MANUAL

VBA-4E-G11-I-F AS-Interface analog module

EC®LAB'

CE

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

1	Introduction4			
2	Decl	laration of Conformity	5	
3	Safe	Safety		
	3.1	Symbols relevant to safety	6	
	3.2	Intended Use	6	
	3.3	General Safety Instructions	6	
4	Proc	duct Description	7	
	4.1	Displays and Controls	7	
	4.2	Connections	8	
	4.3	Activating the Input Channels	8	
5	Insta	allation	9	
	5.1	Storage and transport	9	
	5.2	Unpacking	9	
	5.3	Mounting	9	
	5.4	Connecting the AS-Interface	9	
	5.5	Connecting the Sensors	11	
6	Com	nmissioning	. 12	
	6.1	Assigning an Address to the Module	12	
	6.2	Slave Profile	12	
	6.3	Parameterization	12	
7	Trou	bleshooting	. 13	
	7.1	Causes and Elimination of Peripheral Faults	13	
8	App	endix A	. 14	
	8.1	Dimensions	14	
	8.2	Technical Data	14	
9	App	endix B	. 17	
	9.1	Analog Input Module Measuring Ranges	17	
	9.2	Delay Times	18	

Introduction

1

Congratulations

You have chosen a device manufactured by Pepperl+Fuchs. Pepperl+Fuchs develops, produces and distributes electronic sensors and interface modules for the market of automation technology on a worldwide scale.

Before you install this device and put it into operation, please read the operating instructions thoroughly. The instructions and notes contained in this operating manual will guide you stepby-step through the installation and commissioning procedures to ensure trouble-free use of this product. By doing so, you:

- guarantee safe operation of the device
- can utilize the entire range of device functions
- avoid faulty operation and associated errors
- reduce costs from downtimes and incidental repairs
- increase the effectiveness and operating efficiency of your plant.

Store this operating manual somewhere safe in order to have it available for future work on the device.

After opening the packaging, please ensure that the device is intact and that the package is complete.

Symbols used

The following symbols are used in this manual:

Note!

This symbol draws your attention to important information.

Handling instructions

You will find handling instructions beside this symbol

Contact

If you have any questions about the device, its functions, or accessories, please contact us at:

Pepperl+Fuchs GmbH Lilienthalstraße 200 68307 Mannheim Telephone: +49 621 776-4411 Fax: +49 621 776-274411 E-Mail: fa-info@pepperl-fuchs.com

2

о П

Declaration of Conformity

All products were developed and manufactured under observance of the applicable European standards and guidelines.

Note!

A Declaration of Conformity can be requested from the manufacturer.

The product manufacturer, Pepperl+Fuchs GmbH, 68307 Mannheim, has a certified quality assurance system that conforms to ISO 9001.

3 Safety

3.1 Symbols relevant to safety

Danger!

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.

Warning!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.

Caution!

This symbol indicates a possible fault.

Non-observance could interrupt devices and any connected facilities or systems, or result in their complete failure.

3.2 Intended Use

The VBA-4E-G11-I-F is an analog module for connecting up to four 0/4 mA ... 20 mA measurement sensors to the AS-Interface network. Measured values are converted and data transmitted asynchronously as defined by AS-Interface profile 7.3. The measured values are converted internally at a resolution of 16 bits. The analog module features four analog current inputs. The measurement sensors are powered either by the AS-Interface or by the auxiliary power source.

Read through these instructions thoroughly. Familiarize yourself with the device before installing, mounting, or operating.

Always operate the device as described in these instructions to ensure that the device and connected systems function correctly. The protection of operating personnel and plant is only guaranteed if the device is operated in accordance with its intended use.

3.3 General Safety Instructions

Only instructed specialist staff may operate the device in accordance with the operating manual.

User modification and or repair are dangerous and will void the warranty and exclude the manufacturer from any liability. If serious faults occur, stop using the device. Secure the device against inadvertent operation. In the event of repairs, return the device to your local Pepperl+Fuchs representative or sales office.

