the figure below.

If cable glands are needed for installation, the following points must be

- The cable glands used must be suitably certified for the application. - The temperature range of the cable glands must be chosen according to the application.
- The cable glands fitted must not reduce the degree of protection In order to guarantee the temperature classes, ensure that power dissipation lower than the figure stated in the certificate and in below tables of max. in the cables.
Select suitable conductors in order to ensure that the maximum permitted temperature of the conductors fit to the maximum permitted ambien
temperature of the terminal box.
Ensure that the terminals are in good condition, and are not damaged or corroded.
Use only one conductor per terminal.
Observe the tightening torque of the terminal screws.
Use the shortest possible cable lengths and avoid small core cross-sections. Observe the minimum bending radius of the conductors.
Insulation must extend to within 1 mm of the metalwork of the terminal.
When using stranded conductors, crimp wire end ferrules on the conductor ends
Unused cables and connection lines must be either connected to terminals or .
Insulation by tape alone is not permitted
If cross connects are fitted, separation walls or protective barriers may be required to preserve clearance distances.
Modifications are permitted only if approved in this instruction manual.
When installing additional components, make sure that these components are listed in the EC-type-examination certificate of the terminal box.

Do not install in the enclosure.
The installer is allowed to add terminals in accordance with the maximum permitted power dissipation shown in the connection capacity tables below. Example:
Enclosure FXLS5* with 20 terminals WDU 2.5 (current load: 6 A) and 5 terminals WDU 10 (current load: 16 A).
Assumption:
Average conductor length: 0.5 m
$29 \mathrm{WPv}=(0.242 \mathrm{~W} / \mathrm{m} \times 20 \times 2 \times 0.5 \mathrm{~m})+(0.43 \mathrm{~W} / \mathrm{m} \times 5 \times 2 \times 0.5 \mathrm{~m})$ $=4.84 \mathrm{~W}+2.15 \mathrm{~W}=6.99 \mathrm{WPv}=6.99 \mathrm{~W}$

\square Special Conditions for Safe Use

Keep the separation distances between all non-intrinsically safe circuits and intrinsically safe circuits according to IEC/EN 60079-14.

Technical Specifications

Dissipation of copper cables in W / m

	Current (A)									
Cable CSA	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
$\mathbf{1 \mathbf { m m } ^ { 2 }}$	0.0168	0.0672	0.269	0.605	1.68	4.3	-	-	-	-
$\mathbf{2 . 5 \mathrm { mm } ^ { 2 }}$	0.00672	0.0269	0.108	0.242	0.672	1.72	2.69	4.2	-	-
$4 \mathrm{~mm}^{2}$	0.0042	0.0168	0.067	0.151	0.42	1.08	1.68	2.63	4.3	-
$\mathbf{6 \mathrm { mm } ^ { 2 }}$	0.0028	0.0112	0.045	0.101	0.28	0.717	1.12	1.75	2.87	4.48
$\mathbf{1 0 \mathrm { mm } ^ { 2 }}$	0.001688	0.00672	0.027	0.061	0.168	0.43	0.67	1.05	1.72	2.69

Types	see type code table			
Hazardous Area				
ATEX certificate number	SIRA 99 ATEX 3199			
IECEx certificate number	IECEx SIR 06.0074			
CE number	${ }_{0102}^{C}$			
Cerrification coding for ATEXIECEx				
${ }^{*} \mathrm{~L}^{\star 1 *}$.T Increased safety termina enclosure	Ex $\\|_{\\| 2 \mathrm{GD}}$			
${ }^{*} L^{*} 3^{*} . T$ Intrinsic safety terminal enclosure				
${ }^{*} \mathrm{~L}^{*} 5^{*} . \mathrm{T}$ Increased safety and intrinsi safety terminal enclosure				

