

BIS510P-* Vision Sensor zur Bogenidentifikation

((

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

1	Einleitung	5
2	Konformitätserklärung	6
3	Sicherheit 3.1 Sicherheitsrelevante Symbole	7 7
4	Produktbeschreibung 4.1 Anwendung und Einsatzgebiete 4.2 Anzeigen und Bedienelemente 4.3 Schnittstellen und Anschlüsse 4.4 Lieferumfang 4.5 Zubehör 4.5.1 Spannungsversorgung 4.5.2 Netzwerkkabel 4.5.3 Eingänge und Ausgänge	
5	Installation 5.1 Vorbereitung 5.2 Montage des Geräts 5.3 Anschluss des Geräts 5.4 Lagern und Transportieren	14 14 15
6	Inbetriebnahme 6.1 Netzwerkverbindung einrichten 6.2 Sensor Start 6.3 Funktionsweise 6.3.1 Bildvergleich 6.3.2 Codevergleich 6.4 Einlernvorgang 6.5 Zusatzfunktionen	17 19 19 19 20
7	7.1 Betriebszustand Inspektion 7.2 Betriebszustand Einlernen 7.3 Netzwerkschnittstelle 7.4 Software-Schnittstelle 7.4.1 Konfigurationsübersicht 7.4.2 Besultübersicht	23 24 25 26

8	Sof	ftware Vision Configurator	39
	8.1	Aufbau des Anwendungsfensters	
	8.2	Menüleiste	41
	8.2	2.1 Menü File	41
	8.2	2.2 Menü View	42
	8.2	2.3 Menü Sensor	42
	8.2	2.4 Menü Image	43
	8.2	2.5 Menü Administration	44
	8.2	2.6 Menü Help	44
	8.3	Parametrierbereich	45
	8.3	3.1 System Karteikarte	45
	8.3	3.2 Camera Karteikarte	47
	8.3	3.3 Teach Karteikarte	47
	8.3	3.4 Search Karteikarte	48
	8.3	3.5 Barcode Karteikarte	49
	8.3	3.6 Data Matrix Karteikarte	52
	8.3	3.7 Rotary Encoder Karteikarte	53
	8.4	Symbolleiste	
	8.5	Sensor Data	55
	8.6	Sensor Output	55
	8.7	Bildanzeige	56
9	Wai	rtung und Reparatur	58
	9.1	Wartung	
	9.2	Reparatur	
		•	
10		rungsbeseitigung	
	10.1	Was tun im Fehlerfall	59
11	Δnł	hang	60
• •		Tankainaka Datan	

1 Einleitung

Informative Symbole

O Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung.

Kontakt

Wenn Sie Fragen zum Gerät, Zubehör oder weitergehenden Funktionen haben, wenden Sie sich bitte an:

Pepperl+Fuchs GmbH Lilienthalstraße 200 68307 Mannheim

Telefon: +49 (0)621 776-1111 Telefax: +49 (0)621 776-271111 E-Mail: fa-info@de.pepperl-fuchs.com

2 Konformitätserklärung

Dieses Produkt wurde unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

O Hinweis!

Eine Konformitätserklärung kann beim Hersteller angefordert werden.

Der Hersteller des Produktes, die Pepperl+Fuchs GmbH in D-68307 Mannheim, besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

3 Sicherheit

3.1 Sicherheitsrelevante Symbole

Gefahr!

Dieses Symbol warnt vor einer unmittelbar drohenden Gefahr.

Bei Nichtbeachten drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt vor einer möglichen Störung oder Gefahr.

Bei Nichtbeachten können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt vor einer möglichen Störung.

Bei Nichtbeachten kann das Gerät oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

3.2 Bestimmungsgemäße Verwendung

Der Bogenidentifikationssensor dient zur Überwachung von Bogenfolgen mittels Bildverarbeitung oder Barcode-Auswertung.

3.3 Allgemeine Sicherheitshinweise

Betreiben Sie das Gerät ausschließlich wie in dieser Anleitung beschrieben, damit die sichere Funktion des Geräts und der angeschlossenen Systeme gewährleistet ist. Der Schutz von Betriebspersonal und Anlage ist nur gegeben, wenn das Gerät entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird.

Die Verantwortung für das Einhalten der örtlich geltenden Sicherheitsbestimmungen liegt beim Betreiber.

Die Installation und Inbetriebnahme aller Geräte darf nur durch eingewiesenes Fachpersonal durchgeführt werden.

Eigene Eingriffe und Veränderungen sind gefährlich und es erlischt jegliche Garantie und Herstellerverantwortung. Falls schwerwiegende Störungen an dem Gerät auftreten, setzen Sie das Gerät außer Betrieb. Schützen Sie das Gerät gegen versehentliche Inbetriebnahme. Schicken Sie das Gerät zur Reparatur an Pepperl+Fuchs.

4 Produktbeschreibung

4.1 Anwendung und Einsatzgebiete

Der Bogenidentifikationssensor ermöglicht eine schnelle und einfache Überwachung der korrekten Bogenfolge z. B. in Zusammentrag-, Falz- und Bindemaschinen. Die Überwachung kann entweder durch einen Bildvergleich oder durch Einlesen von auf den Bögen aufgedruckten Barcodes erfolgen bei Papiergeschwindigkeiten von bis zu 4 m/s und max. 10 Bögen/s. Der Sensor erhält ein Triggersignal und liefert digitale Signale zurück, ob der aktuelle Bogen dem eingelernten Muster entspricht. Das Gerät kann sowohl lokal als auch im Verbund mit mehreren Sensoren über ein Netzwerk betrieben werden. Der Sensor beinhaltet Kamera, Beleuchtungseinheit und Auswerterechner mit digitalen Eingangs- und Ausgangssignalen sowie einer Netzwerkschnittstelle. Zeitkritische Signale wie z. B. Trigger und Ergebnis werden über die digitalen Eingänge und Ausgänge übertragen. Über die Netzwerkschnittstelle können Kommandos und Einstellungen an den Sensor geschickt werden oder Bilder können geladen werden.

4.2 Anzeigen und Bedienelemente

Auf der Beleuchtungseinheit sind 7 Anzeige-LEDs angebracht, die Sie über die verschiedenen Status des Gerätes informieren.

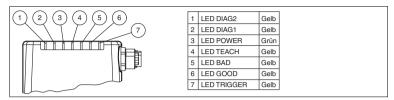


Abbildung 4.1 Anzeigen und Bedienelemente

1 DIAG 2

gelbe LED. Signalisiert durch unterschiedliche Blinktakte Diagnosemeldungen.

2 DIAG 1

gelbe LED. Signalisiert durch unterschiedliche Blinktakte Diagnosemeldungen.

3 Power (PWR)

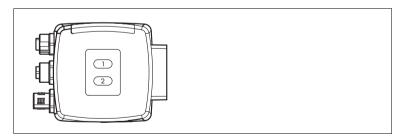
Leuchtet grün, wenn der Sensor betriebsbereit ist.

4 Einlernen (Teach)

Leuchtet gelb, wenn der Teachvorgang gestartet ist.

5 Ausführung der Lesung (BAD)

Leuchtet gelb, wenn die Lesung nicht erfolgreich war.


6 Ausführung der Lesung (GOOD)

Leuchtet gelb, wenn die Lesung erfolgreich war.

7 Triggersensor (TRG)

Leuchtet gelb, sobald ein angeschlossener Triggersensor auslöst.

Auf der Rückseite des Sensors befinden sich zwei Tasten.

Szenenbeleuchtung

Die Szenenbeleuchtung leuchtet den Sichtbereich des Sensors aus und ermöglicht dadurch eine einfache Positionierung des Sensors bei der Montage.

2 Einlernen

Während des Einlernvorgangs wird ein Referenzbild aufgenommen, das für einen Bildvergleich oder einen Codevergleich verwendet wird.

4.3 Schnittstellen und Anschlüsse

Folgende Geräteanschlüsse befinden sich am Gerät:

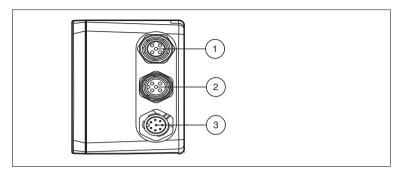


Abbildung 4.2 Geräteanschlüsse

- 1. Netzwerk (4-poliger M12-Buchse)
- 2. Eingang IO (5-polige M12-Buchse)
- 3. Spannungsversorgung, Eingänge und Ausgänge (8-poliger M12-Stecker)

Spannungsversorgung

An der Gehäuseseite befindet sich eine 8-poliger M12-Stecker für den Anschluss der Spannungsversorgung und der Eingänge und Ausgänge. Die Pin-Belegung entnehmen Sie der folgenden Grafik:

Abbildung 4.3 Anschlussbelegung Betriebsspannung und Eingänge und Ausgänge

- 1 IN Trigger
- 2 +UB
- 3 OUT Good
- 4 OUT Bad
- 5 IN Start_Teach (Durch Anlegen eines High-Pegels wird ein Einlernvorgang gestartet)
- 6 OUT Ready
- 7 GND
- 8 OUT Teach_Active

Eingang IO und Eingang Drehgeber

An der Gehäuseseite des Sensors befindet sich eine 5-polige M12-Buchse. Je nach Version kann hier ein Drehgeber oder auch ein Triggersensor angeschlossen werden. Die Pin-Belegung entnehmen Sie der folgenden Grafik:

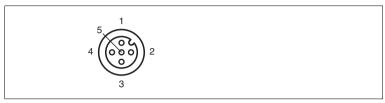


Abbildung 4.4 Anschlussbelegung Eingang IO

- 1 24 V Versorgung
- 2 IN1
- 3 Masse (GND)
- 4 IN2
- 5 nicht belegt

Abbildung 4.5 Anschlussbelegung Eingang Drehgeber

- 1 24 V Versorgung
- **2** B
- 3 Masse (GND)
- 4
- 5 nicht belegt

Netzwerk

An der Gehäuserückseite befindet sich eine 4-polige M12-Buchse für den Anschluss des Netzwerkes. Die Pin-Belegung entnehmen Sie der folgenden Grafik:

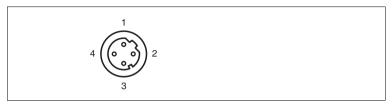


Abbildung 4.6 Anschlussbelegung Netzwerk

- 1. TX+ Ethernet
- 2. RX+ Ethernet
- 3. TX- Ethernet
- 4. RX- Ethernet

4.4 Lieferumfang

BIS510P-*

4.5 Zubehör

Es steht Ihnen verschiedenes Zubehör zur Verfügung.

4.5.1 Spannungsversorgung

Zum Anschluss der Spannungsversorgung, Eingänge und Ausgänge an den Sensor verwenden Sie folgende Verbindungskabel.

M12-Verbindungsleitungen

	Material	Länge	Kabelende, konfektionierbar
M12-Buchse, gerade, 8-polig	PUR	2 m	V19-G-2M-PUR-ABG
gerade, o-polig		5 m	V19-G-5M-PUR-ABG
		10 m	V19-G-10M-PUR-ABG

Konfektionierbare M12-Steckverbinder

Bestellbezeichnung	Beschreibung	mm ²	Kabel-∅
V19-G-ABG-PG9	gerade M12-Buchse, 8-polig	max. 0,75	5 8 mm

Weitere und abweichende Längen auf Anfrage.

4.5.2 Netzwerkkabel

Der Sensor wird über einen M12-Stecker mit dem Netzwerk verbunden.