The connection of the device and maintenance work when live may only be carried out by a qualified electrical specialist.

The operating company bears responsibility for observing locally applicable safety regulations.

Store the not used device in the original packaging. This offers the device optimal protection against impact and moisture.

Ensure that the ambient conditions comply with regulations.

C)
Г	٦
J.	L.

Disposal

Note!

Electronic waste is hazardous waste. When disposing of the equipment, observe the current statutory requirements in the respective country of use, as well as local regulations.

- 4 Product Description
- 4.1 Displays and Controls

The VBA-4E-G11-I-F analog module is equipped with the following displays and controls:

LED Indicators

1	AS-i/FAULT LED	Status indication; multicolor LED Green: normal mode Red: communication error Flashing yellow/red: address 0 Flashing green/red: peripheral fault
2	IN1 LED IN2 LED IN3 LED IN4 LED	Status of input signal; yellow LED Off: not active On: signal within measuring range Flashing: signal outside measuring range
3	AUX LED	Ext. auxiliary power source (U _{AUX}); dual LED (green/red) Green: voltage OK Red: voltage reversed
4	INT/EXT LED	Status indication, input supply; green LED Green: input supply from AS-Interface Off: input supply from auxiliary power source

Switches

5	INT/EXT switch	Set to INT: sensors powered via the AS-Interface (max. 140 mA) Set to EXT: sensors powered via auxiliary power source (max. 600 mA
		Set to EXT: sensors powered via auxiliary power source (max. 600 m

To reach the switch, remove the dust cover (5).

4.2 Connections

Figure 4.2 Connections

The VBA-4E-G11-I-F analog module is equipped with the following connections:

1	Current inputs	5 : functional ground M12 round plug connector
2	Addressing socket	Low voltage switch socket, \varnothing 1.3 mm

4.3 Activating the Input Channels

All input channels on the analog module are deactivated by default. This state is indicated by the four yellow LEDs IN1 to IN4 illuminating in sequence. Wire break detection is activated (parameter bit P3=1). The measuring range is between 4 mA and 20 mA.

Activating an Input Channel

An input channel is activated if an input signal within a range of 1 mA to 23 mA is present. Any input channels activated remain active after the module is restarted.

Resetting Activated Input Channels

In order to restore the module to its default status, set parameter bit P3 to P3=0 and then to P3=1. Alternatively, when switching on the module, a signal of < 1 mA must be present at all input channels for a period of 7 seconds.

Note!

Where wire break detection is deactivated (parameter bit P3=0), all four input channels are activated. The measuring range is between 0 mA and 20 mA.

5 Installation

5.1 Storage and transport

For storage and transport purposes, package the unit using shockproof packaging material and protect it against moisture. The best method of protection is to package the unit using the original packaging. Furthermore, ensure that the ambient conditions are within allowable range.

5.2 Unpacking

Check the product for damage while unpacking. In the event of damage to the product, inform the post office or parcel service and notify the supplier.

Retain the original packaging in case the device must be stored or shipped again at a later date.

Should you have any questions, please direct them to Pepperl+Fuchs.

5.3 Mounting

Align the device as required and secure to a flat mounting surface by screwing it in place with two M4 mounting screws. When the central screw is tightened, the functional ground of the M12 round plug connector connects with the metal insert in the mounting base. Ensure that this metal insert is connected with the protective ground via the mounting screws. The mounting screws are not included.

Figure 5.1

Screw a blind plug onto unused connections to ensure the relevant degree of protection. The recommended tightening torque for securing blind plugs is 0.4 Nm.

5.4 Connecting the AS-Interface

The module is connected to the AS-Interface network via the yellow flat cable. The external auxiliary power source U_{AUX} is connected to the module via the black flat cable where required.

