HANDBUCH

PCV...-F200-B16-V15 Data Matrix Positioniersystem

CANopen

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

1	Einleitung								
2	Kon	formitätserklärung	6						
	2.1	CE-Konformität	6						
3	Sich	erheit	7						
	3.1	Sicherheitsrelevante Symbole	7						
	3.2	Bestimmungsgemäße Verwendung	7						
	3.3	Allgemeine Sicherheitshinweise	7						
4	Proc	luktbeschreibung	8						
	4.1	Einsatz und Anwendung	8						
	4.2	LED-Anzeigen und Bedienelemente	8						
	4.3	Zubehör	10						
5	Insta	allation	12						
	5.1	Montage des Codebandes	12						
	5.2	Montage des Lesekopfes	15						
	5.3	Elektrischer Anschluss	17						
	5.4	Anschluss CANopen	19						
6	Inbe	triebnahme	20						
	6.1	Ausrichtung des Lesekopfes	20						
	6.2	Parametrierung Feldbusadresse und Baudrate	20						
	6.2.	1 Produktdokumentation im Internet	22						
	6.3	EDS-Konfigurationsdatei	23						
7	Betr	ieb und Kommunikation	24						
	7.1	Datenaustausch im CANopen-Bus	24						
	7.1.	1 Allgemeines zu CANopen	24						
	7.1.	2 Technische Grundlagen zu CANopen							
	7.1.	3 CANopen Objektverzeichnis							
	7.1.	4 Gerateparameter	37						

	7.2	Betrieb mit Event-Markern	39
	7.3	Betrieb mit Reparaturband	40
8	Anh	ang	41
	8.1	ASCII-Tabelle	41
	8.2	Codekarten mit besonderer Funktion	41
	8.3	Codekarten zur Einstellung der Baudrate	43

1 Einleitung

Herzlichen Glückwunsch

Sie haben sich für ein Gerät von Pepperl+Fuchs entschieden. Pepperl+Fuchs entwickelt, produziert und vertreibt weltweit elektronische Sensoren und Interface-Bausteine für den Markt der Automatisierungstechnik.

Verwendete Symbole

Dieses Handbuch enthält die folgenden Symbole:

()	
]	

Hinweis!

Neben diesem Symbol finden Sie eine wichtige Information.

Handlungsanweisung

Neben diesem Symbol finden Sie eine Handlungsanweisung.

Kontakt

Wenn Sie Fragen zum Gerät, Zubehör oder weitergehenden Funktionen haben, wenden Sie sich bitte an:

Pepperl+Fuchs GmbH Lilienthalstraße 200 68307 Mannheim Telefon: +49 (0)621 776-1111 Telefax: +49 (0)621 776-271111 E-Mail: fa-info@de.pepperl-fuchs.com

2 Konformitätserklärung

2.1 CE-Konformität

Dieses Produkt wurde unter Beachtung geltender europäischer Normen und Richtlinien entwickelt und gefertigt.

Hinweis!

Sie können eine Konformitätserklärung separat anfordern.

3 Sicherheit

3.1 Sicherheitsrelevante Symbole

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Gefahr!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, kann das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

3.2 Bestimmungsgemäße Verwendung

Dieses Gerät stellt zusammen mit einem Codeband mit aufgedruckten Data-Matrix Codes ein hochauflösendes Positioniersystem dar. Es kann überall dort eingesetzt werden, wo die genaue Positionierung entlang eines sehr großen Verfahrweges, gleichgültig ob gerade, gebogen, mit Steigungs- oder Gefällstrecken erzielt werden soll.

Lesen Sie dieses Handbuch sorgfältig durch. Machen Sie sich mit dem Gerät vertraut, bevor Sie das Gerät montieren, installieren und in Betrieb nehmen.

Betreiben Sie das Gerät ausschließlich wie in dieser Anleitung beschrieben, damit die sichere Funktion des Geräts und der angeschlossenen Systeme gewährleistet ist. Der Schutz von Betriebspersonal und Anlage ist nur gegeben, wenn das Gerät entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird.

3.3 Allgemeine Sicherheitshinweise

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Die Installation und Inbetriebnahme aller Geräte darf nur durch eingewiesenes Fachpersonal durchgeführt werden.

Eigene Eingriffe und Veränderungen sind gefährlich und es erlischt jegliche Garantie und Herstellerverantwortung. Falls schwerwiegende Störungen an dem Gerät auftreten, setzen Sie das Gerät außer Betrieb. Schützen Sie das Gerät gegen versehentliche Inbetriebnahme. Schicken Sie das Gerät zur Reparatur an Pepperl+Fuchs.

Hinweis!

Entsorgung

Elektronikschrott ist Sondermüll. Beachten Sie zu dessen Entsorgung die einschlägigen Gesetze im jeweiligen Land sowie die örtlichen Vorschriften.

4 Produktbeschreibung

4.1 Einsatz und Anwendung

Der Lesekopf PCV... ist Teil des Positioniersystems im Auflichtverfahren von Pepperl+Fuchs. Er besteht unter anderem aus einem Kameramodul und einer integrierten Beleuchtungseinheit. Damit erfasst der Lesekopf Positionsmarken, welche in Form von DataMatrix-Codes auf einem selbstklebenden Codeband aufgedruckt sind.

Die Montage des Codebandes erfolgt in aller Regel stationär an einem festen Teil der Anlage (Fahrstuhlschacht, Tragschiene einer EHB ...), die Montage des Lesekopfes erfogt dann an einem sich parallel dazu beweglichen "Fahrzeug" (Fahrstuhlkabine, Fahrwerk einer EHB ...).

Maximale Länge des Codebands

Auflösung des Lesekopfs [mm]	Maximale Länge Codeband [km]
10	10
1	10
0,1	10

Bei eintsprechender Auflösung ist Positioniersystem auch in sehr großen Anlagenlayouts uneingeschränkt einsetzbar.

Durch seine ebenso umfassende wie einfache Parametrierfähigkeit, sowie frei konfigurierbare Ein- und Ausgänge kann der Lesekopf optimal an die jeweilige Anwendung angepasst werden.

4.2 LED-Anzeigen und Bedienelemente

Der Lesekopf PCV... ist zur optischen Funktionskontrolle und zur schnellen Diagnose mit 7 Anzeige-LEDs ausgestattet. Für die Aktivierung der Ausrichthilfe (siehe Kapitel 6.1) und des Parametriermodus (siehe Kapitel 6.2) verfügt der Lesekopf über 2 Tasten an der Geräterückseite. Taster 1 ist mit ADJUST und Taster 2 mit CONFIG beschriftet.

Abbildung 4.1

LED	[#1] BUS STATE	[#2] BUS ERR	[#3] PWR / ADJ ERR / NO CODE	[#4] OUT 1	[#5] ΟUT 2 / ADJ Υ	[#6] OUT 3 / ADJ Z	[#7] INTERNAL DIAGNOSTIC			
Farbe	gelb	rot	grün/rot	gelb	gelb	gelb	gelb	gelb	Beschreibung	
	aus	aus	blinkt grün	aus	aus	aus	aus	aus	Ausrichtung Y > Sollwert f _{blink} = 2 Hz	
	aus	aus	blinkt grün	aus	ein	aus	aus	aus	Ausrichtung Y < Sollwert f _{blink} = 2 Hz	
	aus	aus	blinkt grün	aus	blinkt	aus	aus	aus	Ausrichtung Y = Sollwert f _{blink} = 2 Hz	
	aus	aus	blinkt grün	aus	aus	aus	aus	aus	Ausrichtung Z > Sollwert f _{blink} = 2 Hz	
	aus	aus	blinkt grün	aus	aus	ein	aus	aus	Ausrichtung Z < Sollwert f _{blink} = 2 Hz	
7	aus	aus	blinkt grün	aus	aus	blinkt	aus	aus	Ausrichtung Z = Sollwert $f_{blink} = 2 Hz$	
Zustano	aus	aus	blinkt rot	aus	aus	aus	aus	aus	Ausrichtung Codeband außerhalb des Lesebereichs, kein Codeband erkannt $f_{blink} = 2 Hz$	
	aus	aus	leuchtet rot	aus	aus	aus	aus	aus	Systemfehler	
	х	x	leuchtet grün	х	x	x	aus	aus	Normalbetrieb, Codeband erkannt	
	х	x	blinkt rot	blinkt	blinkt	blinkt	aus	aus	Normalbetrieb. Anzeige für 2 s, falls ein Taster bei verriegeltem Zeitschloss betätigt wird.	
	х	x	aus	blinkt	aus	aus	aus	aus	Pre- / Konfigurationsmodus aktiv f _{blink} = 2 Hz	
	х	x	leuchtet rot	blinkt	aus	aus	aus	aus	Codekarte fehlerhaft f _{blink} = 2 Hz für 3 s	
	x	x	grün, 1 s	blinkt	aus	aus	aus	aus	Codekarte erkannt f _{blink} = 2 Hz für 3 s	
	х	х	aus	х	х	х	aus	aus	Zeitschloss für Taster entriegelt	
	х	x	x	х	x	x	leuchtet	leuchtet	Interner Fehler Rücksendung an Pepperl+Fuchs	

