DA6-IU-2K-V
 DA6-IU-2K-C

Process Controllers

for analogue input signals with Totaliser function

C

Table of Contents (German is the original version.)

1 Preface 3
2 Safety instructions and Warnings 3
2.1 Use according to the intended purpose 3
2.2 Mounting in a control panel 3
2.3 Electrical Installation 4
2.4 Cleaning and maintenance 4
3 Description 5
4 Display/Operating elements 5
5 Block diagram 6
6 Connections 6
7 Operating concept (Operating mode) 7
8 Programming 8
9 Function Groups 10
9.1 Help Texts (running text) 10
9.2 Signal inputs 10
9.3 User Linearisation 11
9.4 Function Multifunction Key (MP-Key) and Multifunction inputs (MP-INP) 13
9.4.1 Multifunction Key 14
9.4.2 Multifunction Inputs 14
9.5 Totaliser function 15
9.6 Limit Value (Alarm) Monitoring 17
10 Monitoring of Measuring Circuit 19
11 Technical Data 20
11.1 General Data 20
11.2 Measuring signal inputs 20
11.3 Control Inputs MPI 1 / MPI 2 20
11.4 Alarm outputs 20
11.5 Supply voltage 20
11.6 Sensor Supply voltage 20
11.7 Climatic Conditions 20
11.8 EMC 20
11.9 Device Safety 20
11.10Mechanical Data 21
11.11Connections 21
12 Dimensional Drawings 21
13 Help Texts 22

Preface

Please read this instruction manual entirely and carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2 Safety instructions and Warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times. Defective or damaged devices should be disconnected from the mains immediately and taken out of operation. The device shall not be opened. Use the repair service of the manufacturer. Only connect the device to the electricity networks provided to that purpose.
The safety of the system in which the device is integrated is the responsibility of the installer.
Disconnect all electricity networks prior to any installation or maintenance work.
Use exclusively cables approved in your country and designed for your temperature and power ranges. Installation and service work shall be carried out exclusively by qualified personnel.
The device must compulsorily be protected with approved external fuses. The value of these fuses can be found in the technical information.

This symbol is used on the device to remind of the existence of dangers, which are referred to in this manual.

2.1 Use according to the intended purpose

The purpose of the Process Control devices is to display measured values, as well as to monitor limit values (alarms). The application areas for this device lie in industrial processes and controls. The application area for this device lies in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Over-
voltages at the terminals of the device must be kept within the limits of Over-voltage Category II. The device must only be operated when mounted in a panel in the correct way and in accordance with the section "Technical Data".

The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1. If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, it is your responsibility to take the appropriate safety measures.

The device has been designed for indoor operation. It may nevertheless be used outdoors, provided the technical data is adhered to. In this case, take care to provide suitable UV protection.

2.2 Mounting in a control panel

Mount the device away from heat sources and avoid direct contact with corrosive liquids, hot steam or similar.

Provide a free space of 10 mm all around the device for its ventilation.

The device should be mounted so that the terminals are out of the reach of the operator and cannot be touched by him. When mounting the device, consider the fact that only the front side is classified as accessible for the operator.

Mounting instructions

1. Remove the mounting clip from the device.
2. Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
3. Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.
Note: In case of proper installation, IP65 can be reached on the front side.

2.3 Electrical Installation

The device must be disconnected
from any power supply prior to any
installation or maintenance work.
Make sure that no more voltages
LIABLE TO CAUSE AN ELECTROCUTION
are present.
AC-powered devices must only be
connected to the low-voltage network
via a switch or circuit breaker installed
close to the device and marked as

their disconnecting device. \quad\begin{tabular}{l}
Installation or maintenance work must

only be carried out by qualified

personnel and in compliance with the

applicable national and international

standards.

\quad

Take care to separate all extra-low

voltages entering or exiting the device

from hazardous electrical conductors

by means of a double or reinforced

insulation (SELV circuits).
\end{tabular}

\triangle
DANGER

- Before starting the device, check the cables for proper wiring and tightening. The screws of unused screw terminals must be screwed to the stop, so that they cannot loosen and get lost.
- The device has been designed for overvoltage category II. If higher transient voltages cannot be excluded, additional protection measures must be taken in order to limit the overvoltage to the values of CAT II.