Connecting to the AS-Interface

- 1. Open the module by unscrewing the central screw.
- 2. Place the yellow flat cable in the channel labeled AS-i.
- 3. If the module is to be powered via an external auxiliary power source U_{AUX} , place the black flat cable in the channel labeled AUX. Set the INT/EXT switch to EXT. If the module is to be powered solely by the AS-Interface, place the flat cable seal (VAZ-FK-S-BK-SEAL) in the channel labeled AUX. The flat cable seal ensures compliance with the degree of protection.

- 1. AS-i channel (yellow flat cable)
- 2. AUX channel (black flat cable)
- 3. Ensure the flat cable is positioned correctly.
- 4. Reattach the upper part of the module.
- 5. Tighten the central screw. The recommended tightening torque for this screw is 1.8 Nm.

 \mapsto The AUX LED and the AS-i/FAULT LED light up green when the module is connected to the AS-Interface and the external auxiliary power source U_{AUX}.

5.5 Connecting the Sensors

Inputs:		Connection examples:	
Current input	IN1 IN4	Current input	
	$400^{2} 5$	1 24V + + + 2 11+ - + 4 0V + 3 0V 2-wire 3-wire	

Figure 5.2

You can connect 2- and 3-wire sensors to the VBA-4E-G11-I-F. For various connection options, \rightarrow see Figure 5.2 on page 11.

о П

Connection Instructions

Use shielded cables to connect the sensors.

Note!

Note!

Pin 5 of the M12 round plug connector is the functional ground. When the central screw is tightened, pin 5 connects with the metal insert in the mounting base. see chapter 5.3. This metal insert then makes contact with the mounting surface via the mounting screws.

6 Commissioning

6.1 Assigning an Address to the Module

To operate the VBA-4E-G11-I-F within an AS-Interface network, a suitable address must be assigned to the AS-Interface slave. The AS-Interface VBP-HH1-V3.0 handheld device by PepperI+Fuchs or an AS-Interface master can be used to assign addresses.

The VBA-4E-G11-I-F is a standard slave as defined by specification 3.0 and requires a master that meets specification 2.1 or higher. You can assign addresses 1 to 31. The default address on delivery is 0.

6.2 Slave Profile

The VBA-4E-G11-I-F has the profile

S-7.3.E

I/O	=	7
ID	=	3
ID1	=	F (programmable)
ID2	=	E

The data value is transmitted as defined by AS-Interface profile 7.3.

6.3 Parameterization

The following parameters can be set for the VBA-4E-G11-I-F. Program the parameters using an AS-Interface master, with the VAZ-SW-ACT32 AS-i Control Tools from PepperI+Fuchs, or with the VBP-HH1-V3.0 handheld device.

Parameter P0: 50/60 Hz Filter

Default value P0=1, active

With parameter P0, you activate the filter for 50/60 Hz power frequencies. With an activated filter, power frequency interference is suppressed. In this case, the conversion time is extended (see chapter 9.2).

Parameter P1: Not Used

Parameter P2: Peripheral Fault

Default value P2=1, active

Parameter P2 is used to switch notification of a peripheral fault in the event of a measuring overrange on or off (see chapter 9). If notifications are activated, the AS-i/FAULT LED flashes in the event of a peripheral fault, and a notification is sent to the master.

A peripheral fault is always reported if:

- The power supply is overloaded.
- The external power supply is not available when the INT/EXT switch = EXT.
- No channel is activated. see chapter 4.3.

Parameter P3: Wire Break Detection

Default value P3=1, active

Parameter P3 is used to switch wire break detection on or off at the input channels. Where wire break detection is activated, automatic channel detection is also activated (see chapter 4.3). The measuring range is between 4 mA and 20 mA.

Parameter P3=0 is used to switch off wire break detection. All four input channels are then active. The measuring range is between 0 mA and 20 mA.

7 Troubleshooting

7.1 Causes and Elimination of Peripheral Faults

A peripheral fault (P fault) is indicated by the color and flashing of the AS-i/FAULT LED. There are various causes of and solutions for correcting peripheral faults.

