FACTORY AUTOMATION

JAVASCRIPT PROGRAMMING
GUIDE

2 PEPPERL+FUCHS

SENSING YOUR NEEDS

With regard to the supply of products, the current issue of the following document is
applicable: The General Terms of Delivery for Products and Services of the Electrical
Industry, published by the Central Association of the Electrical Industry (Zentralverband
Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the
supplementary clause: "Expanded reservation of proprietorship"

2 F3PEPPERL+FUCHS

. JavaScript Programming Guide

1 Introduction ... ———————— 10
1.1 Document Organizationccccccemriiiiinisisssmmmmnsnss s nnnas 10
1.2 Document and Coding Conventions............cccccccccnnnnnnnsssssssnnns 10
1.3 Related DOCUMENLS ... 10
1.4 Related ULty ... 11

2 Programming Environment.........cooeiiiiimmiiiinnmmmnneneaans 12
2.1 EditOr... i 12
2.2 CodeViewer Application...........cccoeemmmmmmimminninsssssssn s 12
P2 T T o |) 12
P22 SN B 1= o T8 T T 1 oV . 13

3 Programming COoNncCeptscccimeeemmmmmmsssssssssssnnssnsssssssssssssssenns 14
3.1 SIMPLICIEY v ——————————— 14
3.2 The OHV300 gui Object..........ccciirrnmmmmmrrriiinssnssssmsss s 15

3.2.1 Softkey Implementation......... ..o 16
B.2.2 FOMS e nnnnes 16
B.2.3 IMIBINUS. ... nnnnes 17
B.2.4 TEXE cuuueiueteteiei ettt ettt s e 19
3.3 EVeNt . ————————————————— 19
3.3.1 DeCOAE EVENIES ..o 20
B.3.2 KEY BVENIS. .. e 21
3.3.3 CommaNnd EXECULION..........uiiiiiiiieii ittt e e a e 22
3.4 Reader Configuration..........ccccoiiiiremmmmmsniiinnnsssss s 22
R T 3V7 1 11 o Tod B0 T=ToTo T [Ty ' 23
3.5.1 Transform Data by Symbologyccccuuueiiiiiiiii e 25
3.5.2 Evaluate Data FOrmatoooiiiiiiiiiiiii e 26
3.5.3 Detect FOrmat Errors...........uviiiiiiiiiiie e 27

3 F3PEPPERL+FUCHS

. JavaScript Programming Guide

3.5.4 Letthe Handheld Process the Decodeuuuuemimmiimiiiiiiiiiiiieeees 27
3.5.5 IgNOre the DECOMEcccuuiiiiiiiiie e 28
3.5.6 Determine the Orientation of the Decode.............cccviiiiiiiiiiiiii e 28
3.6 Host Communication..........ccceiiiiismmmmmnrr s 29
3.7 Data in Handheld Local Storageccccummmmmmmmmmmmmmssssssssssssssssssssssssssns 30
BT TN 0 7= 3 0 Lo 0 o o T |- 4 30

4 Class ReferencCe....cccccceeireireimireirerereiresesresrnsessassssessassssnssassnse 3 1

4.1 deCOdEe ..o —————— 31
o T B o (o =T o (=3P 31
O s o - - PP RV SPRURN 31
L I 2 =Y 0] oo (o T PSPPSR 31
o I G T 1Y/ 1 01 oo [oTe |V = TP P PP PPP 32
4.1.1.4 SYyMbOIOGYMOGIfIEFcoiiiiiiie e 32
4.1.1.5 symbolOgYMOGIfIEF _EXueeiiiiiiie e s 32
4.1.1.6 SymbOIOGYIAENtfier........ceiiiiiiiii e s 32
o O USROS 32
7 I X T OO 32
T 11 o= YR 33
4.1.1.10 qUALILY _PEICENT ..t e e e 33
41147 GrPOSIHION .. e 33
o I I = o | o] = | USROS 33
o I O T T o | = 1 USSP 33
o T O S 1101 ¢= T T TSP PT PO 33
O I T o T T¥ g To USSR 33
41116 NUMEXIAFIEIAS ..o 34
S e O o 1= YooY [Tl Y/ o T SR 34
o I O = = V1 015 1] o Yo [o Y PRSP 34
41119 @IMMOUAIfIEE ... e s e 35
4.1.1.20 decodeOUtPUIFOIMAL.......occuiiiii e e e 35

4 F3PEPPERL+FUCHS

. JavaScript Programming Guide

4.2 QUi iiiiiiirrsssssnsss s ————————————————————————————————— 36
42,1 MEINOUS. ..ot a e e e 36
4.2.1.1 = 1= o PR 36
2 - oo 1111 0 PSR PRTRPR 37
42.1.3 (0] 0] 0 PP 38
4214 PUIBOX o e 39
4215 SENAKEBY ...t e e e e e e e e nnes 40
2 I T~ 1= T o (o = ST P PP PP PPP 40
B.2.1.7 SNOW. ettt b b et e bbb she e e e b b e be e reenree s 40
4.2.1.8 SNOWFOMM ..o 41
4.2.1.9 SNOWMENU ..ottt e e e e e e e e e e e nees 41
4.2.1.10 SNOWSUDMENUcoiiiiiiiiie ettt st e et e st e e ae e e sate e eneeesaees 42
4.2.1.11 splash and ClearSPlashoccuiiiiiiie e 42
L I - =Y/ o PSP SRPPTRRR 43
4.2.2 PrOPEIIES ..o 43
4221 19 00111 Lol =T PP PPPRPOPPPP 43
B.2.2.2 KBY ettt E b bt e b e R et e et e At e bt e ehe e she e saeeeabe e be e beenbeenaeeas 44
4.2.2.3 1EISOMKEY ...ueeeiietie ettt e nae 44
4224 FIGNESOMKEY ...eeeiiii et 44
4.2.2.5 STAIUSTEXE ..eeiiiiiiiiee et 45
2 B ©] o] [= o7 (= PSP PPPPPPR PP 45
4.2.3.1 QUILBULION ... 45
4.2.3.2 QUILEIE ..ot e 46
4.2.3.3 QUILFOIM e 48
4.2.3.4 QUILIMAGE ..o e 49
4.2.3.5 QUILLADEI ... 50
4.2.3.8 QUILMEBNU ..o e 50
4.2.3.7 QUILMENUIEIM ..o e e e e 51
4.2.3.8 QUILMUILINEEGILoeeiiiiiieeiie e 51
2 e o (U110 T=T o= = (o G SRR 52

5 F3PEPPERL+FUCHS

. JavaScript Programming Guide

4.2.3.10 QUILSOFKEY «..eeitiitii ittt bbb 53
e N I o U O 1=« PP PP URURPROPN 54
4.2.3.12 gUI.TOQIEBULION ..o e 55
4.2.4 Predefined Softkey ODJECES.........oeiiiiiiiiii e 57
42.41 DACKSOMKEY ...t 57
4.2.4.2 CANCEISOMKEYeeiiiiie et 57
e B o S To) 1 (- U 57
4244 SEIECISOMKEY ..eeiiiii ettt et ar e e b sanas 57
4.2.5 Formand Menu Common MethodsSuuuiiiiiiiiiiiiiiieie e 57
4251 F=To] oX=T o (oTo] a1 1 (] | TR USSR 57
4252 Prepend(CONIOI) ... e 58
4253 setActiveChIlA(CONTION)c.eiiiiiieeiee et 58
4.2.6 Formand Menu Common Properties. ... 58
4.2.6.1 (o721 0] (o] o KU SO UPPP PP 58
4.2.8.2 ONKBY ittt e e e e e s e e e 59
4.3 FEAUEKcc i —————————————— 59
4.3.1 MEINOAS. ... 59
4.3.1.1 o1=T=T o OO PPRRPPPPRPPPPRPR 59
4.3.1.2 defaUltSEtliNgSs ..o s 60
4.3.1.3 getKeyboardStatus ... s 60
4.3.1.4 ProCeSSCOMMENT.coiiiiiiii ittt ettt e e e b e e e e bt e e e e anbe e e e ennreeas 61
4.3.1.5 1EAUSEHING. ... eeeitie ettt ne e 61
e i G B (V] 1S o7] o SO TSP PPN 61
4.3.1.7 SAVESEINGS ..oooeeie i 62
4.3.1.8 SEIDISPIAYLEA ...coiiiiiiiee e e 62
4.3.1.9 SEHUNTEIVAL ..o 63
4.3.1.10 Cle@rIntervalcooo i e 63
4.3.1.11 SEITIMEOUL ... e 63
4.3.1.12 ClEAITIMEOULoii et re e e e 64
4.3.1.13 ShiftdISTOUNICOUEoeviiiiiiiie e 64

6 F3PEPPERL+FUCHS

. JavaScript Programming Guide

4.3.1.14 WIHESEHING .o i 64
4.3.1.15 UNICOAETOSNIIUIS . .veeiieieciie e e 65
4.3.2 PrOPErtiES oo 65
4.3.2.1 [o1a107] 4 T09F= 13T USSR 65
4322 onCommaNdFiNISN.......c.eiiiiiiiii s 66
L 2 T o 01| = ToT o Lo = PSPPSR 67
4.3.2.4 ONDECOUEAHEIMPLot e e e e e 68
4.3.2.5 ONIAIE e e s e s e e e nnes 69
4.3.2.8 ONSIANADYeiiiiiieiieee et e 69
4.3.2.7 DAUEIYLEVEL ... 70
4.3.2.8 1= SRR 70
L e B o [1= o PSP 70
L N L T 1011 o 1= PP PP PRP 70
L 2 I N ¢ o T PSPPSR 70
4.83.2.12 CADIEA ...t b e e st eb e b b beenaee 71
= G T o1 o =1 o[V TSP P PR 71
4.3.2.14 NardWarEVEISIONcciiiiieii ittt ettt e st e e e et e e e e s b e e e e s aabe e e s e anbe e e e eanneeas 71
4.3.2.15 0BMIA e 71
L 2 L T (=Y Lo (=T o (o F TSP PTPRPR 71
4.3.2.17 SOFWAIEVEISION ...ttt st e e e e st e e s e aab e e e e e eaneeas 71
270G T2 < T o To 72 Y [| SR 72
L I 1 - Vo [= 72
441 MeEINOAS. ... 72
4411 =T o] o110 o [RPN 72
4412 =T 1T PSSP TP PP PR PP PRPRPRPRIN 72
4413 FINAFIIST .o 73
s S 11 0o | AN = PP 73
o T (=Y Lo [PPSO PTPPPPTPPPRN 74
o L T (=Y 0 =1 0 3 [PSP 74
e A 1= TSRS PP 74

7 F3PEPPERL+FUCHS

. JavaScript Programming Guide

44.1.8 UPIOA ... 74
o R T 1 (= PSPPSR 75
o I L B o 1= { o (== Vo [T PSPPSR PTPPPN 76
44111 SAVEOFSEIWINAOWciiiiiiiiiei ittt ettt st e b e be e e sae e e sbe e saeas 76
4.4.2 PrOPEITIES ..coeeeeeeeeeee e 76
4421 L1011 a =TT o 1= o7 =T o | RSP 76
4422] PP 77
4423 [OGFUIINESS_PEICENT e e e e e e e e e e e e e e 77
4.5 COMMLuiiiiiiiiirir i ————————————————————————————————— 77
4.5 MeEINOAS. ... 77
4511 (oo o1 1= o7 ST 77
T 2 B o 11~ Tote o o [= o7 AP P PP PPR 77
4.5.1.3 SENAPACKET ... oo 77
T =1~ o [=4 S PSPPSR 78
4.5.2 PrOPEIIES ..o 78
4.5.2.1 £ @700 T g =T} (=Y SRS 79
4.6 FUNCHIONS ..o s e 79
4.6.1 DIAIOG ...eeeeieeeeieee e 79
4.6.1.1 =1 1=T o S PP PP 79
G 2 B oo 1 {1 4 P USROS 80
LG G T o] (o] 1] o ST P TSP PR 81
4.6.2 Other FUNCHONSuiiiiiiiiii ittt 82
B8.2.1 GO eeueeeeeeeeeeee e eee et eraenaenaaneenennaes 82
G2 N | 0 Tod U To [USROS 82
G T o1 o | ST P TSP PPTPPPR 82
4.6.2.4 SetStANADYMESSAGE . .uueiiiuiieiiii ettt e 83
4.6.2.5 1o PP 83

5 Glossary and ACrONYMS......c.ccouvrmmmmmmsssssmmnsmsssssssnsssssssssssssnnsss 84

6 Input Modes......iirimmiiir s OO

8 F3PEPPERL+FUCHS

. JavaScript Programming Guide

7 Format Specifiers.........cccmmmiiiiiimnmsine s 86
8 Supported JavaScript Core.........ccoimmmmriiriimmcmesiserrnnesssseeennes 87
9 Symbology ID & Modifier Information...........cccoeeeeiiiiinnncan. 89

9 F3PEPPERL+FUCHS

. Introduction

1 Introduction

This manual describes the application programming interface for OHV300 handhelds. It is
assumed the user will have programming knowledge and familiarity with the JavaScript
language.
B Handhelds read code and can be programmed to transmit code data over a selected
communications link or to store data in reader memory (batch mode).
B The programming environment provides interfaces to:
= Read and manipulate data in reader memory.
= Display information on the OHV300 screen.
= Retrieve data from reader hardware or OHV300 key pad.
= Access data sent by host.
= Transmit data to a host computer via communications link.
= Select type of communications link.
= Set, change, and retrieve reader configuration settings.