Ambient Conditions

Gas/dust temperature class (T*/T*)	T6/T80 ${ }^{\circ} \mathrm{C}$ @ Ta+ $40^{\circ} \mathrm{C}$ T5/T95 ${ }^{\circ} \mathrm{C} @ \operatorname{Ta}+55^{\circ} \mathrm{C}$ (terminal insulation must be suitable for $120^{\circ} \mathrm{C}$) T4/T130 ${ }^{\circ} \mathrm{C}$ @ Ta $+85^{\circ} \mathrm{C}$ (terminal insulation must be suitable for $145^{\circ} \mathrm{C}$) T3/T160 ${ }^{\circ} \mathrm{C}$ @ Ta+120 ${ }^{\circ} \mathrm{C}$ (terminal insulation must be suitable for $180^{\circ} \mathrm{C}$) Note: the temperature which a terminal is suitable for is $20^{\circ} \mathrm{C}$ higher than that for which it is certified
Ambient temperature	$\begin{aligned} & -40 \ldots 40^{\circ} \mathrm{C} \\ & \text { optional - } 50 \ldots 120^{\circ} \mathrm{C}: \\ & \text { below }-40^{\circ} \mathrm{C} \text { with appropriate cable glands } \\ & \text { above } 40^{\circ} \mathrm{C} \text { with ceramic terminals } \end{aligned}$
IP rating	
Maximum internal power dissipation (MDP)	Dependent on enclosure size - see cerrification label
Mechanical	
Material	
Stainess steel models	AIIS 316L
Mild steel models	AISI 1018 (CR4)
Finish	
Stainless steel models	Electropolished
Mild steel models	Powder coated
Cover screw torque	2 Nm
Electrical	
Maximum voltage	Dependent on terminals and equipment fitted, but maximum must not exceed 1100 VAC . See certification label.
Maximum current	Dependent on terminals, cables and equipment fitted, but maximum must not exceed 350 A .
Conformity	EN 60079-0:2012 EN 60079-7: 2007 EN 60079-31: 2009 EN 60529 IEC 60079-0: Ed 5 IEC 60079-7: Ed 4 IEC 60079-11: Ed 5 IEC 60079-31: Ed 1

\square Max. Connection Capacity
Max. Connection Capacity for (F)XL** Enclosures
Max. number of conductors in relation to the cross-section and the permissible ontinuous current, based on terminal type WDU.

Enclosure (F)XL* ${ }^{\star 1}\left(\mathrm{P}_{\text {max }} 15\right.$ W)

FXLL 1 maximum permitted power disisipation to be buiti in: 15

	CSA [mm]																
Current A]	0.5	0.75		1.5		2.5	4	6	10	16	25	35	50	70	95	150	
3	56	56	56	56	56	56	46	36	28	0	0	0	0	0	0	N/A	N/
6	56	56	56	56		56	46	36	28	0	0	0	0	0	0	N/A	NA
10	N/	N/A	54	56		56	46	36	28	0	0	0	0	0	0	N/A	N/A
16	N/	N/	N/	A 31		52	46	36	28	0					0	NA	N/
${ }^{20}$	N/	N/A	N/A	A N/A	${ }^{\text {A }} 3$	33	46	36	28	0	0	0	0	0	0	N/	N/
25	N/A	N/A	N/A	A N/A		NA	34	36	28	0	0	0	0	0	0	N/A	N/
35	N/A	N/A	N/A	A N/A		NA N	N/A	26	28	0	0	0	0	0	0	NA	N/A
50	N/A	N/	N/A	A N/		NA N	N/A	N/	21	0	0	0	0	0	0	NA	
${ }^{63}$	N/A	N/A	N/A	A N/A		NA N	N/A	N/A	N/A	0	0	0	0	0	0	NA	
80	N/A	N/A	N/	A N/A		NA N	NA	N/	NA	NA	0	0	0	0	0	NA	N/
100	N/A	N/A	N/A	A N/A			NA	N/A	N/	N/	NA	0	0	0	0	NA	N/A
125	NA	N/	N/A	A N/A		NA	N/A	N/A	N/	N/	NA	N/	0	0	0	N/	N/A
160	N/	N/A	N/A	A N/		N/ N	N/A	N/	NA	N/	NA	N/	N/A	0	0	N/	
200	NA	N/A	N/A	A N/		N/ N	N/A	N/	N/	N/A	NA	N/	N/A	N/A	0	NA	
250																	

Enclosure (F)XL*2 ($\mathrm{P}_{\text {max }} 15 \mathrm{~W}$)