Cause	Solution
Sensor supply overload	Check sensor supply for short circuit
Measured values outside the measuring range	 Check the connected measurement sensors for wire break/short circuit
Auxiliary power too low (switch set to EXT)	Check the auxiliary power source
No input channel activated	Activate input channel (see chapter 4.3)

If none of these potential solutions correct the peripheral fault, please contact Pepperl+Fuchs.

8 Appendix A

8.1 Dimensions

Figure 8.1

Туре	D	Н
VBA-4E-G11-I-F	85 mm	35 mm

8.2 Technical Data

General specifications

Slave type	Standard slave
AS-Interface specification	V3.0
Required master specification	≥ V2.1
UL File Number	E87056

Indicators/operating means

LED AS-i/FAULT	Status display; multi-colour LED Green: normal operation Red: communication fault Flashing yellow/red: address 0 Flashing green/red: peripheral fault
LED ANALOG	status of input signal; LED yellow off: not active on: signal within measurement range flashing: signal outside of measurement range
LED AUX	ext. auxiliary voltage U _{AUX} ; dual LED green/red green: voltage OK red: reverse voltage
LED INT/EXT	status display input supply; LED green green: input supply from AS-Interface off: input supply from auxiliary voltage

Electrical specifications

Auxiliary voltage (output)	20 30 V DC PELV
Rated operational voltage	26.5 31.6 V from AS-Interface
Rated operational current	\leq 60 mA (without sensors) / max. 200 mA
Protection class	III
Surge protection	$\rm U_{AUX}, \rm U_{in}:$ Over voltage category III, safe isolated power supplies (PELV)

Input

•	
Number/Type	Four analog inputs Current: 0 mA 20 mA/4 mA 20 mA
Supply	from AS-Interface (switch position INT, basic setting) or auxiliary voltage $\rm U_{\rm EXT}$ (switch position EXT)
Current loading capacity	\leq 140 mA from AS-Interface; overload and short-circuit resistant \leq 600 mA from external auxiliary voltage U_{AUX} , overload and short-circuit protected
Input resistance	Max. 70 Ω
Accuracy	0.1% of end value
Resolution	16 bits
Temperature influence	0.0025%/K from input signal range

Programming instructions

Profile	S-7.3.E
IO code	7
ID code	3
ID2 code	E
Data bits (function via AS- Interface)	The transfer of the data value is based on AS-Interface Profile 7.3.
Parameter bits (programmable via AS-i)	function
P0	50/60 Hz filter P0=1, enabled P0=0, disabled
P1	Notused
P2	Indication of the peripheral fault by exceeding measuring range P2=1, peripheral fault is reported P2=0, peripheral fault is not reported
P3	P3=1, wire break detection active, automatic channel detection $(at > 1 mA)$ P3=0, wire break detection deactivated, all four channels active

Compliance with standards and directives

Directive conformity	
EMC Directive 2004/108/EC	EN 50295:1999
Standard conformity	
Noise immunity	EN 61000-6-2:2005, EN 61326-1:2006, IEC 62026-2:2008
Emitted interference	EN 61000-6-4:2007
Input	EN 61131-2:2007
Protection degree	EN 60529:2000
Fieldbus standard	EN 50295:1999, IEC 62026-2:2008

Ambient conditions

Ambient temperature	-25 70 °C (-13 158 °F)
Storage temperature	-25 85 °C (-13 185 °F)

Mechanical specifications

Connection	AS-Interface/U _{AUX} : cable piercing method, flat cable yellow/flat cable black Inputs: M12 round connector
Protection degree	IP68 / IP69K
Material	
Housing	PBT PC
Mounting screw	Stainless steel 1.4305 / AISI 303
Mass	200 g
Mounting	Mounting base

9 Appendix B

9.1 Analog Input Module Measuring Ranges

Current Input Measuring Ranges

The measuring range of the current input can be set via AS-Interface parameter P3:

