Compact Manual

PROFIBUS GATEWAYS

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship".

Table of Contents

PROFIBUS Gateways

1	Introduction	5
2	Declaration of conformity	6
2.1	Declaration of conformity	6
3	Safety	7
3.1	Symbols relevant to safety	7
3.2	General notes on safety	7
3.3	Disposal	7
4	Setting up the AS-i Bus	8
5	PROFIBUS	9
5.1	Digital data	9
5.2	Analog data	10
5.3	Power Control	12
5.4	Fieldbus bits	12
5.5	Safety Control/Status	13
5.6	Diagnostics Safe Link	14
5.7 5.7.1	Diagnose via fieldbus DP diagnostics	15 15
6	PROFIsafe	18
6.1	PROFIsafe diagnostics	
7	Configuration and Start-up of the Safety Monitor	21
8	Troubleshooting and Remedies	22
8.1	System diagnostics on the PC	22
8.1.1	Software for diagnostics, service and release measurements	
8.1.3	ASIMON 3 G2	
8.1.4	Web server	
8.2	Diagnostics on the host controller	

13.02.2015

8.2.1	On the fly diagnostics	23
8.2.2	Safety diagnostics in the Input Data Image (IDI)	23
8.2.3	Diagnosing the safety unit using the command interface	25
8.3	Error indication directly on the device	25
8.3.1	LEDs	25
8.3.2	LC-Display	25
8.3.3	AS-i Monitor	25
8.3.3.1	Duplicate address detection	25
8.3.3.2	Earth fault monitor	
8.3.3.3	Noise voltage detection	
8.3.3.4	Overvoltage detection	26
9	Appendix	27

1. Introduction

Congratulations

You have chosen a device manufactured by Pepperl+Fuchs. Pepperl+Fuchs develops, produces and distributes electronic sensors and interface modules for the market of automation technology on a worldwide scale.

Before installing this equipment and put into operation, read this manual carefully. This manual containes instructions and notes to help you through the installation and commissioning step by step. This makes sure bring such a trouble-free use of this product. This is for your benefit, since this:

- · ensures the safe operation of the device
- helps you to exploit the full functionality of the device
- · avoids errors and related malfunctions
- avoids costs by disruptions and any repairs
- increases the effectiveness and efficiency of your plant

Keep this manual at hand for subsequent operations on the device.

After opening the packaging please check the integrity of the device and the number of pieces of supplied.

Symbols used

The following symbols are used in this manual:

Information!

This symbol indicates important information.

Attention!

This symbol warns of a potential failure. Non-compliance may lead to interruptions of the device, the connected peripheral systems, or plant, potentially leading to total malfunctioning.

Warning!

This symbol warns of an imminent danger. Non-compliance may lead to personal injuries that could be fatal or result in material damages and destruction.

Contact

If you have any questions about the device, its functions, or accessories, please contact us at:

Pepperl+Fuchs GmbH Lilienthalstraße 200 68307 Mannheim Telephone: +49 621 776-4411 Fax: +49 621 776-274411 E-Mail: fa-info@pepperl-fuchs.com

2. Declaration of conformity

2.1 Declaration of conformity

This product was developed and manufactured under observance of the applicable European standards and guidelines.

Information!

A Declaration of Conformity can be requested from the manufacturer.

The product manufacturer, Pepperl+Fuchs GmbH, D-68307 Mannheim, has a certified quality assurance system that conforms to ISO 9001.

3. Safety

3.1 Symbols relevant to safety

Information!

This symbol indicates important information.

Attention!

This symbol warns of a potential failure. Non-compliance may lead to interruptions of the device, the connected peripheral systems, or plant, potentially leading to total malfunctioning.

Warning!

This symbol warns of an imminent danger. Non-compliance may lead to personal injuries that could be fatal or result in material damages and destruction.

3.2 General notes on safety

Only instructed specialist staff may operate the device in accordance with the operating manual.

User modification and or repair are dangerous and will void the warranty and exclude the manufacturer from any liability. If serious faults occur, stop using the device. Secure the device against inadvertent operation. In the event of repairs, return the device to your local Pepperl+Fuchs representative or sales office.

The connection of the device and maintenance work when live may only be carried out by a qualified electrical specialist.

The operating company bears responsibility for observing locally applicable safety regulations.