Funktionsanzeige PCV

x = LED-Status hat keine Bedeutung

2015-09

Funktionsanzeige CANopen

LED	[#1] BUS STATE	[#2] BUS ERR	[#3] PWR / ADJ ERR / NO CODE	[#4] OUT 1	[#5] OUT 2 / ADJ Y	[#6] OUT 3/ ADJ Z	[#7] INTERNAL DIAGNOSTIC		
Farbe	gelb	rot	grün/rot	gelb	gelb	gelb	gelb	gelb	Beschreibung
Zustand	flimmert	flimmert	х	х	х	х	х	х	Erkennung der Auto-Baudrate f _{flimmer} = 10 Hz
	blinkt	x	х	х	х	х	х	х	Modus "Preoperational" f _{blink} = 2,5 Hz
	blinkt einmal	x	х	х	х	х	х	х	Gestoppt 1 x kurz an, 1 s aus
	leuchtet	х	х	х	х	х	х	х	Modus "Operational"

x = LED-Status hat keine Bedeutung

LED	[#1] BUS STATE	[#2] BUS ERR	[#3] PWR / ADJ	[#4] OUT 1	[#5] OUT 2 / ADJ Y	[#6] OUT 3 / ADJ Z	[#7] INTERNAL DIAGNOSTIC		
Farbe	gelb	rot	grün/ rot	gelb	gelb	gelb	gelb	gelb	Beschreibung
	flimmert	flimmert	x	x	x	x	x	х	Erkennung der Auto-Baudrate f _{flimmer} = 10 Hz
	x	blinkt	x	x	x	x	х	х	Allgemeiner Konfigurationsfehler f _{blink} = 2,5 Hz
pue	x	blinkt einmal	х	x	x	x	х	х	Warnlimit erreicht 1 x kurz an, 1 s aus
Zusta	x	blinkt zweimal	х	x	x	x	х	х	"Control Event"-Fehler 2 x kurz an, 1 s aus
	x	blinkt dreimal	х	x	x	x	х	х	Synchronisationsfehler 3 x kurz an, 1 s aus
	x	blinkt viermal	х	x	x	x	х	х	"Event Timer"-Fehler 4 x kurz s an, 1 s aus
	Х	leuchtet	х	х	х	х	х	х	CANopen-Fehler

Fehleranzeige CANopen

x = LED-Status hat keine Bedeutung

4.3 Zubehör

Passendes Zubehör bietet Ihnen enormes Einsparpotenzial. So sparen Sie nicht nur bei der Erstinbetriebnahme viel Zeit und Arbeit, sondern auch beim Austausch und Service unserer Produkte.

Falls harte äußere Umgebungsbedingungen herrschen, kann entsprechendes Zubehör von Pepperl+Fuchs die Lebensdauer der eingesetzten Produkte verlängern.

Bestellbezeichnung	Beschreibung
V19-G-ABG-PG9-FE	Erdungsklemme und Stecker (Set)
PCV-SC12 PCV-SC12A	Erdungsclip
V15-G-*M-PUR-CAN-V15-G	Buskabel CANopen, M12 auf M12, in verschiedenen Längen verfügbar
VAZ-V1S-B	Blindstopfen für M12-Stecker
ICZ-TR-CAN/DN-V15	Abschlusswiderstand für CANopen
PCV-CM20-0*	Event-Marker
PCV-CR20	Reparaturband

¹⁾: wenden Sie sich an Ihren Ansprechpartner bei Pepperl+Fuchs

5 Installation

5.1 Montage des Codebandes

Das Codeband besteht aus silikonfreier Polyesterfolie. Am unteren Rand des Codebandes finden Sie alle 100 mm eine Positionsmarkierung (siehe "Abmessungen, Codeband"). Diese Positionsmarkierung dient u. a. dem exakten Positionieren des Codebandes bei der Montage. Die Rückseite des Codebandes trägt einen permanent haftenden modifizierten Klebstoff auf Acrylatbasis. Bringen Sie das selbstklebende Codeband entlang des gewünschten Verfahrweges an. Gehen Sie dazu wie folgt vor:

Montage des Codebandes

- 1. Reinigen Sie den Untergrund von fettigen oder öligen Anhaftungen und von Staub.
- 2. Vergewissern Sie sich, dass der Untergrund trocken, sauber und tragfähig ist.
- 3. Ziehen Sie die Schutzfolie am Anfang des Codebandes einige Zentimeter weit ab. Setzen Sie das Codeband exakt an der gewünschten Startposition auf den Untergrund und drücken Sie es an.
- 4. Kleben Sie nun das Codeband entlang des gewünschten Verfahrweges. Ziehen Sie die Schutzfolie immer nur so weit ab, dass das Codeband nicht unbeabsichtigt verklebt. Achten Sie beim Verkleben des Codebandes darauf, dass sich keine Falten oder Blasen bilden.

→ Nach 72 Stunden ist der Kleber des Codebandes ausgehärtet.

Hinweis!

Thermische Ausdehnung des Codebandes

Der Wärmeausdehnungskoeffizient des verklebten Codebandes entspricht dem Wärmeausdehnungskoeffizienten des Untergrundes.

Abmessungen, Codeband

Abbildung 5.1

Orientierung des Codebandes und des Lesekopfes

Abbildung 5.2

Verlegen Sie das Codeband so, dass sich die Aufschrift **www.pepperl-fuchs.com** und die Positionsmarkierungen unterhalb der Data Matrix-Codes befinden. Die Positionswerte nehmen dann in X-Richtung zu. Die Abbildung zeigt die Orientierung eines Lesekopfes in der Default-Einstellung 0°. Für andere Einbaulagen kann der Lesekopf über die Schnittstelle konfiguriert werden.

Codebänder mit Anfangsposition 0 m

Bestellbezeichnung	Beschreibung		
PCV6M-CA20-0	Codeband, 2-spurig, Länge: 6 m		
PCV100M-CA20-0	Codeband, 2-spurig, Länge: 100 m		

Codebänder mit verschiedenen Anfangspositionen

Bestellbezeichnung	Beschreibung
PCV100M-CA20-0	Codeband, 2-spurig, Länge: 100 m, Anfangsposition: 0 m
PCV100M-CA20-10000	Codeband, 2-spurig, Länge: 100 m, Anfangsposition: 100 m
PCV100M-CA20-990000	Codeband, 2-spurig, Länge: 100 m, Anfangsposition: 9.900 m

Vorsicht!

Stoßkanten

Wenn Sie an das Ende eines Codebandes ein weiteres Codeband ansetzen, muss das Code-Raster von 10 mm erhalten bleibt.

0

Hinweis!

Dehnungsfugen

Bei großen Streckenlängen werden in der Anlagenstruktur Dehnungsfugen vorhanden sein. Hier empfehlen wir, das Codeband zu unterbrechen. Die dadurch entstehende Lücke soll 20 mm (2 Code-Raster) betragen.

О П

Ο Г

Hinweis!

Steigungs- und Gefällstrecken

Wenn Sie das Codeband in Steigungs- oder Gefällstrecken montieren, schneiden Sie das Codeband am Übergang zur Horizontalen mehrfach in der dargestellten Art und Weise ein.

- 1. Steigungsstrecke
- 2. Gefällstrecke

Hinweis!

Codebänder mit anderen Spurzahlen

Zur Handhabung leichter Abweichungen entlang des Verfahrweges in Y-Richtung ist das Codeband PCV-CA20 mit 2 Codespuren ausgestattet. Auf Wunsch ist das Codeband mit anderen Spurzahlen lieferbar. Der Bestellcode des Codebandes ist PCV-CAx0, wobei x für die Anzahl der Codespuren steht. Die Anzahl der Codespuren kann 1 oder 2 sein. Auch größere Spurzahlen sind möglich - sprechen Sie uns an.

Bestellbezeichnung	Beschreibung
PCV*M-CA10-*	Codeband, 1-spurig
PCV*M-CA20-*	Codeband, 2-spurig
PCV*M-CA40-*	Codeband, 4-spurig

Codebänder mit verschiedener Anzahl an Spuren

Hysterese Y-Achse

Abbildung 5.3 Null-Linie bei Codebändern

Wenn der Lesekopf beim Verfahren entlang der X-Achse die Null-Linie verlässt, liegen abhängig von der Anzahl an Spuren verschiedene Schwellwerte vor. Überschreitet die Abweichung diesen Schwellwert, so wird ein Warning-Code ausgegeben.

Schwellwerte Abweichung Y-Achse

Codeband		Schwellwert		
Anzahl Spuren	Breite	Austritt	Eintritt	
1	15 mm	± 10 mm	± 6 mm	
2	25 mm	± 15 mm	± 11 mm	
4	45 mm	± 25 mm	± 21 mm	
6	65 mm	± 35 mm	± 31 mm	
8	85 mm	± 45 mm	± 41 mm	

5.2 Montage des Lesekopfes

Montieren Sie den Lesekopf PCV... am beweglichen Teil ihrer Anlage. Die Befestigung erfolgt mit 4 Schrauben am Befestigungsflansch des Lesekopfes. Montieren Sie den Lesekopf so, dass die Optik des Lesekopfes mit Ringlicht und Kameramodul zum Codeband hin ausgerichtet ist.

Die Stabilität der Montage und die Führung des beweglichen Anlagenteils muss so beschaffen sein, dass im laufenden Betrieb der Schärfentiefebereich des Lesekopfes nicht verlassen wird.

Der Abstand des Lesekopfes zum Codeband sollte dem Leseabstand des Lesekopfes entsprechen.

Abbildung 5.4 Toleranz vertikale Ausrichtung

Optimaler Leseabstand (Z-Achse)

Bestellbezeichnung	Leseabstand [mm]	Schärfentiefe [mm]
PCV50*	50	± 25
PCV80*	80	± 15
PCV100*	100	± 20
PCV100*6011	100	± 40

Abmessungen, Lesekopf

Abbildung 5.6

Vorsicht!

Wählen Sie die Länge der Befestigungsschrauben so, dass die Einschraubtiefe in die Gewindeeinsätze am Lesekopf max. 8 mm beträgt!