Advice on noise immunity

All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines! Interference (e.g. from switchmode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.

Measures to be taken:

- Use only shielded cable and control lines. Connect shield at both ends. The conductor cross-section of the cables should be a minimum of $0.14 \mathrm{~mm}^{2}$.
- The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (lowimpedance).
- Only connect the shields to the control panel, if the latter is also earthed.
- Install the device as far away as possible from noise-containing cables.
- Avoid routing signal or control cables parallel to power lines.

2.4 Cleaning and maintenance

The front side of the unit should only be cleaned using a soft damp (water!) cloth. Cleaning of the embedded rear side is not planned and is the responsibility of the service personnel or of the installer.

In normal operation, this device is maintenancefree. Should the device nevertheless not operate properly, it must be sent back to the manufacturer or to the supplier. Opening and repairing the device by the user is not allowed and can adversely affect the original protection level.

3 Description

Digital panel meter for displaying measured values, as well as monitoring limit values in industrial applications.

- 6 -digit 14 -segment LED display, 14 mm , for displaying measured values and dialogs
- Running text can be switched on as Help Text
- Language for the Help Text selectable as English or German
- Signal input for $0-10 \mathrm{~V}, 2-10 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$
- Sampling rate 10 readings per second
- Digital filter (1st order) for smoothing display fluctuations with unstable input signals
- Customised linearisation
- MIN/MAX memory function
- Totaliser function
- 2 Relay outputs (changeover contacts) for limit monitoring
- Start delay for relay outputs after Power ON
- Versions for supply voltage 10 ... 30 V DC and 100 ... $240 \mathrm{~V} \mathrm{AC} \pm 10 \%$
- Auxiliary power supply 15 V DC / 25 mA
- Additional aux. power output $24 \mathrm{~V} / 30 \mathrm{~mA}$ with AC supply
- Programmable via the front keys
- Multifunction key and two multifunction inputs, function programmable

4 Display/Operating elements

To enter the Programming Menu	+ +	$>3 \mathrm{sec}$
To display Device Type and Software Version	$\longleftarrow+$	$+\longleftrightarrow>5 \mathrm{sec}$
To restore factory default settings	$\longleftarrow+\downarrow \sim$	$>3 \mathrm{sec}$

5 Block diagram

6 Connections

7 Operating concept (Operating mode)

8
 Programming

To enter the Programming menu
$-+\quad+3 \mathrm{sec}$

- During programming the relays are inactive (not energised).
- When quitting the programming menu via SAVE, the minimum and maximum values and the totaliser value are all cleared.

Entering the Programming Menu / Selecting Function Group / Quitting the Programming menu

Selecting Function / Setting Parameters / Accepting Parameters

Function Groups	Function	Parameter

$\frac{c}{\bar{\omega}}$
$\frac{\bar{\omega}}{\bar{\omega}}$

9 Function Groups

Factory settings are highlighted grey．

9．1 Help Texts（running text）

$H L P . T \because T$.	Help Text menu
$H L P . T \because T$	Select Help Text
$\square M N$	ON －a running text that has started can be aborted with any programming key
$\square F F$	OFF

9．2 Signal inputs

INPUT	Menu Input Signal
RANGE	Select measuring range
	Meas．range $0 \ldots 10 \mathrm{~V}$
c－1考	Meas．range $2 \ldots 10 \mathrm{~V}$
	Meas．range $-10 \ldots+10 \mathrm{~V}$
	Meas．range $0 \ldots 20 \mathrm{~mA}$
4－cดMA	Meas．range $4 \ldots 20 \mathrm{~mA}$
LD．LIM．	Select lower measuring range limit
－ 0.506	Input range depends on meas． range［V／mA］
HI．LIM．	Select upper measuring range limit
10．500	Input range depends on meas． range［V／mA］
\＃P．	Select decimal point （optical function only）
0．0ヶ\％	$\begin{array}{\|l\|} \hline 0 \\ 0.0 \\ 0.00 \\ 0.000 \\ 0.0000 \\ \hline \end{array}$
INP．LD．	Select input low value
3． $0 \pi \times$	Input range depends on meas． range［V／mA］
IT 5 P．LD．	Select display low value for INP．LO．
匂勾勾	Input range