Store the not used device in the original packaging. This offers the device optimal protection against impact and moisture.

Ensure that the ambient conditions comply with regulations.

3.3 Disposal

Information!

Electronic waste is hazardous waste. Please comply with all local ordinances when disposing this product!

The device does not contain batteries that need to be removed before disposing it.

4. Setting up the AS-i Bus

- 1. Connect the unit to power.
- 2. Connect the AS-i cable to the unit.
- One after the other connect the AS-i slaves to the AS-i cable and set the slave addresses. You may set the addresses directly on the slave using a portable addresser or by using the option [SLAVE ADR TOOL] in the display menu of your gateway.
- In the display menu select [QUICK SETUP] to use the configuration of all AS-i circuits connected to the unit. Confirm with [STORE+RUN].
- Set the PROFIBUS address and connect the gateway to the host fieldbus controller. You can set the addresses directly using the option [PROFIBUS] in the display menu of your gateway.

For more detailed information please refer to the installation guide for your gateway which is included with the unit.

Ĩ

5. PROFIBUS

5.1 Digital data

Typical GSD modules

C1:, C2: prefixed for double masters for AS-i circuit selection					
16 Byte digital I/O (0 31)	16 byte for single-/A-slaves				
16 Byte digital I/O (0B 31B)	16 byte for B-slaves				
32 Byte digital I/O (0 31B)	32 byte for single-/A- and B-slaves				

Tab. 5-1.

In- and output data

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	F3	F2	F1	F0	D3	D2	D1	D0	
0		fla	gs		Slave 1/1A				
1		slave	2/2A			slave	3/3A		
2		slave	4/4A			slave	5/5A		
3		slave	6/6A			slave	7/7A		
4		slave	8/8A			slave	9/9A		
5		slave	10/10A			slave 1	1/11A		
6		slave	12/12A			slave 1	3/13A		
7		slave	14/14A			slave 1	5/15A		
8		slave	16/16A			slave 1	7/17A		
9		slave	18/18A			slave 1	9/19A		
10		slave 2	20/20A			slave 2	1/21A		
11	slave 22/22A					slave 2	3/23A		
12	slave 24/24A				slave 25/25A				
13	slave 26/26A				slave 27/27A				
14	slave 28/28A				slave 2929A				
15	slave 30/30A				slave 31/31A				
16		rese	rviert		slave 1B				
17		slav	e 2B		slave 3B				
18		slav	e 4B			slave	5B		
19		slav	e 6B			slave	7B		
20		slav	e 8B		slave 9B				
21		slave	e 10B		slave 11B				
22		slave	e 12B		slave 13B				
23		slave	e 14B		slave 15B				
24		slave 16B				slave 17B			
25	slave 18B				slave 19B				
26		slave	e 20B		slave 21B				
27		slave	e 22B			slave	23B		
28		slave	e 24B			slave	25B		
29		slave	e 26B			slave	27B		
30		slave	e 28B			slave	29B		
31		slave	e 30B		slave 31B				

Flags

•		
	Input data	Output data
F0	ConfigError	Offline
F1	APF	LOS MasterBit
F2	PeripheryFault	\rightarrow ConfigurationMode
F3	ConfigurationActive	\rightarrow ProtectedMode

Tab. 5-2.

ConfigError:	0 = ConfigOK	1 = ConfigError
APF:	0 = AS-i Power OK	1 = AS-i Power Fail
PeripheryFault:	0 = PeripheryOK	1 = PeripheryFault
ConfigurationActive:	0 = ProtectedMode	1 = ConfigurationMode
Offline:	0 = Online	1 = Offline
LOS-Master-Bit:	0 = Offline by ConfigError deac- tivated	1 = Offline by ConfigError activated

5.2 Analog data

Typical GSD modules

C1:, C2: prefixed for	double masters for AS	-i circuit selection
n byte analog in (n sl.)	8 byte input data per ana- log slave, number of ana- log slaves. For ex.: 32 byte analog in (4 sl.)	Parameter: first analog slave. It specifies the AS-i address of the first slave (for ex.: 4 slaves, first address 1, occupied addr. 1-4)
n byte analog out (n sl.)	8 byte output data per analog slave, number of analog slaves	Parameter: like analog in
8 byte analog in (x ch.)	2 byte input data per slave, per channel	Parameter: first analog slave (like analog in/out). 2. Parameter: channel. It specifies the number of used channels per slave.
8 byte analog out (x ch.)	2 byte output data per slave, per channel	Parameter: like analog in (x ch.)