Der Einsatz längerer Schrauben kann zu einer Beschädigung des Lesekopfes führen.

\wedge

Vorsicht!

Das maximale Drehmoment der Befestigungsschrauben darf 9 Nm nicht übersteigen!

Ein Anziehen der Schrauben mit größerem Drehmoment kann zu einer Beschädigung des Lesekopfes führen.

5.3 Elektrischer Anschluss

Der elektrische Anschluss des Lesekopfes PCV... erfolgt über einen 8-poligen Gerätestecker M12 x 1 an der Gehäuseseite. Über diesen Anschluss erfolgt sowohl die Spannungsversorgung, als auch die Kommunikation mit Peripheriegeräten. Ebenso stehen an diesem Anschluss die konfigurierbaren Ein- bzw. Ausgänge des Lesekopfes zur Verfügung.

Steckerbelegung

Abbildung 5.8

Farbzuordnung

Kabeldosen von Pepperl+Fuchs sind gemäß EN60947-5-2 gefertigt. Bei Verwendung einer Kabeldose mit offenem Leitungsende vom Typ V19-... () am Anschluss **Main** gilt folgende Farbzuordnung:

Anschluss-Pin	Adernfarbe	Farbkurzzeichen	
1	weiß	WH	
2	braun	BN	
3	grün	GN	
4	gelb	YE	
5	grau	GY	
6	rosa	PK	
7	blau	BU	
8	rot	RD	

Abschirmung von Leitungen

Das Abschirmen ist eine Maßnahme zur Dämpfung elektromagnetischer Störungen. Damit diese Störströme nicht selbst zur Störquelle werden, ist eine niederohmige bzw. impedanzarme Verbindung zum Schutzleiter bzw. Potenzialausgleich besonders wichtig. Verwenden Sie nur Anschlussleitungen mit Schirmgeflecht, vermeiden Sie Anschlussleitungen mit Folienschirm. Die Abschirmung wird beidseitig aufgelegt d. h. im Schaltschrank bzw. an der Steuerung **und** am Lesekopf. Die als Zubehör erhältliche Erdungsklemme ermöglicht das einfache Einbeziehen in den Potenzialausgleich.

In Ausnahmefällen kann eine einseitige Anbindung günstiger sein, wenn

- keine Potenzialausgleichsleitung verlegt ist bzw. keine Potenzialausgleichsleitung verlegt werden kann.
- ein Folienschirm verwendet wird.

Bei der Abschirmung müssen ferner folgende Punkte beachtet werden:

- Verwenden Sie Kabelschellen aus Metall, die die Abschirmung großflächig umschließen.
- Legen Sie den Kabelschirm direkt nach Eintritt in den Schaltschrank auf die Potenzialausgleichsschiene.
- Führen Sie Schutzerdungsanschlüsse sternförmig zu einem gemeinsamen Punkt.

Zusätzlicher Erdungsanschluss

Bestellbezeichnung	Beschreibung
PCV-SC12	Clip zur Befestigung eines zusätzlichen
PCV-SC12A	Erdungsanschlusses.

Vorsicht!

Beschädigung des Geräts

Anschließen von Wechselspannung oder zu hoher Versorgungsspannung kann das Gerät beschädigen oder die Gerätefunktion stören.

Falscher elektrischer Anschluss durch Verpolung kann das Gerät beschädigen oder die Gerätefunktion stören.

Gerät an Gleichspannung (DC) anschließen. Stellen Sie sicher, dass die Höhe der Versorgungsspannung im spezifizierten Bereich des Geräts liegt. Stellen Sie sicher, dass die Anschlussdrähte der verwendeten Kabeldose richtig angeschlossen sind.

5.4 Anschluss CANopen

Der Anschluss des Lesekopfes PCV... an CANopen erfolgt über einen 5-poligen Gerätestecker M12 x 1 **BUS in** und eine 5-polige Gerätebuchse M12 x 1 **BUS out/Term** an der Gehäuseseite.

Abbildung 5.9

Steckerbelegung

Abbildung 5.10

Für passende CAN open-Kabel siehe Kapitel 4.3.

2015-09

6 Inbetriebnahme

6.1 Ausrichtung des Lesekopfes

Für die einfache und optimale Ausrichtung des Lesekopfes relativ zum Codeband, in der Yund Z-Koordinate, steht Ihnen die integrierte Ausrichthilfe zur Verfügung.

Hinweis!

Die Aktivierung der Ausrichthilfe ist nur innerhalb von 10 Minuten nach dem Einschalten des Lesekopfes möglich.

Die Umschaltung vom Normalbetrieb in den Parametriermodus erfolgt über die Taste 1 an der Rückseite des Lesekopfes.

Aktivierung der Ausrichthilfe

1. Drücken Sie die Taste 1 länger als 2 Sekunden.

 \mapsto Die LED2 blinkt bei erkanntem Codeband in der Farbe grün. Bei nicht erkanntem Codeband blinkt die LED2 in der Farbe rot.

2. Nehmen Sie nun die Ausrichtung des Lesekopfes in Z- und Y-Koordinate vor. Die eingebauten Anzeige-LEDs unterstützen Sie dabei.

Z-Koordinate: Ist der Abstand der Kamera zum Codeband zu klein, leuchtet die gelbe LED5. Ist der Abstand zu groß, erlischt die gelbe LED5. Innerhalb des Sollbereichs blinkt die gelbe LED5 im Gleichtakt zur grünen LED2.

Stellen Sie den optimalen Abstand des Lesekopfes zum Codeband her, so dass die gelbe LED5 im Gleichtakt mit der grünen LED2 blinkt.

Y-Koordinate: Liegt die optische Achse des Lesekopfes relativ zur Codebandmitte zu tief, leuchtet die gelbe LED4, . Liegt die optische Achse zu hoch, erlischt die gelbe LED4. Im Sollbereich blinkt die gelbe LED4 im Gleichtakt zur grünen LED2.

Stellen Sie die optimale Höhe des Lesekopfes relativ zum Codeband her, so dass die gelbe LED4 im Gleichtakt mit der grünen LED2 blinkt.

Ein kurzer Druck auf die Taste 1 beendet die Ausrichthilfe und der Lesekopf wechselt in den Normalbetrieb.

6.2 Parametrierung Feldbusadresse und Baudrate

Bevor der Lesekopf mit dem CANopen-Feldbus kommunizieren kann, müssen Sie die Parameter **Feldbusadresse** und **Baudrate** einstellen.

Parametrierung mittels Codekarten

Bei der externen Parametrierung tastet der Lesekopf spezielle Codekarten optisch ab und setzt danach die jeweiligen Parameter. Halten Sie zu diesem Zweck einfach die entsprechenden Codekarten im korrekten Abstand vor die Optik des Lesekopfes.

2015-09

Feldbusadresse

Der Lesekopf übernimmt während des ersten Startvorgangs die hinterlegte Busadresse 003 (= Default). Um die Feldbusadresse des Lesekopfs zu ändern, benutzen Sie die Codekarten zur Parametrierung der Feldbusadresse 001 bis 125. Diese Codekarten sind in einem gesonderten Handbuch abgedruckt.

Sie finden das Handbuch "Codekarten zur Konfiguration der Feldbusadresse" unter www.pepperl-fuchs.com. Siehe Kapitel 6.2.1.

Baudrate

Daten auf dem CANopen-Netzwerk können mit verschiedenen Baudraten zwischen 10 kBaud und 500 kBaud ausgetauscht werden. Der Lesekopf unterstütz die folgenden Baudraten:

Baudrate
10 kBaud
20 kBaud
50 kBaud
125 kBaud
250 kBaud (= Default)
500 kBaud
Autobaudrate

Die Codekarten zur Parametrierung der Baudrate 10 kBaud bis 1 MBaud und der Autobaudrate sind im Anhang dieses Handbuchs abgedruckt.

Siehe Kapitel 8.3.

Codekarten zur Steuerung der Parametrierung

Die Codekarten zur Steuerung der Parametrierung sind im Anhang dieses Handbuchs abgedruckt.

Siehe Kapitel 8.2.

) T

Hinweis!

Für die externe Parametrierung mit Codekarten kopieren Sie gewünschten Seiten des Handbuchs bzw. drucken die Seite aus. Schneiden Sie die benötigten Codekarten aus. So verhindern Sie, dass irrtümlicherweise eine andere Codekarte auf der selben Seite vom Lesekopf erkannt wird.

Falls Sie den Lesekopf dennoch mit dem Handbuch parametrieren, bedecken Sie die nicht benötigten Codekarten z. B. mit einem Blatt Papier.

Aktivierung des Parametriermodus

1. Drücken Sie die Taste 2 an der Rückseite des Lesekopfs länger als 2 Sekunden.

→ Die gelbe LED3 blinkt nun.

2. Halten Sie nun zur endgültigen Aktivierung den Code "ENABLE" vor das Kamerasystem des Lesekopfes

→ Wird der Aktivierungscode "ENABLE" erkannt, leuchtet die grüne LED2 1s lang. Bei nicht erkanntem Aktivierungscode leuchtet die LED2 für 2 Sekunden rot.

Hinweis!

Zeitschloss

Starten Sie die externe Parametrierung des Lesekopfes mittels Codekarten innerhalb der ersten 10 Minuten nach dem Einschalten des Lesekopfs. Nach 10 Minuten verriegelt ein Zeitschloss den Lesekopf. Während des Parametriervorgangs bleibt das Zeitschloss geöffnet. Nachdem 10 Minuten lang keine Parametriertätigkeit mehr stattfindet, verriegelt das Zeitschloss den Lesekopf.