1.1 Document Organization

This document is organized as follows:

B Section 1, Introduction: gives a product description and describes how to use this
document.

B Section 2, Programming Environment: identifies tools used to create and load
application software into reader.

B Section 3, Programming Concepts: discusses how to accomplish various operations
on the reader using the application programming interface.

B Section 4, Class Reference: presents classes, objects, methods, properties, and
constructors that support application programs.

B Section 5 -9: Appendix

1.2 Document and Coding Conventions

The JavaScript library uses the following naming conventions:

B identifiers: mixed-case with a capital letter where words join (soCalledCamelCase);
acronyms and other initialisms are capitalized like words, e.g., nasaSpaceShuttle,
httpServer

variables and properties: initial lower case
classes (i.e., constructors): initial capital

functions: initial lower case

unit of measure: suffix to name, separated from name by underscore, using correct
case when it’s significant, e.g., offset_pixels, width_mm, power_MW, powerRatio_dB

1.3 Related Documents
B OHV manuals
B Interface Configuration Document

10 F3PEPPERL+FUCHS

. Introduction

1.4 Related Utility

B Vision Configurator

@) Example!
H Visit http://www.pepperl-fuchs.com to obtain this application.

11 F3PEPPERL+FUCHS

. Programming Environment

2 Programming Environment

This document is not a JavaScript manual. The following sources are a few of the many
JavaScript reference books and online documents:

B JavaScript: The Complete Reference, Second Edition
by Thomas Powell, et al.

B JavaScript Demystified (Demystified)
by James Keogh.

B JavaScript in 10 Simple Steps or Less
by Arman Danesh.

B http://www.javascript.com/

2.1 Editor

You can use your favorite editing product to create and modify JavaScript code. Turn off
any smart quote options in the editor. Smart quotes are not valid in JavaScript.

2.2 CodeViewer Application

The CodeViewer Application runs as a JavaScript application on the OHV300. The menu
driven application has features for changing configuration settings and for defining the
applications that run on the reader. JavaScript developers can make use of the following
keywords in the CodeViewer Application:

Title — Displays the title of the JavaScript rather than the file name in CodeViewer’s
‘Application’ menu. Add a comment to your script formatted as $Title: <title of script>$ to
implement.

Revision — Displays the revision of the JavaScript from the CodeViewer’s
‘Application/<script>" submenu. Add a comment to your script formatted as $Revision:
<revision of script>$ to implement.

2.3 Security
B Each handheld reader contains a unique reader ID.
B Select features of the reader are protected by license.
B Alicense file is required for each reader licensed to use protected features.
B Third party software licenses may also be protected using the encryption utility.

12 F3PEPPERL+FUCHS

. Programming Environment

24

13

Debugging

The handheld reader contains a built-in error log that can be used when debugging scripts.
To debug the script when an error has occurred, send the ‘(command to the reader; the
reader responds by sending the error log to the communications port. The error log may
contain messages from the firmware that should be ignored. JavaScript errors in the log
can be identified by the format: filename:lineNumber. If there are many error codes in the
error log, send the ‘)’ command to clear the log and repeat the steps to create the error,
leaving only one entry in the log.

Example:

X ap/gerror-log. storage init: flMountVolume fail status 26,
formatting.storage formatFilesystem: status 0.

temp.js:3: TypeError: gui.aler is not a function. X ap/dEOF.

This error log contains one firmware error and one JavaScript error. The JavaScript error
description begins with temp.js:3: and tells us that on line three of the temp.js file, gui.aler
is not recognized as a function. In this case, gui.alert has been misspelled (it is missing the

1).

F3PEPPERL+FUCHS

. Programming Concepts

3

3.1

14

[—10

Programming Concepts

To help the developer create unique applications for the reader, we provide this JavaScript
Programming Guide. The developer can create complex business applications with
prompts and data entry through the OHV300 user interface features (keypad and display
screen).

The features of the programming interface include:

A graphical user interface
Event handlers

Symbol decoding

Host communications

Local data storage
B Handheld configuration
In support of these features, the environment defines the following objects:

B gui

B reader
B storage
H comm

Using these features, you can create robust, interactive, and sophisticated user
applications.

A script can be made the default application using the configuration utility, or it may be run
from the configuration utility without making it the default.

Note!
The default application allows scripts to be run by host command or configuration code scan;
the command is “Irun:scriptName.js” (using your own scriptName).

Simplicity
The “Hello World!” application is traditionally the first application presented in a

programming guide. It is an easy to code and understand application that illustrates how
the programming environment works.

In its simplest form, the “Hello World!” application in the OHV300 environment sends text
to the display. With the following single line of code, you can display “Hello World!” in the
screen defined by the standard OHV300 gui object (section 4.1).

gui.show (new gui.Text("Hello World!"));

Execution of this script displays the image shown in Figure 1.

F3PEPPERL+FUCHS

. Programming Concepts

3.2

15

[—10

Hello World!

Figure 1 - Hello World Application

Note!

The text is displayed in a text box control with a scroll bar to the right as defined by the
OHV300 gui object.

The OHV300 gui Object

The OHV300 application development environment defines a standard GUI display for
application software (Figure 2). The display supports simple prompts and data entry.

Status Bar
Display Area

LF: Key Rt Key
Figure 2 - The Standard GUI Display

The standard display consists of a status bar, a display area, and labels for the left and
right software programmable keys (softkeys) at the top of the OHV300 key pad (see Figure
6).

The scroll bar on the right side of the screen indicates the relative position within the
displayed object as the operator scrolls through forms, menus, or text using the up and
down keys on the keypad. This scrolling feature allows the application to display objects
larger than the display area.

Use the gui interface to develop forms and menus applications, and use the “show”
methods to display them.

F3PEPPERL+FUCHS

. Programming Concepts

3.2.1

3.2.2

16

Softkey Implementation

Softkeys are general purpose, programmable keys. The softkeys are independent of the
GUI display. The gui.showForm, gui.showMenu, and gui.showSubmenu methods include
softkey definitions appropriate for the implementation.

The following example shows the basic approach to programming the softkeys and
implementing their event handlers.

// define send-key functions used by common softkeys
function sendEnter() { gui.sendKey(gui.key.enter); }
function sendEscape() { gui.sendKey(gui.key.escape); }

// create some common softkeys

var selectSoftkey = new gui.Softkey("Select", sendEnter);
var okSoftkey = new gui.Softkey ("OK", sendEnter) ;
var backSoftkey = new gui.Softkey ("Back", sendEscape) ;
var cancelSoftkey = new gui.Softkey("Cancel", sendEscape) ;

See section 0 (gui object) for more information.

Forms

Forms are the building blocks of your application. Each form represents a set of actions
you want to present to the user on screen.

Use the gui.Form object (section 4.2.3.3) to define the forms for your application. Section
4.2.3 defines the form object and several constructors that you can use to create controls
on your application form.

The following examples demonstrate how to create a form. The event handler functions
need to be defined for your application.

// JavaScript Form Demo Script Document
// form event handlers

function myFormOnOk () {/* processing code (example: save the
Employee #) */}

function myFormOnCancel () {/* processing code (example: return to
main menu) */}

// create the form object

var myForm = new gui.Form(myFormOnOk, myFormOnCancel) ;
// create the edit control

var edit = new gui.Edit("");

// create the label control

var label = new gui.Label ("Employee #:");

// position the controls on the form

F3PEPPERL+FUCHS

. Programming Concepts

3.2.3

17

myForm. append (label) ;

myForm. append (edit) ;

// Create the caption that will appear on the status bar
myForm.caption = "form demo";

// show the form

gui.showForm (myForm) ;

When the Form Demo Script runs, the OHV300 displays the following image:

form demo
Employee #:

Cancel
Figure 3 - Form Demo Display

The user enters an employee number into the edit control and presses the left button (OK)
to submit the data.

Menus

Use the gui.Menu object (section 4.2.3.6) to define the menus for your application. Use the
gui.Menultem constructor to define the controls in the menu. Each control has an
associated onClick property that defines the function of the OHV300.

The following example demonstrates how to build and display menus and submenus.

// JavaScript Menu Demo Script Document
// menu event handlers
function onTimeCard () {alert (postAlertFunc, "TimeCard") ;}
function onInventory ()
{
gui.showSubMenu (subMenu, myMenu) ;
}
function onCapital () {alert(postAlertFunc, "capital");}
function onStock () {alert(postAlertFunc, "stock");}
// create menu objects
var myMenu = new gui.Menu() ;
var subMenu = new gui.Menu();
// create menu entries

var timeCardApp =

F3PEPPERL+FUCHS

. Programming Concepts

new gui.MenulItem("Time Card", onTimeCard) ;
var inventoryApp =

new gui.MenuItem("Inventory", onInventory)
var separator =

new gui.Separator(l, gui.separatorStyle.horizontalLine) ;
myMenu.caption = "menu demo";
subMenu.caption = "subMenu demo";
// create subMenu entries
var capital =

new gui.MenuItem("Capital", onCapital);
var stock =

new gui.Menultem("Stock", onStock) ;
// position the controls on the menus
myMenu. append (separator) ;
myMenu. append (inventoryApp) ;
myMenu . append (timeCardApp) ;
subMenu. append (capital) ;
subMenu. append (stock) ;

//Specify a child to be selected when the menu is displayed
(optional)

myMenu.setActiveChild (inventory2App) ;
subMenu.setActiveChild (capital) ;

// set the caption text for the status bar
myMenu.caption = "menu demo";

// show the menu

gui.showMenu (myMenu) ;

When the Menu Demo application is initiated, the OHV300 displays the following image:

menu demo
Inventory
Time Card

Figure 4 - Menu Demo Display

18 F3PEPPERL+FUCHS

. Programming Concepts

3.2.4

3.3

19

The Select button sends gui.softkey.enter to run the highlighted application. In this
example, the Inventory option is selected. The script then displays the Inventory submenu
shown in Figure 5.

subMenu demo
Capital

Select

Figure 5 - Sub Menu Demo Display

Text

Use the gui.Text object (section 4.2.3.11) to show text. Text may exceed the display area,
toggling the arrow buttons to view all data. This should not be used to control text within
menus or forms.

Event

The JavaScript environment is event driven. The reader firmware waits for an event such
as a pressed key. The application gains control of an event by setting an object's event
properties to functions. Events include:

send and receive of communications packets

decode operations

pressed keys

command execution
B change of reader mode (idle, standby, and power down)
An application gains control only when:

B The reader application defines an event property.
B The application creates a function and assigns it to the event property.
B The event occurs.

The application can disable an event by setting the event property to null.

F3PEPPERL+FUCHS

. Programming Concepts

3.3.1 Decode Events

The reader object defines an event onDecode. Section 4.3.2.3 discusses decode events.
Example:

var numDecodes = 0;

var numDecodesProcessed = 0;

reader.onDecodeAttempt = function (count)
{
numDecodes = count;

numDecodesProcessed = 0;

}

reader.onDecode = function (decode)

{

if (++numDecodesProcessed < numDecodes)
{

// process individual decode, save in variables, etc.

// process the whole set, using saved variables, etc.

20 F3PEPPERL+FUCHS

. Programming Concepts

3.3.2 Key Events

The clear, enter, and left and right buttons (softkeys) can be programmed to seamlessly
integrate with user specific events.

The possibilities are shown in Table 1. The GUI objects are documented in section 4.2.3.

(u

JOISS

O— 1@
Ol
L ®

0000
0000

(

(

Figure 6 - OHV300 Keypad
1. Left Softkey

2. Right Softkey

3. Clear/Escape Button

4. Enter Button

Table 1 - Keys to Event Mapping

Key Object Event Handler Property
Enter — button located in the gui.Form onOk
center of the arrow keys gui.Menu onok
gui.Text onOk
gui.Button onClick
gui.Menultem onClick
Clear — bottom right button gui.Form onCancel
gui.Menu onCancel
gui.Text onCancel
Left Button — top left soft key gui onClick
Right Button — top right soft key gui onClick

21 F3PEPPERL+FUCHS

. Programming Concepts

3.3.3

3.4

22

Key Object Event Handler Property
Any Other Buttons gui.Form onKey

gui.Menu onKey

gui.Text onKey

Command Execution

The reader application defines a number of commands that can be sent to the firmware
from the host or by reading codes. The reader (section 4.3) defines an event by the
onCommand function. If onCommand is set, the reader finds the specified event before
running the command and transmitting the data.

Reader Configuration

The configuration settings define the active capabilities of the handheld. The application
development environment defines the reader object (section 4.3), which contains
methods for manipulating handheld settings. The Interface Configuration Document
defines the configuration items and the values that can be set for each item.