Tab. 5-3.

13.02.2015

n byte	analog
Byte	Meaning
0	1. slave, channel 1, high byte
1	1. slave, channel 1, low byte
2	1. slave, channel 2, high byte
3	1. slave, channel 2, low byte
4	1. slave, channel 3, high byte
5	1. slave, channel 3, low byte
6	1. slave, channel 4, high byte
7	1. slave, channel 4, low byte
8	2. slave, channel 1, high byte
9	2. slave, channel 1, low byte

n Note!

A-Slaves map the data on channels 1 and 2.

B-Slaves map the data on channels 3 and 4.

8 byte analog (x Ch.)

Byte	4 channels	3 channels	2 channels	1 channel
0	1. slave,	1. slave,	1. slave,	1. slave,
1	channel 1	channel 1	channel 1	channel 1
2	1. slave,	1. slave,	1. slave,	2. slave,
3	channel 2	channel 2	channel 2	channel 1
4	1. slave,	1. slave,	2. slave,	3. slave,
5	channel 3	channel 3	channel 1	channel 1
6	1. slave,	2. slave,	2. slave,	4. slave,
7	channel 4	channel 1	channel 2	channel 1

...

5.3 Power Control

GSD module: Power Control Parameter: AS-i current limit

The setting of the current limit takes place in 0,1 A steps via GSD module parameter:

Input data (high):

Bit 0:	peripheral fault
Bit 1:	over-current
Bit 2:	
Bit 3:	failure redundant 24 V AUX (option single master)
Bit 4:	earth fault
Bit 5:	over-voltage
Bit 6:	noise
Bit 7:	duplicate address
Input d	ata (low):
Bit 0:	configuration error
Bit 1:	slave with address '0' detected
Bit 2:	auto_address_assignment not possible
Bit 3:	auto_address_assignment available
Bit 4:	configuration mode active
Bit 5:	not in normal operation

 Bit 6:
 AS-i power fail

 Bit 7:
 AS-i master off-line

5.4 Fieldbus bits

GSD module: 2 bytes fieldbus bits

Output data (function block fieldbus bit in ASIMON)

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	FB7	EB6	EB5	FB/	SI 4	SI 3	SI 2	SI 1
0		1 00	104	FB3	FB2	FB1	FB0	
1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8

Tab. 5-4.

The bits of the output data bytes are ORed with the real and homonymous hardware inputs of the device.

13.02.2015

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	FB7	FB6	FB5	FB4	FB3	FB2	FB1	FB0
1	FB15	FB14	FB13	FB12	FB11	FB10	FB9	FB8

Input data (output assignment for fieldbus bit in ASIMON)

Tab. 5-5.

FB: fieldbus bit

SI 4, SI 3, SI 2, SI 1 monitor inputs

5.5 Safety Control/Status

GSD module: Safety Ctrl/Status (n OSSD)

Output data

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	reserved				SI 4/	SI 3/	SI 2/	SI 1/
					2.12	2.11	1.12	1.11
2	reserved							

Tab. 5-6.

The bits of the output data bytes are ORed with the real and homonymous hardware inputs of the device.

Input data

Byte	Meaning
0	Safety status OSSD 1
1	Safety status OSSD 2
n	Safety status OSSD n

Tab. 5-7.

Safety status per OSSD (release circuit)

Bit [0 3]	Status or color	Description
0 (0x0)	continuous green	output on
1 (0x1)	flashing green	Wait time for Stop cat. 1 running
2 (0x2)	continuous yellow	Start-up / Restart block active
3 (0x3)	flashing yellow	External test required / Acknow-
		ledgement / Turn-on delay active
4 (0x4)	continuous red	output off
5 (0x5)	flashing red	error
6 (0x6)	grey or off	output not projected

Tab. 5-8.

Safety status per OSSD (release circuit)

7 (0x7)	reserved
Bit [6]	status or color
0 (0x0)	no device flashing yellow
1 (0x1)	at least one device flashing yellow
Bit [7]	status or color
0 (0x0)	no device flashing red
1 (0x1)	at least one device flashing red

Tab. 5-8.

5.6 Diagnostics Safe Link

GSD module: 10 Byte Cross Comm. Diag.

