Technical Manual

Operation Workstation
VisuNet EX1 Remote Monitor
(RM519)

VisuNet EX1 Panel PC
(PC419)
With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"
Table of Content

1 Important Information ... 2
 1.1 General Information ... 2
 1.2 Safety Instructions ... 3

2 Differences between PC4xx and RM5xx ... 4

3 System Overview of the VisuNet RM/PC in Hazardous Area .. 5

4 Front View VisuNet PC an VisuNet RM ... 6
 4.1 PC4xx ... 6
 4.2 RM5xx ... 6

5 Rear View VisuNet RM and VisuNet PC ... 7

6 Connecting and Wiring Diagrams .. 8
 6.1 Terminal Compartment X1 (Ex e) (Terminal Pin Assignment) .. 8
 6.1.1 Network Connection Ethernet (X1) .. 9
 6.1.2 Wiring Diagram of the Setup Cable to the USB Interface (Ex e) ... 10
 6.2 Terminal Compartment X2 (Ex ib) (Terminal Pin Assignment) .. 11

7 VisuNet RM and VisuNet PC ... 12
 7.1 Screen VisuNet RM and VisuNet PC .. 12
 7.2 Front-Plate Keys VisuNet PC ... 12

8 Case Design VisuNet RM and VisuNet PC ... 14
 8.1 General Installation Instruction VisuNet RM and VisuNet PC .. 14
 8.2 Cutout for Panel Mounting VisuNet 19” ... 15
 8.3 Stainless Steel Housing for 19” VisuNet RM and VisuNet PC ... 17
 8.4 Rear View VisuNet Stainless Steel Case for 19” with Drilling Pattern for Wall Mount Bracket Wall-Bracket5 ... 18
 8.5 Bottom View VisuNet Stainless Steel Case for 19” .. 19
 8.6 Mounting PE Bolt to the Housing (Optional) ... 19
 8.7 Keyboard Connection ... 19
 8.7.1 Option – F: VisuNet RM, VisuNet PC 19” ... 20
 8.7.2 Option – T: Desktop Keyboard to VisuNet ... 21
 8.7.3 Keyboard for Panel Mounting ... 22
8.8 Information for Positioning VisuNet Devices in Housing with BasicLine Pedestal ..23
8.9 Information for Positioning VisuNet Devices in Housing .. 24
8.10 Accessories for Mounting Stainless Steel Case AGx ... 24
 8.10.1 Direct Wall Mount Bracket for Stainless Steel Case AGx 25
 8.10.2 BasicLine Floor Mount for Stainless Steel Housing AGx 26
 8.10.3 Floor Mount for Stainless Steel Housing AGx .. 27
9 Accessories VisuNet RM and VisuNet PC .. 43
 9.1 Barcode Reader .. 43
 9.1.1 Holder for Barcode Reader .. 44
 9.2 BOX-A10 (Ethernet RJ45 1 Off Patch Field Element) ... 50
 9.2.1 Connection Instructions ... 51
 9.2.2 Technical Data Box A10 .. 54
 9.2.3 Connection Instructions VisuNet RM/PC ... 55
 9.3 PC Keyboard Intrinsically Safe (Components Optional) .. 56
10 Installation VisuNet RM and VisuNet PC ... 57
 10.1 General Instructions and Explosion Protection Requirements 57
 10.2 External Equipotential Bonding .. 57
 10.3 Cable Types and Maximum Cable Lengths ... 57
 10.3.1 Ethernet 100BASE-TX (Ex e) ... 57
 10.3.2 USB (Ex e) ... 60
 10.3.3 RS 422 (Ex e) .. 60
 10.3.4 RS 232 (Ex e) .. 60
 10.3.5 RS485 Interface (Ex e) ... 60
 10.3.6 External Keyboard (Ex ib) ... 60
 10.3.7 Mouse (Ex ib) .. 60
 10.3.8 20 mA TTY-Interface (Ex ib) e.g. Scanner ... 60
 10.3.9 VisuNet Power Supply Cable (24V DC) .. 61
 10.4 Shielding of Data Cables ... 61
 10.4.1 Shielding Concept .. 61
 10.4.2 Assembly Instructions for Ex EMC Cable Glands ... 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Accessories</td>
<td>64</td>
</tr>
<tr>
<td>11.1</td>
<td>Box A-10 (Ethernet RJ45 1 Off Patch Field Element)</td>
<td>64</td>
</tr>
<tr>
<td>11.2</td>
<td>Holder for Barcode Reader</td>
<td>64</td>
</tr>
<tr>
<td>11.3</td>
<td>Cables</td>
<td>64</td>
</tr>
<tr>
<td>11.4</td>
<td>Fuse Set</td>
<td>64</td>
</tr>
<tr>
<td>11.5</td>
<td>Jack 4W</td>
<td>64</td>
</tr>
<tr>
<td>11.6</td>
<td>Pedestal/Support-Arm/Ceiling</td>
<td>65</td>
</tr>
<tr>
<td>11.7</td>
<td>Pedestal BasicLine</td>
<td>65</td>
</tr>
<tr>
<td>11.8</td>
<td>Keyboards EXTA2</td>
<td>65</td>
</tr>
<tr>
<td>11.9</td>
<td>Packing Set: VisuNet Front Plate Protection</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>Replace a Blown Fuse</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>Dictionary for VisuNet</td>
<td>68</td>
</tr>
</tbody>
</table>
1 Important Information

1.1 General Information

Copyright 2007-2015 by Pepperl+Fuchs GmbH

All rights reserved

The publisher reserves the right to alter the information and data contained in this manual without prior notice. Unless otherwise indicated, the company names as well as other names and data used in the examples are purely fictitious.

The publisher may have registered patents or pending patent applications for subject matter covered in the manual. This manual does not give you license to these patents.

Limited warranty:

No warranty is provided for the accuracy of the information contained in this manual. As mistakes cannot be entirely avoided despite taking the greatest of care, we would be grateful to receive information about any errors you may discover. The publisher disclaims all legal responsibility or liability for errors as well as for subsequent damages and claims.

Microsoft, MS, MS-DOS, Windows 2000, Windows XP Professional, Windows XP embedded, Windows 7 Ultimate are registered trademarks of the Microsoft Corporation.