Bezeichnung	Beschreibung
V45-G	RJ45-Netzwerkstecker, konfektionierbar
V1S-G	M12-Stecker, 4-polig, konfektionierbar
V1SD-G-2M-PUR-ABG-V45X-G	Verbindungskabel, RJ45-Netzwerkstecker mit M12- Stecker, gekreuzt, 4-polig
V1SD-G-2M-PUR-ABG-V45-G	Verbindungskabel, RJ45-Netzwerkstecker mit M12- Stecker, 4-polig

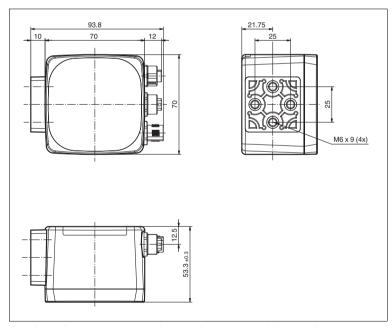
4.5.3 Eingänge und Ausgänge

Die Eingänge und Ausgänge des Sensors werden über einen M12-Stecker verbunden.

Bezeichnung	Beschreibung
V15S-G-5M-PUR-ABG	Kabelstecker, M12, 5-polig, PUR-Kabel, Schirm auf Überwurfmutter

5 Installation

5.1 Vorbereitung


Gerät auspacken

- 1. Überprüfen Sie Verpackung und Inhalt auf Beschädigung.
 - → Benachrichtigen Sie bei Beschädigung den Spediteur und verständigen Sie den Lieferanten.
- 2. Überprüfen Sie den Lieferumfang anhand Ihrer Bestellung und der Lieferpapiere auf Vollständigkeit und Richtigkeit.
 - Bei auftretenden Fragen wenden Sie sich bitte an Pepperl+Fuchs.
- 3. Bewahren Sie die Originalverpackung für den Fall auf, dass das Gerät zu einem späteren Zeitpunkt eingelagert oder verschickt werden muss.

5.2 Montage des Geräts

Zur einfachen Montage des Sensors in Ihrer Anlage verfügt das Gerät am Gehäuseboden über vier symmetrisch angeordnete M6-Gewinde.

Die folgende Abbildung zeigt alle relevanten Abmaße des Gehäuses in mm:

Der Vision-Sensor wird im spezifizierten Arbeitsabstand über der Bogen-Oberfläche montiert.

Die folgende Abbildung zeigt eine Beispiel-Montage:

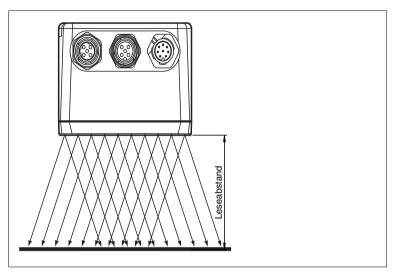


Abbildung 5.1 Montagebeispiel BIS

5.3 Anschluss des Geräts

Versorgungsspannung anlegen

Um den Sensor mit Spannung zu versorgen, gehen Sie wie folgt vor:

- Stecken Sie die Buchse M12, 8-polig in den dafür vorgesehenen Stecker an der Gehäuseseite.
- Drehen Sie die Überwurfmutter über den Steckverbinder, bis zum Endanschlag.

→ Damit ist das Versorgungskabel gegen versehentliches Herausziehen gesichert.

$_{\rm H}$

Hinweis!

Netzwerkkonfiguration dokumentieren

Der Sensor kommuniziert mit der angeschlossenen Maschinensteuerung über das TCP/IP-Protokoll. Um eine korrekte Kommunikation zu gewährleisten, notieren Sie sich unbedingt alle Änderungen, die Sie an der Netzwerkkonfiguration vornehmen.

○ Hinweis!

Netzwerkverkabelung

Benutzen Sie für eine Direktverkabelung des Sensors mit einem Rechner ein Crossover-Netzwerkkabel. Falls Sie den Sensor im Netzwerk betreiben, benutzen Sie für den Anschluss im Netzwerk ein Twisted-Pair-Netzwerkkabel.

Netzwerkverbindung herstellen

Um eine Netzwerkverbindung herzustellen, gehen Sie wie folgt vor:

- Falls Sie ein Netzwerkkabel verwenden, dass auf einer Seite einen RJ45 Netzwerkstecker und auf der anderen Seite eine M12 Buchse 4-polig hat, dann stecken Sie die Buchse M12, 4-polig in den Stecker auf der Seite des Sensors.
- Im Auslieferzustand besitzt der Sensor eine feste IP-Adresse (192.168.2.3).
 Um eine Kommunikation im Netzwerk zu ermöglichen, konfigurieren Sie Ihr Netzwerk. Entnehmen Sie die Konfigurationsdaten der Netzwerk-Konfigurationsübersicht.

IP-Adresse zurücksetzen

Falls Sie die IP-Adresse des Sensors nicht kennen, können Sie die IP-Adresse auf die werksseitige Voreinstellung zurücksetzen.

- 1. Verbinden Sie den Sensor mit der Spannungsversorgung.
 - → Der Sensor fährt hoch
- Warten Sie, bis die LEDs blinken.
- Halten Sie die Tasten 1 und 2 auf der Rückseite des Sensors gleichzeitig für ca. 2 Sekunden gedrückt.
 - → Die Blinksequenz der LEDs ändert sich. Der Sensor fährt erneut hoch und verwendet jetzt die werksseitig voreingestellte IP-Adresse.

Triggersensor anschließen

Um einen Triggersensor anzuschließen, gehen Sie wie folgt vor:

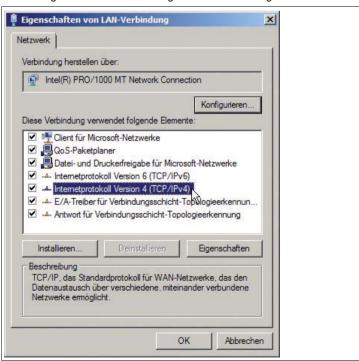
- Stecken Sie den 5-poligen M12-Stecker in die dafür vorgesehene Buchse am Gehäuse
- Drehen Sie den Gewindenippel über den Steckverbinder, bis zum Endanschlag.
 - ☐ Damit ist das Triggerkabel gegen versehentliches Herausziehen gesichert.

5.4 Lagern und Transportieren

Verpacken Sie das Gerät für Lagerung und Transport stoßsicher und schützen Sie es gegen Feuchtigkeit. Optimalen Schutz bietet die Originalverpackung. Beachten Sie darüber hinaus die zulässigen Umgebungsbedingungen, die Sie im Technischen Datenblatt ablesen können.

6 Inbetriebnahme

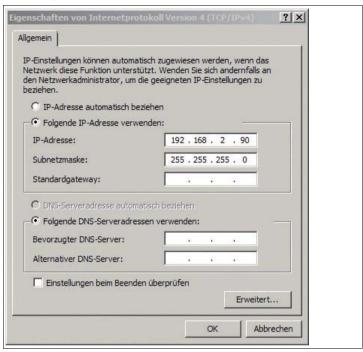
6.1 Netzwerkverbindung einrichten



IP-Adresse einstellen (Windows 7)

- Wählen Sie Start > Systemsteuerung.
- 2. Wählen Sie Netzwerk- und Freigabecenter.
- Wählen Sie Adaptereinstellungen ändern im Fenster Netzwerk- und Freigabecenter.

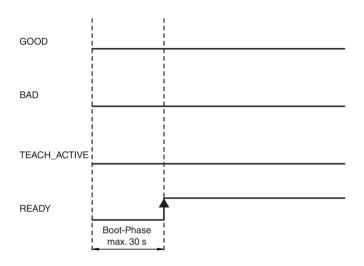
- 4. Doppelklicken Sie die gewünschte Verbindung.
 - → Das Eigenschaften-Fenster der gewählten Verbindung erscheint.



5. Doppelklicken Sie Internetprotokoll Version 4 (TCP/IPv4).

→ Das Eigenschaften-Fenster des TCP/IP-Protokolls erscheint.

- 6. Aktivieren Sie Folgende IP-Adresse verwenden.
- Tragen Sie eine IP-Adresse ein, deren erste drei Segmente zur IP-Adresse des Sensors identisch sind, z. B. 192.168.002.090. Das letzte Segment muss sich von der IP-Adresse des Sensors unterscheiden.
- 8. Tragen Sie als Subnet-Maske 255.255.255.0 ein.
- Klicken Sie auf OK und Schließen.


→ Die Netzwerkkonfiguration ist damit abgeschlossen und der Sensor kann verwendet werden.

6.2 Sensor Start

Startsequenz

Die Ausgänge GOOD, BAD, TEACH_ACTIVE und READY sind bei dem Start des Sensors auf Low-Pegel. Sobald der Sensor betriebsbereit ist (max. 30 Sekunden), nimmt der Ausgang READY den High-Pegel an. Der Ausgang READY geht wieder auf Low-Pegel bei Auftreten eines Hardware-Fehlers.

6.3 Funktionsweise

Der Sensor nimmt von jedem zu prüfenden Bogen mindestens ein Bild auf. Dieses Bild wird abhängig von der Betriebsart entweder mit einem vorher eingelernten Bild verglichen ("Bildvergleich") oder es wird ein im Bild befindlicher Code gelesen und dessen Inhalt mit einem eingelernten oder vorgegebenen Code verglichen (Codevergleich).

Folgende Betriebsarten sind möglich:

- Bildveraleich
- Codevergleich

6.3.1 Bildvergleich

Bei dem Bildvergleich wird ein Musterbogen eingelernt und alle folgenden Bögen werden mit dem eingelernten Bild verglichen. Bei ausreichender Übereinstimmung wird "Gut" ausgegeben, ansonsten "Schlecht". Bei dem Bildvergleich ist eine Verschiebung des Bogens gegenüber dem eingelernten Bogen von bis zu 10 mm in horizontaler Richtung und vertikaler Richtung zulässig.

6.3.2 Codevergleich

An dem zu überprüfenden Bogen müssen an der unteren oder oberen Bogenkante ein Code aufgedruckt sein. Dieser kann vom Sensor gelesen werden. Der Code muss sich dazu vollständig im Bildfeld des Sensors befinden. Für eine sichere Decodierung müssen die Barcode-Module ausreichende Kontrastwerte zum Hintergrund aufweisen. Hierzu wird von Pepperl+Fuchs eine Grauwert- Differenz festgelegt (z.B. 20 Graustufen). Da eine solche Angabe für den Endanwender nicht nachvollziehbar ist, müssen kritische Fälle im Einzelfall getestet werden. Der Code kann sowohl horizontal als auch vertikal im Bildfeld orientiert sein. Der Sensor bietet zwei Möglichkeiten den Code zu lesen. Einmal der Codevergleich oder die Codelesung. Wobei die Codelesung nur optional verfügbar ist.

■ Codevergleich: Der Barcode wird mit einem vorgegeben Barcode verglichen. Der Sensor meldet als Ergebnis "Gut" wenn der gelesene Barcode mit dem gespeicherten Barcode übereinstimmt. Der Sensor meldet als Ergebnis "Schlecht" wenn beide Barcodes nicht übereinstimmen oder kein Barcode gelesen werden konnte. Der Vergleichsbarcode kann entweder als Wert vorgegeben werden oder durch Einlernen eines Bogens mit Barcode festgelegt werden.

Die folgenden Abmessungen des zu lesenden Barcodes müssen eingehalten werden:

Minimale Strichbreite: 0,3 mm

Folgende Barcode-Typen können gelesen werden:

- 2/5 interleaved
- Code39
- Code128
- Pharmacode
- Data Matrix (optional)

6.4 Einlernvorgang

Der Einlern- oder Teachvorgang wird durch Setzen des Eingangs START_TEACH oder durch ein XML-Kommando aktiviert. Der Sensor zeigt den Einlernvorgang durch Setzen des Signals TEACH_ACTIVE an. Zum Einlernen werden ein oder mehrere Bilder aufgenommen. Der Abschluss des Lernvorgangs wird durch Rücksetzen des Ausgangs TEACH ACTIVE angezeigt.