	－199999 ．．．＋999999 and DP
INP．HI．	Select input high value
10.006	Input range depends on meas． range［V／mA］
\＃15PHI．	Select display high value for INP．HI．
10.000	$\begin{aligned} & \text { Input range } \\ & -199999 \ldots+999999 \text { and DP } \end{aligned}$
FILTER	Select Input Filter The Filter function shows how many measurement cycles are used to determine the moving average．
1	Input range 1 ．．． 99 ［cycles］ －with a value of 1 the filter function is switched off
PW界ELY．	Select Start Delay after Power On （limit monitoring is processed only after the programmed time has expired）
$\square . \square$	Input range 0.0 ．．． 99.9 ［sec］
PWFRES	Select local mains frequency
$58 H 5$	Mains frequency 50 Hz
6易H7	Mains frequency 60 Hz

Input range depends on measuring range：
$0 \ldots 10 \mathrm{~V}=-0.500 \ldots 10.500$［V］
$2 \ldots 10 \mathrm{~V}=1.500 \ldots 10.500$［V］
$-10 \ldots+10 \mathrm{~V}=-10.500 \ldots+10.500[\mathrm{~V}]$
$0 \ldots 20 \mathrm{~mA}=-0.500 \ldots 21.000[\mathrm{~mA}]$
$4 \ldots 20 \mathrm{~mA}=3.000 \ldots 21.000[\mathrm{~mA}]$
The functions LO．LIM and HI．LIM limit the editable range．

The value for HI．LIM must always be greater than the value for LO．LIM．

9．3 User Linearisation

LINEAR．	Menu User Linearisation
LINEAP．	Select User Linearisation
NO	Linearisation OFF
$\because E 5$	Linearisation ON
NUMPNT．	Select number of linearisation （control）points
3	Input range 3 ．．． 12
INP．LD．	Select input low value
勿匂匂	Input range depends on measuring range $[\mathrm{V} / \mathrm{mA}]$
\＃T5P．LT．	Select display low value for INP．LO．
	$\begin{aligned} & \text { Input range } \\ & -199999 \ldots+999999 \text { and DP } \\ & \hline \end{aligned}$
INP． 1	Select input value 1
2． 580	Input range depends on measuring range $[\mathrm{V} / \mathrm{mA}]$
\＃15P．	Select display value for INP． 01 ．
2．060	$\begin{aligned} & \text { Input range } \\ & -199999 \ldots+999999 \text { and DP } \end{aligned}$

A maximum of 12 linearisation points is possible． An input value INP must be entered for each linearisation point（LP）－input of the sensor value from the analogue input in physical units－ as well as the corresponding display value DISP for this sensor value．The linearisation points （LP）may be entered in any order．They are then sorted in the firmware in ascending order for the linearisation function．Linearisation based on a negative slope is possible．

INP． 10	Select input value 10
	Input range depends on measuring range $[\mathrm{V} / \mathrm{mA}]$
式 5 P．10	Select display value for INP． 10.
勿匂気	$\begin{array}{\|l\|} \hline \text { Input range } \\ -199999 \ldots+999999 \text { and } \mathrm{DP} \\ \hline \end{array}$
INP．HI．	Select input high value
10．000	Input range depends on measuring range［V／mA］
ITI5P．HI．	Select display high value for INP．HI．
10.006	$\begin{array}{\|l\|} \hline \text { Input range } \\ -199999 \ldots+999999 \text { and DP } \end{array}$

Input range depends on measuring range：
$0 \ldots 10 \mathrm{~V}=-0.500 \ldots 10.500$［V］
$2 \ldots 10 \mathrm{~V}=1.500 \ldots 10.500$［V］
$-10 \ldots+10 \mathrm{~V}=-10.500 \ldots+10.500[\mathrm{~V}]$
$0 \ldots 20 \mathrm{~mA}=-0.500 \ldots 21.000[\mathrm{~mA}]$
$4 \ldots 20 \mathrm{~mA}=3.000 \ldots 21.000[\mathrm{~mA}]$
The functions LO．LIM and HI．LIM limit the editable range．