The application developer can dynamically change the active settings by using the
reader.writeSetting method. This method changes the operational value of the
setting, but that value is lost when the reader is turned off. The current values of all settings
can be saved by using the reader.saveSettings method, which writes the current
values of the settings to flash memory from where they are restored on power up.

Example:

reader.writeSetting (0xlb, 4);
gui.confirm(yesFunc, noFunc, "Setting changed.\n\nSave now? ",
"Setting Change")
//This function will be called if user presses Yes softkey
yesFunc = function() ({
if (!'reader.saveSettings())
alert (postAlertFunc, "Error Saving Settings") ;
}

Retrieve the current value of a setting by using the reader.readSetting method.
Restore factory default settings by using the reader.defaultSettings method.

F3PEPPERL+FUCHS

. Programming Concepts

3.5

23

Symbol Decoding

The primary function of the OHV300 is scanning, decoding, and processing one-
dimensional and two-dimensional barcodes. The reader can read a wide range of code
types, or symbologies, and provide access to the data after decoding. The reader decodes
in one of two ways:

B Pressing the read key on the key pad.

B A decode command from the reader.processCommand method.

The reader.onDecode defines an event that allows the application to access data.
To program the OHV300 to scan and transmit data, follow the below commands.

function onDecode (decode)

{

// Processing

}

reader.onDecode = onDecode;

There are four basic options for decoding scanned data:

B Process the data in the script, such as fill in form fields, and return null.

B Letthe data be further processed by the handheld firmware, typically for sending
and/or storing, by returning decode.

B Transform the data and let the handheld firmware process the changed data by
setting decode.data as necessary and returning decode.

B Invalidate the decode by returning false. The handheld will act as though the decode
never occurred.

The following pseudocode presents an example of decode processing addressing the four
options. The example transforms decode data based on certain symbologies. Then the
example checks the format of the decode data to determine the next processing steps.

Subsections following the pseudocode discuss the processing steps in the following
example.

F3PEPPERL+FUCHS

. Programming Concepts

Example:

function onDecode (decode)
{
data = decode.data;
if (decode.symbology == some-special-symbology)
{
data = transformed decode.data;
}
else if (decode.symbology

== some-other-special-symbology)

data = differently transformed decode.data;
}
if (data matches employee-badge format)
{
loginForm.employeeField. text = decode.data;
loginForm.pinField.text = "";
gui.showForm(loginForm) ;
return null;
}
else if (data matches part-number format)
{
stockForm.partField. text = decode.data;
gui.showForm(stockForm) ;
return null;
}
else if (data matches shelf-number format)
{
stockForm.shelfField. text = decode.data;
gui.showForm(stockForm) ;
return null;
}
else if (data matches wrong formats)
{

warning.text = "bad code for this application";

24 F3PEPPERL+FUCHS

. Programming Concepts

3.5.1

25

[0

gui.showForm(warning) ;
return null;
}
else if (data matches format that is to be ignored)
{
return false; // invalidate the decode
}
else // code should be processed by handheld firmware
{
if (code should be processed

with transformed data)

decode.data = data; // replace the data field
// with transformed data
}

return decode;

}

Transform Data by Symbology

Barcodes read by the handheld are encoded in unique symbologies. Particularly within
two-dimensional codes, common data items may be present in different locations within
the decode depending on the encoding symbology. In the example, line 5 checks the value
of decode.symbology and transforms the decode data to a common format. To check
symbology, compare decode.symbology against the symbology codes documented in the
Interface Configuration Document.

Note!

Sometimes symbology is used to distinguish otherwise like-formatted data; for example, shelf
tags may have the same number of digits as UPC codes for the products on the shelves, but
have different barcode symbologies that can be used to determine whether the decode is a
shelf tag or a product UPC code.

F3PEPPERL+FUCHS

. Programming Concepts

3.5.2

26

Evaluate Data Format

After the data is converted into a common data format based on the symbology, the
application determines the data format and processes according to data content.

if (data matches employee-badge format)

{
loginForm.employeeField. text = decode.data;
loginForm.pinField.text = "";
gui.showForm(loginForm) ;
return null;

}

else if data matches part-number format
{
stockForm.partField. text = decode.data;
gui.showForm(stockForm) ;
return null;
}
else if (data matches shelf-number format)
{
stockForm.shelfField. text = decode.data;
gui.showForm(stockForm) ;
return null;

}

The previous statements from the example demonstrate the processing of data within the
decode handler. Based on the data format, the application program extracts data from the
decode and displays appropriate forms.

These examples execute a return null statement to consume the decode for the specified
data formats.

F3PEPPERL+FUCHS

. Programming Concepts

3.5.3

[—10

3.5.4

27

Detect Format Errors

If the format matches a known format that should not be used in the current application
context, the application can send a warning message, which is displayed in "warning"
form.

else if data matches wrong formats

{
warning.text = "bad code for this application";
gui.showForm(warning) ;
return null;

}

In this case, the example returns a nul1l to consume the decode.

Note!

Donotcode alert, confirm, or prompt, either as functions or as gui methods, in an
onDecode or onCommand event handler. The events originate in the handheld firmware,
resulting from decodes, commands, or communication events. While the event handler is
running, the main application is held idle until the event handler returns. If the event handler is
waiting for the user to finish with alert, confirm, or prompt, the main application will be
forced to wait as well, resulting in timeout errors.

Let the Handheld Process the Decode

If you want the handheld to process the decode, set the decode as the return statement
parameter. If you have changed decode data and want the changes available to the
handheld, set the appropriate data field in the decode to the changed value before
returning the decode.

else // code should be processed by handheld firmware

{

if (code should be processed

with transformed data)
{
decode.data = data; // replace the data field
// with transformed data

}

return decode;
}

F3PEPPERL+FUCHS

. Programming Concepts

3.5.5 Ignore the Decode

You can ignore a particular format by exiting the function with a return value of false as
shown in the following code segment from the example.

else if (data matches format that is to be ignored)

{

return false; // invalidate the decode
}
Note!

Normally, the handheld will sound a good-decode beep at the end of decode processing. If
you do not want invalidated decodes to cause the usual good-decode beep in the handheld
firmware, you must configure the reader to process the decodes via JavaScript before
beeping. Then the handheld will only beep if there is at least one decode that is not invalidated.
For more information, refer to the Interface Configuration Document.

[—10

If your reader . onDecode function returns false, you should configure the handheld to
beep upon decode error.

3.5.6 Determine the Orientation of the Decode

You can determine the orientation of a code by using the bounds array. The bounds array
has four elements that can be used to give the coordinates of the four corners of the code
(the origin is the center of the decode field):

decode.bounds[0].x, decode.bounds[0].y) = coordinates of top right corner

m(
B (decode.bounds[1].x, decode.bounds[1].y) = coordinates of top left corner
B (decode.bounds[2].x, decode.bounds[2].y) = coordinates of bottom left corner

(decode.bounds[3].x, decode.bounds[3].y) = coordinates of bottom right corner

These designations (e.g. top left) refer to the corners of the symbol, not as it appears in a
particular image, but rather as it appears (most often) in its symbology specification. For
example, for Data Matrix, array element 2, which contains the coordinates of the bottom
left vertex of the symbol boundary, will always be proximate to the intersection of the two
lines which form the “L” of the symbol, regardless of the actual orientation (or mirroring) of
the symbol in the image submitted to the decoder.

In normal orientation, we would expect the signs of the coordinates to be:

decode.bounds|[0].x (-), decode.bounds[0].y (+)
decode.bounds[1].x (-), decode.bounds[1].y (-)
decode.bounds[2].x (+), decode.bounds[2].y (-)

[
[
[
B decode.bounds[3].x (+), decode.bounds[3].y (+)

28 F3PEPPERL+FUCHS

. Programming Concepts

3.6

29

[—10

A code that is not “right side up” could be rejected by exiting the function with a return
value of false as shown in the following example.

if (decode.bounds[0].x > 0 && decode.bounds[0].y < 0 &&
decode.bounds[1] .x > 0 && decode.bounds[1l].y > 0 &&
decode.bounds[2] .x < 0 && decode.bounds[2].y > 0 &&
decode.bounds[3] .x < 0 && decode.bounds[3].y < 0)

{

return false; // invalidate the decode
}
Note!

Normally, the handheld will sound a good-decode beep at the end of decode processing. If
you do not want invalidated decodes to cause the usual good-decode beep in the handheld
firmware; you must configure the reader to process the decodes via JavaScript before
beeping. Then the handheld will only beep if there is at least one decode that is not invalidated.
For more information, refer to the Interface Configuration Document.

Host Communication

The handheld application development environment defines a host communication comm
object (section 4.4.2.3) to support communications with a host resident application. For
example, Vision Configurator (section 1.4) is a host resident utility that communicates with
the handheld reader for downloading files to the handheld.

From the host computer’s view, the handheld is a serial device accessible through a serial
or USB port, or through Bluetooth Radio Frequency (RF) communications. Handheld
configuration settings define the active host communications port.

The handheld host communications implementation supports two basic styles of
communication: raw text and packets. It also supports a set of native protocols.

The application program transfers data to the host by writing to the handheld host
communications port using methods defined by the hendheld reader comm object (section
4.4.2.3). Applications gain access to data sent by the host by implementing onCommand
(and optionally onCommandFinish) event handlers defined by the handheld's reader
object properties (section 4.3) and parsing the “I” command.

F3PEPPERL+FUCHS

. Programming Concepts

Example:

reader.onCommand = function (type, data)

{
// intercept | command with app-data: prefix
if(type == '|' && data.match(/“app-data\:/))
{
return false; // Suppress the command
}
return true;
}
For more information on host communications, refer to the Interface Configuration
Document.
3.7 Data in Handheld Local Storage

The application development environment provides program access to handheld local
storage through the storage object (section 4.3.2.18). Data is maintained in storage as
named objects called files. Vision Configurator can transfer host data into a handheld
reader file. The handheld application can also store data in files.

The name of a handheld file may be 1 - 200 printable ASCII characters.

Use the erase and write methods of the storage object to manage files. Use the
findFirst and findNext methods to locate files. Use the read method to access a file
or the upload method to send it to the host.

3.8 Demo Programs

Many of the concepts discussed in this section can be found in the source code of the
demo programs.

30 F3PEPPERL+FUCHS

. Class Reference

4

4.1

411

4111

4.1.1.2

31

Class Reference

The built-in objects described in this section enable a JavaScript program to receive data
from the handheld and control its behavior.

decode

The decode object provides data and metadata on the currently decoded barcode. Since
the decode object is passed from the decode engine to the JavaScript engine, any valid
variable name can be used to hold the data. For reasons of clarity, we will use the name
decode. Other common uses seen in existing JavaScript code are d or ob7.

The properties of the decode object define the raw output of the handheld decode engine.

Properties
The following section documents the properties defined for the decode object.

data

The decode.data property is a read/write value representing the payload of the barcode
that has just been decoded. This data may also include data processing, checksum
information, or data formatting based on settings made by the user for the decode engine.
If the decode engine has no special handling settings applied, this information should
match the string that was used to encode the barcode before the barcode was printed or
displayed.

If the current JavaScript program makes a change to the data, it can be stored back into
the decode.data object in order to pass it downstream.

Example:
//remove all Group Separator characters

decode.data = decode.data.replace(/%1D/g, "");

return decode;
symbology

The decode. symbology property is a read only property that contains the symbology of
the barcode decoded by the decode engine.

Valid values for symbology are defined in 9.
Example:

//Code Symbology Identifier (38 is PDF417)
if (decode.symbology == 38)
{

//Perform action on PDF417
}

F3PEPPERL+FUCHS

. Class Reference

4113

41.1.4

4115

41.1.6

41.1.7

41.1.8

32

symbology_ex

The decode. symbology ex property is a read only property that contains extended
symbology information for the barcode decoded by the decode engine.

Valid values for symbology ex are definedin 9.
This property is seldom used, but is used in the same way as symbology.

symbologyModifier

The decode . symbologyModifier property is a read only property that contains
symbology modifier information for the barcode decoded by the decode engine.

Valid values for symbologyModifier are definedin 9.

Example:

//UPC-E

if (decode.symbology == 49 && decode.symbologyModifier == 66)

{
decode.data = "\x02E" + decode.data;

}
symbologyModifier_ex

The decode.symbologyModifier ex property is aread only property that contains
extended symbology modifier information for the barcode decoded by the decode engine.

Valid values for symbologyModifier ex are definedin 9.
This property is seldom used, but is used in the same way as symbologyModifier.

symbologyldentifier

The decode. symbologyIdentifier property is a read only property that contains the
full AIM (Automatic Identification and Mobility) information for the barcode decoded by the
decode engine. read-only string; this is the AIM identifier (“lcm”).