Beim Einlernen laufen folgende Vorgänge ab:

- Bestimmung der Bogenlänge
- Bestimmung der optimalen Belichtung (Blitzzeit)
- Auswahl einer geeigneten Bildaufnahme-Position auf dem Bogen
- Berechnung des Code-Inhaltes bzw. des Musters aus der optimalen Bildaufnahme-Position

Folgende Einlern-Modi können ausgewählt werden:

- Single image (external trigger): Das n\u00e4chste Bild wird mit der Standard-Blitzzeit eingelernt.
- Single fix position (encoder trigger + external trigger): Bildaufnahme an einer fest vorgegebenen Position. Die Einstellungen hierfür werden im Rotary Encoder Tab eingegeben. Die Biltzposition wird gegenüber der Blattkante von einem Encoder verzögert. Zur Detektion der Blattkante wird ein externer Trigger benötigt. Erst ab der Triggerung werden die Encodersignale ausgewertet.
- Triple fix position (encoder trigger): entspricht dem Single fix position, mit Ausnahme dass 1 Bild pro Bogen bei 3 Bögen aufgenommen werden. Dabei wird die Belichtungszeit variiert und das beste Bild als Referenzbild verwendet.
- Automatic position (encoder trigger): Auf 3 unterschiedlich belichteten Bögen werden jeweils über die Länge verteilt max. 5 Bilder aufgenommen. Aus allen aufgenommenen Bildern wird das sowohl von der Aussteuerung als auch vom Inhalt optimale Bild ausgesucht und für den Vergleich als Muster eingelernt.
- Triple image (external trigger): An der Triggerposition werden 3 Bilder aufgenommen und so die optimale Belichtungszeit ermittelt und mit dieser das Referenzbild eingelernt.
- Direct Teach (no trigger): Mit Setzen des Teachsignals wird je nach Modus gleichzeitig ein oder drei Bildaufnahmen ausgelöst. Dafür ist kein externer Trigger notwendig.

Es können während des Einlernvorgangs insgesamt maximal 15 Bilder aufgenommen werden, aus denen als optimales Bild jenes ausgesucht wird, welches die größte Anzahl eindeutiger Kanten aufweist. Wenn keines der zum Einlernen aufgenommenen Bilder eine ausreichende Anzahl Kanten enthält, arbeitet der Sensor im sog. Grauwert-Modus. Dabei werden im Musterbild Sollwerte und Toleranzen für folgende statistische Merkmale bestimmt:

- Grauwert-Minimum
- Grauwert-Maximum
- Grauwert-Mittelwert
- Kontrast (Differenz zwischen Maximal- und Minimal-Grauwert)
- Varianz

Bei der Inspektion wird dann überprüft, ob die Werte der Merkmale im aktuellen Bild innerhalb der Toleranzen liegen.

Die eingelernten Daten werden nach dem Einlernvorgang in den Flash-Speicher des Sensors übernommen und sind damit nichtflüchtig im Sensor gespeichert. Nach einer Unterbrechung der Stromversorgung kann dadurch ohne erneuten Einlernvorgang weiter geprüft werden.

Einlernen eines Musterbogens

- Starten Sie den Einlernvorgang durch das Senden einer steigende Impulsflanke am TEACH- Eingang oder senden Sie das das entsprechende XML- Kommando an den Sensor. Der Sensor zeigt den Einlernvorgang durch Setzen des Signals TEACH_ACTIVE an.
- 2. Durch eine oder mehrerer positive Flanken am Triggereingang, werden je nach Einlern-Betriebsart eine oder mehrere Bildaufnahmen ausgelöst.
- Der Abschluss des Lernvorgangs wird durch Rücksetzen des Ausgangs TEACH_ACTIVE angezeigt.
 - → Der Einlernvorgang ist somit abgeschlossen.

6.5 Zusatzfunktionen

Statistik

Im Sensor werden mehrere Werte protokolliert, die bei jedem Einlernvorgang auf Null zurückgesetzt werden. Die Werte können mit einem Ergebnistelegramm ausgelesen werden. Folgendes wird protokolliert:

- Anzahl Bögen
- Anzahl Bögen mit Bildvergleich "Schlecht"
- Anzahl Bögen mit nicht lesbarem Barcode
- Anzahl Bögen mit falschem Barcode

Nach Abschalten der Betriebsspannung stehen die Zähler ebenfalls auf Null.

Aktiv-Modus

Im Normalfall ist der BIS510P an der Datenschnittstelle passiv, d. h. er sendet selbsttätig keinerlei Daten und reagiert lediglich auf Anforderungen. Nach Aktivieren des Aktiv-Modus sendet der Sensor nach Detektion von Fehlern selbsttätig das Fehlerbild.

Fehlerbildspeicher

Der BIS510P arbeitet mit einem Ringpuffer für Fehlerbilder. Der Ringpuffer kann bis zu 5 Bilder speichern. Bei Auftreten eines neuen Fehlers wird das älteste Bild mit dem neuen Fehlerbild überschrieben.

7 Bedienung

7.1 Betriebszustand Inspektion

Impulse am Eingang TRIGGER lösen eine Bildaufnahme mit anschließender Prüfung aus. Ein High-Pegel am Ausgang GOOD oder am Ausgang BAD zeigt das Inspektionsergebnis an.

Um eine Überprüfung zu starten gehen Sie wie folgt vor:

Bild überprüfen

- Sobald eine steigende Flanke am Triggersignal anliegt, wird eine Bildaufnahme mit anschließender Prüfung ausgelöst.
- Nach der Auswertung des Bildes gibt der Ausgang GOOD oder der Ausgang BAD einen High-Pegel aus.

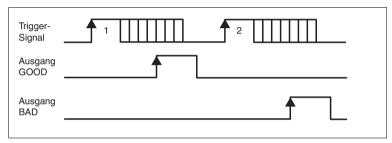
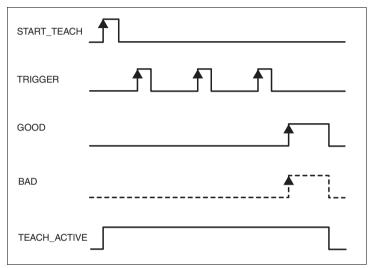


Abbildung 7.1 Signale im Betriebszustand "Inspektion"

Der Sensor kann bis zu 10 Ergebnisse (Gut/Schlecht) in einem Schieberegister zwischenspeichern. D.h. zwischen Sensor und Ausschleusung können sich maximal 10 Produkte befinden.


7.2 Betriebszustand Einlernen

Um ein Muster einzulernen gehen Sie wie folgt vor:

Muster einlernen

 Senden Sie eine positive Flanke am START_TEACH Eingang. Der Sensor wird in den Einlernmodus versetzt und zeigt dies durch setzen des TEACH-ACTIVE Ausgang an.

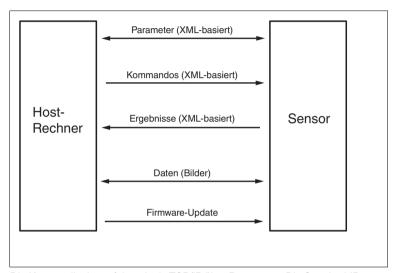
- Durch positive Flanken am Triggereingang, werden je nach Einlern-Betriebsart eine oder mehrere Bildaufnahmen ausgelöst.
- Der Sensor wählt von den aufgenommenen Bildern das Beste aus und lernt dieses als Muster ein.
- 4. Während des Einlernens ist der Ausgang TEACH_ACTIVE gesetzt.

☐ Der Einlernvorgang ist dann abgeschlossen, wenn der Ausgang GOOD oder BAD auf High-Pegel gesetzt wird.

"GOOD" bedeutet, dass die Bilderkennung erfolgreich war.

"BAD" bedeutet, dass die Bilderkennung nicht funktioniert hat und der Sensor im Grauwert-Vergleichsmodus arbeitet.

Mit dem Rücksetzen von GOOD bzw. BAD wird auch der Ausgang TEACH_ACTIVE zurück gesetzt.



7.3 Netzwerkschnittstelle

Die Netzwerk-Schnittstelle wird zur Übertragung von Daten (Parameter, Bilder, Software-Update) und Befehlen in beide Richtungen (Host zum Sensor und Sensor zum Host) verwendet.

Die Übertragung von Parametern, Befehlen und Ergebnissen erfolgt in Form von XML-Strings.

Die Kommunikation erfolgt mittels TCP/IP über Port 50005. Die Standard-IP-Adresse ist 192.168.2.3.

Jedes Datenpaket besteht aus einem Pre-Header sowie den eigentlichen Daten:

Pre-Header (Länge 12 Byte)	Daten (Länge unterschiedlich)
-------------------------------	-------------------------------

7.4 Software-Schnittstelle

Zur einfachen Einbindung in eine PC-Software gibt es eine .NET 2.0 basierende Softwareschnittstelle. Diese wird in Form von DLLs zur Verfügung gestellt und übernimmt die Kommunikation zum Sensor. Binden Sie die DLLs in die Programmierumgebung ein (→ siehe Abbildung 7.2 auf Seite 26) und führen die

Alle Beispiele beziehen sich auf die Programmierumgebung Visual Studio 2010 und auf die Programmiersprache C#.

Abbildung 7.2 Einbindung Interface-DLL

beschriebenen Programmierzeilen aus.

Nachfolgend ein Beispielprogramm zur Einbindung und Triggerung des Sensors:

```
class Program
{
   static void Main(string[] args)
   {
      PF.Foundation.VsxFactory.PFVsxFactoryVCCustom sensor;
      sensor = new
PF.Foundation.VsxFactory.PFVsxFactoryVCCustom();
      sensor.Connect("192.168.2.3", 50005);
      sensor.SetSpecificSingleParameter(1, "Command",
"TriggerStart", "1");
      System.Threading.Thread.Sleep(1000);
      sensor.Disconnect();
   }
}
```


Allgemein

Die Bibliothek dient zur Unterstützung beim Erstellen einer grafischen Bedienoberfläche für Sensoren, welche mit dem VSX-Protokoll arbeiten. Hierzu stellt die Bibliothek eine Verbindung mit dem Sensor her und übernimmt die Kommunikation entsprechend dem Kommunikationsprotokoll. Dem Benutzer werden Funktionen zur Verfügung gestellt, mit denen Parameter auf dem Sensor eingestellt, Parameterwerte vom Sensor abgefragt und ganze Parametersätze sowohl lokal als auch auf dem Sensor gespeichert und geladen werden können. Weiterhin können Sensorbilder empfangen werden.

Die Bibliothek ist in C# implementiert und benötigt als Voraussetzung .NET 2.0 oder höher.

Stellen Sie sicher, dass sich die mitgelieferten Bibliotheken im Ausführungsordner des Projekts befinden.

Anlegen eines Objektes

Erstellen Sie ein Objekt, um auf die Funktionen der Bibliothek zugreifen zu können.

```
PFVsxFactoryVCCustom _vsxFactory =new
PFVsxFactoryVCCustom();
```

Abfrage Parameterdaten

Empfangene Parameterdaten werden im Sensor in einer Liste gespeichert. Einzelne Parameterdaten aus dieser Liste können mit folgender Funktion abgefragt werden:

string GetSpecificSingleParameter(string version, string
configId, string parameterId)

Anzeige geänderter Daten

Werden Daten vom Sensor empfangen, so wird dies durch das Event angezeigt:

event ParameterDataReceived(DataModifier modifier)

Bibliothekfunktionen

```
bool Connect(string ip,int port)

ip: IP des angeschlossenen Sensors
port: Port des angeschlossenen Sensors
```

port: Port des angeschlossenen Sensors

Antwort: false falls Verbindung nicht erstellt werden konnte, ansonsten true
Öffnet eine Verbindung zu einem Sensor mit gegebener IP und Port.

```
void Disconnect()
```

Trennt die geöffnete Verbindung

```
bool Connected {get;}
```

Antwort: Gibt den Verbindungsstatus zurück

```
void SaveSensorSettings()
```

Speichert den aktuellen Parametersatz im Speicher des Sensors. Nachdem eine Bestätigung vom Sensor empfangen wurde, wird ein SaveDataOnSensorReceived Event ausgelöst.

void LoadSensorSettings()

Fordert vom Sensor einen mit SaveSensorSettings gespeicherten Parametersatz an.