The value for HI．LIM must always be greater than the value for LO．LIM．

Example for linear scaling

Example 1: $0 \ldots 10 \mathrm{~V}=0 \ldots 600$
Example 2: $4 \ldots 20 \mathrm{~mA}=300 \ldots 900$
Example 3: $1.0 \ldots 9.0 \mathrm{~V}=750 \ldots 400$

Example for non-linear scaling

Page 12
① PEPPERL+FUCHS

9.4 Function Multifunction Key (MP-Key) and Multifunction inputs (MP-INP)

Tare

- In the function group MP.KEY, programme the function TARA to ON. In the operating mode select the current measured value (ACTUAL) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to TARA. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset Tare Value

- In the function group MP.KEY, programme the function TARA to ON. In the operating mode select the current measured value (ACTUAL) and press the MP Key $>5 \mathrm{sec}$.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to R.TARA. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset MIN value memory

- In the function group MP.KEY, programme the function RES.MIN to ON. In the operating mode select the minimum value memory (MINIMU) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.MIN or R.PEAKS. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset MAX value memory

- In the function group MP.KEY, programme the function RES.MAX to ON. In the operating mode select the maximum value memory (MAXIMU) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.MAX or R.PEAKS. In the operating mode briefly activate the multifunction input 1 or multifunction input 2 .

Reset of relay outputs in Latch mode

- In the function group MP.KEY, programme the function RES.REL to ON. In the operating mode briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.REL. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset Totaliser

- In the function group MP.KEY, programme the function RES.TOT to ON. In the operating mode, select the totaliser (TOTAL) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.TOT. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Display Hold

- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to DISP.HD. In the operating mode, select either the current measured value (ACTUAL) or the totaliser (TOTAL) and activate multifunction input 1 or multifunction input 2.

Lock-out Limit Value (Alarm) setting

- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.ALR. In the operating mode, activate multifunction input 1 or multifunction input 2 .

Lock-out Programming and Default setting

- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.PRG. In the operating mode, activate multifunction input 1 or multifunction input 2.

Lock-out Keypad

- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.KEY. In the operating mode, activate multifunction input 1 or multifunction input 2.

9．4．1 Multifunction Key

MPKEV	Menu Function MP－Key
T月RA	Select function： Reset tare（TARA）value with MP－Key－only when current measured value appears in the display
DFF	OFF
$\square \mathrm{Ni}$	ON
RES．MIN．	Select function： Reset MIN value with MP－Key －only when MIN value appears in the display
$\overline{\square F F}$	OFF
$\square{ }^{\square \prime}$	ON
RE5．MA\％．	Select function： Reset MAX with MP－Key－ only when MAX value appears in the display
$\square F F$	OFF
万N	ON
RESPEL	Select function Output－Latch Reset with MP－Key －only if output is in memory mode（ALARMx＝LATCH）
$\square F F$	OFF
$\square \mathrm{CN}$	ON －this setting is possible only if all other settings are set to OFF
PES．TGT．	Select function Reset Totaliser with MP－Key －only if totaliser is in the display
$\square F F$	OFF
$\square \mathrm{NV}$	ON

9．4．2 Multifunction Inputs

MP．INP．	Menu Function MP－Inputs
MP．INP．	Select function MP－Input 1
NDFFLNE	No function
PESMIN	Reset MIN value
RESMA\％．	Reset MAX value
PREAK5	Reset MIN and MAX values
RESREL	Reset Output－Latch －only if output is in memory mode（ALARMx＝LATCH）
715PHI．	Hold（＇freeze＇）display
LDLALR	Lock－out limit value setting
L $]$ L．PRG．	Lock－out programming and default setting
LDEKEV	Lock－out limit value setting， programming，default setting and MP－Key
TARA	Tare
尺T月只	Reset tare value
PES．T T．	Reset totaliser