X

The decode. x property is a read only property that defines the horizontal position, in
pixels, of the barcode that was just decoded in relation to the entire image captured by the
reader and analyzed by the decode engine. The value for decode . x can be positive or
negative based on the fact that 0 is the center of the image.

y

The decode. y property is a read only property that defines the vertical position, in pixels,
of the barcode that was just decoded in relation to the entire image captured by the reader
and analyzed by the decode engine. The value for decode . y can be positive or negative
based on the fact that 0 is the center of the image.

F3PEPPERL+FUCHS

. Class Reference

41.1.9

4.1.1.10

4.1.1.11

41.1.12

41.1.13

41.1.14

4.1.1.15

33

time

The decode. time property is a read only property that defines the amount of time, in
milliseconds, it took the decode engine to decode the barcode that was just analyzed.

quality_percent

The decode.quality percent property is a read only property that defines an
internally-defined image quality value determined by the decode engine while analyzing
the captured image. This is not the quality of the printed or displayed barcode but rather
the quality of the captured image for use in decoding.

qrPosition

The decode.grPosition property is a read only property that gives the index of a QR
Code in a set of QR Codes that have been linked via Structured Append. More information
can be found in the QR Code specification (ISO/IEC 18004). This property is only defined if
the decode . symbology is QR Code.

qrTotal

The decode.grTotal property is a read only property that gives the count of QR Code in
a set of QR Codes that have been linked via Structured Append. More information can be
found in the QR Code specification (ISO/IEC 18004). This property is only defined if the
decode.symbology is QR Code.

qrParity

The decode.qgrParity property is a read only property that gives parity information for
QR Code in a set of QR Codes that have been linked via Structured Append. More
information can be found in the QR Code specification (ISO/IEC 18004). This property is
only defined if the decode . symbology is QR Code.

linkage

The decode. linkage property is a read only property that gives information about the
linking code between the segments that make up a composite barcode, if a composite
barcode was just decoded by the decode engine. This property is nul1l if the decoded
barcode was not a composite barcode.

bounds

The decode .bounds property is an array of four sets of x and y coordinates that give
information about the position of the last decoded barcode. The four points (x, y) indicate
the position in pixels of the four corners of the barcode from the upper left (0, 0) position in
the captured image as integers. Be aware, in some readers the image is rotated 90°.

//The x and y coordinates of the top right corner of the barcode
in the image:

pos.tR = (decode.bounds[0].x, decode.bounds[0].y)

//The x and y coordinates of the top left corner of the barcode in
the image:

F3PEPPERL+FUCHS

. Class Reference

4.1.1.16

41.1.17

4.1.1.18

34

pos.tL = (decode.bounds[l].x, decode.bounds[1].y)

//The x and y coordinates of the bottom left corner of the barcode
in the image:

pos.bL = (decode.bounds[2].x, decode.bounds[2].y)

//The x and y coordinates of the bottom right corner of the
barcode in the image:

pos.bR = (decode.bounds[3].x, decode.bounds[3].y)
numExtraFields

This property is for internal use only.

decoderType

The decode.decoderType property is a read only property that gives information about
the decoder that was used to capture data from the last barcode decode process. This
property is only relevant if a 3™ party decoder has been implemented.

A decode.decoderType value of 1 indicates that the decoder decoded the last barcode.
A value of 0 indicates that the decoder is unknown. Other values may be introduced at any
time.

aimSymbology

The decode.aimSymbology property is a read only property that gives the first character
of the AIM (Automatic Identification and Mobility) symbology determined by the decode
engine of the barcode that was just decoded. More information on AIM Standards can be
found at the Association for Automatic Identification & Mobility web site:
http://www.aimglobal.org/

The following example illustrates a translation from the AIM standard to a different system
used in-house by a customer:

var newSymbol;

aimSymbol = String.fromCharCode (decode.aimSymbology) ;
switch(aimSymbol)

{

case "E":

newSymbol = "A";

break;

case "A":

newSymbol = "B";

break;

case "F":

newSymbol = "C";

break;

F3PEPPERL+FUCHS

. Class Reference

4.1.1.19

4.1.1.20

35

default:

newSymbol = aimSymbol

}

return newSymbol + decode.data;

aimModifier

The decode.aimModifier property is a read only property that gives the AIM
(Automatic Identification and Mobility) Modifier determined by the decode engine of the
barcode that was just decoded. More information on AIM Standards can be found at the
Association for Automatic Identification & Mobility web site: http://www.aimglobal.org/

decodeOutputFormat

The decode.decodeOutputFormat property is a read only property that gives the type
of output the JavaScript should expect.

Value Definition
0 Raw output — no formatting applied by the decoder

1 Customer formatted data — This is formatting applied from a customer-
supplied .parse file.

2 JSON formatted data — This is data formatted in JavaScript Object Notation
(JSON). Currently, only DL/ID data can be formatted in JSON by the
decoder. For more information about JSON, see JSON.org

F3PEPPERL+FUCHS

. Class Reference

4.2

4.2.1

4211

36

gui

The gui object provides application programming access to the OHV300 display screen.
The OHV300 application development environment defines a standard software GUI
format (section 4.2.3) consisting of a status bar, a display area, and labels for the left and
right software programmable keys (softkeys) on the OHV300 key pad.

The properties, methods, and classes of the gui object support the development of
graphical user interfaces in custom software applications.

Methods
The following section documents the methods defined for the OHV300 gui object.

alert

The gui.alert function displays text in the display area of the standard GUI display. Do not
call this function within onDecode and onCommand event handlers.

Format:

gui.alert(func, text, title);

Where:

func - function name; function to be called after displaying the alert. This function does
not take any arguments and returns void.

text — string; text to display as the alert.
title - string; text to display in the gui object status bar; defaults to “Alert.”

Processing suspends until the operator presses an enter key — either the enter key or the
left softkey defined as OK. Once the operator presses the enter key, it calls the provided
function to continue processing.

Example:

gui.alert (samplefunction, "Status Alert", "gui.alert example") ;

Displays the alert shown in Figure 7 and waits until the operator presses the enter key or
the left softkey (OK). Once the operator presses a key, it calls samplefunction() to
continue.

Status Alert

Figure 7 - gui.alert Example

F3PEPPERL+FUCHS

. Class Reference

4.2.1.2

37

confirm

The gui.confirm function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:

gui.confirm(yesFunc, noFunc, text, title,
leftSoftkeyLabel, rightSoftkeylabel) ;
Where:

yesFunc - function name; function to be called when the confirm receives left softkey.
This function does not take any arguments and returns void.

noFunc - function name; function to be called when the confirm receives right softkey.
This function does not take any arguments and returns void.

text — string; text to display for confirmation.

title - string; text to display in the gui object status bar; defaults to “Confirm.”
leftSoftkeyLabel - string; text to use as label for the left softkey (default is "Yes").
rightSoftkeyLabel —string; text to use as label for the right softkey (default is "No").
Processing suspends until the operator presses an enter key or cancel key.

Example:

gui.confirm(onYesClick, onNoClick, "Exit?", "guiConfirm") ;

Displays the confirm dialog shown in Figure 8 and waits until the operator presses the
enter key or the left softkey. If operator presses Yes key, it calls onYesClick function. If
operator presses No key, it calls onNoClick function to continue processing.

uiConfirm

Figure 8 - gui.Confirm Example

F3PEPPERL+FUCHS

. Class Reference

4213 prompt

The gui.prompt function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:
gui.prompt (func, text, initial, title);
Where:

func - function name. Function to be called when prompt receives an enter key. The
function takes one argument named result and returns void.

result —string; This is the argument to the function. It provides contents of the edit
control if the prompt receives an enter key (either the enter key or the left softkey defined
as OK); null if the prompt receives the right softkey defined as Cancel.

text — string; text to display as a label above a gui.Edit control.

initial - string; the initial string to display as the contents of edit control; default is an
empty string.

title —string; text to display in the gui object status bar; defaults to “Prompt”.

Processing suspends until the operator presses an enter key or Cancel key. The operator
can key new data into the edit control before pressing enter or the left softkey.

Example:

gui.prompt (postPromptFunc, "Enter login ID", "None",
"guiPrompt") ;

Displays the prompt shown in Figure 9 — gui.Prompt Example.

Enter login ID

Figure 9 - gui.Prompt Example
The postPromptFunc would be defined as follows

postPromptFunc = function(string) {
//Continue after prompt..
}

38 F3PEPPERL+FUCHS

. Class Reference

The value of string depends on the operator action.

B |f the operator presses the right softkey (Cancel), the value of stringis null.

B [f the operator presses the “enter” key or the left softkey (OK) the value of stringis:

4214 putBox

<new content> if the operator changes the contents of the edit control

"None" if the operator does not change the content.

The gui.putBox method allows graphical boxes to be painted to the display.

Format:

gui.putBox(x, y, xEnd, yEnd, backgroundColor, type)

Where:

x — defines the starting x coordinate.
y — defines the starting y coordinate.
xEnd - defines the width of the box

yEnd - defines the height of the box

backgroundColor — defines a color represented in RGB565 format to fill the box region.

type — defines the type of box.

Following box types are supported:

1.

o o c 0 N

Flat

Raised
Lowered

Half Lowered
Ridged
Scribed

Example:

red

green

gui.putBox (0, 14, 120, 14, red

gui.putBox (0, 28,

39

0xF800;

0x01EOQ;

, 1); //box type flat

120, 14, green, 2); //box type raised

F3PEPPERL+FUCHS

. Class Reference

4215

4.2.1.6

4.21.7

40

sendKey

The gui.sendKey method sends a “pressed key” indication to the OHV300 firmware as
though it came from OHV300 keypad.

Format:

result = gui.sendKey (key) ;
Where:

key — number constant; the key to send. Use number constants defined in section 0.

result — Boolean; true if successful; false if not, which usually means the keypad is
locked but can also mean that the key buffer is full.

Example:

gui.sendKey (enter) ;

Sends the enter key event to the OHV300 firmware as though the operator had pressed
the enter key.

sendText

The gui.sendText method sends a text string to the OHV300 gui object as though it had
been entered from the keypad.

Format:

result = gui.sendText (text) ;

Where:
text — string; the text to send.

result — Boolean; false if all specified text could not be sent to the GUI (in which case,
none of it will have been sent); otherwise, true.

Example:

reader.onDecode =

function (decode) { gui.sendText (decode.data); }

Sends all decode data to the gui object as though it had been entered from the keypad.
show

The gui.show method instructs the OHV300 to write the specified form, menu, or text
object to the OHV300 display as a standard gui object (section 4.2.3).

This low level approach is not recommended for use in most applications. Instead, we
recommend that you use the gui.showForm, gui.showMenu, and gui . showSubMenu
methods.

Format:

gui.show(object) ;

F3PEPPERL+FUCHS

. Class Reference

4.2.1.8

4.2.1.9

41

Where:

object — object to show on the display. The object must be a gui.Form, gui.Menu, or
gui.Text object (section 4.2.3).

Note: This method does not return a value.

showForm

The gui . showForm method instructs the OHV300 to display the specified form on the
OHV300 display as a standard gui object (section 4.2.3).

Format:

gui.showForm(yourForm) ;

Where:

yourForm — form object to show on the display; the object must be a gui.Form object
(section 4.2.3.3).

Note: This method does not return a value.
To insert a caption into the status bar, set the yourForm.caption property.

By default, the left software programmable key is set to gui.okSoftkey (section 4.2.4.3).
You may also define a custom leftSoftkey for your form object, e.g., yourForm.leftSoftkey =
yourSoftkey, in which case gui.showForm will use your softkey.

By default, the right software programmable key is set to gui.cancelSoftkey (section
4.2.4.2). You may also define a custom rightSoftkey for your form object.

showMenu

The gui . showMenu method instructs the OHV300 to display the specified menu on the
OHV300 display as a standard gui object (section 4.2.3). This menu is the top level menu;
sub-menus can be created using the gui . showSubMenu method.

Format:

gui.showMenu (yourMenu) ;

Where:

yourMenu — menu object to show on the display. The object must be a gui.Menu object
(section 4.2.3.6).

Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu.caption property.

This method sets the left software programmable key to gui.selectSoftkey (section
4.24.4).

This method sets the right software programmable key to gui.backSoftkey (section 4.2.4.1)
if the yourMenu.onCancel property is set; otherwise, null.

F3PEPPERL+FUCHS

. Class Reference

4.2.1.10 showSubMenu

The gui . showSubMenu method instructs the OHV300 to display the specified menu on
the OHV300 display as a standard gui object (section 4.2.3).

Format:

gui.showSubMenu (yourMenu, parentMenu) ;

Where:

yourMenu — menu object to show on the display. The object must be a gui . Menu object
(section 4.2.3.6).

parentMenu — parent menu to display in response to gui .backSoftkey.
Note: This method does not return a value.
To insert a caption into the status bar, set the yourMenu. caption property.

This method sets the left software programmable key to gui.selectSoftkey (section
4.2.4.4).

This method sets the right software programmable key to gui .backSoftkey (section
4.2.4.1) and sets the menu object’s onCancel property to a function that shows the parent
menu.