Nachdem der Parametersatz vom Sensor empfangen wurde, wird ein ParameterDataReceived Event mit Modifier = LOAD_Data ausgelöst. Die Daten können dann über die Methode GetSingleParameter abgerufen werden.

void GetNetworkSettings()

Fordert vom Sensor dessen aktuelle Verbindungseinstellungen an. Nachdem die Daten vom Sensor empfangen wurden, wird ein CetNetworkReceived Event ausgelöst, welchem aktuelle IP Adresse, Netzwerkmaske und Cateway des Sensors entnommen werden können.

void GetLogMessages(bool on)

on: Schaltet die Log Meldungen ein off: Schaltet die Log Meldungen aus Legt fest, ob der Sensor Log Meldungen sendet oder nicht. Sind die Log-Meldungen eingeschaltet, wird bei jeder vom Sensor empfangenen Log-Meldung ein LogDataReceived Event ausgelöst.

void GetAllParametersFromSensor()

Fordert den aktuellen Parametersatz vom Sensor an. Nachdem der Parametersatz vom Sensor empfangen wurde, wird ein ParameterDataReceived Event mit Modifier = None ausgelöst. Dieses signalisiert, dass die interne Liste mit dem Parametersatz aktualisiert wurde. Anschließend können einzelne Parameter mit GetSingleParameter abgefragt werden.

public bool ExistsParameter(string configId, string parameterId)

Dient zum Abfragen, ob ein bestimmter Parameter auf dem Sensor existiert. configId: Configuration ID eines Parameters parameterId: Parameter ID eines Parameters

Antwort: true oder false, je nachdem ob der Parameter existiert

string GetSpecificSingleParameter(ushort version, string
configId, string parameterId)

configId: Configuration ID eines Parameters parameterId: Parameter ID eines Parameters

Antwort: Den aktuellen Wert des bezeichneten Parameters
Fragt den Wert eines Parameters vom Sensor ab, version, configld, parameterld
können der beigefügten Tabelle entnommen werden. Gibt den Wert des
Parameters zurück oder einen leeren String, falls der Wert nicht abgefragt
werden konnte.

void SetSpecificSingleParameter(ushort version, string configId, string parameterId, string newValue)

configId: Configuration ID eines Parameters parameterId: Parameter ID eines Parameters newValue: Neuer Wert des Parameters

Setzt den Wert eines Parameters auf newValue, auch hier können version, configld und parameterld der Tabelle entnommen werden.

public bool ExistsResultParameter(ushort frameCounter, string configId, string parameterId)

frameCounter: Nummer des zum Ergebnisparameter gehörenden Bildes configId: Configuration ID eines Parameters parameterId: Parameter ID eines Parameters

Antwort: true oder false, je nachdem ob der Parameter existiert Dient zum Abfragen, ob ein bestimmter Ergebnisparameter zu einem bestimmten Bild existiert.

string GetResultParameter(ushort frameCounter, string configId, string parameterId)

> configId: Configuration ID eines Parameters parameterId: Parameter ID eines Parameters

Antwort: Den aktuellen Wert des bezeichneten Parameters

Gibt den Wert eines einzelnen Parameters, festgelegt durch die Configuration ID und die Parameter ID zurück. Der Wert wird einer internen Liste entnommen und entspricht dem Stand, der als letztes vom Sensor empfangen wurde.

Der Empfang von Ergebnisdaten zu einem bestimmten Bild wird durch das event SensorResultDataReceived(ushort frameCounter) angezeigt.

Bitmap GetImage(ushort frameCounter)

frameCounter: Nummer eines empfangenen Bildes

Antwort: Das zur Bildnummer gehörige Bild

Gibt ein zuvor vom Sensor empfangenes Bild zurück. Der Empfang eines Bildes mit einer bestimmten Nummer wird durch das event

ImageReceived(ushort frameCounter, Bitmap image) angezeigt.

IList<ElementResult> GetResultList(ushort frameCounter)

frameCounter: Nummer des zu den Grafiken gehörenden Bildes Antwort: Liste der Overlay Grafiken für das bezeichnete Bild

IList<ElementShapeBase> GetShapes(ushort frameCounter)

frameCounter: Nummer des zu den Grafiken gehörenden Bildes Antwort: Liste der Overlay Grafiken für das bezeichnete Bild

Gibt eine Liste von Grafiken für ein Bildoverlay zurück. Der Empfang von solchen

Grafiken wird durch das event ShapeDataReceived(ushort frameCounter, List<IElement> shapeList) angezeigt. Die einzelnen

Elemente der Liste sind vom Typ ElementShapeBase.

Diese Klasse verfügt über folgende Attribute:

PointF ShapeLocation: Koordinaten der linken oberen Ecke der Grafik im Bild

Color ForeColor: Die Farbe der Grafik

string Type: Der Typ der Grafik, entweder Type="Rectangle" oder

Type="Text". Je nach Typ kann die Grafik in ElementShapeRectangle oder ElementShapeText geparst werden und verfügt dann jeweils über folgende Zusatzattribute:

ElementShapeRectangle:

Size Size: Die Größe der Rechteckgrafik

ElementShapeText:

stringText: Der Text der Textgrafik

void ResetSensor()

Setzt alle Parameter des Sensors auf deren Standardwerte zurück. Nachdem eine Bestätigung vom Sensor empfangen wurde, wird ein ParameterDataReceived Event mit Modifier = LOAD_DEFAULT_DATA ausgelöst.

void SaveSettingsToFile(string filename)

Speichert den aktuellen Parametersatz in die spezifizierte Datei. Vom Sensor wird der aktuelle Parametersatz abgerufen und nach Erhalt gespeichert. Nach erfolgreichem Speichern wird ein SaveDataOnHdd Event ausgelöst. Tritt beim Speichern ein Fehler auf, wird ein InternalError Event mit ErrorType = SAVE_FILE_ERROR ausgelöst.
filename: Gültiger Pfad und Dateiname

bool SetAllParameters(string filename)

Lädt einen Parametersatz aus der angegebenen Datei und sendet die Parameter an den Sensor. Nachdem der Empfang des Datensatzes vom Sensor quittiert wurde, wird ein ParameterDataReceived Event mit Modifier = NONE ausgelöst. Kann der Datensatz nicht ordnungsgemäß geladen werden, wird ein InternalError Event mit ErrorType = LOAD_FILE_ERROR ausgelöst. filename: Gültiger Pfad und Dateiname

void SetNetworkSettings(string.ipAddress, string networkMask, string gateway)

> ipAddress: Gültige IP Adresse networkMask: Gültige Netzwerkmaske

gateway: Gültiges Gateway

Stellt die Netzwerkparameter auf dem Sensor um. Die Verbindung zum Sensor wird anschließend getrennt und ein DisconnectReceived Event ausgelöst. Über Connect muss die Verbindung mit der neuen IP neu hergestellt werden.

void SendImage(Bitmap image)

Sendet ein Bild an den Sensor. Diese Funktion wird nicht von allen Gerätetypen unterstützt.

image: zu sendendes Bild

void SendVsxFile(string filepath)

filepath: Pfad und Dateiname einer gültigen VSX-Datei Sendet den Dateiinhalt einer Datei an den Sensor. Dieser muss dem VSX-Standard entsprechen. Können die Daten nicht ordnungsgemäß geladen werden oder entsprechen sie nicht der VSX-Syntax, wird einInternalError Event mit ErrorType = LOAD FILE ERROR ausgelöst.

string SensorName { get; }

Gibt den Namen des Sensors zurück.

float SensorVsxVersion { get; }

Gibt die auf dem Sensor installierte VSX-Version zurück.

Bibliotheksevents

event ParameterDataReceived(DataModifier modifier)

Wird immer dann ausgelöst, wenn Parameterdaten vom Sensor empfangen wurden

Dies ist nach folgendem Aufruf der Fall:

LoadSensorSettings (MODIFIER = LOAD_DATA)
GetAllParametersFromSensor (MODIFIER = NONE)
SetSingleParameter (MODIFIER = NONE)

ResetSensor (MODIFIER = LOAD_DEFAULT_DATA)
SetAllParameters (MODIFIER = NONE)

der Fall. Immer wenn dieses Event ausgelöst wurde, wurde die interne Parameterliste aktualisiert und die einzelnen Parameterwerte sollten mit GetSingleParameter abgefragt werden.

event SensorResultDataReceived(ushort framecounter)

Wird ausgelöst, wenn Ergebnisdaten vom Sensor empfangen werden. Parameter ist eine Bildnummer um die Daten ihrem entsprechenden Bild zuordnen zu können. Die einzelnen Ergebnisdaten können mit GetResultParameter abgefragt werden.

Wird nach SetSingleParameter ausgelöst, falls auf dem Sensor nur dieser eine Wert geändert wurde.

event AcceptReceived()

Wird nach Set SingleParameter ausgelöst, falls auf dem Sensor der zuvor gesetzte Wert erfolgreich geändert wurde.

event SensorInformationDataReceived(string type, string version, string macAddress)

Wird ausgelöst, wenn beliebige Daten vom Sensor empfangen werden. Übergeben werden Angaben zum Sensortyp, dessen Firmware Version und dessen MAC Adresse.

event DisconnectReceived(string errorMessage)

Wird ausgelöst, wenn die Verbindung nicht durch Disconnect getrennt wurde. Übergeben wird eine Beschreibung des Grundes der verlorenen Verbindung.

event SaveDataOnSensorReceived()

Wird nach erfolgreichem Aufruf von SaveSensorSettings ausgelöst.

event GetNetworkReceived(string ipAddress, string mask, string
gateway)

Wird ausgelöst, nachdem die mit GetNetworkSettings vom Sensor angeforderten Daten empfangen wurden. Übergeben werden die IP Adresse, die Netzwerkmaske und das Gateway des Sensors.

event LogDataReceived(string logData, LogMessageTypes logType)

Wird ausgelöst, wenn Logdaten vom Sensor empfangen wurden. Die Daten und der Typ der Logdaten werden als Parameter übergeben.

event ShapeDataReceived(ushort frameCounter)

Wird ausgelöst, wenn Grafiken für das Bildoverlay empfangen wurden. Die Bildnummer gibt an, zu welchem Bild die Grafiken gehören. Eine Liste aller Grafiken kann dann mit der Funktion GetShapes (ushort frameCounter) abgerufen werden.