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	St. Addr 4		St. Addr	3	St. Addr 2		St. Addr 1	
2	St. Addr 8		St. Addr	7	St. Addr 6	6	St. Addr	5
3	St. Addr 12	2	St. Addr	11	St. Addr	10	St. Addr	9
4	St. Addr 1	6	St. Addr	15	St. Addr	14	St. Addr	13
5	St. Addr 20	0	St. Addr	19	St. Addr	18	St. Addr	17
6	St. Addr 24	4	St. Addr	23	St. Addr 2	22	St. Addr	21
7	St. Addr 28	8	St. Addr	27	St. Addr 2	26	St. Addr	25
8	reserved		St. Addr	31	St. Addr 3	30	St. Addr	29
9	node statu	IS		node add	Iress			
10	domain no).		manager	addr			

Tab. 5-9.

St. addr: node status of an address, from the 'node overview' list:

Bit-combination	Meaning
11	active
01	not active
10	not taught (only in the manager, message with the highest priority)
00	not used

node address:	node address within the Safe Link cluster
manager address:	node address of the Safe Link cluster manager
domain no.:	Safe Link cluster address
	Only the 3 rear bits of the address are specified in the 'domain no.' $!$

5.7 Diagnose via fieldbus

5.7.1 DP diagnostics

DP diagnostics

Byte	description
1	station status 1
2	station status 2
3	station status 3
4	master address
5	ident high
6	ident low

The following blocks can be attached to the DP-diagnosis optionally. According to the PROFIBUS standard, the bytes 1 ... 4 are transmitted in each block. Only when double masters are used, the entry "circuit 2" is available in the AS-i flags, delta list and LPF.

AS-i flags

structure 0xA0: circuit 1 structure 0xA1: circuit 2

Byte	bit	message
0	0	config error
0	1	slave 0 detected
0	2	automatic addressing not possible
0	3	automatic addressing possible
0	4	configuration mode
0	5	no normal operation
0	6	AS-i power fail
0	7	off-line
1	0	peripheral fault
1	1	—
1	2	—
1	3	—
1	4	earth fault
1	5	overvoltage
1	6	noise
1	7	double addressing

Tab. 5-10.

List of configuration errors (delta list) structure 0xA2: circuit 1

structure 0xA3: Circuit 2

Byte	bit	message
0	0	slave 0: config error
0	1	slave 1/1A: config error
0	2	slave 2/2A: config error
3	7	slave 31/31A: config error
4	0	—
4	1	slave 1B: config error
7	7	slave 31B: config error

Tab. 5-11.

List of peripheral faults (lpf) structure 0xA4: circuit 1

structure 0xA5: circuit 2

Byte	bit	message
0	0	—
0	1	slave 1/1A: peripheral fault
0	2	slave 2/2A: peripheral fault
3	7	slave 31/31A: peripheral fault
4	0	—
4	1	slave 1B: peripheral fault
7	7	slave 31B: peripheral fault

Tab. 5-12.

Each element of the manufacturer diagnostics (EC-flags and slave lists) can be switched off by setting the appropriate bit in the parameter telegram.

ExtDiag will be set if at least one of the following conditions is fulfilled:

- ConfigError = 1
- APF = 1
- PeripheralFault = 1
- EarthFault $\equiv 1$
- DuplicateAddr $\equiv 1$

Evaluation of results can be individually activated/deactivated via PROFIBUS parameter or command interface.

The configuration file includes the following presettings:

- The diagnosis transmits EC-flags, DeltaList, LPF, EarthFault and DuplicateAddr.
- ExtDiag will be set if ConfigError = 1 and APF = 1.
 ExtDiag will *not* be set if PeripheralFault = 1, EarthFault = 1 and DuplicateAddr = 1

6. PROFIsafe

GSD module: PROFIsafe V1/2, 8 Bytes

The assignment of the in- and output data bits depends on the configuration of the Safety Monitor. We recommend to use automatic configuration.