4.2.1.11 splash and clearSplash

The gui . splash method displays an image on the OHV300 screen. The gui.splash
function should be used in conjunction with the setTimeout function. The setTimeout
function will suspend execution for a provided timeout value. Once the timeout specified in
the setTimeout function expires, it will call the function specified in the setTimeout to
continue execution.

Format:
gui.splash(imageName, stringText);

setTimeout (func, timeout ms);

Where:
imageName — string; the name of the image file to display (section 4.2.3.4).

stringText — string; the text string to be displayed below the image in the softkey area of the
display.

func - function; the name of the function to be called after timeout.

timeout ms —number; the number of milliseconds to wait before timeout of the splash
display.

42 F3PEPPERL+FUCHS

. Class Reference

4.2.1.12

4.2.2

4.2.2.1

43

Example:
gui.splash(“CorplLogo.img”, "“Version 17”);
setTimeout (postSplashfunc, 2000) ;

displays a corporate logo image and the text “Version 1” on the display. Then, it sets a
timeout of 2 seconds. Once, the timer expires, postSplashfunc is called to continue
execution.

The first thing you need to do in the postSplashfuncistocall gui.clearSplash
method. This function will clear the image from the OHV300 screen. The
gui.clearSplash method should only be called after calling gui . splash method.

The OHV300 supports only its native format, which uses the extension .img. The image
must be 128x128 pixels (for splash screen only). Images are not cropped; they will either
display in their entirety or will not display at all.

sync

The gui.sync method causes the display to be updated immediately.

Format:

gui.sync() ;

Where:

result —no return, GUI display is updated.

Properties

The following section documents the properties defined for the OHV300 gui object.
inputMode

The gui . inputMode object contains constants that define input modes for the OHV300.
The constant definitions are:

gui.inputMode.numeric
gui.inputMode.caps
gui.inputMode.lowerCase
gui.inputMode.symbols

The character sets defined for these modes are described in 6.

F3PEPPERL+FUCHS

. Class Reference

4.2.2.2 key

The gui.key property is a read-only object containing number constants specifying keys
for use with the gui . sendkKey method. The constants are named:

up

down

left

right

enter

back (“CLEAR” on the keypad)
escape

home

end

leftSoftkey
B rightSoftkey

Constants escape, home, and end have no keypad counterpart.

Constants 1leftSoftkey and rightSoftkey represent the left and right software
programmable keys on the OHV300.

4.2.2.3 leftSoftkey

The gui.leftSoftkey property identifies an event handler for the onC1ick property of
a gui.Softkey object and the key label, associated with the left programmable key on
the OHV300. The application program defines a gui . Softkey object. See the example in
section 0

Setting gui.leftSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui . showMenu, gui . showSubMenu, and
gui.showForm methods, the gui.leftSoftkey property is set automatically.

4224 rightSoftkey

The gui.rightSoftkey property identifies an event handler for the onC1ick property
of a gui.Softkey object and the key label, associated with the right programmable key
on the OHV300. The application program defines a gui.Softkey object. See the
example in section 0.

Setting gui.rightSoftkey to null disassociates the softkey object from the property
(removing the event handler and the softkey label).

When menus and forms are shown using the gui . showMenu, gui . showSubMenu, and
gui.showForm methods, the gui.rightSoftkey property is set automatically.

44 F3PEPPERL+FUCHS

. Class Reference

4225

4.2.3

4.2.3.1

45

statusText

The gui.statusText property is a string that specifies text for display in the status bar at
the top of a OHV300 GUI screen. When gui . status is null, the OHV300 displays status
icons in the status bar. Note: The input mode icon will always be displayed in addition to
the status text when an edit control is active.

With menus and forms, use the caption property (section 4.2.6.1) to automatically set
gui.statusText when the menu or form is shown.

Objects

The OHV300 application development environment provides the user classes described in
this section for use in building forms for the OHV300 gui object. The instances of these
classes are referred to as controls in this document.

gui.Button

The gui.Button constructor creates a button control for a GUI form. The onClick event
handler is called when the enter key on the OHV300 keypad is pressed and the button
control is active. Program the function to return Boolean true if the control’s default
processing of the key should continue. Otherwise, program the function to return false;
the control will act as if not clicked.

Format:

var <button_name> =
new gui.Button(text, onClick);

Where:
<button name> - program-provided button control.

text — string; a label for the button. This property can be changed after the object is
created.

onC11ick - function for handling the button click event. The OHV300 calls this function
when the operator presses the OK enter key on the OHV300 keypad when the GUI button
is the active control.

Example:

// button control event handler

function rFOnClick () {reader.writeSetting (0x1lb, 4);}
function rs2320nClick () {reader.writeSetting(0Oxlb, 1) ;}
// create the form object

var myForm = new gui.Form() ;

// create the button

var rfButton = new gui.Button("RF Comm", RFOnClick) ;

var rs232Button = new gui.Button("RS232 Comm", RS2320nClick) ;

F3PEPPERL+FUCHS

. Class Reference

4.2.3.2

46

// position the controls on the form
myForm. append (rfButton) ;

myForm. append (rs232Button) ;

// Place text on the status bar
gui.statusText = "button demo";

// show the form

gui.showForm (myForm) ;

Displays the form shown in Figure 10.

button demo
RF Comm

Figure 10 - Button Demo

When the operator presses the left softkey or the enter key when the control labeled “RF
Comm” is active, the script executes a reader.writeSettings method to set the
communications mode setting to RF (Bluetooth). When the “RS232 Comm” control is
active and the operator presses the key, the script executes a reader.writeSettings
method to set the communications mode setting to RS232.

Note: The active control is highlighted.
gui.Edit

The gui.Edit constructor creates an edit control for a GUI form. The OHV300 operator can
enter data into the edit control.

Format:

var <edit name> =

new gui.Edit(text, defaultInputMode, validInputModes, onChar,
readOnly) ;

Where:
<edit name> - program-provided edit control.

text — string; the initial value for the edit control. The control contains text when it is first
displayed on the gui object. This property can be changed after the object is created.

defaultInputMode — number; the input mode that is selected when the user navigates
to the edit control and enters data. Modes are defined by gui . inputMode (section
4.2.2.1).

Note: The user can change to another input mode using the shift key.

F3PEPPERL+FUCHS

. Class Reference

47

validInputModes —number; a bitwise combination of input modes as defined by
gui.inputMode (section 4.2.2.1); defines the input modes that are valid in the edit
control.

onChar - function; the function to run when a character is entered into an edit control.

readOnly — Boolean; false allows the text to be changed by the user, true prevents the
text from being changed.

Example:

function quit() { reader.runScript(".default.js"); }

var form = new gui.Form(null, quit);

form.Caption = "Input Modes";

form.append (new gui.Edit("Num, any",
gui.inputMode.numeric)) ;

form.append (new gui.Edit("CAP, any",
gui.inputMode.caps)) ;

form.append (new gui.Edit("Num, only",
gui.inputMode.numeric,
gui.inputMode.numeric)) ;

form. append (new gui.Edit("CAP, U/l Case",
gui.inputMode.caps,
gui.inputMode. caps
| gui.inputMode.lowerCase)) ;

gui.showForm(form) ;

Displays the form shown in Figure 11.

Input Modes [1]
Num, any
ICAP, any
INum, only

ICAP, Ufl Case

Figure 11 -- Input Modes Example

Example: The following example shows how to use onChar property of the Edit control.
The onChar property specifies a function which will run every time a character is entered.
The function returns either TRUE or FALSE. The user input is appended to the edit control
ONLY if the specified function returns FALSE.

F3PEPPERL+FUCHS

. Class Reference

For example, if you want the user input to not exceed 100, you could do it as shown below:

4.23.3

48

var usr_input = "";
var Quantity = new gui.Edit("", gui.inputMode.numeric,
gui.inputMode.numeric, maxValue) ;
function maxValue (data)
{
usr_input += data;
if (parselnt(usr_input) > 99)
{
reader.beep (3) ;
Quantity.text = "";
usr_input = "";
return true;
}

return false;

}

The text in each edit control identifies the default input mode of the control and the modes
which are enabled for the shift key.

gui.Form

The gui . Form constructor creates a Form object for the OHV300 GUI. The gui.Form
constructor defines three event handlers for key events. Event handlers are null if not
specified.

The following controls can be used in a form:
gui.Button

gui.ToggleButton

gui.Edit

gui.Image

gui.Label
B gui.Separator

Form controls must be appended (section 4.2.5.1) or prepended (section 4.2.5.2) to the
form object.

Format:

var <form name> = new gui.Form(onOk, onCancel, onKey);

F3PEPPERL+FUCHS

. Class Reference

4.2.3.4

49

Where:
<form name> — program-provided form control.

onOk - function for handling the enter key. The OHV300 calls this function when the
operator presses the enter key on the OHV300 keypad and the active control is not a
button.

onCancel - function for handling the CLEAR key. The OHV300 calls this function when
the operator presses the key on the OHV300 keypad and the active control is notan edit
control. This function is also called when the escape key is issued as a softkey.

onKey —function for handling any key, soft or real, not consumed by the active control
(section 4.2.6.2).

To add a label to the form in the status area, set the form's caption property to a string
containing the label.

Example:
See section 3.2.2.
gui.lmage

The gui . Image constructor creates an image object that can be displayed in the OHV300
GUI form.

Format:

var <image name> = new gui.image (name) ;

Where:

<image name> — program-provided image control.

name — string; the name of an image file in file storage (section 4.2.3.4).
Example:

var myForm = new gui.Form();

var image = new gui.Image ("MyImage.img") ;

myForm. append (image) ;

gui.showForm (myForm) ;

The image can be up to 128x128 pixels depending on the form. Images are not cropped;

they either display in their entirety or do not display at all.

The image file format is specific to the OHV300.

F3PEPPERL+FUCHS

. Class Reference

4.2.35

4.2.3.6

50

gui.Label

The gui .Label constructor creates a label control that can be displayed in the OHV300
GUI menu or form.

Format:

var <label name> = new gui.Label (text);
Where:

<label name> - program-provided label control.

text — string; the text to be displayed as a label. This property can be changed after the
object is created.

Example:
See the form example in section 3.2.2.

gui.Menu

The gui.Menu constructor creates a menu object for the OHV300 GUI. The gui.Menu
constructor defines three event handlers for key events. Event handlers are null if not
specified.

The following controls can be used in a menu:
B gui.Menultem
B gui.Separator

B gui.ToggleButton

Menu controls must be appended (section 4.2.5.1) or prepended (section 4.2.5.2) to the
menu object.

Format:

var <menu name> = new gui.Menu(onOk, onCancel, onKey);

Where:
<menu_name> — program-provided menu.

onOk — function for handling the enter key. The OHV300 calls this function when the
operator presses the enter key on the OHV300 keypad when the active control is not a
button.

onCancel - function for handling the CLEAR key. The OHV300 calls this function when
the operator presses the CLEAR key on the OHV300 keypad and the active control is not
an edit control. This function also is called when the escape virtual key is issued (typically
by a softkey).

onKey —function for handling any key, soft or real, not consumed by the active control
(section 4.2.6.2).

Example: See the menus example in section 3.2.3.

F3PEPPERL+FUCHS

. Class Reference

4.2.3.7 gui.Menultem

The gui .MenuTltem constructor creates a MenuI tem control for display in a OHV300 GUI
menu. The onC1ick processing function is called when the enter key on the OHV300
keypad is pressed and the MenuItem control is active.

Format:

var <menultemItem name> =
new gui.Menultem(text, onClick) ;

Where:
<menultem name> - program-provided MenuItem control.
text — string; a label for the MenuTItem.

onClick - function for handling the MenuItem. The OHV300 calls this function when the
operator presses the enter key on the OHV300 keypad when the MenuItem is the active
control. Code the function to return Boolean t rue if the control's default processing of the
key should continue. Otherwise, code the function to return false; the control will act as if
not clicked.

Example:
See section 3.2.3.

4.2.3.8 gui.MultiLineEdit

The gui .MultilLineEdit constructor creates a multiple line edit control for the GUI
screen. The OHV300 operator can enter data into the multiple line edit control. The
gui.MultilLineEdit constructor consumes the entire GUI screen, so it cannot be
appended/prepended to a menu or form. To access a multiple line edit control from a
menu

Format:

var <multiLineEdit name> =

new gui.MultiLineEdit(text, defaultInputMode, validInputModes,
onChar) ;

Where:
<edit name> - program-provided multiple line edit control.

text — string; the initial value for the multiple line edit control. The control contains text
when it is first displayed on the gui screen. This property can be changed after the object
is created.

defaultInputMode —humber;the input mode that is selected when the user navigates
to the edit control and enters data. Modes are defined by gui . inputMode (section
4.2.2.1).

Note: The user can change to another input mode using the shift key.

51 F3PEPPERL+FUCHS

. Class Reference

4.2.3.9

52

validInputModes —number; a bitwise combination of input modes as defined by
gui.inputMode (section 4.2.2.1); defines the input modes that are valid in the edit
control.

onChar - function; the function to run when a character is entered into a multiple line edit
control.

Other Functionality:

insert —function, arg: string; this function inserts a string where the cursor is when the
function is called.