Manufacturer:
Pepperl-Fuchs GmbH
Lilienthalstr. 200
68307 Mannheim
Germany

www.pepperl-fuchs.com

Tel. 0621-776-0
Fax 0621-776-1000

E-Mail: info@de.pepperl-fuchs.com
1.2 Safety Instructions

Please refer to the operation instructions for the safety instructions.
2 Differences between PC4xx and RM5xx

The VisuNet product family is a series of rugged operator workstations for the process industry based on high-resolution color graphic LCD monitors.

The following table provides an overview of the VisuNet family and its two product lines: Remote Monitor (RM5xx) and Panel PC (PC4xx).

The Remote Monitor RM5xx allows operating an automation PC installed at a distant location in the safe area (e.g. the PC of a process control system) and its user programs via an Ethernet TCP/IP connection. It comprises an industry-standard display, keyboard, and mouse.

The Panel PC PC4xx consists as well of a display, keyboard, mouse and additionally includes a powerful industrial PC featuring the standard Windows operating system and a solid state disk (SSD). It can be connected to the process system either using an Ethernet cable or via a serial RS 485 or RS 422 port and the appropriate automation protocols. The operator control and monitoring software (e.g. SCADA) is directly installed on that panel PC.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>VisuNet RM5xx</th>
<th>VisuNet PC4xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front panel design (Stainless Steel):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keys</td>
<td>No keys</td>
<td>6+2 keys</td>
</tr>
<tr>
<td>LED</td>
<td>No LED</td>
<td>3 LED</td>
</tr>
<tr>
<td>Storage media:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Flash disc</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RAM</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel® ATOM</td>
<td>Intel® Core™ 2 Duo</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Chapter 6</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>Display size</td>
<td>19”</td>
<td>19”</td>
</tr>
<tr>
<td>Mounting Options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel mounting</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wall bracket</td>
<td>x (optional)</td>
<td>x (optional)</td>
</tr>
<tr>
<td>Pedestal</td>
<td>x (optional)</td>
<td>x (optional)</td>
</tr>
<tr>
<td>Ceiling 7 support arm</td>
<td>x (optional)</td>
<td>x (optional)</td>
</tr>
<tr>
<td>Material front-plate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless steel 1.4301 (304), standard</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Stainless steel 1.4571 (316Ti), on request</td>
<td>x (optional)</td>
<td>x (optional)</td>
</tr>
<tr>
<td>Operating system:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows XP embedded</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Windows XP Prof. Multilingual</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Windows 7 Ultimate</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Operating system:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software package (preinstalled):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hotkey Tool</td>
<td>x</td>
<td>x (not with SSD)</td>
</tr>
<tr>
<td>- Start menu</td>
<td>x</td>
<td>x (not with SSD)</td>
</tr>
<tr>
<td>- Smart monitor (harddisc)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- System recovery</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- Language settings</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- Refresh Display</td>
<td>x</td>
<td>x (not with SSD)</td>
</tr>
<tr>
<td>- Factory Reset</td>
<td>x</td>
<td>x (not with SSD)</td>
</tr>
<tr>
<td>- Clean Disk</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>- Set up Menu</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
3 System Overview of the VisuNet RM/PC in Hazardous Area
4 Front View VisuNet PC an VisuNet RM

4.1 PC4xx

4.2 RM5xx
5 Rear View VisuNet RM and VisuNet PC

Warning!
Please refer to the operation instructions for all safety relevant information that must be considered for installation and operation of these devices!

Achtung Stromkreise erhöhter Sicherheit (Ex e) Anschlußraum
Installationshinweise siehe Handbuch
Nicht unter Spannung öffnen!
Nach Abschalten der Stromkreise vor dem Öffnen 3 Minuten warten!

Increased safety (Ex e) circuits Terminal box
Installation Instructions see manual
Do not open when energized!
After de-energizing delay 3 minutes before opening!

Eigensichere Stromkreise (Ex ib) Anschlußraum
Relevante Parameter siehe Handbuch

Intrinsically safe (Ex ib) circuits Terminal box
Relevant parameters see manual
6 Connecting and Wiring Diagrams

6.1 Terminal Compartment X1 (Ex e) (Terminal Pin Assignment)

* The interfaces RS 422 and RS 232 can’t be connected at the same time.

Standard version VisuNet RM

Standard version VisuNet PC

Optional interfaces for VisuNet RM

(10/100 BASE TX Ethernet cable: DATL-CAT71-8-2, recommendation for cable see chap. 10.3.1)
6.1.1 Network Connection Ethernet (X1)

VisuNet RM and VisuNet PC

(10/100 BASE TX Ethernet cable: DATL-CAT71-8-2, recommendation for cable see chap.10.3.1)

Version 1: with component: Box-A10 (max over all distance: max. 90m over all)

Connection instruction Box-A10 see chap. 9.2

The cable shield has to be connected in the cable gland. (see chap. 10.4.2)

Version 2: with component: Cable DATL-C/TP-1-1RJ45 (distance: max. 90m)

The cable shield has to be connected in the cable gland. (see chap. 10.4.2)
Version 3: with component: Start-up cable S-RJ45/PCEX-1-Setup-Kabel (distance: max. 2,5 m)

Warning!
Start-up cable S-RJ45/PCEX-1-Setup-Kabel
Don't use in the hazardous area!

* also possible: for line coding, use “black” instead of “white”.

** For direct connection to a host or PC, the pairs of wires (white-orange / orange) and (white-green / green) must be interchanged.

6.1.2 Wiring Diagram of the Setup Cable to the USB Interface (Ex e)

Terminal compartment X1

Warning!
Start-up cable S-RJ45/PCEX-1-Setup-Kabel
Don't use in the hazardous area!
6.2 Terminal Compartment X2 (Ex ib) (Terminal Pin Assignment)

Wiring conditions considered acc.EN 60079-14

* Interface to connect additional compatible USB Ex ib device
** Close bridge to enable Power Off via front-plate keyboard
7 VisuNet RM and VisuNet PC

7.1 Screen VisuNet RM and VisuNet PC

The screen has a CCFL backlight.

During direct sun exposure the visibility of the display can be reduced. Always protect the system from direct sunlight.

An optional touchscreen allows the direct interaction with the application software.

Note!

Image Sticking of LCDs

Displaying a fixed image may cause burn-in-effects. (image sticking due to the LCD characteristics). To avoid image sticking change pattern frequently or activate screen saver.