Folgendes Event wird nur von Lasertriangulationssensoren unterstützt:

event LineDataReceived(ushort frameCounter, LineMulti lines,
ushort status)

Wird ausgelöst, wenn Liniendaten vom Sensor empfangen wurden. Neben den Liniendaten wird die Bildnummer ausgegeben, um die Daten ihrem entsprechenden Bild zuordnen zu können. Außerdem wird ein Status ausgegeben, der die Hardware Ein- und Ausgänge des Sensors wieder spiegelt.

event ImageReceived(ushort frameCounter)

Wird ausgelöst, wenn ein Bild vom Sensor empfangen wurde. Die Bildnummer wird als Parameter übergeben. Das Bild kann anschließend mit der Funktion GetImage(ushort frameCounter) abgerufen werden.

event SaveDataOnHddReceived()

Wird ausgelöst, wenn der aktuelle Parametersatz erfolgreich in eine Datei gespeichert wurde.

event ErrorReceived(string id, string name)

Wird ausgelöst, wenn ein Fehler in der Sensorsoftware aufgetreten ist. Die Parameter enthalten nähere Angaben zu diesem Fehler.

event InternalError(ErrorTypes errorType, string errorMessage)

Wird ausgelöst, wenn ein interner Fehler aufgetreten ist. Dies passiert in folgenden Fällen:

- Beim Aufruf von GetSingleParameter (ErrorType = PARAMETER_NOT_FOUND) wenn der angeforderte Parameter nicht in der internen Liste gefunden wurde
- Beim Aufruf von SetSingleParameter (ErrorType = PARAMETER_NOT_FOUND) wenn der zu setzende Parameter nicht vorhanden ist
- Beim Aufruf von SaveSettingsToFile (ErrorType = SAVE_FILE_ERROR) wenn die Parameterdaten nicht in einer Datei gespeichert werden konnten
- Beim Aufruf von LoadSettingsFromFile (ErrorType = LOAD_FILE_ERROR) wenn die Parameterdatei nicht geladen werden konnte
- Beim Aufruf von SetAllParameters (ErrorType = LOAD_FILE_ERROR) wenn die Parameterdaten nicht aus der Datei geladen werden konnten oder wenn die Datei ungültige Daten enthält
- In allen Fällen, in denen ParameterDataReceived oder SensorResultDataReceived ausgelöst werden würde, die empfangenen Sensordaten jedoch fehlerhaft sind (ErrorType = INVALID DATA RECEIVED).
- Wenn Logdaten vom Sensor empfangen werden, diese jedoch fehlerhaft sind (ErrorType = INVALID_DATA_RECEIVED)
- Beim Aufruf von SendVsxFile (ErrorType = LOAD_FILE_ERROR) wenn die Datei nicht geladen werden kann oder nicht der VSX-Syntax entspricht

Der Parameter errorMessage enthält eine genauere Beschreibung des jeweiligen Fehlers.

enum·ErrorTypes{ INVALID_DATA_RECEIVED, SAVE_FILE_ERROR, LOAD_FILE_ERROR, PARAMETER_NOT_FOUND }

Siehe Event InternalError.

enum.DataModifier{ NONE, LOAD_DATA, LOAD_DEFAULT_DATA }

Siehe Event ParameterDataReceived.

enum LogMessageTypes { DEBUG, INFO, RESULT_OK, RESULT_NOT_OK,
WARNING, ERROR, CRITICAL, ASSERT }

Siehe Event LogDataReceived.

7.4.1 Konfigurationsübersicht

Die Parameter in der nachfolgenden Tabelle können mit Hilfe der SetSingleParameter und GetSingleParameter—Methode des Softwareinterfaces eingestellt werden. Jeder Parameter ist durch eine configld und eine parameterId gekennzeichnet.

Konfigurationsparameter

Config ID	Parameter ID	Wert	Beschreibung
General	OptionSendErr	1/0	Automatisches Senden des Fehlerbildes aktivieren/deaktivieren
	OptionAutoResult	1/0	Automatisches Senden des Ergebnisses aktivieren/deaktivieren
	OptionShowHWTrigger	1/0	Log-Eintrag mit Zeitstempel beim Triggersignal aktivieren/deaktivieren
	PosMark	1/0	Bildfeldmarkierung aktivieren/deaktivieren
	IPAdress		Konfiguration der IP-Adresse
	SubNetMask		Konfiguration der SubNet Maske
	Gateway		Konfiguration des Gateways
	EnableBtn1	1/0	Taste1 auf der Rückseite des Sensors aktivieren/deaktivieren
	EnableBtn2	1/0	Taste2 auf der Rückseite des Sensors aktivieren/deaktivieren
Camera	FlashTime	0 255	Einstellung der Belichtungzeit und Blitzzeit in µs
	Gain	0 255	Einstellung der Verstärkung
	Snapshot	1/0	Aktiviert die Kameraaufnahme mit den aktuellen Einstellungen
	UseCamSettings	1/0	Benutzt die eingestellten Werte für den nächsten Teachvorgang
	GetCamTeachParams	1/0	Lesung der Werte aus dem Sensor
	StartLive	1/0	Startet die Livebildübertragung
	StopLive	1/0	Stoppt die Livebildübertragung
	CheckImage	1/0	Auswertung auf jedem im Livebild-Modus aufgenommenen Bild aktivieren/deaktivieren
	DisplayPause	1 10000	Einstellung der Pausenzeit zwischen zwei Bildaufnahmen
SearchParams	Sensitivity	05	Empfindlichkeit des Mustervergleiches Level 0 -> schwach Level 5 -> stark

Config ID	Parameter ID	Wert	Beschreibung
Command	TriggerStart	1	Löst eine Bildaufnahme aus
	ReloadData	1	Stellt die eingelernten Daten nach einem TeachStart wieder her
	GetLastImg	1	Aktuelles Bild wird angefordert
	GetErrImg	1	Letztes Fehlerbild wird angefordert
	GetNextErrImg	1	Das nächste Fehlerbild wird angezeigt
	GetErrorImgListSize	1	Anforderung der Anzahl gespeicherte Fehlerbilder
	GetLogMsg	1	Alle Log-Meldungen ausgeben
VOS510	TeachMode	TEACH_MODE_1_1_ 1	Einlernen eines Bildes auf einem Bogen mit einer festgelegten Belichtungszeit
		TEACH_MODE_IMAG E_AUTO	Einlernen eines Bildes pro Bogen auf insgesamt drei Bögen mit variierender Belichtungszeit. Das beste Bild wird übernommen
		TEACH_MODE_TRIP LE_IMAGE	Einlernen von insgesamt fünf Bilder pro Bogen auf insgesamt drei Bögen mit variierender Belichtungszeit. Das beste Bild wird übernommen
	InspectionMode	PATTERN_INSPECTI ON	Prüfmodus Bildvergleich
		BARCODE_INSPECTI ON	Prüfmodus Barcodevergleich
	DirectTeach	0/1	Direct Teach-Mode aktivieren/deaktivieren. Teach- Impuls bzw. Teach-Kommando löst dabei eine Bildaufnahme zum Einlernen aus
	CapturePositionOnPage	15	Anzahl Positionen pro Bogen beim automatischen Einlernen
	TeachTimeout	100 1000000	Timeout fürs Einlernen (Bildvergleich und Barcode)

Config ID	Parameter ID	Wert	Beschreibung
Barcode	CompareCode		Eingabe des Vergleich-Strings des Referenz-Codes
	Update	0/1	Setzt den zuletzt gelesenden Barcode als Referenz aktivieren/deaktivieren
	Timeout	1 1000000	Timeout für Barcode-Lesung und Barcode-Vergleich
	StartAutomatic	0/1	Aktivierung oder Deaktivierung der automatischen Suche
	Orientation	hor	Barcode- und Pharmacodesuche ausschließlich horizontal
		ver	Barcode- und Pharmacodesuche ausschließlich vertikal
	Code39	0/1	Aktivierung oder Deaktivierung Code39
	Code128	0/1	Aktivierung oder Deaktivierung Code128
	Code13	0/1	Aktivierung oder Deaktivierung Code13
	Code25	0/1	Aktivierung oder Deaktivierung Code25
	CheckSum	0/1	Aktivierung oder Deaktivierung der Prüfsummen-Auswertung bei Code 2/5 interleaved
	PharmaCodeOnly	0/1	Aktivierung oder Deaktivierung Pharmacode. Bei der Aktivierung ist der Barcode deaktiviert
	MinCodeLen	0 20	Minimale Anzahl Stellen des Pharmacode
	MaxCodeLen	0 20	Maximale Anzahl Stellen des Pharmacode
	MinOkLine	0 100	Minimale Anzahl Zeilen mit identischem Decodier-Ergebnis bei Pharmacode
	PharmaDir	воттом	Interpretation des Pharmacodes: Bottom/right =von rechts bzw. unten nach links bzw. oben
		TOP	Interpretation des Pharmacodes: Top/left = von links bzw. oben nach rechts bzw. unten
	SearchStart	ВОТТОМ	Suchrichtung für Pharmacode: Bottom/right=von rechts bzw. unten nach links bzw. oben
		TOP	Suchrichtung für Pharmacode: Top/left=von links bzw. oben nach rechts bzw. unten

Config ID	Parameter ID	Wert	Beschreibung
RotationEncod er	Resolution	1 9999999 pulses/m	Auflösung des Drehgebers Voreingestellter Wert: 10000 pulses/m
	TrigDistance	0 9999999 mm	Abstand zwischen dem Triggersensor und dem mittigen Lesefeld des Sensors Voreingestellter Wert: 0
	FixPos	0 9999999 mm	Festlegung einer fester Position, bei der die Lesung stattfinden soll
	MaxSpeed	10 10000 mm/s	Maximale Geschwindigkeit während der Lesung Voreingestellter Wert: 3000 mm/s
	TrigPolNeg	1	Auslösen eines Triggersignals bei Low-Pegel aktivieren/deaktivieren
	DelayActive	0	Aktivierung/Deaktivierung eines Ausgabedelays
	ResultDelay	1 2000 mm	Eingabe des Ausgabedelays
	PulseLength	1 1000 mm	Eingabe der Pulslänge
	EncoderPos	0 inc	Aktuelle Drehgeberposition in [inc]
	ReadEncoderPos	0/1	Lesen der Drehgeberposition aktivieren/deaktivieren

Tabelle 7.1 Konfigurationsparameter

7.4.2 Resultübersicht

Aufruf der Result-Daten

Result-Daten werden in folgenden Situationen vom Sensor gesendet:

- Nach jeder Übertragung eines Bildes
- Nach Abschluss eines Einlernvorganges
- Nach Anforderung des Sensorstatus
- Nach jeder Inspektion

Die Result-Daten sind im Knoten CONFIGURATION Id="Result" enthalten. Abhängig von den Situationen enthält der Knoten zwei verschiedene Result-Parameter.

- Result-Daten (PF.Foundation.Protocol.XML.ElementResult)
- Shape-Daten (PF.Foundation.Protocol.XML.ElementShapeBase)

Die Shape-Daten werden direkt ins Bild eingezeichnet. Sie bestehen entweder aus geometrischen Formen wie farbigen Vierecken (ElementShapeRectangle), oder als Label (ElementShapeText). Sie beinhalten Positions- und Größeneigenschaften. Bei den Result-Daten handelt es sich ausschließlich um Text-Daten, die im Barcodemodus und nach dem Einlernen übertragen werden.

Result-Daten

Die Result-Daten werden mit dem Event SensorResultDataReceived übertragen und können mit der Methode GetResultList und GetResultParameter im Eventhandler abgerufen werden.

Folgende Event und Parameter IDs sind zulässig:

Result-Daten

Event	Parameter ID	Wert	Beschreibung
Trigger	BCString		Daten des gelesenen Barcodes
	ВСТуре	Code128 Code39 Code13 2/5 Interleaved Pharmacode	Ausgabe der gelesenen Barcode Symbologie
	BCTime	0 200 ms	Decodierzeit des Barcodes in Millisekunden
	BCLQuality	0 100%/0 100 %	Mittigkeit der Lage des Barcodes (horizontal / vertikal) 100%/100% -> Der gelesene Barcode liegt exakt in der Mitte.
Teach	Check	"SEARCH_GOOD" "SEARCH_NORM AL" "SEARCH_WEAK"	Vereinfachte Qualitätsausgabe aufgegliedert in drei Bereiche
	TeachIndex	15	Nummer des Referenzbildes
	TeachPosition		Position des Referenzbildes
	TeachQuality	1 16	Detaillierte Ausgabe der Teach-Qualität. 1 - > schlechte Qualität, 16 -> beste Qualität

Tabelle 7.2 Result-Daten

Shape-Daten

Die Shape-Daten werden mit den Events ShapeDataReceived und ImageDataReceived übertragen. Zum Abrufen der Daten wird die Methode GetShapes verwendet.