Format:

<multilLineEditControlName>.insert (string);

Where

<multilLineEditControlName>— program- provided multiple line edit control.
string - string; text to insert into multiLineEdit control.

Example:

var main = new gui.Menu

main.append (new gui.Button("Notes", function() ({
gui.showDialog (captureNotes); }));

gui.showMenu (main) ;
storage.write ("saveNotes.txt","");
var captureNotes = new gui.MultilLineEdit("", gui.inputMode.caps)

captureNotes.leftSoftkey = new gui.Softkey("Save", function()
{storage.append ("saveNotes. txt", captureNotes.text);
captureNotes.text = ""; gui.showMenu(main); });

captureNotes.rightSoftkey = new gui.Softkey("Cancel", function() ({
captureNotes.text = ""; gui.showMenu(main); });

gui.Separator

The gui.Separator constructor creates a separator control for display in a OHV300 GUI
menu or form. Use the separator to insert white space or lines into a form to increase
separation between controls.

Format:

var <separator_ name> =

new gui.Separator (height, style);

F3PEPPERL+FUCHS

. Class Reference

4.2.3.10

53

Where:
<separator name> - program-provided separator control.
height —number; the height in pixels of the separator; minimum 1 pixel.

style —number; the style of the separator. style must be selected from one of the
following numeric constants:

B gui.separatorStyle.blank

B gui.separatorStyle.horizontalLine
B gui.separatorStyle.horizontalGroove
B gui.separatorStyle.horizontalRidge

The gui.separatorStyle.horizontalLine style adds a line in the approximate
center of the separator space as shown in Figure 12.

Line Separators
1 pixel

Mext Control
10 pixels

Mext Control

LFt Key Rt Key

Figure 12 - gui.Separator Lines
Example:
See the menu example in section 3.2.3.

gui.Softkey

The gui.Softkey object provides processing control of the programmable or “soft” keys
on the OHV300 just below the display screen.

Format:

var <softkey> = new gui.Softkey(text, onClick);
Where:

<softkey> — program-provided softkey object.
text — string; a label for the softkey; displays on the GUI.
onC1lick —function; the function to be executed when the softkey is pressed.

Setthe gui.leftSoftkeyorgui.rightSoftkey property to <softkey> as
appropriate. The OHV300 JavaScript library defines a set of useful softkey objects (section
4.2.4).

F3PEPPERL+FUCHS

. Class Reference

4.2.3.11

54

Example:

function leftSoftkeyOnClick ()

{

/* processing code */

}

function rightSoftkeyOnClick ()

{

/* processing code */

}

var left = new gui.Softkey("Ok", leftSoftkeyOnClick) ;
var right =

new gui.Softkey("Cancel", rightSoftkeyOnClick) ;
gui.leftSoftkey = left;

gui.rightSoftkey = right;

gui.Text

The gui . Text constructor creates a text object that can be displayed in the OHV300 GUI
display area. Text length can exceed the capacity of the display area. The Text control
includes a scroll bar to indicate relative position within the text when the operator presses
the up and down arrow keys.

Format:

var <text name> =
new gui.Text (text, onOk, onCancel, onKey) ;

Where:
<text name> - program-provided text control.

text — string; text data to display on the OHV300 GUI. To display multi-line text, insert the
new-line character (“\n”) in the text string. This property can be changed after the object is
created.

onOk — function for handling the enter key. The OHV300 calls this function when the
operator presses the enter key on the OHV300 keypad.

onCancel —function for handling the CLEAR key. The OHV300 calls this function when
the operator presses the CLEAR key on the OHV300 keypad. This function also is called
when the escape key is issued (typically by a softkey).

onKey — function for handling any key, soft or real, not consumed by the active control
(section 4.2.6.2).

F3PEPPERL+FUCHS

. Class Reference

4.2.3.12

55

Note: The gui . Text constructor should be used only to display text, not as a control
within a gui . Form or gui.Menu.

Example:

gui.statusText = "text example";
gui.show(new gui.Text

("Four score and seven years ago, our fathers brought forth upon
this continent, etc ..."));

displays the screen shown in Figure 13.

Four score and
SBVEen years
ago, our
fathers
brought forth

Figure 13 - gui.Text Example

Note: The scroll bar indicates that there is more text to display than is currently on the
screen.

gui.ToggleButton

The gui.ToggleButton constructor defines a button control for a GUI form. When a
toggle button is clicked, an indicator in the button is alternately displayed or suppressed.

Format:

var <togglebutton name> =
new gui.ToggleButton(text, initiallyChecked, onToggle) ;
Where:

<togglebutton name> - program-provided toggle button control.
text - string; a label for the toggle button.

initiallyChecked —Boolean; true, the button displays the checked indicator when
first shown; false, the button does not display the checked indicator when first shown.

onToggle - function for handling the button click event. It passes a single Boolean
parameter; true, the button is checked; false, the button is not checked. The OHV300
calls this function when the operator presses the 0Ok enter key on the OHV300 keypad
when the GUI button is the active control.

Other Functionality:
checked — Boolean; current state of toggle button.

toggle —function; toggles the toggle button as if activated by the GUI screen.

F3PEPPERL+FUCHS

. Class Reference

56

Example:

// form event handlers
// button control event handler
function toggleOnClick (checked)
{reader.writeSetting(0xa7, checked);}
// create the form object
var myForm = new gui.Form() ;
// create the button
var toggle =
new gui.ToggleButton ("Vibrate", false, toggleOnClick) ;
// position the controls on the form
myForm. append (toggle) ;
// Place text on the status bar
myForm.caption = "toggle demo";
// show the form
gui.showForm (myForm) ;

Initially shows the form in Figure 14.

toggle demo
Vibrate

Cancel
Figure 14 - Toggle Not Selected
Pressing the left softkey (OK) toggles the indicator, as shown in Figure 15, and turns on the

vibrate feature of the OHV300. Pressing OK again turns off the indicator and the vibrate
feature.

toggle demo
*Wibrate

Cancel

Figure 15 - Toggle Selected

F3PEPPERL+FUCHS

. Class Reference

4.2.4

4.2.41

4.2.4.2

4.2.4.3

4.2.4.4

4.2.5
4.2.5.1

57

Predefined Softkey Objects

The softkey objects described in this section are defined by the OHV300 JavaScript
library.

backSoftkey

The gui.backSoftkey object defines a softkey object. It labels the softkey “Back” and
sends the escape key when the softkey is clicked.

Example:
gui.rightSoftkey = gui.backSoftkey;
cancelSoftkey

The gui.cancelSoftkey object defines a softkey object. It labels the softkey “Cancel” and
sends the escape key when the softkey is clicked.

Format:
gui.rightSoftkey = gui.cancelSoftkey;
okSoftkey

The gui.okSoftkey object defines a softkey object. It labels the softkey “OK” and sends
the enter key when the softkey is clicked.

Format:
gui.leftSoftkey = gui.okSoftkey;
selectSoftkey

The gui.selectSoftkey object defines a softkey object. It labels the softkey “Select”
and sends the enter key when the softkey is clicked.

Example:
gui.leftSoftkey = gui.selectSoftkey;
Form and Menu Common Methods

append(control)

The append function places the specified control as the last control in the specified
menu or form.

Format:

<MenuOrForm_ name>.append (control) ;

Where:
control —the control to append.
Note: A control cannot be used more than once in a form or menu.

Example: See section 3.2.2.

F3PEPPERL+FUCHS

. Class Reference

4.2.5.2

4.25.3

4.2.6

4.2.6.1

58

prepend(control)

The prepend function places the specified control as the first control in the specified
menu or form.

Format:

<MenuOrForm_ name>.prepend (control) ;

Where:

control —the control to prepend to the menu.

Note: A control cannot be used more than once in a menu or form.
Example:

See forms example in section 3.2.2.

setActiveChild(control)

The setActiveChild selects (but does not activate) the specified control when the menu or
form is displayed. This method is optional.

Format:

<MenuOrForm name>.setActiveChild(control);

Where:

control —the control to select when the menu is displayed.
Example:

See forms example in section 3.2.2.

Note: You must show the form/menu after setting the active child in order for this function
to work properly.

Form and Menu Common Properties

The properties and methods described in the following section are common to the
gui.Menu and gui.Form objects.

caption

The caption property is a string that is used by gui . showForm, gui . showMenu, and
gui.showSubMenu to display a caption in the status bar of the OHV300 gui object.

Format:

<MenuOrForm_ name>.caption = "<caption_string>";

Example:

See forms example in section 3.2.2.

F3PEPPERL+FUCHS

. Class Reference

4.2.6.2

4.3

4.3.1

43.1.1

59

onKey

The onKey property is a property of type function that is used by gui .Form, gui.Menu,
and gui . Text to provide control for any key not consumed by the active control. Key
constants are defined in section 0.

Format:

function processKey (key)

{
/* processing code */

}

<MenuOrForm name>.onKey = processKey;

reader

The reader object models the handheld hardware and firmware. Use the methods and
properties of the reader object to command the behavior of the handheld such as:

B Executing commands on the handheld

B Running a JavaScript on the handheld

B Reading and changing handheld settings
B Obtaining data decoded from bar codes

Methods
This section documents the methods defined for the handheld's reader object.

beep
The beep method causes the handheld to beep.
Format:

reader .beep (numBeeps) ;
Where:

numBeeps — humber; number of beeps.
Note: This method does not return a value.
Example:

reader .beep (3) ;

Cause the reader to beep 3 times

F3PEPPERL+FUCHS

. Class Reference

4.3.1.2

43.1.3

60

defaultSettings

The defaultSettings method resets selected handheld settings to manufacturing defaults; it
is equivalent to sending the 'J' command using the reader.processCommand method
(section 4.3.1.3).

Format:

reader.defaultSettings () ;

Note: This method has no arguments and no return value. Default settings may vary by
unit depending on the configuration purchased.

getKeyboardStatus

The getKeyboardStatus method takes no arguments and returns a read only Integer
bitmapped value containing the keyboard state of the handheld hardware. Possible
keyboard states include:

Bit Key Value
0: Disabled

0 Numlock
1: Enabled

Caps/Shift Lock 0: Disabled

1: Enabled
Scroll Lock 0: Disabled

2

1: Enabled

0: Disabled
3 Compose

1: Enabled

0: Disabled
4 KANA

1: Enabled

Example:

keyboardStatus = reader.getKeyboardStatus() ;

A keyboardStatus value of 5 would indicate that the Scroll Lock key and the Numlock
key were both enabled.

F3PEPPERL+FUCHS

. Class Reference

43.1.4

4.3.1.5

4.3.1.6

61

processCommand

The processCommand method instructs the handheld to execute a command.
Format:

result = reader.processCommand (commandType, data) ;

Where:

commandType — string, 1 character; the command to be processed on the handheld.
data — string; data as required to process the command.

result —depending on the command, either:

B aBoolean value
B adata string

For commandType, data, and resulting values, refer to the Interface Configuration
Document.

Example:

reader.processCommand('$', "\x03"); // read a code
reader.processCommand (‘P’, “(26)32”); //change beep volume to 50

Sends a “$” command code (post event) with a one-byte value of 3 (event type = read near
and far fields) to the handheld firmware.

readSetting
The readSetting method returns the current value of the specified configuration setting.
Format:

value = reader.readSetting(settingNumber) ;

Where:

settingNumber — number; integer value representing the setting to be read.
For settingNumber values, refer to the Interface Configuration Document.
Example:

value = reader.readSetting(0x1b) ;

Returns the current value of the handheld setting hex 1b (communications mode).

runScript

The runscript method instructs the handheld to schedule the load, compile, and
execution of the specified JavaScript. The handheld schedules execution of the script
immediately after the currently executing event handler or main script completes. The
runScript method does not include a mechanism to return to the calling script.

F3PEPPERL+FUCHS

. Class Reference

4.31.7

4.3.1.8

62

Format:

result = reader.runScript (scriptName) ;

Where:

scriptName - string; the name of the JavaScript to be run. The script must first be loaded
into handheld flash by name. See Vision Configurator (section 1.4).

result — Boolean; true if the script was loaded successfully; false otherwise. A return of
false usually means that the script could not be found.

Example:
In the forms example (section 3.2.2), the onTimeCard function could be defined as follows:

function onTimeCard ()
{reader.runScript ("TimeCardApp.js") ;}

The operator, at the end of a work shift, could press the “TimeCard” button to access a
time card application.

saveSettings

The saveSettings method writes the current values of the handheld configuration
settings into flash memory. Operational setting values are loaded from flash memory when
the handheld reader initializes. Any changed configuration settings will be lost at reader
shutdown unless saved in flash memory.

Format:

result = reader.saveSettings();

Where:

result — Boolean; false if the flash write fails; t rue otherwise.

Note: There are no arguments to this method.

setDisplaylLed

The setDisplayLed method activates the LED of the OHV300 above the display.
Format:

reader.setDisplayLed (color) ;

Where,
color —mustbe reader.green, reader.red, reader.amber Of reader .none.