Please note that display damages at the display caused by burn-in-effects are not covered by warranty.

7.2 Front-Plate Keys VisuNet PC

A service for defining function keys F1 … F6 and shortcuts is installed on the VisuNet PC4xx. Among others, this allows to start applications with the function keys or change the assignment of key codes to keys (refer to Software Manual chapters Hotkey Tool).

![Light indicators of the front plate keyboard](image)

<table>
<thead>
<tr>
<th>LED</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Power on</td>
</tr>
<tr>
<td>Link</td>
<td>Link established</td>
</tr>
<tr>
<td>HD</td>
<td>Hard disk activity</td>
</tr>
</tbody>
</table>

Note!

All 3 LEDs on: Device is warming up

After warming up and going off of the 3 LEDs the device could be started with the “Power on” button.
Power On

PC systems can be started by pressing the following key combination:

F1 + EXTEC +

Note!
Systems built before January 2014 can also be started by pressing the power button.

Note!
Systems can be switched off with the same key combination when bridge 1 in terminal compartment X2 is closed (see chapter 6.2).

<table>
<thead>
<tr>
<th>Pressing the shortcut</th>
<th>Default Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>F1</td>
</tr>
<tr>
<td>F6</td>
<td>F6</td>
</tr>
<tr>
<td>F1 + EXTEC</td>
<td>F7</td>
</tr>
<tr>
<td>F6 + EXTEC</td>
<td>F12</td>
</tr>
</tbody>
</table>
8 Case Design VisuNet RM and VisuNet PC

8.1 General Installation Instruction VisuNet RM and VisuNet PC

The device must be installed carefully in accordance with the general explosion protection regulations.

19”

Material front plate: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Weight: approx. 41 kg

Optional: Touch screen
8.2 Cutout for Panel Mounting VisuNet 19"
8.3 Stainless Steel Housing for 19” VisuNet RM and VisuNet PC

For further technical details please refer to AG1 datasheet.

Stainless Steel Housing AG1
8.4 Rear View VisuNet Stainless Steel Case for 19”
with Drilling Pattern for Wall Mount Bracket Wall-Bracket5
(Wall-Bracket5 included in the wall mount version of housing)

(all dimensions in mm)

(Up to version 12.2010 delivery with 3 x M 20)
8.5 Bottom View VisuNet Stainless Steel Case for 19"

1 M 20 (for cable gland)
2 M 20 (for cable gland)
3 for PE bolt
4 (for barcode reader optional)

8.6 Mounting PE Bolt to the Housing (Optional)

1 lock washer
2 washer
3 nut

8.7 Keyboard Connection

| Weight: Housing for keyboard including connection | 4 kg |
8.7.1 Option – F: VisuNet RM, VisuNet PC 19”
8.7.2 Option – T: Desktop Keyboard to VisuNet
(or Accessory TASTEX, option T)

Warning!
The housing must always be connected to the PE.

There are 2 possibilities:

1.) Connection via cable shielding of the connecting cable.
2.) Connection via a separate grounding cable (min. 4 mm²) to the PE connecting bolt of the keyboard.
8.7.3 Keyboard for Panel Mounting
(Accessory to the product line TASTEX, version N)

Keyboard dimension drawing

Warning

The housing must always be connected to the PE.

There are 2 possibilities:

1.) Connection via cable shielding of the connecting cable.
2.) Build into a metal housing which is connected with the PE.
8.8 Information for Positioning VisuNet Devices in Housing with BasicLine Pedestal

Note!

On positioning VisuNet RM/PC devices a distance of min. 700 mm swiveling range between housing and behind wall has to be observed for mounting and opening. A distance of min. 100 mm between housing and left wall has to be observed, too.

Distance of behind wall

Distance of the left wall

(Dimensions in mm)
8.9 Information for Positioning VisuNet Devices in Housing

Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed.

Distance min.

8.10 Accessories for Mounting Stainless Steel Case AGx

There are the following accessories for mounting VisuNet stainless steel case AGx:

- Direct wall mount bracket
- Floor mount
- Wall mount
- Ceiling mount

Direct wall mount bracket for stainless steel case AGx
8.10.1 Direct Wall Mount Bracket for Stainless Steel Case AGx
Naming: Wall-Bracket5 (included in the wall mount version of housing)

The wall mount bracket has the following dimensions:

![Diagram of wall mount bracket with dimensions labeled]

Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12).
8.10.2 BasicLine Floor Mount for Stainless Steel Housing AGx
Order designation: PEDESTAL5-1458-FIX-BL
Pedestal fix, stainless steel 1.4301 (304)

Note!
On positioning VisuNet devices a distance of min. 700 mm swivelling range between housing and behind wall has to be observed for mounting and opening. A distance of min. 100 mm between housing and left wall has to be observed, too. (refer chapter 8.12)
8.10.3 Floor Mount for Stainless Steel Housing AGx

Pedestal, fix

Order designation: Pedestal5-1458-fix

Floor mount: not turnable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Standard height 1458 mm to center screen
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Pedestal, turnable

Order designation: Pedestal5-1458-turn

Floor mount: turnable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Eg.: zzzz=1542 mm, ceiling to center screen if ceiling height is 3000 mm
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Pedestal, tilt
Order designation: Pedestal5-1458-tilt

Floor mount: tiltable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

E.g.: zzzz=1542 mm, ceiling to center screen if ceiling height is 3000 mm
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Pedestal, turnable and tiltable
Order designation: Pedestal5-1458-turn-tilt

Floor mount: turnable and tiltable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

E.g.: zzzz=1542 mm, ceiling to center screen if ceiling height is 3000 mm
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Table Housing
Order designation: Pedestal5-0528-fix-Y

Pedestal fix

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
Wall Mount

Mounting wall bracket to the wall:

Dimensions:

```
12 x M8
```

Possibilities of connection by cable glands:
- 1 x M16
- 1 x M20
- 1 x PE bolt
Wall Mount, fix

Order designation: Support-Arm5-350-350-fix

Wall mount: not turnable, stainless steel 1.4301 (304)

Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
Wall Mount, turnable

Order designation: Support-Arm5-350-350-turn

Wall mount: turnable, stainless steel 1.4301 (304)

Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
Wall Mount, tiltable

Order designation: Support-Arm5-350-350-tilt

Wall mount: tiltable, stainless steel 1.4301 (304)

Note

On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
Wall Mount, turnable and tiltable

Order designation: Support-Arm5-350-350-turn-tilt

Wall mount: turnable and tiltable, stainless steel 1.4301 (304)

<table>
<thead>
<tr>
<th>Case AG1 without keyboard</th>
<th>Swivelling angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Case justified horizontal)</td>
<td>295°</td>
</tr>
<tr>
<td>Case AG1 with keyboard</td>
<td>250°</td>
</tr>
</tbody>
</table>

Note!