MPINP．C	Select function MP－Input 2
NGFUNE．	No function
RESMIN．	Reset MIN value
RE5MA天．	Reset MAX value
RPERKS	Reset MIN and MAX values
RESREL	Reset Output－Latch －only if output is in memory mode（ALARMx＝LATCH）
715PH7．	Hold（＇freeze＇）display
L C L A P	Lock－out limit value setting
	Lock－out programming and default setting
LDEKEY	Lock－out limit value setting， programming，default setting and MP－Key
T 7 阴	Tare
尺介月尺A	Reset tare value
RES．TAT．	Reset totaliser

9.5 Totaliser function

TGTAL	Menu Totaliser
[UT.DFF	Select value for low threshold cut-off
$\underline{-199939}$	$\begin{array}{\|l\|} \hline \text { Input value range } \\ -199999 \ldots+999999 \text { and } \mathrm{DP} \end{array}$
FFA[TAF	Select value for multiplication factor
	Input value range 0.00001 ... 9.99999
5[ALE	Select scale factor
$\cdots 1$	Scale factor x 1 Scale factor $\times 0.1$ Scale factor $\times 0.01$ Scale factor $\times 0.001$ Scale factor $\times 0.0001$
\#P.TAT.	Select decimal point for

	totaliser (optical function only)
$\square \boxed{V}$	0
	0.0
	0.00
	0.000
	0.0000
	0.00000

The totaliser function captures the current (instantaneous) measured value every 100 msec . From these values the throughput rate per second is calculated. To convert the throughput rate into other units FACTOR and SCALE are available. Negative measured values are also taken into consideration. A decimal point that is programmed with a current measured value is not taken into consideration. The throughput rate is added into the totaliser memory every second. A dummy decimal point (optical indication only) can be programmed into the totaliser as required.

9．6 Limit Value（Alarm）Monitoring

FLARM	Menu Alarm Output 1
AL．DUT	Select operating mode
DFF	OFF
AUTO	Automatic operation
LATEH	Memory latch operation －not with band limitation
｜hLLGE．	Select source value for Alarm output 1
$\begin{array}{\|l} \hline \text { ACTUAL } \\ \hline T D T A L \\ \hline \end{array}$	Current measured value Totaliser
M M．DUT	Select Output triggering
INER	With incrementing measuring signal
刀E［？	With decrementing measuring signal
7ヵ介7	Band limitation
FFM，似 T	Select Alarm status
$\frac{-1}{7}$	With alarm：output active With alarm：output inactive
DNH：5．1	Select on－hysteresis
3， $0 \sqrt{6}$	$\begin{array}{\|l\|} \hline \text { Input range } \\ 0 \ldots+9999 \text { and DP } \\ \hline \end{array}$
$\overline{\text { DF．HY5．i }}$	Select off－hysteresis －only with auto operation
0．000	Input range $0 \ldots+9999$ and DP
ON．JLY．	Select on－delay
E．0	Input range 0.0 ．．． 99.9 ［sec］
DF．İL Y＇，	Select off－delay －only with auto operation
E．\square^{\square}	Input range 0.0 ．．． 99.9 ［sec］

ALARMC	Menu Alarm Output 2
AL．DUTC	Select operating mode
DFF	OFF
AUTO	Automatic operation
LAT［H	Memory latch operation
FLL C．C ${ }^{\text {P }}$	Select source value for Alarm output 2
$\begin{array}{\|l} \hline A C T U A L \\ \hline T D T A L \\ \hline \end{array}$	Current measured value Totaliser

	Select Output triggering
INCR	With incrementing measuring signal
刀E［号	With decrementing measuring signal
刀月N刀	Band limitation
FM，	Select Alarm status
\ldots	With alarm：output active
－7＿＿	With alarm：output inactive
DNHY5．C	Select on－hysteresis
7．0日可	Input range 0 ．．．＋9999 and DP
$\overline{\text { DF．HY } 5 . C}$	Select off－hysteresis －only with auto operation
6．0日可	$\begin{array}{\|l\|} \hline \text { Input range } \\ 0 \ldots+9999 \text { and DP } \\ \hline \end{array}$
DN．$\overline{\text { IL M．C }}$	Select on－delay
$0 . \square$	Input range 0.0 ．．． 99.9 ［sec］
$\overline{\text { OF．İL Y．C }}$	Select off－delay －only with auto operation
0． 0	Input range 0.0 ．．． 99.9 ［sec］