									CSA	mm^{2}]							
Current $[A]$	0.5	0.75	51	1.	1.5	2.5	4	6	10	16	25	35	50	70			
3	132	132	213	32	132	132	108	84	34	28	20	0	0	0	0	N/	N/A
6	54	82	109	091	132	132	108	84	34	28	20	0	0	0	0	N/	A NA
10	N/	NA	A 39	39	59	98	108	84	34	28	20	0	0	0	0	N/	N/
16	NA	NA	N/	N/	23	38	61	84	34	28	20	0	0	0	0	N/	N/A
20	N/A	NA	A $/$	N	N/	24	39	59	34	28	20	0	0	0	0	NA	N/A
25	N/	NA	N/	NA N	NA N	NA	25	37	34	28	20	0	0	0	0	N/	N/A
35	NA	NA	A NA	NA N	NA N	NA	N/A	19	32	28	20	0	0	0	0	N/	NA
50	NA	NA	N/	N	NA N	NA	N/	N/	15	25	20	0	0	0	0	N/	A NA
63	NA	NA	A N/	NA N	NA N	NA	NA	NA	NA	15	20	0	0	0	0	N/	VA
80	NA	N/	A N/	NA N	NA N	NA	N/A	N/A	NA	NA	15	0	0	0	0	N/A	NA
100	NA	NA	A N/	NA N	NA N	N/	N/	N/	NA	N/	N/	0	0	0	0	NA	A NA
125	N/	N/	A $/$	N	NA N	NA	N/A	N/A	NA	N/	N/A	N/	0	0	0	N/	N/A
160	NA	NA	A/A	NA N	NA N	NA	N/	N/A	N/	N/A	N/	N/	N/A	0	0	NA	NA
200	N/	N/		NA N	VA N	N/	N/A	N/A	NA	N/A	N/A	N/	N/A	N/A	0	N/	N/A
250	NA	NA		NA	N/	NA	NA	NA	NA	N/A	N/	N/	N/	NA			

Enclosure (F)XL*3 ($\mathrm{P}_{\max } 21 \mathrm{~W}$)

F)XL'³ maximum permitted power dissipation to be built in: 21 W																		
									CSA	mm^{2}								
Curent $[$ A $]$	0.5	0.75			1.5	2.5	4	6	10	16	25	35					150	
3	172	172	172	17217	172	172	144	108	88	72	52	0	0	0		0	NA	N/
6	67	101	13	135	172	172	144	108	88	72	52	0	0	0		0	NA	N/
10	N/A	N/A	48		72	121	144	108	88	72	52	0	0	0		0	N/	N/A
16	N/	N/A	N/	NA 2	28	47	76	108	88	72	52	0					N/	N/
20	N/	N/A	N/	NA N	NA	30	48	72	88	72	52	0					N/A	NA
25	N/	N/	N/	${ }^{\text {NA }}$ N	N/A	N/	31	46	77	72	52	0	0				NA	N/
35	N/A	N/A	N/		N/	N/	N/	23	39	63	52	0	0			0	N/A	N/
50	NA	N/	N/		N/A	NA	N/A	N/	19	31	48	0	0			0	NA	N/A
${ }^{63}$	N/	N/A	N/		N/A	N/	N/A	N/A	N/	19	30	0	0				N/	NA
80	N/	N/A	N/		N/A	N/	N/	N/A	N/	N/	19	0	0				N/	N/A
100	N/	N/A	N/		NA	NA	N/	N/A	N/	N/	N/	0	0	0			N/	N
125	N/	N/A	N/		NA	NA	N/	N/A	N/A	N/A	NA	N/A	0	0		0	N/	N/
160	N/	N/A	N/		NA	N/A	N/A	N/A	N/A	N/A	N/	N/	N/	A 0		0	N/	N/2
200	N/	N/A	N/		NA	NA	NA	N/A	N/	N/	N/	N/	N/	A N/	NA		N/	N
250	N/	N/		NA N	N/A	NA	N/A	N/A	N/	N/A	NA	N/A	N/	A N/	NA N	NA	N/A	

Enclosure (F)XL*4 ($\mathrm{P}_{\text {max }} 15 \mathrm{~W}$)

3	183	228	228	228	228	192	148	58	48	36	0	0	0	0	0	0

 \begin{tabular}{llllllllllllllllllll}
10 \& N/A \& N/ \& 33 \& 49 \& 82 \& 132 \& 148 \& 58 \& 48 \& 36 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline 16 \& $\mathrm{~N} / \mathrm{A} A$ \& $\mathrm{~N} / \mathrm{A}$ \& 19 \& 32 \& 51 \& 77 \& 58 \& 48 \& 36 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

 20 N/A NA NA NA 20

NA NA \& NA \& NA \& NA \& 21 \& 31 \& 52 \& 48 \& 36 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular} N/ NA NA NA NA NA NA 13 NA 13 21 133 0. N/A NA N/A N/A NA N/A N/A NA 13 20 20 NA NA N/A NA NA N/A NA NA N/A 12 0 100100000