Wenn Sie bei verriegeltem Zeitschloss eine Taste drücken, wird dies optisch durch 2 Sekunden langes Blinken aller LEDs signalisiert.

Parametrierung

Bringen Sie den Parametriercode in das Sichtfeld des Kameramoduls.

→ Nach Erkennen des Parametriercodes leuchtet die grüne LED2 1s lang. Bei ungültigem Parametriercode leuchtet die LED2 für 2 Sekunden rot.

Beenden des Parametriermodus

Halten Sie nun zum Speichern der Konfiguration den Code "STORE" vor das Kamerasystem des Lesekopfes

→ Wird der Speichercode "STORE" erkannt, leuchtet die grüne LED2 1s lang. Die Parametrierung wird nicht flüchtig im Lesekopf abgespeichert und der Parametriermodus beendet. Die Parametrierung des Lesekopfes ist damit abgeschlossen. Bei nicht erkanntem Speichercode leuchtet die LED2 für 2 Sekunden rot.

0

Hinweis!

Wenn Sie die Taste 2 im Parametriermodus kurz drücken, wird dieser sofort verlassen. Alle eventuell vorgenommenen, aber noch nicht gespeicherten Parameteränderungen werden verworfen. Der Lesekopf arbeitet danach mit den zuletzt gültig abgespeicherten Parametern.

6.2.1 Produktdokumentation im Internet

Die komplette Dokumentation und weitere Informationen zu Ihrem Produkt finden Sie auf http://www.pepperl-fuchs.com. Geben Sie dazu die Produktbezeichnung oder Artikelnummer in das Feld **Produkt-/Schlagwortsuche** ein und klicken Sie auf **Suche**.

Wählen Sie aus der Liste der Suchergebnisse Ihr Produkt aus. Klicken Sie in der Liste der Produktinformationen auf Ihre benötigte Information, z. B. **Technische Dokumente**.

Datenblatt Dokumente CAD+CAE Zertifikate+Zulassungen Zugehörige Produkte

Hier finden Sie in einer Listendarstellung alle verfügbaren Dokumente.

6.3 EDS-Konfigurationsdatei

Zur Unterstützung der Konfiguration können Sie aus dem Download-Bereich unserer Internet-Hompage http://www.pepperl-fuchs.com die EDS-Datei herunterladen. Geben Sie dazu die Produktbezeichnung oder Artikelnummer in das Feld **Produkt-/Schlagwortsuche** ein und klicken Sie auf **Suche**.

Wählen Sie aus der Liste der Suchergebnisse Ihr Produkt aus. Klicken Sie in der Liste der Produktinformationen auf Ihre benötigte Information, z. B. **Software**.

Hier finden Sie in einer Listendarstellung alle verfügbaren Downloads.

7 Betrieb und Kommunikation

7.1 Datenaustausch im CANopen-Bus

7.1.1 Allgemeines zu CANopen

CANopen ist ein multimasterfähiges Feldbussystem, dass auf dem CAN (Controller Area Network) basiert.

Abbildung 7.1

Teilnehmer auf dem CANopen-Feldbus kommunizieren nicht über Adressen, sondern mit Nachrichten-Identifiern. Alle Teilnehmer können dabei zu jedem Zeitpunkt auf den Feldbus zugreifen. Der Zugriff auf den Feldbus erfolgt nach dem CSMA/CA-Prinzip (Carrier Sense Multiple Access/Collision Avoidance). Jeder Teilnehmer hört dabei den Feldbus ab und kann Nachrichten senden, wenn der Feldbus frei ist. Starten zwei Teilnehmer gleichzeitig einen Zugriff, so erhält der Teilnehmer mit der höchsten Priorität, also dem niedrigsten Identifier, das Zugriffsrecht. Teilnehmer mit niedrigerer Priorität unterbrechen den Datentransfer und versuchen einen neuen Zugriff, wenn der Feldbus wieder frei ist.

Die Nachrichten können von jedem Teilnehmer empfangen werden. Durch einen Akzeptanzfilter übernimmt der einzelne Teilnehmer nur die für ihn bestimmten Nachrichten. Die Datenübertragung erfolgt über Nachrichtentelegramme. Nachrichtentelegramme bestehen aus COB-ID (**C**ommunication **Ob**ject **Id**entifier) und maximal 8 Folgebyte. Die COB-ID bestimmt die Priorität der Nachrichten. Die COB-ID setzt sich zusammen aus dem Funktionscode und der Knotennummer.

Der Funktionscode beschreibt die Art der Nachricht:

Nachricht mit Servicedaten (SDO)

zur Parametrierung von Objektverzeichniseinträgen

- beliebige Länge
- Zyklische Übertragung
- SDOs eines Gerätes sind im Objektverzeichnis zusammengefasst
- Mailbox ist auf eine (Server-) SDO gelegt, 36 Byte Länge

Nachricht mit Prozessdaten (PDO)

zur Übermittlung von Echtzeitdaten

- maximal 8 Byte lang
- Zyklische oder ereignisgesteuerte Übertragung
- Unterscheidung in Sende- (max. 512) und Empfangs-PDOs (max. 512)
- PDOs belegen im CAN-Netzwerk einen eigenen Identifier

Nachrichten zum Netzwerkmanagement (NMT)

zur Steuerung des Zustandsautomaten des CANopen-Teilnehmers und zur Überwachung der Knoten

 weitere Objekte wie Synchronisationsobjekt (SYNC), Zeitstempel und Fehler-Nachrichten (EMCY).

Die wichtigsten Eigenschaften der Prozessdatenobjekte (PDOs) und Servicedatenobjekte (SDOs) zeigt die folgende Tabelle.

Prozessdatenobjekte (PDOs)	Servicedatenobjekte (SDOs)
werden für Echtzeitdatenaustausch benutzt	ermöglichen den Zugriff zum Objektverzeichnis; jedes SDO baut einen Punkt-zu-Punkt-Service- Kommunikationskanal auf.
typisch Nachrichten mit hoher Priorität	Nachrichten mit niedriger Priorität
synchrone und asynchrone Datenübertragung	typisch asynchrone Datenübertragung
zyklische und azyklische Übertragung	typisch azyklische Übertragung
Daten der PDOs über SDOs konfigurierbar	Gebrauch des Datenfelds wird bestimmt durch das CMS (CAN Message Specification) Multiplexed Domain Protokoll.
vorformatiertes Datenfeld	Zugriff auf einen Eintrag im Geräteobjektverzeichnis über Index und Subindex.

Weitere Informationen

CAN in Automation (CiA) International Users and Manufacturers Group e.V. Kontumazgarten 3 90429 Nürnberg

http://www.can-cia.org/

- CiA Draft Standard V4.02
- CiA Draft Standard 303 LED-Behavior

7.1.2 Technische Grundlagen zu CANopen

Anschluss des Bussystems

Innerhalb des CANopen-Netzwerks kommunizieren alle Teilnehmer über ein 2-poliges Netzwerk-Kabel. Dabei sind alle Teilnehmer parallel mit dem Kabel verbunden. Um störende Reflektionen innerhalb eines Netzwerks zu vermeiden, müssen Sie an jedes Ende einen passenden Abschlusswiderstand anschließen. Für passende Kabel und Abschlusswiderstand siehe Kapitel 4.3.

Geräteprofil

CANopen definiert verschiedene Geräteprofile für eine Vielzahl an Gerätetypen. Der Lesekopf PCV*-F200*-B16-V15 entspricht momentan keinem speziellen Geräteprofil. Dem Lesekopf ist daher das Profil "Generic Device" implementiert.

Buslänge

Die maximale Leitungslänge innerhalb eines CANopen-Netzwerks wird durch die Signallaufzeit bestimmt. Die Kommunikation innerhalb des Netzwerkes erfordert, dass Signale zeitgleich an allen Busknoten anliegen. Durch verschiedene Baudraten kann das Netzwerk an vorhandene Leitungslängen angepasst werden. Die Werte in der folgenden Tabelle dienen dabei als Anhaltspunkt. Je nach Applikationen können die tatsächlichen Werte davon abweichen.

Baudrate [kBit/s]	max. Buslänge [m]
1000	30
500	100
250	250
125	500
50	1000

Für die Einstellung der Baudrate des Lesekopfs siehe Kapitel 6.2.

Schirmung

Achten Sie bei der Verkabelung des Lesekopfs auf eine durchgehende Schirmung. Zu passenden Feldbuskabeln siehe Kapitel 4.3.

Startverhalten

Nach dem Einschalten durchläuft der Lesekopf in einem CANopen-Netzwerk mehrere Betriebszustände.

1. Initialization

Startvorgang des Lesekopfs.

2. Pre-Operational

Zustand des Lesekopfs, nachdem der Startvorgang abgeschlossen ist. Der Lesekopf meldet diesen Zustand an den NMT-Master.

3. Operational

Operativer Betriebszustand des Lesekopfs. Der NMT-Master setzt diesen Zustand durch ein NMT-Start-Node-Telegramm, nachdem er die Pre-Operational-Meldung vom Lese-kopf erhalten hat.

Prozessdaten-Austausch

Innerhalb des CANopen-Netzwerks werden Prozessdaten über Prozess-Daten-Objekte (PDO) ausgetauscht. Siehe Kapitel 7.1.1. Prozessdatenobjekte werden unterschieden in:

Transmit PDOs (TxPDO)

Prozessdatenobjekte, die Eingangsdaten und Diagnosedaten übertragen.

Receive PDOs (RxPDO)

Prozessdatenobjekte, die Ausgangsdaten übertragen.