- P3=1, nominal range 4 mA ... 20 mA
- P3=0, nominal range 0 mA ... 20 mA

Current: 4 mA ... 20 mA

Input signal [mA]	Display on the master	Input LED	
>23	32767	Flashing ¹⁾	Above threshold (peripheral fault)
20.001 23	20001 23000	On	Extended range ²⁾
4 20	4000 20000	On	Nominal range
1 3.999	1000 3999	On	Extended range ²⁾
< 1	32767	Flashing ¹⁾	Below threshold (peripheral fault)

Table 9.1Measuring range 1 mA ... 23 mA

¹⁾: When channel is activated

²⁾: Measurement accuracy corresponds to the nominal range

Current: 0 mA ... 20 mA

Input signal [mA]	Display on the master	Input LED	
> 23	32767	Flashes	Above threshold (peripheral fault)
20.001 23	20001 23000	On	Extended range ¹⁾
0 20	0000 20000	On	Nominal range
< 0	0000	On	Below threshold

Table 9.2 Measuring range 0 mA ... 23 mA

¹⁾: Measurement accuracy corresponds to the nominal range

Caution!

Maximum input current

At input currents > 80 mA, fault-free operation of all inputs is not guaranteed.

9.2 Delay Times

The VBA-4E-G11-I-F needs a certain amount of time to convert and transmit the analog measuring signals to the AS-Interface master. This time period (= latency) is mainly composed of the conversion time and the transmission time. The conversion time and the transfer time depend on several factors.

Latency

Latency = delay of a signal under worst case conditions.

The analog-to-digital conversion in the analog module and the transmission via AS-Interface is not in sync. In the worst case, the transmission of a channel via AS-Interface starts just before the conversion of this channel is completed within the module. This gives rise to two scenarios:

1. The conversion time is longer than the transmission time

Latency = Conversion time + Transmission time * (Number of channels +1)

2. The conversion time is shorter than the transmission time

Latency = Conversion time * (Number of channels +1) + Transmission time

Figure 9.1 Conversion time > Transmission time

Figure 9.2

Conversion time < Transmission time

Conversion time

The conversion time is the time that the module requires to convert an analog signal into a digital value. The conversion time depends heavily on parameter P0

50/60 Hz filter inactive (P0=0)	10 ms
50/60 Hz filter active (P0=1)	70 ms

Table 9.3

Transmission time

The transmission time is based on the AS-Interface specification. The AS-Interface transmits data in 4-bit packets. At values greater than 4 bits, the quantity of data is divided into smaller values and then transmitted to a com unit over several cycles. If several channels are transmitted per slave, the number of cycles increases. The transmission time is the time required to fully transmit a digital data volume to the com unit. In the profile 7.3, seven frames are required per channel.

The duration of a cycle depends on the number of occupied addresses in the AS-interface network. An address is considered occupied if one of the following configurations apply:

- A standard address is assigned (e. g. 1)
- An A- or B-Address is assigned (e. g. **1A** or **1B**)
- An A- and a B-Address are assigned (e. g. 1A and 1B)

When calculating the cycle time, each of these configurations assumed to be **one** occupied address.

Cycle time = $150 \mu s^*$ ([Number of occupied addresses] +2)

The transmission time is 7 cycles:

Transmission time = $150\mu s * ([Number of occupied addresses] +2) * 7$

Example:

In a network, the addresses of 1A, 1B, 2A and 3 are assigned. For the calculation of the transmission time this corresponds to 3 occupied addresses. Thus we have:

Transmission time = $150\mu s * (3 + 2) * 7 = 5,25 ms$

- 4 occupied addresses: Transmission time = 6,3 ms
- 31 occupied addresses: Transmission time = 35 ms

FACTORY AUTOMATION – SENSING YOUR NEEDS

Worldwide Headquarters

Pepperl+Fuchs GmbH 68307 Mannheim · Germany Tel. +49 621 776-0 E-mail: info@de.pepperl-fuchs.com

USA Headquarters

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1 330 4253555 E-mail: sales@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd. Company Registration No. 199003130E Singapore 139942 Tel. +65 67799091 E-mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

/ TDOCT2824B_ENG 02/2014