INCP

ON switching point＝limit value + ON hysteresis OFF switching point $=$ limit value - OFF hysteresis

DE $[F$

ON switching point＝limit value - ON hysteresis OFF switching point $=$ limit value + OFF hysteresis刀月NI
An alarm is triggered，if the measured value falls outside a defined range（Band）．
Upper switching point $=$ limit value + ON hysteresis
Lower switching point＝limit value - OFF
hysteresis
＿＿＿${ }^{-}$
An alarm causes the output to become active （Relay energised，LED ON）
－－7＿＿＿
An alarm causes the output to become inactive （Relay not energised，LED OFF）
PW．］ELY．LATCH
In memory latch operation the status of the outputs is stored in the event of a Power OFF condition and then immediately restored at the next Power ON．
PW．IVL Y＇．AUTO
In auto operation the status of the outputs is not saved in the event of a Power OFF condition．At the next Power ON the limit values are not processed until after the expiration of the start delay（PW．DELY）．

Control with incrementing measuring signal INER

Control with decrementing measuring signal $\triangle \mathbb{I}[\tilde{R}$

Control with Band Limitation \quad 刀RNi

10 Monitoring of Measuring Circuit

Meas. range	Lower Display Range limit II SP.LD.	Upper Display Range limit $7 I 5 P . H I .$	$\begin{aligned} & \text { Lower Meas. } \\ & \text { Range limit } \\ & \qquad L D . L I M . \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Upper Meas. } \\ \text { Range limit } \end{array} \\ & \hline \text { HI.LIM. } \end{aligned}$	Probe or wire short-circuit Probe or wire break
$0 \ldots 10 \mathrm{~V}$	\square	\square	\square	\square	-
$2 \ldots 10 \mathrm{~V}$	\square	\square	\square	\square	-(<1 V)
-10 V/+10 V	\square	\square	\square	\square	-
0 ... 20 mA	\square	\square	\square	\square	-
$4 \ldots 20 \mathrm{~mA}$	\square	\square	\square	\square	- (<2 mA)
Indication	$\begin{gathered} -1.9 .9 .9 .9 .9 . \\ \text { blinking } \end{gathered}$	$\begin{aligned} & 9.9 .9 .9 .9 .9 . \\ & \text { blinking } \end{aligned}$	$\begin{aligned} & \text { UNTVERF. } \\ & \text { blinking } \end{aligned}$	$\begin{gathered} \text { OVERFL. } \\ \text { blinking } \end{gathered}$	$\begin{aligned} & \text { 5EM5 iv } \\ & \text { blinking } \end{aligned}$

11 Technical Data

$11.1 \quad$ General	Data
Display:	6 -digit, 14 segment LED
Digit height:	14 mm
Data retention:	>10 years, EEPROM
Operation:	5 keys

11.2 Measuring signal inputs

Sampling rate: 10 readings/sec
SELV circuits, reinforced / double insulation

Voltage input

Progr. ranges:
Meas. range:
0 ... $10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}, \pm 10 \mathrm{~V}$
Resolution: $-10.5 \ldots+10.5 \mathrm{~V}$

Meas. accuracy @ $23^{\circ} \mathrm{C}$:
Temperature drift: $<0.4 \mathrm{mV}$ (± 15 Bit $)$