Die ersten 4 PDOs pro Transmit- oder Receive-Datenpaket übertragen die Default-CAN-Identifier. Alle weiteren PDOs eines Datenpakets können vom Anwender konfiguriert werden.

Kommunikationsarten

Im CANopen-Netzwerk sind für die Prozessdatenobjekte verschiedene Kommunikationsarten festgelegt. Die Kommunikationsart jedes PDOs wird über den Parameter "Transmission Type" gesteuert. Der Parameter "Transmission Type" ist im Subindex 2 des Kommunikationsparameter-Objekts (ab 0x14000) festgelegt und wird während des

Startvorgangs über ein SDO übermittelt. Siehe Kapitel 7.1.1. Der Lesekopf unterstützt folgende Kommunikationsarten:

Parameter "Transmission Type"	Übertragung	Beschreibung
0	ereignisgesteuert synchron	TxPDO : Daten werden beim Empfang eines SYNC (= Sync hronisationsobjekt) ermittelt. Daten werden nur bei einer Änderung gesendet. RxPDO : Daten werden ereignisgesteuert gesendet und in ein SYNC übernommen.
1	zyklisch synchron	Daten werden bei jedem n-ten SYNC zyklisch übernommen und gesendet n = 1 240. n kann pro PDO individuell vergeben werden, um Übertragungszyklen zu steuern.
241251	reserviert	
252 (nur TxPDO)	synchron RTR (= R emote- Transmission R equest)	Daten werden beim Empfang eines SYNC ermittelt. Daten werden nur bei einer Anforderung per RTR gesendet.

Parameter "Transmission Type"	Übertragung	Beschreibung
253 (nur TxPDO)	asynchron RTR	Daten werden nur bei einer Anforderung per RTR ermittelt und gesendet.
254	ereignisgesteuert Hersteller-spezifisch	Lesekopf sendet Daten bei Setzen des Betriebszustands "Operational" und bei Änderungen.
255	ereignisgesteuert Profil-spezifisch	Lesekopf sendet Daten bei Setzen des Betriebszustands "Operational" und bei Änderungen.

Kommunikationsüberwachung

Zu Überwachung der Buskommunikation können Sie im Lesekopf die folgenden Verfahren konfigurieren.

Nodeguarding

Wenn Sie den Lesekopf für das Nodeguarding konfiguriert haben, sendet der NMT-Master Guard-Telegramme, die vom Lesekopf mit dem aktuellen CANopen-Status beantwortet werden müssen. Der Abstand zwischen den Guard-Telegrammen wird im Objekt 0x100C festgelegt. Siehe Kapitel 7.1.3.

Wenn der Lesekopf keine Antwort sendet, wird ein "Node Guard Event" gesetzt. Das Nodeguarding ist deaktiviert, wenn Sie die "Guard Time" im Objekt 0x100C auf 0 setzen.

Lifeguarding

Wenn Sie den Lesekopf für das Lifeguarding konfiguriert haben, sendet der Lesekopf Lifeguard-Telegramme, die vom NMT-Master beantwortet werden müssen. Der Abstand zwischen einem Lifeguard-Telegramm und der Antwort des NMT-Masters wird im Objekt 0x100D festgelegt. Siehe Kapitel 7.1.3.

Bleibt das Guard-Telegramm für die definierte Zeit unbeantwortet, setzt der Lesekopf ein "Life Guarding Event" und sendet ein EMCY-Telegramm. Das Lifeguarding ist deaktiviert, wenn Sie die "Guard Time" im Objekt 0x100C oder den "Life Time Factor" im Objekt 0x100D auf 0 setzen.

Heartbeat

Der Lesekopf kann sowohl als Sender als auch als Empfänger eines Heartbeat-Telegramms konfiguriert werden. Wenn der Lesekopf zum Senden eines Heartbeat-Telegramms konfiguriert ist, wird dieses Telegramm vom MNT-Master oder einem anderen Busknoten überwacht. Wenn der Lesekopf zum Empfangen eines Heartbeat-Telegramms konfiguriert ist, überwacht der Lesekopf einen anderen Busknoten oder den NMT-Master.

Konfigurieren Sie das Senden eines Heartbeat-Telegramms im Objekt 0x1017. Dort legen Sie den Abstand der Heartbeat-Telegramme mittels der "Heartbeat Producer Time" fest. Der Heartbeat ist deaktiviert, wenn die "Heartbeat Producer Time" auf 0 gesetzt ist.

Konfigurieren Sie das Empfangen eines Heartbeat-Telegramms im Objekt 0x1016. Dort legen Sie den Abstand der Heartbeat-Telegramme mittels der "Heartbeat Consumer Time" fest. Der Heartbeat ist deaktiviert, wenn die "Heartbeat Consumer Time" auf 0 gesetzt ist.

Ausfall-Sicherheit (Failsafe)

Das Failsafe-Verhalten beschreibt das Verhalten des Lesekopfs beim Auftreten von Fehlern. Das Failsafe-Verhalten wird über einen Parameter gesteuert.

Über das Objekt 0x1029 "Verhalten im Falle eines Fehlers" kann das Verhalten des Lesekopfs bei einem CANopen-Fehler gesteuert werden. Für eine genaue Beschreibung siehe Kapitel 7.1.3.

7.1.3

CANopen Objektverzeichnis

Hinweis!

CANopen-Parameterkommunikation

In diesem Abschnitt finden Sie die notwendigen Informationen für den Datenaustausch über CANopen. Der Datenaustausch mit dem Lesekopf erfolgt über Objekte. Im folgenden SDO-Verzeichnis sind diese Objekte und die jeweils zulässigen Funktionen definiert.

Der Lesekopf unterstützt das Identifier-Format 2.0A (11-Bit-Identifier) gemäß CAN-Spezifikation. Der extended 29-Bit-Identifier wird nicht unterstützt.

Objekt	Beschreibung
0x1000	device type
0x1001	error register
0x1008	manufacturer device name
0x1009	manufacturer hardware version
0x100A	manufacturer software version
0x100C	guard time
0x100D	life time factor
0x1014	emergency id
0x1015	emergency inhibit time
0x1016	consumer heartbeat time
0x1017	producer heartbeat time
0x1018	Identity Object
0x1029	Fehlerverhalten
0x1200	1. Server SDO-Parameter (Default SDO)
0x1400	Empfangs-PDO 1. Parameter
0x1403	Empfangs-PDO 4. Parameter
0x1600	Empfangs-PDO 1. Mapping
0x1603	Empfangs-PDO 4. Mapping
0x1800	Sende-PDO 1. Parameter
0x1801	Sende-PDO 2. Parameter
0x1A00	Sende-PDO 1. Mapping
0x1A01	Sende-PDO 2. Mapping
0x2000	Positions- und Statusdaten
0x3000	Seriennummer
0x3001	Parametrierobjekt

Unterstützte Objekte

Das Geräte-spezifische Objektverzeichnis OV enthält alle Parameter und Prozessdaten des Lesekopfs. Die Parameter und Prozessdaten sind in Tabellen gelistet. Im Objektverzeichnis sind 2 Bereiche definiert. Im ersten Bereich wird der Lesekopf allgemein beschrieben. Er enthält unter anderem die Geräte-ID, den Namen des Herstellers und die Kommunikationsparameter. De 2. Bereich wird die spezifische Funktionalität des Lesekopfs beschrieben. Ein Eintrag in der Objektliste wird über einen 16-Bit-Index und einen 8-Bit-Subindex identifiziert. Über die Zuordnung innerhalb der Objektliste werden Geräteparameter und Prozessdaten, wie etwa Ein- und Ausgangssignale, Gerätefunktionen und Netzwerkvariable in standartisierter Form über das CANopen-Netzwerk zugänglich gemacht.

Gerätetyp

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1000	0	Device Type	unsigned32 ¹⁾	ro (= r ead o nly	no	0x00000000

 Tabelle 7.1
 Der Gerätetyp des Lesekopfs ist 0x00000000, da kein spezifisches Geräteprofil implementiert ist.

 1) = Datentyp ohne Vorzeichen, 32 Bit

Fehlerregister

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1001	0	Error Register	unsigned8	ro	no	0x00

Die 8-Bit-Daten des Fehlerregisters beschreiben Fehler wie folgt:

Bit							
7	6	5	4	3	2	1	0
0	reserviert	reserviert	Kommunikat ionsfehler	reserviert	reserviert	reserviert	Generisch, nicht näher spezifizierter Fehler ²⁾

Tabelle 7.2 ²⁾ = Flag ist bei jeder Fehlermeldung gesetzt.

SYNC Identifier

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1005	0	COB-IDSYNC Message	unsigned32	rw (= r ead/ w rite)	no	0x0000080

Die 32-Bit-Daten des Identifier der SYNC-Nachricht beschreiben die Synchronisation wie folgt:

Bit		
31	30	 10 0
ohne Bedeutung	0 ³⁾	 ldentifier 0x80 = 128 _{dez}

Tabelle 7.3 ³⁾ = immer 0, da Lesekopf nur SYNC-Consumer, nicht SYNC-Producer.