With automatic configuration the data are assigned as follows:

Input data

	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
t 1	0	slave 7	slave 6				slave 2	slave 1	-
Gui	1	slave 15	slave 14					slave 9	slave 8
i <u>c</u> i	2	slave 23	slave 22					slave 17	slave 16
AS-	3	slave 31	slave 30	slave 29				slave 25	slave 24
2	4	slave 7	slave 6				slave 2	slave 1	-
ü	5	slave 15	slave 14					slave 9	slave 8
AS-i circ	6	slave 23	slave 22					slave 17	slave 16
	7	SI 1,2	SI 3,4	SI 5,6				slave 25	slave 24
		slave 31	slave 30	slave 29					

Output data

	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
AS-i circuit 1	0	slave 7	SO 6	SO 5	SO 4	SO 3	SO 2	SO 1	-
	Ŭ		slave 6	slave 5	slave 4	slave 3	slave 2	slave 1	
	1	slave 15	slave 14					slave 9	slave 8
	2	slave 23	slave 22					slave 17	slave 16
	3	slave 31	slave 30					slave 25	slave 24
i circuit 2	4	slave 7	slave 6				slave 2	slave 1	-
	5	slave 15	slave 14					slave 9	slave 8
	6	slave 23	slave 22					slave 17	slave 16
AS-	7	slave 31	slave 30	slave 29				slave 25	slave 24

6.1 PROFIsafe diagnostics

PROFIsafe communication can be "activated", set to passive ("passivated"), or turned off ("inactive") via the CPU.

PROFIsafe Status indicator

In protected operating mode when there is passivated PROFIsafe communication the message "PS" with the sub-line "Profisafe passivated" or a corresponding error message appears in the device display:

Status message	Meaning	Term ¹
PROFIsafe activated	PROFIsafe communication is	activate_FV=0 and
	active	FV_activated=0
PROFIsafe Gateway	Safety Monitor stopped	Monitor stopped
stopped		
PROFIsafe passivated	PROFIsafe data passivated	activate_FV=1
PROFIsafe inactive	no PROFIsafe communication	other
PROFIsafe address	incorrect PROFIsafe address	diagnostic=0x40
fault		
PROFIsafe watchdog-	PROFIsafe watchdog time	WDT-Timeout=1
timeout	expired	

Tab. 6-13. Meaning of the PROFIsafe messages

1. For terms see PROFIsafe specification.

If the gateway is in Projecting mode and there is activated Profisafe communication, "PS" is indicated by "**Profisafe activated**".

If no PROFIsafe module is selected in the I/O area of the gateway, no PROFIsafe message is generated.

Status message	Protected operating mode	Projecting mode
PROFIsafe module selected, PROFIsafe	no message	PS Profisate activated
active		
PROFIsafe module	PS	no message
selected, PROFIsafe not	Profisafe passivated	
active		
PROFIsafe module not selected	no message	

Tab. 6-14.

If you are using a gateway with two AS-i masters and one of the two masters is in Projecting mode, PROFIsafe considers the entire device to be in Projecting mode.

The display menu can also be used to query the status of PROFIsafe communication:

Main menu || SAFETY || PROFISAFE || STATUS

The current status of PROFIsafe communication is displayed under [1]; below that [2] the contents of the PROFIsafe Status byte [S], the Control byte [C] and the Diagnostic Word (Low-byte only) [D] are displayed.

PROFIsafe diagnostics

Byte	Description					
1	0x06	Header				
2 0xAC						
3 0x00 Slot						
4	0x00	Spec				
5	Diagnostic	Diagnostic value				
	0x00	No error				
	0x40	Conflict at the destination address. The PROFIsafe destination				
		address in the parameters does not match to the destination				
		address configured in the device.				
	0x41	Invalid destination address (0 or 65535)				
0x42 Invalid sour		Invalid source address (0 or 65535)				
0x43 Invalid watchdog time		Invalid watchdog time				
0x44 SIL value too high. The SIL		SIL value too high. The SIL value in the PROFIsafe parameters				
beyond th		beyond the capabilities of the device.				
0x45		Invalid length of the CRC2 (based on the PROFIsafe version)				
	0x46	Invalid PROFIsafe version. The PROFIsafe version in the				
		PROFIsafe parameters is not supported by the device.				
	0x47	CRC1 error. The CRC over the PROFIsafe parameters does not				
match.		match.				
0x48 Invalid PROFIsafe parameter		Invalid PROFIsafe parameter				
	0x49-0x4A	Reserved				
	0x4B	The IPAR CRC does not match to the release-code of the moni-				
		tor configuration.				

Tab. 6-15.