 NA 00 NA $\begin{aligned} & \text { NA } \\ & \text { NA }\end{aligned}$ N NA NA

Enclosure (F)XL*5 ($\left.\mathrm{P}_{\max } 29 \mathrm{~W}\right)$

(F)XL•5 maximum permitted power dissipation to be built in: 29 W

20	N/A	NA	NA	NA	32	51	76	128	124	92	0	0

 250 NA N/A NAA NA NA N/A NA NA NAA NA NA NA NAA NA NA

Enclosure (F)XL* ${ }^{*}$ ($\mathrm{P}_{\mathrm{ma}}{ }^{30} \mathrm{~W}$)

		CSA [mm															
Current A]	0.5	0.75			1.5	2.5	4	6	10	16	25	35	50	70	95	150	
3	262	393	34	162	462	462	384	300	234	198	144	0	0	0	0	NA	NA
6	65	98	13	${ }^{1} 1$	196	327	384	300	234	198	144	0	0	0	0	NA	NA
10	N/	NA	A 4	47	70	117	188	283	234	198	144	0	0	0	0	N/	N/
16	N/	NA	A	NA	27	46	73	110	184	198	144	-	0	0	0	N/	N/A
20	N/	NA		NA	NA	29	47	70	117	188	144	0	0	0	0	NA	NA
25	N/	N/		NA	NA	N/	30	45	75	120	144	0	0	0	0	NA	N/A
35	N/	N/		N/	N/	NA	N/	${ }^{23}$	38	61	96	0	0	0	0	N/	NA
50	N/	N/		NA	NA	N/	N/	NA	18	30	47	0	0	0	0	N/A	N/
63	NA	N/		NA	NA	NA	N/A	NA	NA	19	29	0	0	0	0	NA	N/
80	N/	N/A		NA	N/	N/A	N/A	NA	N/	NA	18	0	0	0	0	NA	N/A
100	NA	NA		NA	0	0	0	0	N/	NA							
125	N/	NA		VA	NA	N/A	N/A	N/A	NA	N/A	NA	N/			0	N/	N/
160	NA	NA	A	NA	NA	N/A	NA	NA	NA	NA	NA	N/	NA		0	NA	
200	NA	N/		VA	NA	N/	NA	N/	N/A	N/A	NA	N/	N/	NA	0	N/	
250					N/	N/	NA	NA			NA	N/A	N/A		N/	N	

Enclosure (F)XL*7 ($\mathrm{P}_{\max } 21 \mathrm{~W}$)

(F)XL•7 maximum permitted power dissipation to be buitit in: 21 W

| Current A$]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3. 201302403492492408212168140104

 \begin{tabular}{lllllllllllllllllll}
10 \& $\mathrm{~N} / \mathrm{A}$ \& $\mathrm{N} A$ \& 36 \& 54 \& 90 \& 145 \& 212 \& 168 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0 \& $\mathrm{~N} / \mathrm{A}$ \& N / A

\hline

\hline 16 \& N/A \& NA \& NA \& 21 \& 35 \& 56 \& 85 \& 141 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline
\end{tabular} 20 N/A NA N/A NA 2236 25 NA NA NA NA NA 23 23 $34 \begin{array}{lllllllllll} & 58 & 93 & 104 & 0 & 0 & 0 & 0 & \text { NA } \\ 25\end{array}$

 N/A NA N/A NA NA N/A N/A NA N/A 14×10000

Enclosure (F)XL*8 (P $\mathrm{P}_{\text {max }} 30 \mathrm{~W}$)
(FIXL\&8 maximum permitted power disisipation to be builitin: 30 W

 \begin{tabular}{llllllllllllllllllllllll}
6 \& 58 \& 87 \& 117 \& 175 \& 293 \& 469 \& 408 \& 330 \& 180 \& 136 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

10 \& N/A NA \& 42 \& 63 \& 105 \& 168 \& 253 \& 330 \& 180 \& 136 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline 16 \& N/A NAA \& NA \& 24 \& 41 \& 65 \& 98 \& 164 \& 180 \& 136 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

Enclosure (F)XL*9 ($\left.\mathrm{P}_{\text {max }} 41.7 \mathrm{~W}\right)$

(F)XL'9 maximum permited power dissipation to be buitit in: 41.7 V CSA [mm $\left.{ }^{2}\right]$

Curent $[$ A	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150	240
3	275	413	551	827	1088	904	696	420	348	258	258	148	132	100	N/	N/A