Gerätename des Busknotens

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1008	0	Manufacturer Device Name	visible string ⁴⁾	ro	no	PCV-FBP

Tabelle 7.4 ⁴⁾ = ASCII String, variable Länge

Hardware-Versionsnummer des Busknotens

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1009	0	Manufacturer Hardware- Version	visible string	ro	no	-

Software-Versionsnummer des Busknotens

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x100A	0	Manufacturer Software- Version	visible string	ro	no	-

Abstand zwischen Guard-Telegrammen

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x100C	0	Guard Time [ms]	unsigned16	rw	no	0

Watchdog Masterüberwachung

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x100D	0	Life Time Factor	unsigned8	rw	no	0

Tabelle 7.5 Life Time Factor x Guard Time = Life Time (Watchdog für Life Guarding - Masterüberwachung

Identifier des Emergency-Telegramms

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1014	0	COB-ID Emergency	unsigned32	ro	no	0x0000080 + NodeID

Consumer Heartbeat Time

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1016	0	Anzahl folgender Parameter	unsigned8	ro	no	40
	164	Consumer Heartbeat Time ⁵⁾	unsigned32	rw	no	0

Tabelle 7.6 ⁵⁾ = erwartete Heartbeat-Zykluszeit [ms] und Node-ID des überwachten Busknotens

Der überwachte Identifier Guard-ID ergibt sich aus der Default-Identifier-Verteilung: Guard-ID = 0x700 + Node-ID

Bit		
3124	2316	15 0
reserviert ⁶⁾	Node-ID	Heartbeat Time [ms]

Tabelle 7.7 $^{6)}$ = immer 0

Producer Heartbeat Time

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1017	0	Producer Heartbeat Time ⁷⁾	unsigned16	rw	no	0

Tabelle 7.8 ⁷⁾ = Zeitspanne [ms] zwischen zwei gesendeten Heartbeat-Telegrammen

Gerätekennung (Identify Object)

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1018	0	Anzahl folgender Parameter	unsigned8	ro	no	4
	1	Herstellerkenn ung	unsigned32	ro	no	0x000000AD
	2	Gerätekennun g	unsigned32	ro	no	0
	3	Versionsnum mer	unsigned32	ro	no	0
	4	Produktionsda tum ⁸⁾	unsigned32	ro	no	0

Tabelle 7.9 ⁸⁾ = low word - high byte: Kalenderwoche (dez.); low word - low byte: Kalenderjahr (dez.)

Verhalten im Falle eines Fehlers

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1029	0	Anzahl folgender Parameter	unsigned8	ro	no	1
	1	Consumer Heartbeat Time ⁹⁾	unsigned8	rw	no	0

Tabelle 7.10 $^{9)}$ = Verhalten bei Kommunikationsfehler, siehe folgende Tabelle

Datenbit	Verhalten bei Kommunikationsfehler
0x00	Lesekopf wechselt von Operational nach Pre-Operational
0x01	Lesekopf verbleibt im aktuellen Status
0x02	Lesekopf wechselt in Stopped

Kommunikationsparameter 1. TxPDO

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1800	0	Anzahl folgender Parameter	unsigned8	ro	no	5
	1	COB-ID	unsigned32	rw	no	0x00000180 + Node-ID
	2	Transmission Type	unsigned8	rw	no	254
	3	Wiederholung sverzögerung [Wert x 100 µs]	unsigned16	rw	no	0
	4	not used		•		
	5	Event Timer	unsigned16	rw	no	0

COB-ID: Bit

00010.00			
31	30	2911	10 0
PDO vorhanden: 0 = aktuell vorhanden 1 = nicht vorhanden	RTR-Zugriff: 0 = erlaubt 1 = nicht erlaubt		CAN-Identifier ¹⁰⁾

Tabelle 7.11¹⁰⁾ = nicht änderbar, wenn PDO aktuell vorhanden

Kommunikationsparameter 2. TxPDO

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x1801	0	Anzahl folgender Parameter	unsigned8	ro	no	5
	1	COB-ID	unsigned32	rw	no	0x00000280 + Node-ID
	2	Transmission Type	unsigned8	rw	no	254
	3	Wiederholung sverzögerung [Wert x 100 µs]	unsigned16	rw	no	0
	4	not used				
	5	Event Timer	unsigned16	rw	no	0

COB-ID: Bit							
31	30	2911	10 0				
PDO vorhanden: 0 = aktuell vorhanden 1 = nicht vorhanden	RTR-Zugriff: 0 = erlaubt 1 = nicht erlaubt		CAN-Identifier ¹¹⁾				

Tabelle 7.12¹¹⁾ = nicht änderbar, wenn PDO aktuell vorhanden

Mapping 1. TxPDO

Index	Subindex	Bezeichnun	Datentyp	Attribut	PDO- Mapping möglich	Default-Wert	Bedeutung ¹
0x1A00	0	Anzahl folgender Parameter	unsigned8	rw	no	8	Anzahl der gemappten Objekte
	1	1. gemapptes Objekt	unsigned32	rw	no	0x00000108	Positionsd aten XP24- XP31 Data = 0x2000, Byte 1
	2	2. gemapptes Objekt	unsigned32	rw	no	0x00000208	Positionsd aten XP16- XP23 Data = 0x2000, Byte 2
	3	3. gemapptes Objekt	unsigned32	rw	no	0x00000308	Positionsd aten XP08- XP15 Data = 0x2000, Byte 3
	4	4. gemapptes Objekt	unsigned32	rw	no	0x00000408	Positionsd aten XP00- XP07 Data = 0x2000, Byte 4
	5	5. gemapptes Objekt	unsigned32	rw	no	0x00000508	Geschwindi gkeit SP08- SP15 Data = 0x2000, Byte 5
	6	6. gemapptes Objekt	unsigned32	rw	no	0x0000608	Geschwindi gkeit SP00- SP07 Data = 0x2000, Byte 6
	7	7. gemapptes Objekt	unsigned32	rw	no	0x00000708	Status b08- b15 Data = 0x2000, Byte 7
	8	8. gemapptes Objekt	unsigned32	rw	no	0x0000808	Status b00- b07 Data = 0x2000, Byte 8

Tabelle 7.13¹²⁾ = Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

Mapping 2. TxPDO

					PDO-		
Index	Subindex	g Bezeichnun	Datentyp	Attribut	Mapping möglich	Default-Wert	Bedeutung ¹ 3)
0x1A01	0	Anzahl folgender Parameter	unsigned8	rw	no	8	Anzahl der gemappten Objekte
	1	1. gemapptes Objekt	unsigned32	rw	no	0x00000908	Positionsd aten YP24- YP31 Data = 0x2000, Byte 9
	2	2. gemapptes Objekt	unsigned32	rw	no	0x00000A0 8	Positionsd aten YP16- YP23 Data = 0x2000, Byte 10
	3	3. gemapptes Objekt	unsigned32	rw	no	0x00000B0 8	Positionsd aten YP08- YP15 Data = 0x2000, Byte 11
	4	4. gemapptes Objekt	unsigned32	rw	no	0x00000C0 8	Positionsd aten YP00- YP07 Data = 0x2000, Byte 12
	5	5. gemapptes Objekt	unsigned32	rw	no	0x00000D0 8	Event EV08-EV15 Data = 0x2000, Byte 13
	6	6. gemapptes Objekt	unsigned32	rw	no	0x00000E0 8	Event EV00-SP07 Data = 0x2000, Byte 14
	7	7. gemapptes Objekt	unsigned32	rw	no	0x00000F08	Warnung WRN08- WRN15 Data = 0x2000, Byte 15
	8	8. gemapptes Objekt	unsigned32	rw	no	0x00001008	Warnung WRN00- WRN07 Data = 0x2000, Byte 16

 Tabelle 7.14
 13) = Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

Positions- und Statusdaten

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Default-Wert
0x2000	0	Anzahl folgender Parameter	unsigned8	ro	no	16
	1	Positionsdaten XP31XP24	unsigned8	ro	no	0x00
	2	Positionsdaten XP23XP16	unsigned8	ro	no	0x00
	3	Positionsdaten XP15XP08	unsigned8	ro	no	0x00
	4	Positionsdaten XP07XP00	unsigned8	ro	no	0x00
	5	Geschwindigk eitsdaten SP15SP08	unsigned8	ro	no	0x00
	6	Geschwindigk eitsdaten SP07SP00	unsigned8	ro	no	0x00
	7	reserviert	unsigned8	ro	no	0x00
	8	Status	unsigned8	ro	no	0x00
	9	Positionsdaten YP31YP24	unsigned8	ro	no	0x00
	10	Positionsdaten YP23YP16	unsigned8	ro	no	0x00
	11	Positionsdaten YP15YP08	unsigned8	ro	no	0x00
	12	Positionsdaten YP07YP00	unsigned8	ro	no	0x00
	13	Eventmarker EV10EV08	unsigned8	ro	no	0x00
	14	Eventmarker EV07EV00	unsigned8	ro	no	0x00
	15	Warnungen WRN15WR N08	unsigned8	ro	no	0x00
	16	Warnungen WRN07WR N00	unsigned8	ro	no	0x00

Binary Input: Bit										
7	6	5	4	3	2	1	0			
XP31	XP30	XP29	XP28	XP27	XP26	XP25	XP24			
XP23	XP22	XP21	XP20	XP19	XP18	XP17	XP16			
XP15	XP14	XP13	XP12	XP11	XP10	XP09	XP08			
XP07	XP06	XP05	XP04	XP03	XP02	XP01	XP00			
SP15	SP14	SP13	SP12	SP11	SP10	SP09	SP08			
SP07	SP06	SP05	SP04	SP03	SP02	SP01	SP00			
0	0	0	0	0	0	0	0			

2015-09

Binary Input: Bit									
7	6	5	4	3	2	1	0		
0	0	0	0	EV	WRN	NP	ERR ¹⁴⁾		
YP31	YP30	YP29	YP28	YP27	YP26	YP25	YP24		
YP23	YP22	YP21	YP20	XP19	YP18	YP17	YP16		
YP15	YP14	YP13	YP12	YP11	YP10	YP09	YP08		
YP07	YP06	YP05	YP04	YP03	YP02	YP01	YP00		
0	0	0	0	0	EV10	EV09	EV08		
EV07	EV06	EV05	EV04	EV03	EV02	EV01	EV00		
WRN15	WRN14	WRN13	WRN12	WRN11	WRN10	WRN09	WRN08		
WRN07	WRN06	WRN05	WRN04	WRN03	WRN02	WRN01	WRN00		

Tabelle 7.15¹⁴⁾ = Wenn das ERR-Bit gesetzt ist, enthalten die XP-, YP- und SP-Bits den spezifischen Fehlercode oder den letzten gültigen Wert

(abhängig von den entsprechend Parametereinstellungen)

Datenbereich CANopen

X-Position XP: ± 0 - ± 10000 m (gültig bei allen Auflösungen)

Y-Position YP: ±0 - ± 10000 m (gültig bei allen Auflösungen)

Geschwindigkeit SP: 0 - 65 m/s, unknownspeed = 65535

Events EV: 0 - 998, Reparaturband = 999

Warnung bitfield **WRN**: enthält die Warnungen des letzten Messzyklus. Die 16 Warnungen mit den höchsten Prioritäten sind gelistet.