7. Configuration and Start-up of the Safety Monitor

Configuration and start-up of the AS-i Safety Monitor is accomplished using a PC/ notebook running the ASIMON 3 G2 configuration software.

Note!

For more detailed information please refer to the separate manual for the ASIMON 3 G2 configuration software.

Configuration should be performed only by a safety specialist. All safety-related commands are password protected.

The correct safety functioning of the unit must absolutely be verified in the system!

8. Troubleshooting and Remedies

8.1 System diagnostics on the PC

8.1.1 Software for diagnostics, service and release measurements

The intuitively constructed software for diagnostics, service and release measurements enables PC-assisted measurement using the high-level measuring technology built into the masters.

This specially developed software assists both machine and systems builders in release measurements and preventive troubleshooting as well as end users in preventive maintenance and fast, self-performed error elimination. As an option the analysis data can also be sent to our technical support group and used as the basis for fast, reliable help with problem handling.

8.1.2 AS-i Control Tools

The Software AS-i Control Tools provide you with all the key testing and configuration possibilities of your AS-i circuit in organized fashion on your PC.

A graphic representation of your AS-i network provides you with a quick overview of the system status, showing for example any missing or unprojected slaves. In addition, peripheral errors and the status of the "AS-i Monitors" integrated into the Masters. The AS-i Control Tools software also provides a simple and convenient way to configure new AS-i circuits or modify already existing configurations. This software is also a component of the ASIMON 3 G2 software.

8.1.3 ASIMON 3 G2

The ASIMON 3 G2 software is used to configure the safety unit. Already configured systems can be diagnosed live using the software. The status of all in- and outputs is graphically represented as are the results of the preparatory processing.

When projecting the user has the ability to assign unique identifiers to the individual components. These also appear in the device displays in connection with error messages. To prevent errors in the projecting stage the ASIMON 3 G2 software provides advance warning at the relevant points.

The AS-i Control Tools software is also part of the ASIMON 3 G2.

8.1.4 Web server

Units having an Ethernet port provide all the diagnostics data through a web server. If necessary this also allws the system information to be viewed from any PC connected to the network without any additional software, simply using a standard internet browser and Java.

To be able to take advantage of the full scope of diagnostics functions and configuration possibilities of the AS-i Masters, you will however need the ASIMON 3 G2 software with integrated AS-i Control Tools and ideally also the software for diagnostics, service and release measurement.

8.2 Diagnostics on the host controller

All the diagnostics information is also provided on the host controller.

Note!

 \bigcirc

Refer here to the tables showing the digital flags in sec. <Digital data> the fieldbus bits in sec. <Fieldbus bits> and the Safety Control Status in sec. <Safety Control/Status>.

8.2.1 On the fly diagnostics

PROFIBUS gateways transfer the most diagnostic information via the standard diagnostic.

8.2.2 Safety diagnostics in the Input Data Image (IDI)

Representation of the diagnostics information

Diagnostics in the IDI is a way of sending the key diagnostics functions to the controller without a command interface (Mailbox) or any additional effort. The diagnostics information is sent in the input data image, coded for the input bits of the address of the safety input slave.

The switching state of Channels 1 and 2 of the safety input is shown with negligible time lag in bits 0 and 1 and can be directly read:

Bit3	Bit2	Bit1	Bit0	Description
Х	Х	0	0	Both channels open
Х	Х	0	1	2 nd channel open, 1 st channel closed
Х	Х	1	0	2 nd channel closed, 1 st channel open
Х	Х	1	1	Both channel closed

Tab. 8-16.

Bits 2 and 3 are used to send the status of the safety input (the device color of the ASIMON 3 G2):

Bit3	Bit2	Bit1	Bit0	Description
0	0	Х	Х	Device color: red, green or gray
0	1	Х	Х	Device color: yellow ("waiting")
1	0	Х	Х	Device color: yellow flashing ("testing")
1	1	х	Х	Device color: red flashing ("Error")

Tab. 8-17. Stae of safety input

Safety diagnostics of safe AS-i outputs via the Input Data Image (IDI)

The diagnostic informations are transfered via the Input Data Image, coded to the input bits of the diagnostic address (diagnostic slave) of an AS-i safety slave.