Note: Setting 0x014d should be set to false for setDisplayLed to work properly.

F3PEPPERL+FUCHS

. Class Reference

4.3.1.9

4.3.1.10

4.3.1.11

63

setinterval

The setInterval method calls a function or evaluates an expression at specified
intervals in seconds.

The setInterval method will continue calling the function until clearInterval is
called, or the window is closed.

The ID value returned by setInterval is used as the parameter for the
clearInterval method.

Format:

intervalld = reader.setlInterval (function, interval_sec);

Where:

intervallId - program provided interval ID.

function — program provided function to run at the specified interval.

interval sec—amount of time (in seconds) to delay before running the function again.

clearinterval

The clearInterval method removes the instance of setInterval that has the handle
intervalId.

Format:

reader.clearInterval (intervallId) ;

Where:
intervallId - program provided interval ID.

setTimeout

The setTimeout method calls a function or evaluates an expression after a specified
number of seconds. The function cannot be an object method.

The setTimeout method will call the function passed to it after the set amount of time
unless clearInterval is called, or the window is closed.

The ID value returned by setInterval is used as the parameter for the
clearInterval method.

Format:

timeoutId = reader.setTimeout (function, timeout_sec);

Where:
timeoutId - program provided timeout ID.
function — program provided function to run after the specified timeout.

timeout sec —amount of time (in seconds) to delay before running the function.

F3PEPPERL+FUCHS

. Class Reference

4.3.1.12

4.3.1.13

4.3.1.14

64

clearTimeout

The clearTimeout method removes the instance of setTimeout that has the handle

timeoutId.
Format:

reader.clearTimeout (timeoutId) ;

Where:
timeoutId - program provided timeout ID.

shiftlJisToUnicode

The shiftJisToUnicode method converts a string from Shift-JIS encoding to Unicode
encoding.

Format:

unicodeString = reader.shiftJisToUnicode (text) ;

Where:

text — String; text encoded as JIS.

unicodeString - String; text encoded as Unicode.

Example:

myUnicodeString = reader.shiftJisToUnicode (myString) ;
Sets myUnicodeString to the Unicode encoded equivalent of myString.
writeSetting

The writeSetting method changes the operational value of a single handheld
configuration setting.

Format:

writeSetting (settingNumber, value);
Where:

settingNumber — decimal integer; the setting to be changed.
value — decimal integer; the value to be written to the configuration setting.

For the possible values of settingNumber and value, refer to the Interface Configuration
Document.

Note: This method does not return a value.
Note: Use Ox to denote hex values
Example:

reader.writeSetting (0x1lb, 4);

F3PEPPERL+FUCHS

. Class Reference

4.3.1.15

4.3.2

4.3.2.1

65

Sets the reader communications mode to Bluetooth RF. See also the gui .Button
example in section 4.2.3.1.

Example:

reader.writeSetting (2, Ox7FFFFFFF) ;

Sets the reader Battery Trigger Confirmation Time to Ox7FFFFFFF milliseconds or ~596
hours (effectively infinite time).

unicodeToShiftJis

The unicodeToshiftJis method converts a string from Unicode encoding to Shift-JIS
encoding.

Format:

shiftJisString = reader.unicodeToShiftJis (text) ;
Where:

shiftJisString - String; text encoded as JIS.

text — String; text encoded as Unicode.

Example:

myShiftJisString = reader.unicodeToShiftJis (myString) ;

Sets myShiftJisString tothe Shift-JIS encoded equivalent of myString.

Properties

This section documents the properties defined for the handheld's reader object.

onCommand
The onCommand property of the handheld calls the specified function when the reader:

B Receives a configuration command from a communication port.
B Decodes a configuration command from a code read by the handheld.
The application uses this property as an event handler to:

B Receive notification of command processing.
B Prevent execution of a command.
The function will not be called in response to a reader .processCommand call or

commands within a stored-code (“performance strings”). Performance strings are
documented in the Interface Configuration Document.

Return Boolean t rue to instruct the reader to process the command. Return Boolean
false to suppress the command. When a command is suppressed, the firmware will not
send any response to the host, but the JavaScript application may provide its own
response to the host.

F3PEPPERL+FUCHS

. Class Reference

4.3.2.2

66

Format:

function filterCommand (commandType, commandData)

{

var shouldSuppressCommand = false;
/* Processing statements */

return !shouldSuppressCommand;

}

reader.onCommand = filterCommand;

Where:

commandType — string; 1 character; specifies the command being processed.
commandData — string; data to be process by the command.

Example:

function notifyErase (commandType)

{
if (commandType == ')')

print ("Erasing Error Log...");
}

reader.onCommand = notifyErase;

Sends a debugging message to the host to show that the erase command was detected.

onCommandFinish

The onCommandFinish property of the reader object provides processing control upon
completion of a command.

Format:

function finishedCommand (commandSuccess,
responseType,

responseData)

{

/* Processing statements */

}

reader.onCommandFinish = finishedCommand;

Where:

commandSuccess — Boolean; contains the return status of the command: true = success,
false = failure.

responseType — string; 1 character; specifies the response type.

F3PEPPERL+FUCHS

. Class Reference

4.3.2.3

67

responseData — string; the response data.
Example:

function finishedCommand (commandSuccess,
responseType,
responseData)
{
if('commandSuccess)

alert (postAlertFunc, "Command failed ("

+ responseType + ":" + responseData + ")");

}
reader.onCommandFinish = finishedCommand;

sends an alert when a command fails.

onDecode

The onDecode property of the reader object provides processing control to the
application program at the completion of a decode action. The handheld firmware passes
the decode object to the function through the calling argument.

Code the function in your script and return a code as follows:

null -the decode has been consumed by the JavaScript application; there should be no
further processing of it by the handheld firmware.

false —invalidate the decode; if the handheld firmware is so-configured, it will act as if
there had not been a decode; the good-decode-beep will be suppressed.

decode - object (modified or unmodified) — the handheld firmware will continue to process
the modified or unmodified decode data.

Format:

function onDecode (decode)
{
var valid = true;
/* set to false below if decode is to be invalidated */
var passthrough = true;
/* set to false below if decode is consumed here */

/* processing statements, which may modify decode.data,
valid, and/or passthrough */

if('valid)
return false;

if ('passthrough)

F3PEPPERL+FUCHS

. Class Reference

4.3.2.4

68

return null;

return decode;

}

reader.onDecode = onDecode;

See the discussion of the decode object in section 4.1
Example:
See the discussion of symbol decoding in section 0.

onDecodeAttempt

The onDecodeAttempt property of the reader object provides processing control to the
application program at the completion of a decode action, before any of the decoded
symbols are passed to reader.onDecode.

Format:

function onDecodeAttempt (count)

{

/* processing statements */

}

reader.onDecodeAttempt = onDecodeAttempt;
Where:

count — number; a count of the number of symbols that were read by a single decode
request.

Note: This method does not return a value.
Example:

var ok = false;

reader.onDecodeAttempt = function (count)

{

ok = count >= 2;
}
reader.onDecode = function (decode)
{

if('ok)

return false;

return decode;

}

F3PEPPERL+FUCHS

. Class Reference

Ensures there at least two decodes per attempt; otherwise, invalidates the single decode.
Each decode found in the field of view will be decoded only once per attempt, so this
example ensures there are two distinct symbols in the field of view. The reader must have
been configured (section 3.8) to support multiple reads per attempt.

4.3.2.5 onldle

The onIdle property of the reader object provides processing control to the application
program whenever the reader is idle; i.e., no events (such as button presses) are active or
queued. This event is posted when the JavaScript has nothing else queued and is not
related to the handheld active time (setting hex 32).

Format:

function onIdle ()

{

/* processing statements */

}

reader.onlIdle = onIdle;
Note: This method does not return a value.
Example:

function onIdle()

{
reader.processCommand (‘'.’, “\x22\x05\x32\x64") ;

}

reader.onIdle = onldle;

Flashes both LEDs on the OHV300 green 5 times, with LEDs on for 2 second and off for 1
second.

4.3.2.6 onStandby

The onStandby property of the reader object provides processing control to the
application program whenever the reader is about to enter the standby mode.

Format:

function onStandby ()
{

/* processing statements */

}
reader.onStandby = onStandby;

69 F3PEPPERL+FUCHS

. Class Reference

4.3.2.7

4.3.2.8

4.3.2.9

4.3.2.10

4.3.2.11

70

Where:

return — Boolean; t rue if the reader should be allowed to enter the standby mode;
false to prevent it.

Example:

function onStandby ()
{

if (comm.isConnected) return false;

else return true;

}
reader.onStandby = onStandby;

Prevents the reader from entering standby if it is connected and allows it to enter standby
otherwise.

batteryLevel

The batteryLevel property of the reader object contains a read only integer specifying
the battery charge level. Possible battery charge levels are:

reader.green — not low.

reader .amber —somewhat low.
reader.red - very low.

Example:

batteryLevel = reader.batteryLevel;
red

The red property of the reader object contains a read only constant for use with
reader.batterylLevel and reader.setDisplayLed.

green

The green property of the reader object contains a read only constant for use with
reader.batterylLevel and reader.setDisplayLed.

amber

The amber property of the reader object contains a read only constant for use with
reader.batterylLevel and reader.setDisplayLed.

none

The none property of the reader object contains a read only constant for use with
reader.batterylLevel and reader.setDisplayLed.

F3PEPPERL+FUCHS

. Class Reference

4.3.2.12

4.3.2.13

4.3.2.14

4.3.2.15

4.3.2.16

4.3.2.17

71

cabled

The cabled property of the reader object contains a read only Boolean value containing
the cabling state of the handheld hardware. The value will be true if cabled and false if
not cabled.

Example:
cabled = reader.cabled;
charging

The charging property of the reader object contains a read only Boolean value
containing the charging state of the handheld hardware. The value will be true of
charging and false if not charging.

Example:
charging = reader.charging;
hardwareVersion

The hardwareVersion property of the reader object contains a read only string
containing the version number of the handheld hardware.

Example:
hwVersion = reader.hardwareVersion;
oemld

The oemId property of the reader object contains a read-only string containing the
handheld unique OEM identifier from the locked flash memory.

Example:
oemId = reader.oemId;

readerld

The readerld property of the reader object contains a read-only string containing the
handheld unique ID from the locked flash memory.

Example:
rid = reader.readerlId;
softwareVersion

The softwareVersion property of the reader object contains a read only string
containing the version number of the firmware currently running in the handheld reader.

Example:

swVersion = reader.softwareVersion;

F3PEPPERL+FUCHS

. Class Reference

4.3.2.18

4.4

[0

4.41

44141

4.4.1.2

72

bdAddr

The bdaddr property of the reader object contains a read only string containing the
Bluetooth address of the radio installed in the handheld.

Example:

bdAddrString = reader.bdAddr;

storage

The storage object provides application software access to handheld file storage. Files
are written to storage by the storage.write method and by downloading from the host
(see section 3.7).

Note!

Names of files can be 1 - 200 printable ASCII characters. For compatibility with host file
systems, we recopmmend that you do not use characters that are reserved by host operating
systems:/,\,;,?,*, [, 1,", ", etc. Files should be kept to a maximum length of 32K bytes. Files
are stored in UTF8 format, which encodes Unicode characters in one or more bytes each.

Methods
The following section documents the methods defined for the handheld storage object.

In this section, the examples use elements of a time card application that assumes time
card records are maintained as files organized by employee number. The naming
convention for the time card records is TimeCard<employee number>.

append
The storage.append method adds data to the end of a file.
Format:

result = storage.append(name, data);

Where:

name — string; the name of the object to append.

data - string; the data to add to the end of the file.

result — Boolean; true if the append succeeded; false if the append failed.
Example:

storage.append ("TimeCard” + employeeNumber, tcRecord);

Adds the time card record to the end of the time card record that already exists for the
employee specified by employeeNumber.

erase

The storage.erase method erases a file.

F3PEPPERL+FUCHS

. Class Reference

4413

4.41.4

73

Format:

result = storage.erase (name) ;

Where:
name - string; the name of the object to erase.

result — Boolean; true if the file existed (the object is deleted); false if the file did not
exist.

Example:

storage.erase ("TimeCard” + employeeNumber) ;

Erases the time card record for the employee specified by employeeNumber.
findFirst

The storage. findFirst method locates the first file where the name matches a regular
expression specified in the call parameter.

Format:
name = storage.findFirst (expression) ;

Where:

expression —regular expression (not a string); a regular expression used by the
handheld to match against names of stored objects.

name - string; the name of the first matching file; name is null if no file matches the

expression.

Example:

name = storage.findFirst(/~TimeCard.*/);
Sets name to the name of the first time card record file.
findNext

The storage. findNext method locates the next file where the name matches the
regular expression specified in the expression parameter of a previous

storage. findFirst call. The matching names are not ordered, but they will not be
repeated; a findFirst - findNext sequence will return all matching files, provided
that there are no other intervening storage method calls. (You can put the files into an array
and use JavaScript’s sort method when you need them ordered.)