On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
Ceiling Mount

Drilling pattern for mounting ceiling bracket

Possibilities of connection by cable glands:

- 1 x M16
- 1 x M20
- 1 x PE bolt
Ceiling, fix

Order designation: Ceiling5-zzzz-fix

Ceiling not turnable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Ceiling height – 1458 =ZZZZ
(Example: Ceiling height 3m: 3000-1458 = 1542 = ZZZZ Ceiling5-1542-fix)
Note!

On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Ceiling, turnable

Order designation: Ceiling5-zzzz-turn

Ceiling turnable (+/- 175°)

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

Ceiling height – 1458 = zzzz
(Example: Ceiling height 3m: 3000-1458 = zzzz Ceiling5-1542-turn)
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Ceiling, tiltable
Order designation: Ceiling5-zzzz-tilt

Ceiling tiltable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

E.g.: ceiling height – 1458 = zzzz
(e.g. ceiling height 3 m: 3000 – 1458 = 1542 = zzzz Ceiling5-1542-tilt)
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)

Ceiling, turnable and tiltable
Order designation: Ceiling5-zzzz-turn-tilt

Ceiling turnable and tiltable

Material: Stainless steel 1.4301 (304)

Optional on request: Stainless steel 1.4571 (316Ti) / 1.4404 (316L)

E.g.: ceiling height – 1458 = zzzz
(e.g. ceiling height 3 m: 3000 – 1458 = 1542 = zzzz Ceiling5-1542-turn-tilt)
Note!
On positioning VisuNet devices a distance of min. 350 mm swivelling range between housing and left wall has to be observed. (refer chapter 8.12)
9 Accessories VisuNet RM and VisuNet PC

9.1 Barcode Reader

The VisuNet RM/PC can operate an intrinsically safe barcode reader at its intrinsically safe TTY interface. The following products can be used:

- PSCAN-M (radio barcode reader) with PSCAN-B (base station)
- PSCAN-D (barcode reader) with 5m helix cable

Please also refer to the barcode reader operating instructions if one of these intrinsically safe barcode readers is connected. The terminal assignment of the VisuNet RM/PC is shown in section 6.
9.1.1 Holder for Barcode Reader
(with the order of a barcode reader (interface option –S / -A) the holder for the barcode reader is contained in the order)

All dimensions in mm
holder for the barcode reader at the case AG1
Mounting the Barcode Reader to Case AG1

1. Screw the two enclosed countersunk head screws tight to the spacer on the AG1 case with an Allen key.

Supplementary Upgrade of the VisuNet in AG1 Housing with the Barcode Readers

1. Upgrade the socket for the barcode reader
2. Upgrade the holder for the barcode reader on the AG1 housing
3. Connect the cable between the socket of the barcode reader and the interface of the VisuNet
Upgrade of the Socket for the Barcode Reader

1. Drill-hole M20x1.5 exists in AG1 housing
2. Set 5 drill-holes Ø 3.5, four for the socket of the barcode reader and one for the PA.

3. Mount the socket for the barcode reader as described in the mechanical drawing.

1. Hex nut
2. Lock-washer
3. Gasket
4. Socket for barcode reader
5. Rounded head screw
Upgrade the Holder for Barcode Reader on the AG1 Housing

1. Set 2 drill-holes for the spacer on the AG1 housing
Mounting the Spacer on the Holder for Barcode Reader

1. Tighten the both countersunk head screws with an allan key on the spacer.

1. Washer
2. Lock-washer
3. Cylinder head screw with allen screw
4. Countersunk head screw
5. Spacer
6. Holder for barcode reader
7. O-ring seal

Mounting the Holder for Barcode Reader with the Spacer on the AG1 Housing

1. Put the lock-washer (2) and the washer (1) on the cylinder head screw with allen screw (3).
2. Put the cylinder head screws (3) through the drillings on the AG1 housing.
3. Place the O-ring seal into the spacer.
4. Tighten the cylinder head screw (3) with an allen key on the AG1 housing.
9.2 BOX-A10 (Ethernet RJ45 1 Off Patch Field Element)

It offers a 1 off Ethernet RJ 45 socket for DIN rail mount. The socket is crimpable to the end of the Ethernet field cable. It is the junction element between the fix installed Ethernet field cable (Cat.6e or Cat.7) and a patch cable to a switch, router or PC.

It is supplied as an accessory for the VisuNet RM/PC. (see chap. 13.1)

Box-A10
9.2.1 Connection Instructions

Preparation of the BOX-A10 for Installation on a DIN Rail (35 mm)

The modules are grounded directly on the rail via the ground contact spring. This spring is connected by a ground terminal to the equipotential bonding. The rail must be electrically conductive.

If the module is not supposed to be grounded, press the locking latch on the housing down and remove the ground contact spring.

Then snap the lower housing part of the E-DAT REG module onto the rail.

Preparation of the DATL-CAT71 Ethernet Cable

Remove about 25 mm (max. 30 mm) of the plastic sheath.

Fold back the braided shield...

...and wrap it around the plastic sheath.

Glue in the shield film for the wire pairs and remove.

Separate the pairs of wires according to how they exit at the cable ends...

...and arrange them as shown in the photo to facilitate wire insertion into the loader later.
Cable Termination

Step 1a
Insert the white/brown and white/orange pairs of wires into the lower part of the loader…

Step 1b
…and the blue/white and green/white pairs of wires into the upper part.

Step 2
Fit a cable tie as strain relief and cut off the excess length.

Step 3a
Use a wire cutter of appropriate size to remove the wire ends…

Step 3b
…and cut them flush.

Step 4
Assemble the housing by positioning the loader straight on the lower housing part.

Step 5
Apply pliers in the middle of the module and squeeze them until the housing is closed.

Step 5
If the pliers are applied too far back, the loader may be displaced, damaging the ID connectors inside the module.