Input resistance:
typ. 0.02 \% of range
max. $\leq 0.05 \%$ of range
< $100 \mathrm{ppm} / \mathrm{K}$
Max. voltage: $\quad \pm 30 \mathrm{~V}$
Current input
Progr. ranges:
0 ... $20 \mathrm{~mA}, 4$... 20 mA
Measuring range: $\quad-0.5 \ldots 21 \mathrm{~mA}$
Resolution: $\quad 1 \mu \mathrm{~A}(>14$ Bit)
Measuring accuracy typ. 0.02% of range
@ $23^{\circ} \mathrm{C}$: max. $\leq 0.05 \%$ of range
Temperature drift: < $100 \mathrm{ppm} / \mathrm{K}$
Input resistance: $\quad 22 \Omega+$ PTC 25Ω
Voltage drop: ca. $1,8 \mathrm{~V}$ @ 20 mA
Max. current: $\quad 60 \mathrm{~mA}$

11.3 Control Inputs MPI 1 / MPI 2

SELV circuits, reinforced / double insulation

Quantity:	2, optocouplers
Function:	programmable
Switching levels:	Low: $<2 \mathrm{~V}$
High: $>4 \mathrm{~V}(\max .30 \mathrm{~V})$	
Pulse length:	$>100 \mathrm{~ms}$

11.4 Alarm outputs

Relays: changeover contacts
Prescribed fuse: 5A
Switching voltage: max. 250 V AC / 125 V DC
min. 5 V AC / V DC
Switching current: max. 5 A AC / A DC
min. 10 mA
Switching capacity: max. 1250 VA / 150 W

Λ T	The maximum values shall in no case be exceeded!

The maximum values shall in no case be exceeded!

11.5 Supply voltage

AC supply:

DC supply:

Mains hum suppression:

11.6 Sensor Supply voltage

(Voltage output for external sensors)
SELV circuits, reinforced / double insulation at AC supply: $\quad 24 \mathrm{VDC} \pm 15 \%, 30 \mathrm{~mA}$ $15 \mathrm{VDC} \pm 1 \%, 25 \mathrm{~mA}$
at DC supply: $\quad 15 \mathrm{VDC} \pm 1 \%, 25 \mathrm{~mA}$

11.7 Climatic Conditions

Operating temperature: $-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Storage temperature: $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
Relative humidity:
Altitude: R.H. 93 \% at $+40^{\circ} \mathrm{C}$, non-condensing up to 2000 m

11.8 EMC

Interference immunity:
with shielded signal and control lines not intended for local DC electricity supply network(s) / battery connecting cable $\geq 30 \mathrm{~m}$

11.9 Device Safety
 Protection Class: Protection Class 2 (front side)

Only the front side is classified as accessible for the operator.

Application area: Pollution level 2 over-voltage Category II
Insulation:
Front: double insulation
Rear side: basic insulation
Signal inputs and und sensor power supply:
SELV

Mechanical service life (switching cycles) 1×10^{7}

11.10 Mechanical Data

Housing: Panel mount housing to DIN 43 700, RAL 7021
Dimensions: $\quad 96 \times 48 \times 102 \mathrm{~mm}$
Panel cut-out: Installation depth:
Weight:
Protection:
Housing material: $92^{+0.8} \times 45^{+0.6} \mathrm{~mm}$ approx. 92 mm incl. terminals approx. 180 g IP65 (front, device only)
Polycarbonate UL94 V-2
Vibration resistance: $10-55 \mathrm{~Hz} / 1 \mathrm{~mm} / \mathrm{XYZ}$
EN 60068-2-6 $\quad 30 \mathrm{~min}$ in each direction
Shock resistance:

EN 60068-2-27

100G / XYZ
3 times in each direction 10G / 6 ms / XYZ

11.11 Connections

Supply voltage and outputs:
Plug-in screw terminal, 8-pin, RM5. 00
Core cross-section, max. $2.5 \mathrm{~mm}^{2}$

Signal and control inputs:

Plug-in screw terminal, 9-pin, RM 3.50
Core cross section, max. $1.5 \mathrm{~mm}^{2}$

12 Dimensional Drawings

Dimensions in mm [inch]