Folgende Parameter werden übertragen:

Shape-Daten

Туре	Parameter ID	Wert	Beschreibung
ElementShapeText	ImageType	ActImage ErrImage TeachImage	Aktuelles Bild Fehlerbild Referenzbild
	OperatingMode	Correlation Greylevel CodeCompare	Bildvergleichsmodus Grauwert-Modus. Vergleich des Bildes anhand von Grauwerten. Barcodevergleichsmod us
	Result	PatternGood PatternBad BarcodeGood BarcodeNoRead	Bildvergleich gut Bild ist nicht gleich dem Referenzbild Barcodevergleich ist gut Barcode konnte nicht gelesen werden
	BCCompare		Daten des Vergleichs- Barcode
	BCString		Daten des gelesenen Barcodes
	ВСТуре	Code128 Code39 Code13 2/5 Interleaved Pharmacode	Ausgabe der gelesenen Barcode Symbologie
	BCTime	0 100 ms	Decodierzeit des Barcodes in Millisekunden
	BCLQuality	0 100%/0 100	Mittigkeit der Lage des Barcodes (horizontal / vertikal) 100%/100% -> Der gelesene Barcode liegt exakt in der Mitte.
ElementShapeRec tangle	Check		Angabe der Position des Teilbildes des gelesenen Bildes
	Ref		Angabe des Ankerpunktes in dem gelesenen Teilbild welches zum Vergleich mit dem Referenzbild genommen wird

Tabelle 7.3 Shape-Daten

8 Software Vision Configurator

Die Inbetriebnahme und die Bedienung des Sensors erfolgen mit der Software Vision Configurator.

Vision Configurator ermöglicht die komfortable Bedienung des Sensors mithilfe einer übersichtlichen Bedienoberfläche. Zu den Standardfunktionen gehören z. B. die Herstellung einer Verbindung zum Sensor, die Parametrierung von Betriebsparameter, die Speicherung von Datensätzen, die Visualisierung von Daten und die Fehlerdiagnose.

Й

Hinweis!

Im Vision Configurator sind bereits folgende Benutzerrollen mit unterschiedlicher Berechtigung vordefiniert.

Benutzerrechte und Passwort

Benutzerrechte	Beschreibung	Passwort
Default	Anzeige aller Informationen Anlegen von Benutzern gleicher oder niedriger Stufe	Es wird kein Passwort benötigt
User	Anzeige aller Informationen Konfiguration des Sensors Anlegen von Benutzern gleicher oder niedriger Stufe	User
Admin PFAdmin	Anzeige aller Informationen Konfiguration des Sensors Anlegen und Löschen von Benutzern	Erfragen Sie das Admin-Passwort bei Pepperl+Fuchs

Netzwerkverbindung herstellen

Um eine Netzwerkverbindung mit dem Sensor herzustellen, gehen Sie wie folgt vor:

- Versorgen Sie den Sensor mit Spannung.
- 2. Starten Sie die Software Vision Configurator.
- 3. Wählen Sie den angeschlossenen Sensor aus.
- Überprüfen Sie, ob die richtige IP-Adresse eingegeben ist.
- Geben Sie den Benutzernamen und das Passwort ein.
 - Die Verbindung zum Sensor wird hergestellt.

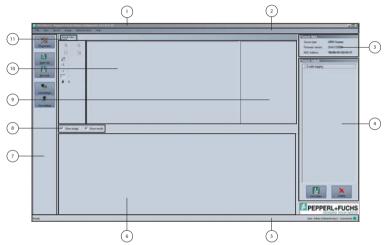
Я

Hinweis!

Netzwerkkonfiguration dokumentieren

Der Sensor kommuniziert mit der angeschlossenen Maschinensteuerung über das TCP/IP-Protokoll. Um eine korrekte Kommunikation zu gewährleisten, notieren Sie sich unbedingt alle Änderungen, die Sie an der Netzwerkkonfiguration vornehmen.

Eine aktuelle Beschreibung der Software Vision Configurator finden Sie auf http://www.pepperl-fuchs.com.



8.1 Aufbau des Anwendungsfensters

Nach erfolgreichem Login öffnet sich der Anwendungsbildschirm.

) Hinweis!

Die einzelnen Funktionen sind abhängig vom angeschlossenen Sensortyp und aktueller Berechtigungsstufe und sind somit nicht immer alle sichtbar.

Die Software ist analog zu den meisten Windows-Applikationen aufgebaut.

1	Titelleiste	Zeigt die IP-Adresse, die Softwarebezeichnung und die Versionsnummer an enthält die Schaltflächen Minimieren / Maximieren / Schließen
2	Menüleiste	zeigt alle Menüs des Programms andient als Übersicht und Navigation
3	Maske Sensor data	 zeigt die Sensordaten des angeschlossenen Sensors an
4	Maske Sensor output	zeigt die Loganzeige an
5	Statusleiste	zeigt die Statusinformationen zur Anwendung
6	Parametrierbereich	enthält die sensorspezifischen Parameter, die Sie einstellen können
7	Symbolleiste	 enthält symbolische Schaltflächen als Erweiterung zum Menü
8	Kontrollkästchen	Show images: Aktiviert oder deaktiviert die Bildanzeige Show results: Aktiviert oder deaktiviert den Ergebnisbereich

9	Ergebnisbereich	 zeigt Ergebnisinformationen des Sensors Es können abhängig vom angeschlossenen Sensor unterschiedlich viele Registerkarten angezeigt werden. Dieses Feld kann mit dem Punkt Show results aktiviert oder deaktiviert werden
10	Bildanzeige	 zeigt die aufgenommenen oder im Fehlerspeicher liegenden Bilder an Dieses Feld kann mit dem Punkt Show images aktiviert oder deaktiviert werden
11	Registerkarte	Zeigt Informationen über aktuelles Bild und des sich unter der Maus befindlichen Pixels an. So werden folgende Punkte angezeigt: Bildgröße Zoomstufe Mausposition in Bildkoordinaten aktueller Grauwert Bildnummer

8.2 Menüleiste

In der Menüleiste werden verschiedene Menüfunktionen aufgeführt. Der Funktionsumfang ist abhängig vom angeschlossenen Sensortyp und von den Berechtigungen des angemeldeten Benutzers.

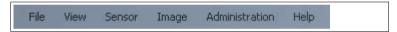


Abbildung 8.1 Menüleiste

8.2.1 Menü File

Abbildung 8.2 Menü File

Change sensor	Trennt die Verbindung zum Sensor und wechselt zurück zum Login-Dialog.
Open job	Lädt eine auf dem PC abgespeicherte Sensorkonfiguration.
Save job	Speichert die aktuelle Sensorkonfiguration auf dem PC.
Quit	Beendet das Programm.

Tabelle 8.1 Menü File

8.2.2 Menü View

Abbildung 8.3 Menü View

Show standard buttons	Schaltet die Anzeige der Buttons in der linken Leiste ein und aus.
Show sensor data	Schaltet die Anzeige der Sensordaten rechts oben aus.
Displayed message types	Hier kann eingestellt werden, welche Meldungstypen vom Sensor ausgegeben werden sollen. Die ausgegebenen Meldungen der gewählten Meldungstypen werden in der rechten Spalte Sensor output ausgegeben. Info: Informationen werden angezeigt Warning: Warnungen werden angezeigt Error: Fehler werden ausgegeben Critical: schwerwiegende Fehler werden ausgegeben Assert: interne Fehler werden angezeigt

Tabelle 8.2 Menü View

8.2.3 Menü Sensor

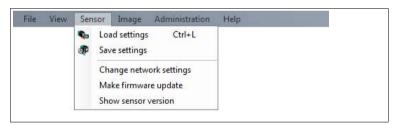


Abbildung 8.4 Menü Sensor

Load settings	Lädt die gespeicherten Einstellungen aus dem Sensor
Save settings	Speichert die Einstellungen in den Sensor
Change network settings	Falls der Sensor per Ethernet mit dem PC verbunden ist, können hier verschiedene Verbindungseinstellungen auf dem Sensor geändert werden. Nach erfolgter Änderung wird die Verbindung zwischen Vision Configurator und Sensor automatisch getrennt. Ändern Sie gegebenenfalls die Netzwerkadresse auf die neu zugewiesene IP und verbinden Sie den Vision Configurator mit dem Sensor erneut. Nach Drücken des Buttons Connect wird der Anmeldebildschirm erneut geöffnet.
Make firmware update	Führt Firmwareupdates durch. Dieser Befehl sollte nur durch erfahrene Anwender benutzt werden.
Show sensor version	Zeigt die Versionsnummer des Sensors an.

Tabelle 8.3 Menü **Sensor**

Hinweis!

Firmwareupdate

Nachem Sie die Firmware aktualisiert haben und **Update complete** angezeigt wird, starten Sie den Sensor neu.

8.2.4 Menü *Image*

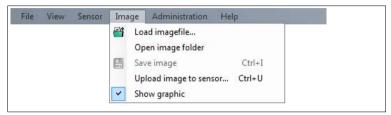


Abbildung 8.5 Menü Image

Load imagefile	Öffnet eine Bilddatei und zeigt das Bild in der Bildanzeige an.
Open image folder	Öffnet den Ordner, in dem aktuell Bilder abgespeichert werden.
Save image	Speichert das aktuell angezeigte Bild auf dem PC ab.
Upload image to sensor	Lädt eine Bilddatei vom PC auf den Sensor.
Show graphic	Schaltet vom Sensor gesendete Anzeigedaten im Bild ein und aus.

Tabelle 8.4 Menü **Image**

8.2.5 Menü Administration

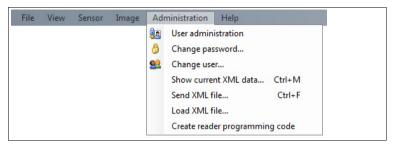


Abbildung 8.6 Menü Administration

User administration	Öffnet ein Fenster, in dem alle aktuell angelegten Benutzer gleicher oder niedrigerer Berechtigungsstufe angezeigt werden. Weiterhin können hier neue Benutzer gleicher oder niedrigerer Berechtigungsstufe angelegt oder gelöscht werden. Zusätzlich kann hier das Passwort eines Benutzers auf das Standardpasswort der jeweiligen Benutzerstufe zurückgesetzt werden.
Change password	Ändert das Passwort des aktuellen Benutzers.
Change user	Der Anmeldebildschirm wird geöffnet und es kann ein anderer Benutzer und / oder Sensor ausgewählt werden.
Show current XML data	Lädt die aktuellen XML-Daten aus dem Sensor und zeigt die Daten in einem eigenen Fenster an.
Send XML file	Speichert die XML-Daten auf einem Computer.
Load XML file	Lädt XML-Daten von einem Computer.
Create reader programming code	Ermöglicht das Erzeugen von Steuercodes, mit denen Sie dem Sensor einen Gerätenamen und eine IP-Adresse zuweisen können.

Tabelle 8.5 Menü Administration

8.2.6 Menü Help

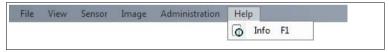


Abbildung 8.7 Menü Help

	Info	Zeigt Informationen über den Vision Configurator an.
--	------	--

Tabelle 8.6 Menü Help

8.3 Parametrierbereich

In dem Parametrierbereich werden verschiedene Parameterangaben aufgeführt. Die einzelnen Parameter sind abhängig von der aktuellen Berechtigungsstufe und sind somit nicht immer alle sichtbar. Einige Features sind nur in verschiedenen Varianten verfügbar. Abhängig von den eingestellten Parametern werden einige Felder ausgegraut dargestellt.