 NA
N/A NA NA N/A N/A NA N/A N/A NA N/A N/A N/A NAA 17

Enclosure (F)XL*10 ($\mathrm{P}_{\text {max }} 93.4 \mathrm{~W}$)

(F)XL-10 maximum permitted power dissipation to be built in: 93.4 W

Current $[$ A $]$				1.5	2.5					$25 \quad 35$	50		95	150	
3	508	762	1016	1524	1650	1380	10606	68042	42631	312	180	164	124	N/A	
6	127	190	254	381	635	1016	10806	68042	426312	312312	180	164	124	NA	
10	NA	N/A	91	137	228	365	5486	68042	42631	312	2180	164	124	N/	
16	NA	N	N/	53	89	142	2143	35742	426312	312	180	164	124	NA	
20	N/	N/A	N/	NA	57	91	137	22836	365	312312	180	164	124	NA	
25		NA	NA	NA	NA	58	87	146	234312	312312	180	164	124	NA	
${ }^{35}$		NA	N/	N/	N/A	NA	44	11	119	18626	180	164	124	NA	
50		N/A	N/A	N/A	N/A	N/A	N/ 3	36	5819	91128	80	164	124	N/A	
${ }^{63}$	NA	NA	N/A	N/A	N/	N/	NA N	N/A 3	36	5780	115	161	124	NA	
80	N/	N/A	N/A	N/A	N/A	N/A	NA N	N/A N	N/A 35	35	71	100	124	NA	
100	N/	N/	N/A	N/	N/A	N/A	NA N	NA N	N/ N/	N/A	45	64	86	NA	
125	N/	N/A	N/	N/A	N/A	N/A	NA N	N/A N	N/A N/	NA N/	29	40	55	N/A	
160	N/	N/A	N/	N/A	N/A	N/A	NA N	N/A N	N/ N/	NA NA	N/	25	33	N/	
200	N/	N/A	N/A	N/A	N/A	N/A	NA N	N/ N	N/ N/	N/	N/A	N/A	21	N/	

Enclosure (F)XL* ${ }^{\star} 11$ ($\mathrm{P}_{\text {max }} 100 \mathrm{~W}$)
(F)XL**1 maximum permitted power dissipation to be built in: 100 W

N	
N/	N/
N/A	NA

Max. Connection Capacity for SL* Enclosures

Max. number of conductors in relation to the cross-section and the permissible
Max. AKZ).
Enclosure SL* ${ }^{*}\left(\mathrm{P}_{\max } 9 \mathrm{~W}\right)$
SL"1 maximum permitted power dissipation to be builiti: 9 W

 $\begin{array}{lllllllllllllll}16 & 16 & 16 & 16 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \text { NA }\end{array}$ \begin{tabular}{llllllllllllllll}
16 \& 16 \& 16 \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N $/ A$ N $/ \mathrm{A}$

\hline

\hline NA A NA \& 16 \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A \& N/A

\hline NA A NA \& NA \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& NA
\end{tabular}

 25 NA NA NA NA NA 0
 $63 \quad$ N/A N/A N/A N/A NA N/A N/A N/A 0 0 0
 100 N/A 0

Enclosure SL*2 ($\mathrm{P}_{\max } 9 \mathrm{~W}$)

$5 L^{-2}$ maximum permited power dissipation to be built in: 9 W

Curent A]	0.5	0.7			1.5	2.5				16	1625	25.35	${ }^{35} 50$	50	70	${ }^{95}$	150	
3	26	26		26	26	26	22	16	0			0	0	0	0	0	N/A	
6	26	26		26	26	26	22	16								0	NA	
10	NA	N/		26	26	26	22	16								0	N/	N/A
16	NA	N/		N/	26	26	22	16									NA	
20	NA	N/		N/	N/A	26	22	16									NA	
25	NA	N/		NA	NA	NA	22	16									NA	
35	NA	N/		NA	N/	N/	N/	16									NA	
50	N/	N/		N/A	N/	N/A	N/	N/A	0	0							N/	
63	V/	N/		N/A	N/	N/A	N/	N/	N/A	O		0	0		0	0	NA	
80	N/	N/		N/	NA	N/	NA	N/	N/A	A NA	A	0			0	0		
100	N/	N/		N/	NA	N/	NA	N/	N/A	N/		N/A	0	0	0	0	NA	N/
125	N/A	N/		N/	NA	N/A	N/	N/	N/A	N/		N/ N/	NA	0	0	0	N/A	
160	NA	N/			N/	N/A	N/A	N/A	N/	NA		NA N/	NA		0	0	NA	
200		N/			N/	N/A	N/	N/A	NA						NA	0		
250																		