The wires cannot be cut properly flush with an unsuitable wire cutter. This will cause problems when the two housing parts are assembled.
Installation of the Modules

Insert the assembled 8(8) module into the lower part of the REG housing.

Attach the housing cover to the top of the lower section and click it downwards into place.

The rail must be connected by a ground terminal to the ground electrode, to ensure proper equipotential bonding of the modules.

Simply fit this terminal onto the rail, screw it tight and connect it to the equipotential bonding.
Disassembly of the Individual Components

Loosen the upper housing part with a screwdriver and remove.

Press the housing walls gently outwards and take out the module.

Lever out the loader with the screwdriver…

… and carefully separate the two parts of the housing.

9.2.2 Technical Data Box A10

Plug socket BOX A10

View of spring-loaded contacts
Mechanical Characteristics

Wire connection:

Insulation piercing connecting device BTR-IDC: Conductor 0.4 – 0.65 mm

AWG 26 – 22 insulation 0.7 – 1.4 mm (1.6 mm)

AWG 26/7 stranded wire conductor with 7 Cu strands, uninsulated

Can be reused for AWG 22, AWG 23 and AWG 24, providing an identical or larger cross-section is selected.

9.2.3 Connection Instructions VisuNet RM/PC

(10/100 BASE TX Ethernet cable: DATL-CAT71-8-2, recommendation for cable see chap.10.3.1)

![Connection Diagram]

- Box-A10
- Cable: DATL-CAT71-8-2
- Shield to VisuNet

Refer to assembly instruction

Grounding / equipotential

Terminal compartment X1
Order when Connecting

Note!
When connecting please check that the pairs of wires are twisted till near the clamp.

Example:

![Image of twisted wires](image)

9.3 PC Keyboard Intrinsically Safe (Components Optional)

The intrinsically safe keyboards integrate different mouse systems. The dimensions are the same for all versions. The keyboards are designed to be installed in a housing.

Please also refer to the TASTEX EXTA2 operating instructions if an EXTA2 keyboard is connected.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Color coding</th>
<th>Terminal compartment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5V</td>
<td>green</td>
<td>X2.1</td>
</tr>
<tr>
<td>D+</td>
<td>brown</td>
<td>X2.2</td>
</tr>
<tr>
<td>D-</td>
<td>grey</td>
<td>X2.3</td>
</tr>
<tr>
<td>GND</td>
<td>yellow</td>
<td>X2.4</td>
</tr>
<tr>
<td>Mouse cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5V</td>
<td>red</td>
<td>X2.5</td>
</tr>
<tr>
<td>D+</td>
<td>white</td>
<td>X2.6</td>
</tr>
<tr>
<td>D-</td>
<td>pink</td>
<td>X2.7</td>
</tr>
<tr>
<td>GND</td>
<td>blue</td>
<td>X2.8</td>
</tr>
</tbody>
</table>
10 **Installation VisuNet RM and VisuNet PC**

10.1 General Instructions and Explosion Protection Requirements

Cables are only allowed to be connected when de-energized. Make sure that all terminal compartments are tightly sealed in accordance with regulations prior to starting up the equipment.

All cable glands must be screwed tight and checked to ensure that they are securely in position.

The minimum clearances in air and creepage distances in the vicinity of the terminals must be maintained; they must not be shortened by stripping the wires too far. (isolated wire end sleeve with Imax=8mm).

- The cables in the vicinity of terminal compartments (Ex e) must be fixed-mounted.
- The cables in the vicinity of the intrinsically safe terminal compartment (Ex ib) can be flexibly laid.

10.2 External Equipotential Bonding

Explosion-protected electrical equipment in a metal case must be provided with external equipotential bonding, which must be connected to the equipotential bonding of the system over the shortest possible distance (cross section: min. 4mm²).

10.3 Cable Types and Maximum Cable Lengths

Warning!

For wiring of interfaces with the type of protection “e” increased safety the standard EN 60079-14 has to be considered!

10.3.1 Ethernet 100BASE-TX (Ex e)

We recommend using a high-quality cable to assure a minimum of errors during Ethernet data transmission. A large core cross-section and excellent shielding increase the permissible cable length and reduce transmission errors, leading to a higher transmission speed.

The table below provides a rough guide to the line lengths that can be achieved with different cable qualities.

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>Cable length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. 7</td>
<td>4 x 2 x AWG22 S/FTP (600 MHz) Paired, twisted and shielded</td>
<td>90 m</td>
</tr>
<tr>
<td>Cat. 6e</td>
<td>4 x 2 x AWG22 or AWG23 S/STP or S/FTP (500 MHz)</td>
<td>80 m</td>
</tr>
<tr>
<td>Cat. 6</td>
<td>4 x 2 x AWG24 S/UTP (250 MHz)</td>
<td>60 to 70 m</td>
</tr>
</tbody>
</table>
We recommend using a Cat. 7 cable because it offers the best results, especially in an industrial environment.

In addition to the cable quality, transmission reliability can be negatively affected by four other factors:

- EMC, e.g. interference from current leads laid parallel
- Quality of the connectors, e.g. high loss values
- Cable routing, e.g. sharp bends
- Number of insertion points and cable transitions

Troubleshooting the Ethernet Connection

<table>
<thead>
<tr>
<th>If you cannot establish an Ethernet connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisuNet PC Link LED</td>
</tr>
<tr>
<td>- Check the IP address (bottom right)</td>
</tr>
<tr>
<td>There is no link if the IP address is 127.0.0.1</td>
</tr>
</tbody>
</table>

Link on: A physical connection exists between the switch, the server or PC and VisuNet

Link off: No Ethernet connection

Remedy: Check the wiring

- Make sure the wiring in the Ex e terminal compartment (X1) corresponds to the information in the manual (refer to section 6.1)
- Make sure the switch and the server or PC are wired correctly. A crossover cable is required for a direct connection.