Bit value of the input bits of the diagnostic slaves

Bit	AS-i input
E0	
E1	diagnostics (see table device colors)
E2	
E3	reserved for EDM input

Tab. 8-18. Bit value of input bits of the diagnostic slaves

Device colors

Value	Color	Description	state change	LED "OUT" ¹	
0	green	output on	-	on	
1	green	_	_	_	
	flashing				
2	yellow	restart inhibit	auxiliary signal 2	1 Hz	
3	yellow flashing	_	-	_	
4	red	output off	-	off	
5	red flashing	waiting for reset of error condition	auxiliary signal 1	8 Hz	
6	aray	connection or	only via Power On	all LEDs	
	gray	internal error	on device	flashing	
7	areen/vellow	output released,	switched on by setting	off	
green/yenow		but not switched on	the output bit ¹		
			7	ah 8-10 Device colors	

1. See documentation of the AS-i slave.

Important!

The following points must be noted for processing:

- The information for switching state and error status are not processed timesynchronous.
- When there is a configuration error all bits having value 0 are sent; this must be noted when processing the data.
- When the Monitor is stopped the device color is "gray".
- When regularly switching, the status "yellow flashing" can be recognized as a transition status. This depends on the component model set. This status cannot be understood as a testing request until it is stably reported (see Monitor Info and Safety Control/Status Byte). This is not the case until bit '6' is set in the Monitor Info and Safety Control/Status Byte ("At least one module in Test status"). This means the diagnostics information in the input data image does not serve as a trigger for the testing request, but rather only as detailed information after the Monitor Info and Safety Control/Status byte have indicated that at least one component has reported a testing request.

13.02.2015

Other display variants

In addition to the diagnostics representation the following variants are possible:

• Safety code sequence:

Code sequence is sent, no evaluation of the data; the current status is sent for each bit. Sending of a code sequence for safety slaves means there is a continuous alternation between the states '1' and '0'.

Substitution values:

Substitution of the code sequences by the status of the input (Safe Subst Val). Here the following values are sent:

Bit3	Bit2	Bit1	Bit0	Description
0	0	0	0	Both channels open
0	0	1	1	2 nd channel open, 1 st channel closed
1	1	0	0	2 nd channel closed, 1 st channel open
1	1	1	1	Both channels closed

Tab. 8-20.

Changing the base setting

Setting and changing the diagnostics type is done using the device display ([SAFETY]->[AS-I SAFETY]->[SAFE SUBST VAL])

8.2.3 Diagnosing the safety unit using the command interface

All the diagnostics data can also be queried individually and acyclic using the command interface commands. This procedure, however, involves a large outlay.

8.3 Error indication directly on the device

8.3.1 LEDs

The LEDs located on the device allow you to quickly see the status of the main function parameters, such as power, communication with the host controller, communication on the AS-i circuit and state of the safety in- and outputs.

8.3.2 LC-Display

In the display of the Gateways plain text messages are shown spontaneously for any detected errors (e.g. missing slaves, earth fault, duplicate address...).

8.3.3 AS-i Monitor

Comprehensive, standard measuring technology built into the AS-i Masters make it possible to simply localize even sporadically occurring configuration errors and interference sources affecting AS-i communication.

8.3.3.1 Duplicate address detection

The Master detects when two slaves having the same address are present in the AS-i circuit.

8.3.3.2 Earth fault monitor

The earth fault monitor checks the symmetry of the AS-i voltage. If the voltage is no longer sufficiently symmetrical, the noise immunity of data transmission is compromised.

8.3.3.3 Noise voltage detection

Noise voltages on the AS-i cable can cause telegram errors. The noise voltage detector monitors the AS-i circuit for AC voltages which have been generated by neither the AS-i Master nor the slaves.

8.3.3.4 Overvoltage detection

Normally UASi+ and UASi- are in symmetry with system ground. If this potential rises significantly, the overvoltage detector reports this anomaly.

9. Appendix

Quick Start Guides for commissioning and service are provided on the website available for download.

FACTORY AUTOMATION – SENSING YOUR NEEDS

Worldwide Headquarters Pepperl+Fuchs GmbH 68307 Mannheim · Germany Tel. +49 621 776-0

E-mail: info@de.pepperl-fuchs.com

USA Headquarters

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1330 4253555 E-mail: sales@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd. Company Registration No. 199003130E Singapore 139942 Tel. +65 67799091 E-mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

Subject to modifications Copyright PEPPERL+FUCHS • Printed in Germany