Enclosure SL*3 ($\left.\mathrm{P}_{\max } 9 \mathrm{~W}\right)$
$5 L^{4} 3$ maximum permited power dissipation to be built in: 9 W

	CSA [mm ${ }^{\text {a }}$															
Curent $[$ A $]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35		70	95	150	
3	36	36	36	36	36	30	24	0	0	0	0	0	0	0	NA	N/
6	36	36	36	36	36	30	24	0	0	0	0	0	0	0	NA	N/
10	NA	NA	36	36	36	30	24	0	0	0	0	0	0	0	N/	N/A
16	NA	N/	N/A	28	36	30	24	0	0	0	0	0	0	0	N/A	N
20	NA	NA	N/A	N/	30	30	24	0	0	0	0			0	N/A	N
25	NA	NA	NA	NA	NA	30	24	0	0	0	0	0	0	0	NA	
35	N/	N/A	N/A	N/	N/	N/	23	0	0				0	0	N/A	N
50	N/	N/A	N/A	N/A	N/	NA	N/A	0	0	0	0	0	0	0	N/A	N/
63	N/	N/	N/	NA	NA	NA	N/	N/	0	0				0	NA	N/
80	A	N/A	N/A	NA	NA	NA	NA	N/	N/A	0	0		0	0	N/	N/A
100	NA	NA	N/A	N/A	N/	NA	N/	NA	N/A	NA	0		0	0	NA	
125	N/	N/	N/A	NA	NA	NA	N/	N/	N/A	NA	N/	0	0	0	NA N	N
160	N/	NA	N/A	N/	NA	NA	NA	N/A	N/	NA	N/A	N/A	0	0	NA	N/
200	NA	NA	N/A	NA	NA	NA	NA	NA	N/	NA	N/	N/A	N/A	0	NA	

Enclosure $\mathrm{SL}{ }^{*} 4\left(\mathrm{P}_{\max } 11 \mathrm{~W}\right)$

Enclosure SL*5 ($\mathrm{P}_{\max } 11 \mathrm{~W}$)
SL ${ }^{\circ} 5$ maximum permited power dissipation to be builtin: CA 1 W
$\operatorname{CSA}\left[\mathrm{~mm}^{2}\right]$

Current $[A]$	0.5	0.75	1	1.5	2.5	4	6	10	16		25	35	50	70	95																				
:---:	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\mathbf{1 5 0} 240$	3	46	46	46	46	46	38	30	0	0	0	0	0	0	0	N/A N A			
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		6	46	46	46	46	46	38	30	0	0	0	0	0	0	0	N/A N/A
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 10 | N/A | NA | 46 | 46 | 46 | 38 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 $20 \quad$ N/A N/A NA N/A 2938 30 30 25 N/A N/A N/A N/A NA 30 30 30 35 N/A NA NA NA NA N/A 2310 50 N/A N/A N/A N/A NA N/A N/A 0
 80
 125 NA ${ }^{160}{ }^{200}$ NA 250 NA NAN

Enclosure SL* $6\left(\mathrm{P}_{\max } 13 \mathrm{~W}\right)$
SL*6 maximum permited power dissipation to be built ni: 13 W

 \begin{tabular}{|c|llllllllllllllllll|l|}
\hline 3 \& 46 \& 46 \& 46 \& 46 \& 46 \& 38 \& 30 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/ \& N/A

\hline

\hline 6 \& 46 \& 46 \& 46 \& 46 \& 46 \& 38 \& 30 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline

 10 N/A N/A 464^{46} 46 46

10 \& NA \& NA \& NA \& 29 \& 46 \& 38 \& 30 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& N/A

\hline
\end{tabular}

 0^{25} N N N N N N N 20 50 NA NA NA NA 0 O
 33^{6} N/ NA 100 NA NA NA NA NA NA NA NA NA 0 0 0 0 0 N NA N/A 125 NA 0 O 160 NA 200 NA 0 NA NA 250 N/A NA NA N/A N/A NA N/A NA N/A NA NA NA 1
\square Type Code

erminal box stainless steel with return flange, size 2, certified Exe and Extb land plate on face B (bottom), enclosure depth D, configured variant