<table>
<thead>
<tr>
<th>If the Link LED is on but you cannot establish an Ethernet connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisuNet PC Send a ping:</td>
</tr>
<tr>
<td>Ping a suitable partner with START / RUN / CMD Ping 192.xxx.xxx.xxx</td>
</tr>
</tbody>
</table>

Ping works

If a connection is established between the host and VisuNet but the ping does not work

| VisuNet PC Check the settings under START / RUN CMD / | VisuNet RM Check the settings in Configuration Mode / Settings / TCP/IP. You should have set: Subnet mask, IP address, default gateway |
| IPCONFIG and change the network settings if necessary. | |

- Check whether the ping is blocked by the partner's firewall (default setting with XPP/SP2)
- Ask the partner to send a ping. VisuNet RM is programmed so that it always answers
- Repeat the ping
<table>
<thead>
<tr>
<th>If the ping works but you cannot establish an Ethernet connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisuNet PC and VisuNet RM</td>
</tr>
<tr>
<td>Remedy:</td>
</tr>
<tr>
<td>Check the firewall settings on the host, switch or router</td>
</tr>
</tbody>
</table>
10.3.2 USB (Ex e)
Paired data cable for fixed mounting with copper braiding and a cross-section of 0.75 mm², e.g. LiYCY (TP) 2 x 2 x 0.75.
The maximum cable length is 5 m.

10.3.3 RS 422 (Ex e)
Paired data cable for fixed mounting with copper braiding and a cross-section of 0.75 mm², e.g. LiYCY (TP) 2 x 2 x 0.75.
The maximum cable length is 1200 m and the maximum baudrate 57600 baud.

10.3.4 RS 232 (Ex e)
Paired data cable for fixed mounting with copper braiding and a cross-section of 0.75 mm², e.g. LiYCY 4 x 0.75.
The maximum cable length is 50 m at a baudrate of 9600 baud.
Cable capacitance < 50pF/m

10.3.5 RS485 Interface (Ex e)
Paired data cable for fixed mounting with copper braiding and a cross-section of 0.75 mm², e.g. LiYCY (TP) 2 x 2 x 0.75.
The maximum cable length is 1200 m and the maximum baudrate 57600 baud.

10.3.6 External Keyboard (Ex ib)
The keyboard is supplied with the already connected cable. See 6.2, for the VisuNet RM/PC.

10.3.7 Mouse (Ex ib)
The mouse is supplied with the already connected cable. See 6.2, for the VisuNet RM/PC.

10.3.8 20 mA TTY-Interface (Ex ib) e.g. Scanner
This interface is used to connect intrinsically safe apparatus, e.g. input devices such as a barcode reader.
Paired data cable for fixed mounting with copper braid.
0.75 mm² cross-section, e.g. LiYCY (TP) 2 x 2 x 0.75.
The maximum cable length is 50 m.

Warning!
For wiring of interfaces with the type of protection "e" increased safety the standard EN 60079-14 has to be considered!
10.3.9 VisuNet Power Supply Cable (24V DC)

<table>
<thead>
<tr>
<th>DC Power supply cable</th>
<th>Part code</th>
<th>Order number</th>
<th>Cable length</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATL-A2-2.5-1</td>
<td>205285</td>
<td>up to 80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATL-A2-2.5-1-Flex</td>
<td>205286</td>
<td>up to 80m</td>
<td></td>
<td>If the VisuNet is ordered in a case AGx and additional with a turnable accessory for mounting a flexible cable must be used!</td>
</tr>
<tr>
<td>(flexible cable 2 x 2.5 mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATL-A2-4.0N/2.5F-2</td>
<td>206496</td>
<td>up to 110m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(solid cable 2 x 4.0 mm² ----- 2.5 m flexible cable 2 x 2.5 mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.4 Shielding of Data Cables

10.4.1 Shielding Concept

The purpose of cable shielding is usually to improve the signal quality and reduce interference as well as radiation from electromagnetic fields.

The data cables (RS485, TTY, Ethernet) must be shielded. The shields must be continuously connected and grounded in order to guarantee the necessary interference suppression.

One of the following three techniques should be used:

1. Connect and hard ground both ends of the shield. This method achieves the greatest reduction in electromagnetic interference. There is, however, a risk of current loops with high compensating currents. These currents can lead to safety problems if their values are excessive.
2. Connect and hard ground one end of the shield. This method achieves a reduction in electromagnetic interference while simultaneously preventing the above-mentioned current loops.
3. Provide a hard connection at one end of the shield (VisuNet RM/PC) and capacitive grounding at the other end in the safe area. This method achieves a relatively large reduction in electromagnetic interference while simultaneously preventing current loops with high compensating currents.

A capacitor (approx. 10 nF) with a fixed dielectric (ceramic) and a test voltage > 1500 V can be installed in the safe area for this purpose.

The final decision regarding the most suitable shielding concept must be based on a detailed observation of the equipotential bonding system.
Example 1:

If a low-impedance equipotential bonding system (building grounding system) is effective under all operating conditions, both ends of the shield must be connected and grounded. Caution is necessary, however, if transients that cannot be statically measured are produced when machines are switched.

Example 2:

If there is no equipotential bonding system or only a poor system, or if the equipotential bonding system does not have a very low impedance or has a high noise voltage, variant 2 or 3 should be preferred.

Which of these three concepts is used must be determined by the user on a case-to-case basis (best interference suppression and safety).

No liability can be accepted by the manufacturer for this decision.

A non-connected shield at the VisuNet RM/PC end must always be properly insulated in order to prevent sparking!

The Box-10-A (Ethernet patch panel) allows the shield to be optionally connected or not connected to ground. It is connected by means of a small contact spring on the DIN rail.

Each user must ascertain which form of EMC protection is necessary, and offers sufficient reliability for their particular installation. In systems that are relatively insusceptible to electromagnetic interference, it may be adequate to connect and ground only one end of the shield.
10.4.2 Assembly Instructions for Ex EMC Cable Glands

The supply cables for the Ex e Ethernet and the RS485 or TTY Ex e data interface, the Ex i keyboard and the Ex i scanner must be shielded, in order to ensure sufficient immunity to interference (EMC). The cable shields must be connected to the VisuNet RM/PC in accordance with the assembly instructions below:

Step 1
- Strip the cable
- Uncover the braiding
- Strip the braiding and insulation staircase-style
- With thin cables, the braiding can be folded back over the insulation jacket
- Insert the cable into the gland until the braiding reaches the contact position
- Tighten the gland

Step 2
- Insert the cable through the union nut
- Insert the cable into the clamping insert
- Fold the braiding over the insert
- The braiding must overlap the O-ring by approx. 2 mm

Step 3
- Fit the clamping insert into the intermediate gland
- Assemble the cable gland
- That’s all!