13 Help Texts

PROG.	NO	NO PROGRAMMING
PROG.	YES	START PROGRAMMING
HLP.TXT.		MAIN MENU SELECT HELPTEXT
HLP.TXT.	ON	HELPTEXTS ON
HLP.TXT	OFF	HELPTEXTS OFF
SL.LANG.	DE	SPRACHE DEUTSCH
SL.LANG.	EN	LANGUAGE ENGLISH
INPUT.		MAIN MENU SIGNAL INPUT
RANGE	0-10V	VOLTAGE INPUT RANGE 0-10V
RANGE	2-10V	VOLTAGE INPUT RANGE 2-10V
RANGE	-10.10V	VOLTAGE INPUT RANGE -10V/+10V
RANGE	0-20MA	CURRENT INPUT RANGE 0-20MA
RANGE	4-20MA	CURRENT INPUT RANGE 4-20MA
LO.LIM.		LOWER INPUT RANGE LIMIT
HI.LIM.		UPPER INPUT RANGE LIMIT
DP.	0	NO DECIMAL POINT
DP.	0.0	DECIMAL POINT 0.0
DP.	0.00	DECIMAL POINT 0.00
DP.	0.000	DECIMAL POINT 0.000
DP.	0.0000	DECIMAL POINT 0.0000
DP.	0.00000	DECIMAL POINT 0.00000
INP.LO.		INPUT START VALUE
DISP.LO.		DISPLAY START VALUE
INP.HI.		INPUT END VALUE
DISP.HI.		DISPLAY END VALUE
FILTER		INPUT FILTER
PW.DELY.		POWER-ON DELAY FOR OUTPUTS [SEC]
PW.FREQ.	50 HZ	POWER LINE FREQUENCY 50HZ
PW.FREQ.	60 HZ	POWER LINE FREQUENCY 60HZ
LINEAR.		MAIN MENU LINEARIZATION
LINEAR.	NO	LINEARIZATION OFF
LINEAR.	YES	LINEARIZATION ON
NUM.PNT.		NUMBER OF LINEARIZATION POINTS
INP. 01		INPUT VALUE NO. 1
DISP. 01		DISPLAY VALUE NO. 1
to		
INP. 10		INPUT VALUE NO. 10
DISP. 10		DISPLAY VALUE NO. 10
MP.KEY		MAIN MENU MP-BUTTON
TARA	OFF	FUNCTION TARA OFF
TARA	ON	FUNCTION TARA ON
RES.MIN.	OFF	FUNCTION RESET MIN VALUE OFF
RES.MIN.	ON	FUNCTION RESET MIN VALUE ON
RES.MAX.	OFF	FUNCTION RESET MAX VALUE OFF
RES.MAX.	ON	FUNCTION RESET MAX VALUE ON
RES.REL.	OFF	FUNCTION RESET OUTPUT-LATCH OFF
RES.REL.	ON	FUNCTION RESET OUTPUT-LATCH ON
RES.TOT.	OFF	FUNCTION RESET TOTALIZER VALUE OFF
RES.TOT.	ON	FUNCTION RESET TOTALIZER VALUE ON

Your automation, our passion.

Explosion Protection

- Intrinsic Safety Barriers
- Signal Conditioners
- FieldConnex ${ }^{\oplus}$ Fieldbus
- Remote I/O Systems
- Electrical Ex Equipment
- Purge and Pressurization
- Industrial HMI
- Mobile Computing and Communications
- HART Interface Solutions
- Surge Protection
- Wireless Solutions
- Level Measurement

Industrial Sensors

- Proximity Sensors
- Photoelectric Sensors
- Industrial Vision
- Ultrasonic Sensors
- Rotary Encoders
- Positioning Systems
- Inclination and Acceleration Sensors
- Fieldbus Modules
- AS-Interface
- Identification Systems
- Displays and Signal Processing
- Connectivity

```
Pepperl+Fuchs Quality
Download our latest policy here:
www.pepperl-fuchs.com/quality
```


Weltweit

Pepperl+Fuchs SE
Lilienthalstraße 200
68307 Mannheim
Deutschland
Telefon: +49621 776-0
E-Mail: info@de.pepperl-fuchs.com
https://www.pepperl-fuchs.com
Änderungen vorbehalten - © Pepperl+Fuchs Printed in Germany
DOCT-2856C
R60361.9465-Index 5-11/2023