WRN00 entspricht Warning Code 0

WRN15 entspricht Warning Code 15

"1" = Warnung aktiv. Zusätzlich ist das WRN-Bit im Statuswort gesetzt.

Warning Codes

Warning Code	Beschreibung	Priorität
0	Es ist keine weitere Warnung vorhanden. Dieser Code wird gemeldet, wenn alle Warnungen ausgelesen wurden.	-
1	Es wurde ein Code mit einem nicht PCV Inhalt gefunden.	1
2	Lesekopf zu nah am Codeband	2
3	Lesekopf zu weit vom Codeband entfernt	3
4	Y-Position zu groß. Der Sensor steht kurz vor OUT	4
5	Y-Position zu klein Der Sensor steht kurz vor OUT	5
6	Lesekopf relativ zum Codeband verdreht/verkippt	6
7	Niedriger Kontrast des Codes	7
8	Reparaturband detektiert	8
9	Temperatur zu hoch	9
10	reserviert	-
11	reserviert	-
12	reserviert	-
13	reserviert	-

2015-09

Warning		
Code	Beschreibung	Priorität
14	reserviert	-
15	reserviert	-

Tabelle 7.16 Wenn keine Warnungen vorliegen, sind alle Bits im Warnungsdatensatz auf 0 gesetzt.

Seriennummer

Index	Subindex	Bezeichnung	Datentyp	Attribut	PDO-Mapping möglich	Wert
0x3000	0	Seriennumme r	ASCII-String	ro	no	Seriennumme r

7.1.4 Geräteparameter

Mit den Geräteparametern parametrieren Sie den Lesekopf über CANopen. Die Geräteparameter werden immer komplett an den Lesekopf übertragen.

Parametrierobjekt 0x3001

Subindex	Bezeichnung	Funktion	Datentyp	Attribut	Primärdaten
0	Anzahl folgender Parameter	Anzahl der Subindizes	unsigned8	ro	16
1	Orientierung	Orientierung des Lesekopfs zum Codeband	unsigned32	rw	0x00:0° 0x01:180° 0x02:0°/180° 0x03: 0°/90°/180°/2 70°
2	Codeband Typ	Konfiguration der Codebandbrei te	unsigned32	rw	0x00: Fläche 0x01: 1-reihig 0x02: 2- reihig 0x03: 3-reihig 0x04: 4-reihig 0x05: 5-reihig 0x06: 6-reihig 0x07: 7-reihig 0x08: 8-reihig
3	X-Resolution	Auflösung: Multiplikator für die Länge in Richtung der X- Koordinate	unsigned32	rw	0x00: 0,1 mm 0x01: 1 mm 0x02: 10 mm
4	Y-Resolution	Auflösung: Multiplikator für die Länge in Richtung der Y- Koordinate	unsigned32	rw	0x00: 0,1 mm 0x01: 1 mm 0x02: 10 mm
5	Speed- Resolution	Auflösung: Multiplikator für die Geschwindigk eitsausgabe	unsigned32	rw	0x00: 0,1 m/s 0x01: 0,01 m/s 0x02: 0,001 m/s

Subindex	Bezeichnung	Funktion	Datentyp	Attribut	Primärdaten
6 Horizontal Offset		Länge: Versatz in Richtung der X-Koordinate	signed32	rw	0 – ±10 000 000 mm
7 Reserved		reserviert	unsigned8	ro	-
8	Output1 Function	Bedeutung des Ausgangssign als am Ausgang 1	unsigned8	rw	0x00: No Function 0x01: 0verspeed 0x02: Warning 0x03: Error 0x04: Dirty 0x05: Event 0x06: No Position 0x07: Repairstrip
9	Output1 Overspeed Value	Geschwindigk eit, bei der Ausgang 1 aktiviert wird	unsigned32	rw	0 – 65534 cm/s 125 cm/s
10	Output2 Function	Bedeutung des Ausgangssign als am Ausgang 2	unsigned8	rw	0x00: No Function 0x01: 0verspeed 0x02: Warning 0x03: Error 0x04: Dirty 0x05: Event 0x06: No Position 0x07: Repairstrip
11	Output2 Overspeed Value	Geschwindigk eit, bei der Ausgang 1 aktiviert wird	unsigned32	rw	0 – 65534 cm/s 125 cm/s
12	Output3 Function	Bedeutung des Ausgangssign als am Ausgang 3	unsigned8	rw	0x00: No Function 0x01: Overspeed 0x02: Warning 0x03: Error 0x04: Dirty 0x05: Event 0x06: No Position 0x07: Repairstrip
13	Output3 Overspeed Value	Geschwindigk eit, bei der Ausgang 3 aktiviert wird	unsigned32	rw	0 – 65534 cm/s 125 cm/s
14	No Position Value X	X-Wert, wenn kein Codeband sichtbar ist	Array of unsigned8 Byte 0 - 3	rw	0x00: Last Valid Position 0x01: Specified Position
	Specific Value X	festgelegter X- Wert	Byte 4 - 7	rw	0 mm - 10 000 000 mm

2015-09

Subindex	Bezeichnung	Funktion	Datentyp	Attribut	Primärdaten
15	No Position Value Y	Y-Wert, wenn kein Codeband sichtbar ist	Array of unsigned8 Byte 0 - 3	rw	0x00: Last Valid Position 0x01: Specified Position
	Specific Value Y	festgelegter Y- Wert	Byte 4 - 7	rw	0 mm - ±10 000 000 mm
16	No Position Value Speed	Geschwindigk eitswert, wenn kein Codeband sichtbar ist	Array of unsigned8 Byte 0 - 3	rw	0x00: Last Valid Speed 0x01: Specified Speed
	Specific Value Speed	festgelegter Geschwindigk eitswert	Byte 4 - 7	rw	0 mm/s - 65535 mm/s

Tabelle 7.17 Fett = Default-Werte

7.2 Betrieb mit Event-Markern

In zahlreichen Anwendungen eines Positions-Codier-Systems ist es erforderlich oder erwünscht, an bestimmten festen Positionen definierte Abläufe zu starten. Dazu können seitens der Steuerung die vom Lesekopf ermittelten Positionsdaten ausgewertet werden. Dies bedeutet aber, dass die exakten Positionen für das Auslösen solcher Events bereits bei der Planung einer Anlage bekannt sein müssen und in der Bauphase oder Inbetriebnahme nicht mehr geändert werden dürfen. Andernfalls müssen die in der Steuerungssoftware hinterlegten Positionsdaten angepasst werden. Dies bedeutet einen erheblichen Änderungsaufwand.

Sehr viel flexibler ist die Aktivierung eines Ablaufs durch das Erkennen sogenannter Event-Marker. In der Anlagensteuerung muss lediglich ein bestimmtes Event und der damit verknüpfte Ablauf programmiert werden. An welcher Position der entsprechende Event-Marker über das Codeband geklebt wird kann bis zur endgültigen Inbetriebnahme der Anlage offen bleiben. Auch bei nachträglichen Änderungen im Layout einer Anlage kann einfach der entsprechende Event-Marker an seine neue Position geklebt werden - es fallen keinerlei Programmänderungen an.

Event-Marker sind kurze Codebänder mit einer Länge von einem Meter. Der Event-Marker trägt die kodierte Event-Nummer und Positionsinformationen in inkrementaler Form. Es gibt Event-Marker mit Event-Nummern von 001 bis 999. Für die Übertragung der exakten Positionsdaten berechnet der Lesekopf die zuletzt vor Einfahren in den Event-Bereich gelesene Absolut-Position des Codebandes und addiert den inkrementellen Offset aus den Codes des Event-Markers.

Beim Einfahren in den Bereich eines Event-Markers setzt der Lesekopf in seinen Ausgangsdaten das Event-Flag. Es besteht zusätzlich die Möglichkeit beim Auftreten eines Events ein gewünschtes definiertes Ereignis auszulösen, indem einer der Ausgänge entsprechend parametriert wird (siehe Beschreibung Parametriersoftware). Ein solches Ereignis kann bei Auftreten eines bestimmten Events, aller Events oder Events aus einer Eventliste ausgelöst werden.

Der 1 Meter lange Event-Marker kann gekürzt werden. Die Mindestlänge sollte jedoch 3 Codes (30 mm) betragen. Mit wachsender Fahrgeschwindigkeit des Lesekopfes ist eine größere Länge des Event-Markers notwendig. Bei der maximalen Verfahrgeschwindigkeit des Lesekopfes muss der Event-Marker in seiner vollen Länge von 1 Meter über das Codeband geklebt werden.