If the braiding ends in the cable gland
11 Accessories

11.1 Box A-10 (Ethernet RJ45 1 Off Patch Field Element)

<table>
<thead>
<tr>
<th>Order code Box-A10</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box-A10-Kat.7-RJ45-Mini Patch</td>
<td>520242</td>
</tr>
</tbody>
</table>

11.2 Holder for Barcode Reader

<table>
<thead>
<tr>
<th>Order code holder for barcode reader</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanner-Holder-Visunet-RM/PC</td>
<td>208140</td>
</tr>
</tbody>
</table>

11.3 Cables

<table>
<thead>
<tr>
<th>Order code Power supply cable</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATL-A2-2.5-1</td>
<td>205285</td>
</tr>
<tr>
<td>DATL-A2-2.5-1-Flex</td>
<td>205286</td>
</tr>
<tr>
<td>DATL-A2-4.0N/2.5F-2</td>
<td>206496</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order code Ethernet cable:</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATL-C7TP-1-1RJ45 (E. g. from VisuNet – to switch)</td>
<td>200884</td>
</tr>
<tr>
<td>DATL-CAT71-8-2 (VisuNet - Box-A10 Patch field element)</td>
<td>193075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order code cable:</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATL-A4-0.75-3 VisuNet – EXOM (EXOM = Cradle of the barcodereader)</td>
<td>193070</td>
</tr>
</tbody>
</table>

11.4 Fuse Set

<table>
<thead>
<tr>
<th>Order code fuse set</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSE-RM/5PC4-1ATL</td>
<td>209640</td>
</tr>
</tbody>
</table>

11.5 Jack 4W

<table>
<thead>
<tr>
<th>Order code Jack 4W</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchse-4W</td>
<td>520248</td>
</tr>
</tbody>
</table>
11.6 Pedestal/Support-Arm/Ceiling

<table>
<thead>
<tr>
<th>Pedestals</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDESTAL5-1458-FIX</td>
<td>198769</td>
</tr>
<tr>
<td>PEDESTAL5-1458-TURN</td>
<td>198770</td>
</tr>
<tr>
<td>PEDESTAL5-1458-TILT</td>
<td>198771</td>
</tr>
<tr>
<td>PEDESTAL5-1458-TURN-TILT</td>
<td>198772</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table housing</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDESTAL5-0528-FIX-Y</td>
<td>203537</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Support-arms</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support-Arm5-350-350-fix</td>
<td>198777</td>
</tr>
<tr>
<td>Support-Arm5-350-350-TURN</td>
<td>203401</td>
</tr>
<tr>
<td>Support-Arm5-350-350-TILT</td>
<td>198779</td>
</tr>
<tr>
<td>Support-Arm5-350-350-TURN-TILT</td>
<td>203402</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceilings</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEILING5-ZZZZ-FIX</td>
<td>198773</td>
</tr>
<tr>
<td>CEILING5-ZZZZ-TURN</td>
<td>198774</td>
</tr>
<tr>
<td>CEILING5-ZZZZ-TILT</td>
<td>198775</td>
</tr>
<tr>
<td>CEILING5-ZZZZ-TURN-TILT</td>
<td>198776</td>
</tr>
</tbody>
</table>

11.7 Pedestal BasicLine

<table>
<thead>
<tr>
<th>Pedestal BasicLine</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDESTAL5-1458-FIX-BL</td>
<td>242087</td>
</tr>
</tbody>
</table>

11.8 Keyboards EXTAS2

<table>
<thead>
<tr>
<th>Order code keyboard EXTAS2</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>optional</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>EXTAS2-J-T-K4-DE-U-02-CF-Z-10-N</td>
<td></td>
</tr>
</tbody>
</table>
11.9 Packing Set: VisuNet Front Plate Protection

<table>
<thead>
<tr>
<th>Order code front plate protection</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 19" devices: SPARE-PROTECTPLATE-VISUNET-EX1-19</td>
<td>221502</td>
</tr>
<tr>
<td>For 15" devices: SPARE-PROTECTPLATE-VISUNET-EX1-15</td>
<td>228546</td>
</tr>
</tbody>
</table>

Protect plate

Protect plate mounted
12 Replace a Blown Fuse
(Fuse set: FUSE-RM5/PC4-1ATL)

Disconnect device from power supply and wait at least three minutes.

Unscrew the four screws of the Ex-e terminal box with an appropriate tool and open the Ex-e terminal box by removing the cover.

Disconnect the fuse from terminal 3 and 4 and remove the screw of the fuse holder with an appropriate tool.

Remove the fuse holder and withdraw the blown fuse.

The new fuse has to be installed in reversed order.
Dictionary for VisuNet

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Base-T</td>
<td>Network card capability 10 MBit/s, Baseband (one signal per time), Twisted pair cable</td>
</tr>
<tr>
<td>100Base-TX</td>
<td>Network card capability 100 MBit/s, Baseband (one signal per time), Twisted pair cable, max 100m per segment</td>
</tr>
<tr>
<td>100Base-FX</td>
<td>Network card capability 100-1000 MBit/s, Baseband (one signal per time), Fibre Optic cable, usually multimode fibre (max 2000m per segment). Uses ST connectors.</td>
</tr>
<tr>
<td>1000Base-SX</td>
<td>Network card capability 1000 MBit/s, Baseband (one signal per time), Fibre Optic cable, usually multimode fibre (max 2000m per segment). Uses SC connectors.</td>
</tr>
<tr>
<td>802.11.a….n</td>
<td>IEEE Norm for wireless data transmission (W-LAN) b: 11MBit/s g: max 54MBit/s</td>
</tr>
<tr>
<td>Access-Point</td>
<td>Hardware for W-LAN Usually a Router with additional radio hardware and antenna(s) for the 802.11… standard, to connect W-LAN clients to this Access-Point</td>
</tr>
<tr>
<td>CAT.5 .. 7</td>
<td>Cable specification 8-wire Twisted Pair (TP) cable. CAT.5: unshielded (UTP), max. 100MBit/s, max. 100m CAT.6: shielded individual pairs, max.100MBit/s, max. 100m CAT.7: shielded individual pairs plus cable shield. max. 1000MBit/s, max 100m</td>
</tr>
<tr>
<td>Client</td>
<td>PC Type (Function) PC in a Network which partly uses the data and functionality of a Server.</td>
</tr>
<tr>
<td>Cross-Link-Cable</td>
<td>Cable type for direct connection of two computers, Receive and Transmit pins are crossed.</td>
</tr>
<tr>
<td>CSMA/CD</td>
<td>Carrier Sense Multiple Access with Collision Detection. Several participants detect whether the cable is occupied, individually send their data, and, if nevertheless a collision occurs, it is detected and the data are resend after an arbitrary, short time span. ISO-OSI Layer 2 definition.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Address Finding Dynamic Host Configuration Protocol. Functionality, that enables together with a corresponding host, the automatic address allocation procedure in a computer network.</td>
</tr>
<tr>
<td>DSL</td>
<td>Protocol Digital Subscriber Line. It is a technology to enable high speed data transmission on basic 2-wire or 4-wire copper cables SHDSL is a high speed symmetric version of the DSL protocol family. Max transmission length depends on cable cross section.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Network definition</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>Network definition</td>
</tr>
<tr>
<td>Fire Wall</td>
<td>Software (Hardware)</td>
</tr>
<tr>
<td>Full-Duplex</td>
<td>Data transmission</td>
</tr>
<tr>
<td>Half-Duplex</td>
<td>Data transmission</td>
</tr>
<tr>
<td>Hub</td>
<td>Network Hardware</td>
</tr>
<tr>
<td>Internet</td>
<td>Network Structure</td>
</tr>
<tr>
<td>Intranet</td>
<td>Network Structure</td>
</tr>
<tr>
<td>IP-Address</td>
<td>Address schematic</td>
</tr>
</tbody>
</table>
ISO / OSI reference model