8.3.1 System Karteikarte

Der gesamte Menüpunkt "Interface" ist nicht bei allen Sensorversionen sichtbar.

Parametrierbereich System Menüpunkt Config

Network

IP address	Anzeige der IP-Adresse des Sensors
Subnet mask	Anzeige der Subnet-Maske des Sensors
Gateway	Anzeige des Gateways des Sensors

Parametrierbereich System Menüpunkt Interfaces

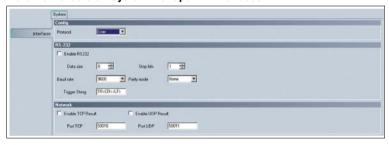


Abbildung 8.8 Parametrierbereich System Tab - Interfaces

Config

Protocol	Datenübertragung User: Daten werden binär übertragen XML: Daten werden als XML-Daten übertragen
----------	---

RS-232

Enable RS-232	RS-232 Übertragung aktivieren oder deaktivieren
Data size	Anzahl der Datenbits. Einstellbereich 5 8
Stop bits	Anzahl der Stopbits. Einstellbereich 1 2
Baud rate	Auswahl der Baudrate. Einstellmöglichkeiten: 9600; 57600; 38400; 19200; 115200

Parity mode	Einstellung der Erkennung von Übertragungsfehlern. Einstellmöglichkeiten: Even; None; Odd
Trigger string	Legt eine Zeichenfolge fest. Wird diese Zeichenfolge über die RS-232-Schnittstelle gesendet, wird ein Trigger ausgelöst

Network

Enable Network Result	Übermittlung der Ergebnisse (Codeinhalte) über die Netzwerkschnittstelle (TCP/IP)
Port	Eingabe des entsprechenden Ports

Parametrierbereich System Menüpunkt Options

Abbildung 8.9 Parametrierbereich System Tab - Options

Display

Auto send error image	Protokollierung von Fehlern/Fehlerbildern
-----------------------	---

Results

Auto send result	Übertragung von Ergebnisdaten via Ethernet oder RS-232
Show HW trigger start time	Ausgabe der Trigger Start Zeit in der Ausgabedaten

Other

Enable Button 1	Aktivierung oder Deaktivierung des Button 1
Enable Button 2	Aktivierung oder Deaktivierung des Button 2

8.3.2 Camera Karteikarte

Parametrierbereich Camera Menüpunkt Common

Abbildung 8.10 Parametrierbereich Camera Tab - Common

Exposure Settings

Flash time	Einstellung der Belichtungszeit in μs
Gain	Einstellung der Verstärkung
Button Capture	Nimmt ein Bild mit eingestellter Flash time auf
Button Apply	Die aktuell eingestellten Werte werden für den nächsten Teachvorgang verwendet
Button Active values	Rücksetzen auf die Werte des letzten Teachvorgangs

Live image

Start	Starten des Livebildes
Stop	Stoppen des Livebildes
Check every image	Livebild mit Ergebnisausgabe
Pause	Eingabe der Pause zwischen zwei aufgenommenen Bildern im Livebildmodus in ms

8.3.3 Teach Karteikarte

Parametrierbereich Teach Menüpunkt Common

Abbildung 8.11 Parametrierbereich Teach Tab - Common

Teach modes

Capture mode	Siehe Kapitel 6.3.1
Inspection	Siehe Kapitel 6.3.2
Direct teach	Siehe Kapitel 6.3.2

Parametrierbereich Teach Tab Menüpunkt Capture Options

Abbildung 8.12 Parametrierbereich Teach Tab - Capture Options

Exposure

Einstellungen der Belichtungsregelung	
Flash start value	Minimale Belichtungszeit in µs
Flash step with	Im Einlernprozess wird die Blitzlichtdauer automatisch eingestellt, indem sie Schrittweise erhöht wird Diese Schrittweite kann hier eingestellt werden

8.3.4 Search Karteikarte

Parametrierbereich Search Menüpunkt Common

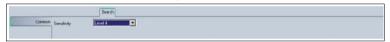


Abbildung 8.13 Parametrierbereich Search Tab - Common

Common

Sensitivity	Empfindlichkeitseinstellung Hohe Werte führen zu einer hohen Trefferrate, aber auch zu vermehrten falschen Zurückweisungen Bei Calendar werden selbst kleinste Unterschiede erkannt.

Parametrierbereich Search Menüpunkt Positions

Abbildung 8.14 Parametrierbereich Search Tab - Positions

Check Area

X-Start	Eingrenzung des Lesebereiches. Eingabe der X-Startposition
Y-Start	Eingrenzung des Lesebereiches. Eingabe der Y-Startposition
Tolerance X	Eingabe des Toleranzbereiches in X-Richtung
Tolerance Y	Eingabe des Toleranzbereiches in Y-Richtung
Size X	Eingrenzung des Lesebereiches. Größe in X-Richtung

Size Y	Eingrenzung des Lesebereiches. Größe in Y-Richtung
High Resolution	Aktivierung der Suche nach hoher Auflösung

Sie können mit den Einstellungen der Prüf-Position (Check Area) im Bildvergleichs-Modus die Position des zu vergleichenden Bereiches im Musterbild verschieben.

Hinweis!

Nach jeder Änderung müssen Sie das Musterbild neu einlernen!

Position Check

Position Check	Aktivierung oder Deaktivierung der Überprüfung des Toleranzbereiches
Tolerance Left	Eingrenzung des Lesebereiches. Eingabe der X-Startposition
Tolerance Right	Eingabe des Toleranzbereiches nach rechts
Tolerance Top	Eingabe des Toleranzbereiches nach oben
Tolerance Bottom	Eingabe des Toleranzbereiches nach unten

Sie können zusätzlich zur Prüfung eines eingelernten Musters oder Barcodes eine Positionsprüfung durchführen. Dabei wird geprüft, ob die Position des Musters bzw. des Barcodes im aktuellen Bild innerhalb des angegebenen Toleranzbereiches um die eingelernte Position liegt. Bei aktiviertem Positionscheck wird der Toleranzbereich im aktuellen Bild und im Musterbild als blauer Rahmen angezeigt. Alle Positionen werden in Pixel geprüft und angegeben.

8.3.5 Barcode Karteikarte

Parametrierbereich Barcode Menüpunkt Common

Abbildung 8.15 Parametrierbereich Barcode Tab - Common

Settings

Compare string	Zeichenkette mit dem der gelesene Barcode verglichen wird. Bei Codegleichheit wird "Gut" ausgegeben
Update	Anforderung des Referenzbarcodes
Timeout	Maximale Lesedauer, bei Überschreitung der Zeit wird ein "No-Read" ausgegeben

Parametrierbereich Barcode Menüpunkt Codes

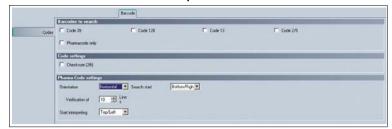


Abbildung 8.16 Parametrierbereich Barcode Tab - Codes

Barcodes to search

Code 39	Auswahl, ob der Code 39 gelesen werden soll
Code 128	Auswahl, ob der Code 128 gelesen werden soll
Code 13	Auswahl, ob der Code 13 gelesen werden soll
Code 2/5	Auswahl, ob der Code 2/5 gelesen werden soll
Pharmacode only	Auswahl, ob nur der Pharmacode eingelesen werden soll

Code settings

Ī	Checksum (2i5)	Checksumme bei Lesung des Code Interleave 2/5 aktivieren
---	----------------	--

Pharmacode settings

Orientation	Auswahl zwischen Leiter-Barcode(vertical) oder Gartenzaun- Barcode (horizontal)
Search start	Welche Bildecke ist dem zu lesendem Barcode am nächsten
Verification of	Die zu erwartende Anzahl der Pharmacode-Balken
Start interpreting	Leserichtung des Barcodes

Parametrierbereich Barcode Menüpunkt Region of interest

Abbildung 8.17 Parametrierbereich Barcode Tab - Region of interest

Settings

X-Start	Eingrenzung des Lesebereiches. Eingabe der X-Startposition
Y-Start	Eingrenzung des Lesebereiches. Eingabe der Y-Startposition

X-End	Eingrenzung des Lesebereiches. Eingabe der X-Endposition
Y-End	Eingrenzung des Lesebereiches. Eingabe der Y-Endposition

Sie können mit den Einstellungen der Lesebereiches (Settings) die Position des zu lesenden Bereiches, in dem sich der Barcode befinden soll, verschieben.

Hinweis!

Nach jeder Änderung müssen Sie den Barcode neu einlernen!

Position Check

Position Check	Aktivierung oder Deaktivierung der Überprüfung des Toleranzbereiches
Tolerance Left	Eingrenzung des Lesebereiches. Eingabe der X-Startposition
Tolerance Right	Eingabe des Toleranzbereiches nach rechts
Tolerance Top	Eingabe des Toleranzbereiches nach oben
Tolerance Bottom	Eingabe des Toleranzbereiches nach unten

Sie können zusätzlich zur Prüfung eines eingelernten Musters oder Barcodes eine Positionsprüfung (Position Check) durchführen. Dabei wird geprüft, ob die Position des Musters bzw. des Barcodes im aktuellen Bild innerhalb des angegebenen Toleranzbereiches um die eingelernte Position liegt. Bei aktiviertem Positionscheck wird der Toleranzbereich im aktuellen Bild und im Musterbild als blauer Rahmen angezeigt. Alle Positionen werden in Pixel geprüft und angegeben.

Parametrierbereich Barcode Menüpunkt Output Strings

Abbildung 8.18 Parametrierbereich Barcode Tab - Output Strings

Output Strings

Format string good	Ausgabestring bei Gut-Lesung PSTR: Ausgabe des gelesenenen Wertes PSTR(0,5): Ausgabe des gelesenen Wertes ab Position 0, 5 Zeichen lang PSTR(3,3): Ausgabe des gelesenen Wertes ab Position 3, 3 Zeichen lang
Format string bad	Ausgabestring bei Schlecht-Lesung

8.3.6 Data Matrix Karteikarte

Die Karteikarte Data Matrix ist optional und ist nicht bei allen Versionen verfügbar.

Parametrierbereich Datamatrix Menüpunkt Output Strings

Abbildung 8.19 Parametrierbereich Datamatrix Tab - Output Strings

Output Strings

Format string good	Ausgabestring bei Gut-Lesung PSTR: Ausgabe des gelesenenen Wertes PSTR(0,5): Ausgabe des gelesenen Wertes ab Position 0, 5 Zeichen lang PSTR(3,3): Ausgabe des gelesenen Wertes ab Position 3, 3 Zeichen lang
Format string bad	Ausgabestring bei Schlecht-Lesung

Parametrierbereich Datamatrix Menüpunkt Options

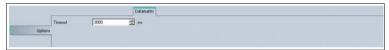


Abbildung 8.20 Parametrierbereich Datamatrix Tab - Options

Options

Timeout	Maximale Lesedauer, bei Überschreitung der Zeit wird ein "No-Read" ausgegeben

Parametrierbereich Datamatrix Menüpunkt Search

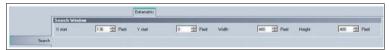


Abbildung 8.21 Parametrierbereich Datamatrix Tab - Search

Search Window

X start	X-Startposition des Lesebereiches
Y start	Y-Startposition des Lesebereiches
Width	Breite des Lesebereiches
Height	Höhe des Lesebereiches

Sie können mit den Einstellungen der Lesebereiches (Search Window) die Position des zu lesenden Bereiches, in dem sich der Data-Matrix-Code befinden soll, verschieben.