Die Mindestlänge eines Eventmarkers kann in Abhängigkeit von der Fahrgeschwindigkeit und der Triggerperiode nach folgender Formel berechnet werden:

L_{Eventmarker} = 30 mm + V_{max} [m/s] * T_{Trigger} [s] x 2

Die Triggerperiode beträgt bei Auto-Trigger 0,025 s.

Berechnungsbeispiel

Die Mindestlänge des Eventmarkers bei einer Geschwindigkeit von 3 m/s und einer Triggerperiode von 25 ms ist dann: L_{Eventmarker} = 30 mm +3 m/s * 0,025 s * 2 = **180 mm**

Hinweis!

Beim Kleben eines Event-Markers auf das Codeband ist darauf zu achten, dass der Eventmarker möglichst genau das Raster des Codebandes fortsetzt.

Erkennbar sind Event-Marker an der aufgedruckten Event-Nummer und der im Gegensatz zum Codeband invertierten Farbe der Beschriftung (weiße Schrift auf schwarzem Grund).

Die Abbildung zeigt einen Ausschnitt aus dem Event-Marker #127

Bestellinformationen zu Event-Markern finden Sie im Kapitel Zubehör.

7.3 Betrieb mit Reparaturband

Das Reparaturband ist ein kurzes Codeband mit einer Länge von einem Meter. Das Reparaturband dient zur Überbrückung defekter oder beschädigter Bereiche eines vorhandenen Codebandes.

- 1. Schneiden Sie das Reparaturband in die benötigte Länge
- 2. Kleben Sie das Reparaturband über die defekte Stelle des vorhandenen Codebandes

Hinweis!

Achten Sie beim Kleben eines Reparaturbandes auf das Codeband darauf, dass das Reparaturbandes möglichst genau das Raster des Codebandes fortsetzt.

Beim Einfahren in den Bereich eines Reparaturbandes setzt der Lesekopf in seinen Ausgangsdaten das Event-Flag. Es besteht zusätzlich die Möglichkeit beim Auftreten eines Events ein gewünschtes definiertes Ereignis auszulösen, indem einer der Ausgänge entsprechend parametriert wird (siehe Beschreibung Parametriersoftware). Ein solches Ereignis kann bei Auftreten eines bestimmten Events, aller Events oder Events aus einer Eventliste ausgelöst werden.

Hinweis!

Das Reparaturband arbeitet inkremental. Es addiert also einen Wert zur zuvor gelesenen Position auf dem Codeband. Startet der Lesekopf auf einem Reparaturband, so meldet der Lesekopf einen Fehler. Verfahren Sie den Lesekopf auf eine Stelle des Codebandes ausserhalb des Reparaturbandes, um einen absoluten Wert auszulesen.

Tipp

Im Reparaturfall steht Ihnen für eine kurzfristige Übergangslösung der Codeband-Generator auf www.pepperl-fuchs.com zur Verfügung. Dieser bietet Ihnen die Möglichkeit, Codeband-Segmente online zu erstellen und auszudrucken.

Geben Sie dazu den Startwert in Metern und die Codebandlänge des zu ersetzenden Teilstücks in Metern an. Sie erhalten eine ausdruckbare PDF-Datei mit dem gewünschten Segment des Codebandes.

Nutzen Sie den Ausdruck nur als Notlösung. Die Haltbarkeit des Papierbandes ist je nach Anwendung sehr begrenzt!

Bestellinformationen zum Reparaturband finden Sie im Kapitel Zubehör.

8 Anhang

8.1 ASCII-Tabelle

hex	dez	ASCII	hex	dez	ASCII	hex	dez	ASCII	hex	dez	ASCII
00	0	NUL	20	32	Space	40	64	@	60	96	
01	1	SOH	21	33	!	41	65	A	61	97	а
02	2	STX	22	34	н	42	66	В	62	98	b
03	3	ETX	23	35	#	43	67	С	63	99	С
04	4	EOT	24	36	\$	44	68	D	64	100	d
05	5	ENQ	25	37	%	45	69	E	65	101	е
06	6	ACK	26	38	&	46	70	F	66	102	f
07	7	BEL	27	39	I	47	71	G	67	103	g
08	8	BS	28	40	(48	72	Н	68	104	h
09	9	HT	29	41)	49	73	I	69	105	i
0A	10	LF	2A	42	*	4A	74	J	6A	106	j
0B	11	VT	2B	43	+	4B	75	K	6B	107	k
0C	12	FF	2C	44	,	4C	76	L	6C	108	I
0D	13	CR	2D	45	-	4D	77	М	6D	109	m
0E	14	SO	2E	46		4E	78	N	6E	110	n
0F	15	SI	2F	47	1	4F	79	0	6F	111	0
10	16	DLE	30	48	0	50	80	Р	70	112	р
11	17	DC1	31	49	1	51	81	Q	71	113	q
12	18	DC2	32	50	2	52	82	R	72	114	r
13	19	DC3	33	51	3	53	83	S	73	115	S
14	20	DC4	34	52	4	54	84	Т	74	116	t
15	21	NAK	35	53	5	55	85	U	75	117	u
16	22	SYN	36	54	6	56	86	V	76	118	v
17	23	ETB	37	55	7	57	87	W	77	119	w
18	24	CAN	38	56	8	58	88	Х	78	120	х
19	25	EM	39	57	9	59	89	Y	79	121	У
1A	26	SUB	3 A	58	:	5A	90	Z	7 A	122	z
1B	27	ESC	3B	59	;	5B	91]	7B	123	{
1C	28	FS	3C	60	<	5C	92	١	7C	124	I
1D	29	GS	3D	61	=	5D	93]	7D	125	}
1E	30	RS	3E	62	>	5E	94	^	7E	126	~
1F	31	US	3F	63	?	5F	95	_	7F	127	DEL

8.2

Codekarten mit besonderer Funktion

Besondere Funktion weisen folgende Codekarten auf:

- ENABLE
- STORE
- CANCEL
- USE

DEFAULT

Enable

Abbildung 8.1 Die Codekarte "ENABLE" dient der Aktivierung der Betriebsart für externe Parametrierung.

Store

Abbildung 8.2 Die Codekarte "STORE" speichert die vorgenommene Parametrierung nichtflüchtig im Lesekopf und beendet die Betriebsart für externe Parametrierung.

Cancel

Abbildung 8.3

Die Codekarte "CANCEL" verwirft die vorgenommene Parametrierung und beendet die Betriebsart für externe Parametrierung. Der Lesekopf geht in den Normalbetrieb unter Benutzung der zuletzt gültig gespeicherten Konfiguration.

Abbildung 8.4 Die Codekarte "USE" übernimmt die vorgenommene Konfiguration **flüchtig** in den Arbeitsspeicher des Lesekopfes und beendet die Betriebsart für externe Parametrierung. Der Lesekopf arbeitet nun mit dieser Konfiguration. Wird der Lesekopf jedoch aus- und wieder eingeschaltet, so geht diese Konfiguration verloren und der Lesekopf arbeitet mit der zuletzt gültig gespeicherten Konfiguration. Diese Funktion dient überwiegend Testzwecken.

Default

Abbildung 8.5 Die Codekarte "DEFAULT" stellt die Werkseinstellung des Lesekopfes wieder her und beendet die Betriebsart für externe Parametrierung.

8.3 Codekarten zur Einstellung der Baudrate

Durch Parametrierung können dem Lesekopf verschiedene Übertragungsraten für die Kommunikation über CANopen zugewiesen werden.

Baudrate 10 kBaud

_		
2012.22		
2010.0		
2012.0		
22,212,0		

```
Abbildung 8.6
```

.6 Die Codekarte weist dem Lesekopf die Baudrate 10 kBaud zu

2015-09

Baudrate 20 kBaud

Abbildung 8.7 Die Codekarte weist dem Lesekopf die Baudrate 20 kBaud zu

Baudrate 50 kBaud

No. of the second s	No.		New York
No.	NC/6443	STATES IN	News
0524	100 100 100 100 100 100 100 100 100 100		14. A. H
			2017
			9.5.46

Abbildung 8.8 Die Codekarte weist dem Lesekopf die Baudrate 50 kBaud zu

Baudrate 125 kBaud

Abbildung 8.9 Die Codekarte weist dem Lesekopf die Baudrate 125 kBaud zu

Baudrate 250 kBaud

165°2	100	100	100
02552	ICESSE:	102252	102222
12626	19674	13626	136.24
S.C.		15.2	153
022222	102222	1022522	102222
	132	194	13.2
5. T. T.	5.2% S	6. C. C. C.	2.24

Abbildung 8.10 Die Codekarte weist dem Lesekopf die Baudrate 250 kBaud zu

Baudrate 500 kBaud

Abbildung 8.11 Die Codekarte weist dem Lesekopf die Baudrate 500 kBaud zu

Baudrate 1 MBaud

Abbildung 8.12 Die Codekarte weist dem Lesekopf die Baudrate 1 MBaud zu

Auto-Baudrate

ľ.	50.72	201.52	201.57
552			
12532			
1853			
1252			

Abbildung 8.13 Die Codekarte weist dem Lesekopf die Auto-Baudrate zu

FABRIKAUTOMATION – SENSING YOUR NEEDS

Γ

Zentrale weltweit

Pepperl+Fuchs GmbH 68307 Mannheim · Deutschland Tel. +49 621 776-0 E-Mail: info@de.pepperl-fuchs.com

Zentrale USA

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1330 4253555 E-Mail: sales@us.pepperl-fuchs.com

Zentrale Asien

Pepperl+Fuchs Pte Ltd. Singapur 139942 Tel. +65 67799091 E-Mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

/ DOCT3442B 09/2015