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>2</td>
<td>Data Link Layer</td>
</tr>
<tr>
<td>3</td>
<td>Network Layer</td>
</tr>
<tr>
<td>4</td>
<td>Transport Layer</td>
</tr>
<tr>
<td>5</td>
<td>Session Layer</td>
</tr>
<tr>
<td>6</td>
<td>Presentation Layer</td>
</tr>
<tr>
<td>7</td>
<td>Application Layer</td>
</tr>
</tbody>
</table>

Is an Open System Interconnection standard, introduced by the International Standardisation Organisation (ISO) in 1984. It consists of 7 layers to represent the different levels of communication in a very general form.

Layer 1 is the physical layer and specifies e.g. the cable type of an electrical data communication and how bits are transferred (e.g. 100BaseTX).

Layer 2 shall specify the basic representation of the data and e.g. its correctness after reception (frames, e.g. Ethernet).

Layer 3 is the Network layer and e.g. administrates the partners in a communication and their addresses (packets, e.g. IP).

Layer 4 is the connection between the system layers 1 – 3 and the application (e.g. TCP).

Layers 5 - 7. Here the addressing / decoding and multiplexing / demultiplexing of the data shall be defined.

Layers 5, 6 and 7 care on the further forward of the data up to the interface between application and computer.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>Local Area Network, max layout within a room, building or the own premises</td>
</tr>
<tr>
<td>MBit/s</td>
<td>Megabit per second, data transfer rate between two points</td>
</tr>
<tr>
<td>Network</td>
<td>connection of min. 2 points to transfer e.g. information</td>
</tr>
<tr>
<td>RDP</td>
<td>Remote Desktop Protocol, built-in in the Microsoft operating systems Windows 2000 Server, XP pro, 2003 Server and Vista. Also 3rd party products from several software houses. Software protocol for compression and transfer of keyboard, video, mouse and serial interface data from one computer to another. It is hereby possible to completely control a...</td>
</tr>
<tr>
<td>Dictionary for VisuNet</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Network Operating System</td>
<td>Microsoft Windows XP Pro, Windows 2000 Server, Windows 2003 Server, Novell NetWare offer the functionality for Client/Server Networks</td>
</tr>
<tr>
<td>Repeater</td>
<td>Network Hardware</td>
</tr>
<tr>
<td></td>
<td>Is an active device which refreshes and amplifies the network signals in a cable (ISO-OSI Level 1). It offers another e.g.100m cable length in an Ethernet network.</td>
</tr>
<tr>
<td>RJ45</td>
<td>Connector Type</td>
</tr>
<tr>
<td></td>
<td>Western type connector, standard for Ethernet and Fast Ethernet cables, 8 contacts</td>
</tr>
<tr>
<td>Router</td>
<td>Network Hardware</td>
</tr>
<tr>
<td></td>
<td>Establishes a connection to other networks and creates herewith subnetworks. It knows all addresses and other routers in the network for optimal data flow. It has an own network address.</td>
</tr>
<tr>
<td>SC</td>
<td>Connector Type</td>
</tr>
<tr>
<td></td>
<td>Fibre Optic (F.O.) industrial connector</td>
</tr>
<tr>
<td>Server</td>
<td>PC Type (Function)</td>
</tr>
<tr>
<td></td>
<td>usually a dedicated PC in a Network which supplies Database functionalities and Network Services to the connected Clients</td>
</tr>
<tr>
<td>Switch</td>
<td>Network Hardware</td>
</tr>
<tr>
<td></td>
<td>Central data distributor in a star topology network. It amplifies and individually distributes the incoming data at full speed for all participants. Recognizes and remembers addresses and ports. It knows all addresses in the network. It works in Full-Duplex-Mode.</td>
</tr>
<tr>
<td>ST</td>
<td>Connector Type</td>
</tr>
<tr>
<td></td>
<td>Fibre Optic (F.O.) industrial connector</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Protocol</td>
</tr>
<tr>
<td></td>
<td>Transmission Control Protocol (TCP, transport layer) with Internet Protocol (IP, network layer). It is a reliable, connection oriented protocol for computer networks.</td>
</tr>
<tr>
<td>Terminal Server</td>
<td>Protocol, Function</td>
</tr>
<tr>
<td></td>
<td>is a functionality based on the RDP protocol. It enables a far away PC to have control over another PC though a network</td>
</tr>
<tr>
<td>UDP</td>
<td>Protocol</td>
</tr>
<tr>
<td></td>
<td>User Datagram Protocol, is a minimal, connectionless network protocol, which is responsible for the data</td>
</tr>
<tr>
<td>UTP</td>
<td>Network Type</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>W-LAN</td>
<td>Cable Type</td>
</tr>
<tr>
<td>WAN</td>
<td>organisation</td>
</tr>
</tbody>
</table>

transportation to the correct destination in the Internet
Alternatively used to TCP