П

Hinweis!

Nach jeder Änderung müssen Sie den Data-Matrix-Code neu einlernen!

8.3.7 Rotary Encoder Karteikarte

In dieser Karteikarte haben Sie die Möglichkeit die Einstellungen des Drehgebereingangs zu verändern.

Parametrierbereich Rotary Encoder Menüpunkt Common

Abbildung 8.22 Parametrierbereich Rotary Encoder Tab - Common

Data

Resolution	Auflösung des Drehgebers in Impulse pro Meter
Trigger distance	Abstand zwischen Triggersensor/Bogenkante und Mitte des Sensor-Lesefeldes.
Fix position	manuelle Eingabe der Bildaufnahmeposition ab der Bogenkante
Max speed	Maximale Geschwindigkeit des Förderers
Active low trigger	Triggern bei fallender Flanke aktivieren oder deaktivieren

Signal Out

Delay active	Aktivierung der Einstellmöglichkeit der Wartezeit	
Delay for result	Wartezeit in mm zwischen Trigger und Ergebnisausgabe	
Pulse length	Länge des Ausgangsimpulses der Ergebnisausgabe in mm	

Parametrierbereich Rotary Encoder Menüpunkt Test

Abbildung 8.23 Parametrierbereich Rotary Encoder Tab - Test

Test

Position (inc)	Anzeige der aktuelle Encoder Position	
Read enc. position	Encoderposition auslesen	

8.4 Symbolleiste

In der Symbolleiste werden verschiedene Symbolfunktionen aufgeführt.

Dis <u>c</u> onnect	Die Verbindung zwischen dem PC und dem Sensor wird getrennt
Open job	Öffnet eine auf der Festplatte abgespeicherte Einstellung
Save job	Speichert die vorgenommenen Einstellungen auf der Festplatte
Load settings	Verwirft alle Änderungen und läd die gespeicherten Parameter vom Sensor
Save settings	Speichert alle Daten permanent auf dem Sensor ab
Trigger start	Löst einen Triggerung des Sensors aus. Je nach Sensor- Betriebsart liefert er einen einzelnen Messwert oder kontinuierlich Messwerte zurück
Teach start	Startet den Einlernmodus, um ein Referenzbild zu lernen. Wartet danach auf Trigger Signale
Get last Image	Anzeige des zuletzt aufgenommendes Bildes. Bei Multitriggeraufnahmen können durch mehrmaliges Drücken sämtliche Bilder durchlaufen werden
Get pattern Image	Anzeige des eingelernten Referenzbildes
Get teach Image	Anzeige aller im Teachprozess aufgenommenen Bilder

Get error image	Anzeige des letzten Fehlerbildes
Get next error image	Anzeige der vorherigen Fehlerbilder

8.5 Sensor Data

Dieser Bereich zeigt den angeschlossenen Sensortyp, die Firmware-Version des angeschlossenen Sensors sowie die MAC-Adresse.

Abbildung 8.24 Sensor data

8.6 Sensor Output

Dieser Bereich zeigt die Kommunikation zwischen der Steuerung und dem angeschlossenen Sensor. Um auszuwählen, welche Nachrichten angezeigt werden sollen, wählen Sie **View > Displayed message types**.

Abbildung 8.25 Sensor output

Im unteren Bereich befinden sich zwei Buttons.

Save output	Speichert den Fensterinhalt in einer Textdatei.
Delete	Löscht den Inhalt des Fensters.

8.7 Bildanzeige

In der Bildanzeige können verschiedene Bilder von Referenzbilder über Fehlerbilder zum aktuellen Bild angezeigt werden. Über die beiden Kontrollkästchen **Show image** und **Show results** können Sie die Bildanzeige und Ergebnisanzeige ein - und ausschalten.

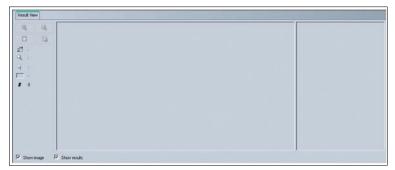


Abbildung 8.26 Bildanzeige Result View

Durch Betätigen der rechten Maustaste oder der Kontextmenü-Taste erscheint folgendes Kontextmenü:

Abbildung 8.27 Bildanzeige Image View Kontextmenü

Kontextmenü

Load image file	Lädt ein Sensorbild. Das Sensorbild kann ausgewählt werden.
Open image folder	Öffnet den Speicherort
Save image	Speichert das angezeigte Sensorbild

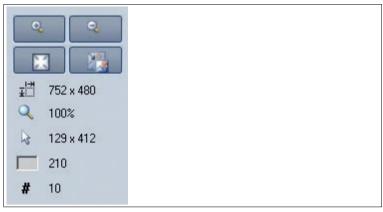


Abbildung 8.28 Bildanzeige Image View Werkzeugleiste

Lupe +	Sensorbild hinein zoomen
Lupe -	Sensorbild hinaus zoomen
Fenster anpassen	Sensorbild dem Fenster anpassen
Originalgröße	Orginalbildgröße einstellen
Größenangabe	Angabe der Größe des Sensorbildes
Zoomfaktor	Anzeige des Zoomfaktors. Zoomfaktor 1 ist Originalgröße.
Positionsangabe	Angabe der Position des Mousezeigers
Grauwertangabe	Grauwertangabe des Pixels auf dem der Mousezeiger steht
Bildnummer	Angabe der Bildnummer

Tabelle 8.7 Menü Image View Werkzeugleiste

9 Wartung und Reparatur

9.1 Wartung

Um die bestmögliche Geräteleistung zu erzielen, halten Sie die Optikeinheit des Gerätes sauber und reinigen Sie diese bei Bedarf.

Beachten Sie bei der Reinigung folgende Hinweise:

- Berühren Sie die Optikeinheit nicht mit den Fingern.
- Tauchen Sie das Gerät nicht in Wasser ein. Besprühen Sie es nicht mit Wasser oder anderen Flüssigkeiten.
- Verwenden Sie zum Reinigen der Geräteoberfläche keine Scheuermittel.
- Benutzen Sie ein Baumwoll- oder Zellstofftuch, das mit Wasser oder Isopropylalkohol angefeuchtet (nicht getränkt) ist.
- Entfernen Sie Alkoholrückstände mit einem Baumwoll- oder Zellstofftuch, das mit destilliertem Wasser angefeuchtet (nicht getränkt) ist.
- Wischen Sie die Geräteoberflächen mit einem fusselfreien Tuch trocken.

9.2 Reparatur

Die Geräte dürfen nicht repariert, verändert oder manipuliert werden.

Im Falle eines Defektes ist das Produkt immer durch ein Originalgerät zu ersetzen.

10 Störungsbeseitigung

10.1 Was tun im Fehlerfall

Bevor Sie einen Serviceeinsatz beauftragen, prüfen Sie bitte, ob folgende Maßnahmen erfolgt sind:

- Testen der Anlage durch den Kunden gemäß den folgenden Checklisten,
- Telefonische Beratung durch den Service-Center zur Eingrenzung des Problems.

Checkliste

Fehler	Ursache	Behebung
LED "PWR" leuchtet nicht	Die Spannungsversorgung ist abgeschaltet.	Ermitteln Sie, ob es einen Grund für die Abschaltung gibt (Installationsarbeiten, Wartungsarbeiten). Schalten Sie ggf. die Spannungsversorgung ein.
LED "PWR" leuchtet nicht	Verdrahtungsfehler im Verteiler oder Schaltschrank.	Überprüfen Sie sorgfältig die Verdrahtung und beheben Sie ggf. vorhandene Verdrahtungsfehler.
keine Verbindung zum Gerät	Netzwerkkabel nicht verbunden.	Schließen Sie das Netzwerkkabel an.
keine Verbindung zum Gerät	Falsches Netzwerkkabel verwendet.	Direktverbindung zwischen PC und Gerät: Verwenden Sie ein Crossover-Netzwerkkabel. Verbindung über ein bestehendes Netzwerk: Verwenden Sie ein Twisted-Pair-Netzwerkkabel
Ausgang READY geht nicht auf High-Pegel	Hardware-Fehler	Überprüfen Sie den Drehgeber.

 Falls keiner der vorherigen Punkte zum Ziel geführt hat, nehmen Sie bitte Kontakt zum Service-Center auf. Halten Sie hier bitte die Fehlerbilder und die Versionsnummer des Sensors bereit. Die Versionsnummer finden Sie auf der Bedienoberfläche unten links.

11 Anhang

11.1 Technische Daten

Allgemeine Daten

Lichtart	Integrierter LED-Blitz (weiß)
Symbologien	2/5 interleaved, Code13, Code39, Code128, Pharmacode
Objektgröße	25 mm x 25 mm
Leseabstand	51 mm
Schärfentiefe	± 5 mm
Lesefeld	65 mm x 40 mm
Auswertefrequenz	10 Hz
Objektgeschwindigkeit	getriggert max. 4 m/s

Kenndaten

Bildaufnehmer	
Тур	CMOS , Global Shutter
Pixelanzahl	752 x 480 Pixel
Graustufen	256
Bildaufnahme	verzögerungsfrei , programmgesteuert oder extern getriggert

Anzeigen/Bedienelemente

Betriebsanzeige	LED grün: Betriebsbereit
Bedienelemente	2 x Taster
LED-Anzeige	Trigger, Good, Bad, Teach, Diag1, Diag2, PWR

Elektrische Daten

Betriebsspannung	24 V DC ± 15% , PELV
Leerlaufstrom	max. 250 mA
Leistungsaufnahme	6 W

Schnittstelle 1

Schnittstellentyp	Ethernet
Protokoll	TCP/IP
Übertragungsrate	100 MBit/s
Kabellänge	max. 30 m

Eingang

Eingangsspannung	extern anzulegen 24 V ± 15% PELV
Anzahl/Typ	1 Triggereingang 1 Teacheingang 2 Eingänge (EncoderA, EncoderB)
Eingangsstrom	ca. 2 mA bei 24 V DC
Schaltschwelle	low: < 10 V, high: > 15 V
Kabellänge	max. 30 m

Ausgang

Anzahl/Typ	Good, Bad, Teach Active, Ready, OUT1
Schaltungsart	PNP , kurzschluss-/überlastfest
Schaltspannung	extern anzulegen 24 V ± 15 % PELV
Schaltstrom	max. 100 mA je Ausgang
Kabellänge	max. 30 m

Umgebungsbedingungen

Umgebungstemperatur	0 45 °C (32 113 °F)
Lagertemperatur	-20 60 °C (-4 140 °F)
Relative Luftfeuchtigkeit	80 % , nicht kondensierend
Schockfestigkeit	< 50 g
Vibrationsfestigkeit	< 3 G , 11 200 Hz

Mechanische Daten

IP67
M12x1 Stecker, 8-polig, Standard (Versorgung+IO) , M12x1 Buchse, 5-polig, Standard (IO) , M12x1 Buchse, 4-polig, D-codiert (LAN)
PC/ABS
Kunststoffscheibe
4 x Gewinde M6
ca. 160 g

Normen- und Richtlinienkonformität

Normenkonformität	
Störfestigkeit	EN 61326-1
Störaussendung	EN 61000-6-4
Schutzart	EN 60529
Laserklasse	IEC 60825-1:2007

FABRIKAUTOMATION – SENSING YOUR NEEDS

Zentrale USA

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1 330 4253555 E-Mail: sales@us.pepperl-fuchs.com

Zentrale Asien

Pepperl+Fuchs Pte Ltd. Singapur 139942 Tel. +65 67799091 E-Mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

Änderungen vorbehalten
Copyright PEPPERL+FUCHS • Printed in Germany