Format:

name = storage.findNext() ;

Where:

name — string; the name of a file; name is nul1l if no remaining file matches the previous
regular expression.

F3PEPPERL+FUCHS

. Class Reference

4415

4.41.6

4.41.7

44.1.8

74

Example:

name = storage.findNext() ;

Sets name to the name of the next time card record file.
read

The storage.read method reads a file.

Format and Example:

data = storage.read(name) ;

Where:

name — string; the name of a file.

data - string; the contents of the file; nul1 if there was no file with that name.
Sets data to the contents of the time card record specified by name.

rename

The storage.rename method renames a file.

Format and Example:

ok = storage.rename (oldName, newName) ;

Where:

oldName - string; the name of a file to rename.

newName — string; the name of the file after rename.

ok — bool; success or failure of the renaming.

Sets ok to true or false. The file o1dName is renamed to newName if return is true.
size

The storage.size method returns the size of a file in bytes.

Format and Example:

nameSize = storage.size(name);

Where:

name — string; the name of a file.

nameSize —integer; the size of the file in bytes.

Sets nameSi ze to the size of the time card record specified by name.

upload

The storage.upload method uploads a file to the host over the current active host
comm port.

F3PEPPERL+FUCHS

. Class Reference

Format:

result = storage.upload(name, withHeaderAndFooter) ;
Where:

name - string; the name of a file.

withHeaderAndFooter — Optional boolean; If setto false the file is uploaded without
the header (ap/g(file size))and footer (ap/d(checksum)). If the parameter is not included
the header and footer will be included with the upload.

result — Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the data
has been sent to and acknowledged by the host.

Note: The upload protocol is documented with the "A" command in the Interface
Configuration Document.

Example:

name = storage.findFirst(/TimeCard.*/) ;
while (name)
{
if (!storage.upload(name))
alert (name + " upload failed!");
name = storage.findNext() ;
};
Uploads all time card records to the host. If a time card record fails to upload, the operator
is alerted.

4.41.9 write

The storage.write method writes a file to storage. If the file does not exist, the
handheld creates it. If there was an existing file of the same name, it is replaced.

Format:

result = storage.write (name, data);

Where:

name — string; name of a file.

data - string; data to be written.

result — Boolean; true if the file was successfully written; otherwise, false.

Note: When replacing an existing file, if there is insufficient storage space to hold the new
file, it will not be written; however, the old file will be erased.

75 F3PEPPERL+FUCHS

. Class Reference

4.4.1.10

4.41.11

4.4.2

4.4.21

76

Example:

result = storage.write("TimeCard" + employeeNumber, tcRecord);

Writes a time card record to afile.

getHeader

The storage.getHeader method returns the first multiline comment block from a JavaScript
file. Thisincludes encrypted files if the proper developer key is installed.

Format and Example:

data = storage.getHeader (name) ;

Where:

name - string; the name of a file.

data - string; the first multiline comment block of the file.

Sets data to the first multiline comment in the file.

saveOffsetWindow

The storage.saveOf fsetWindow function will use the last decode to determine the
origin and bounding box within the last image and save the rotated box defined by the
offset point, width and height to filename. The function will return a boo1l indicating
success or failure. Failure will usually mean the file could not be saved.

Format:

result = storage.saveOffsetWindow (xOffset, yOffset, width,
height, filename)

Where:

xOffset -
yOffset -
width -

height -

filename — The body of the file name. The appropriate extension will be added by the
system based on the JPEG compression settings in the registry.

Properties
The following section documents the properties defined for the handheld storage object.

fullness_percent

The storage.fullness percent property is a read-only integer containing the
percent of storage in use.

F3PEPPERL+FUCHS

. Class Reference

4.4.2.2

44.23

4.5

4.5.1

4.5.1.1

4.5.1.2

4513

77

isFull

The storage.isFull property is a read-only Boolean value; t rue if storage is full and
cannot be added to; otherwise, false.

logFullness_percent

The storage.fullness percent property is a read-only integer containing the
percent of storage in use.

comm

The comm object models the host commutation feature of the handheld reader. Use the
methods and properties of the comm object to send either packet or text data to the host.

Methods
The following section documents the methods defined for the handheld comm object.
connect

The connect method instructs the handheld communication driver to attempt to establish
a connection.

Format:

result = comm.connect(try until timeout);

Where:

try until timeout — Boolean; if true, the reader will attempt to try connecting for the
number of seconds defined in connectionTime_sec (register 0xd9). If false, reader will
try to connect once

result — Boolean; false if there was a failure to connect; otherwise, true.

disconnect

The disconnect method instructs the handheld communication driver to disconnect from
the host.

Format and Example:

comm.disconnect () ;

Causes the reader to disconnect from the host.
sendPacket

The sendPacket method instructs the hanheld reader to send a data packet to the host
via the communications port currently specified by the active handheld communication
settings. The handheld creates a packet formatted according to the active handheld
packet protocol configuration setting.

For a discussion of data packets, see the Interface Configuration Document.

F3PEPPERL+FUCHS

. Class Reference

Format:
result = comm.sendPacket (type, data);

Where:

type — string, length 1; the type of packet to send. The packet types are documented in
the Interface Configuration Document.

data - string; data to be inserted into the packet.

result — Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the data
has been sent to and acknowledged by the host.

Example:

reader.onDecode =
function (decode) {comm.sendPacket('z', decode.data)};

Sends a packet containing results of a decode to the current comm port.

4.5.1.4 sendText

The sendText method instructs the handheld reader to send arbitrary text (which may
include NULL characters) to be sent via the active communication port; the text will be sent
“raw” regardless of the reader comm mode settings. This method buffers the data until the
USB packet size limit is reached or a ‘z’ packet is sent. For an immediate response, send
the data as a ‘z’ packet using comm. sendPacket.

Format:

result = comm.sendText(data) ;

Where:
data - string; data to be sent via the active communication port.

result — Boolean; false if there was a failure on the communications port; otherwise,
true. If the current communications mode is a 2-way mode, true indicates that the data
has been sent to and acknowledged by the host.

Example:

reader.onDecode =
function (decode) {comm.sendText("decode.data"); }

Sends the raw text “decode.data” via the active communications port.

4.5.2 Properties
The following section documents the properties defined for the handheld comm object.

78 F3PEPPERL+FUCHS

. Class Reference

4.5.21

4.6

4.6.1

4.6.1.1

79

isConnected

The isConnected property of the comm object contains a read-only boolean specifying
the host connection status. Possible connection values are:

true —reader is connected to the host.
false —reader is not connected to the host.
Example:

connected = comm.isConnected;

Functions

The following section documents functions that enhance the application development
environment.

Dialog
The handheld JavaScript Engine provides the following functions like those defined by
JavaScript in Web browsers:

H alert

B confirm

B prompt
These functions interact with the OHV300 standard GUI display. The OHV300 displays the
name of the function in the GUI status bar and the text associated with the function, and

then waits until a key is pressed. The following subsections describe the operation of each
function in the OHV300 environment.

Similar but more flexible functions are provided in the gui object (see section 4.1). For
example, if you want to change the caption on these displays use the gui object functions.

alert

The alert function displays text in the display area of the standard GUI display. Do not call
this function within onDecode and onCommand event handlers.

Format:

alert (func, text);

Where:

func - function name; function to be called after displaying the alert. This function does
not take any arguments and returns void.

text — string; text to display as the alert.

Processing suspends until the operator presses an enter key — either the enter key or the
left softkey defined as OK.

F3PEPPERL+FUCHS

. Class Reference

4.6.1.2

80

Example:

alert (samplefunction, "Status Alert");

Displays the alert shown in Figure 717 and waits until the operator presses the enter key or
the left softkey (OK). Once the operator presses a key, it calls samplefunction () to
continue.

Status Alert

Figure 16 - Alert Example

confirm

The confirm function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:

result = confirm(yesFunc, noFunc, text);

Where:

yesFunc — function name; function to be called when the confirm receives left softkey.
This function does not take any arguments and returns void.

noFunc - function name; function to be called when the confirm receives right softkey.
This function does not take any arguments and returns void.

text — string; text to display for confirmation.

result — Boolean; true if the confirm receives an enter key (either the enter key or the
left softkey defined as OK) ; false if the confirm receives the right softkey defined as
Cancel.

Processing suspends until the operator presses a suitable key.
Example:

result = confirm(onYesClick, onNoClick, "Exit?");

Displays the confirm dialog shown in Figure 818 and waits until the operator presses the
enter key or the left softkey. If operator presses Ok key, it calls onYesClick function. If
operator presses Cancel key, it calls onNoClick function to continue processing.

F3PEPPERL+FUCHS

. Class Reference

4.6.1.3

81

Confirm
Exit?

Cancel

Figure 17 - Confirm Example

If you want softkey labels other than OK and Cancel (for example, Yes and No), use the
gui.confirm method (section 4.2.1.2).

prompt

The prompt function displays text in the display area of the standard GUI display and
returns a value based on the key pressed. Do not call this function within onDecode and
onCommand event handlers.

Format:

result = prompt (func, text, default);
Where:

func - function name. Function to be called when prompt receives an enter key. The
function takes one argument named result and returns void.

text — string; text to display as a label above a gui.Edit control.
default - string; a default string to display as the contents of edit control.

result - string; contents of the edit control if the prompt receives an enter key (either the
enter key or the left softkey defined as OK) ; null if the prompt receives the right softkey
defined as Cancel.

Processing suspends until the operator presses an enter key or Cancel key. The operator
can key new data into the edit control before pressing enter or the left softkey.

Example:

string = prompt (postPromptFunc, "Enter login ID", "None");

Displays the prompt shown in Figure 18.

Enter login ID

Figure 18 - Prompt Example

F3PEPPERL+FUCHS

. Class Reference

4.6.2
4.6.2.1

4.6.2.2

4.6.2.3

82

The value of string depends on the operator action.

B [f the operator at any time presses the right softkey (Cancel), the value of string is null.

B |f the operator changes the contents of the edit control to <new content> and presses
the left softkey (OK), the value of string is <new content>.

B [f the operator presses the left softkey (OK) without changing the contents of the edit
control, the value of string is “None” (the value entered as the second call parameter).

Other Functions

gc

The gc function cleans up memory that has been allocated but is no longer needed by the
runtime environment. This function is processor intensive, so its use can degrade
performance.

Format:

gc();

include

The include function executes the included script inline.
Format:

result = include (scriptName) ;

Where:

scriptName - string; the name of the script to be included.

result — Boolean; true if the script could be loaded and executed; otherwise, false.
Example:

include ("myScript.js") ;

adds the definitions in myScript. js to the application. The definitions become part of the
“‘including” script.

print

The print function sends text to stdout (the active communication port), not to the OHV300
display. Limit the use of the print function to debugging. Use the comm object methods for
normal data output to communication ports.

Format:

print (text);
Where:

text — string; debugging data to be sent to the active communications port.

F3PEPPERL+FUCHS

. Class Reference

4.6.2.4

4.6.25

83

setStandbyMessage

The setStandbyMessage allows you to create a custom standby message to display when
the reader enters standby mode.

Format:

setStandbyMessage (text) ;

Where:

text — string; message to display when the reader enters standby mode.

wdt

Long processes may require the firmware watchdog to be petted during the operation. If
the watchdog times out during a processor intensive operation, the reader will reboot and
an error will be logged in the error log (see section 0). To prevent the reader from rebooting
during a processor intensive section, the firmware watchdog timer needs to be petted.

Format:

wdt (seconds)

Where:

seconds — number; number of seconds for which the watchdog should be petted. Valid
values are 1 to 300.

F3PEPPERL+FUCHS

. Glossary and Acronyms

5 Glossary and Acronyms

Term Definition

Control User Class object instantiated in a OHV300 GUI form.

OHV300 Handheld reader with Bluetooth for all standard 1-D and 2-D codes with LC
display and keyboard

RF Radio Frequency

Code Data Data resulting from the decode process after data capture or bar code read

Smart Quote Previously formatted quotation marks, usually found in a word processing

program
Softkey User programmable key found on the OHV300
Consume Used with no return value by the user defined application or firmware

84 F3PEPPERL+FUCHS

. Input Modes

6 Input Modes

The input mode determines the character set that is active for the OHV300 keypad. The
modes are described in Table 2.

Table 2 - Keypad Input Modes

inputMode | characters

numeric 0123456789

caps A-Z, 0-9 and all ASCII non-alphanumeric symbols:
oS %, &

B P R

<= S, e, T W, T, Y,

I_I’ I‘I, I{I’ I|I1 I}I, I~I

lower a-z, 0-9 and all ASCII non-alphanumeric symbols

symbols All ASCII and ISO-8859-1 non-alphanumeric symbols

85 F3PEPPERL+FUCHS

. Format Specifiers

7 Format Specifiers

The control string of the format function accepts the following codes from the standard C
library:

%d signed decimal integers

Yol signed decimal integers

Y% lowercase scientific notation

%E uppercase scientific notation

Yof floating point decimal

%Qg uses %e or %f , whichever is shorter

%G uses %E or %f, whichever is shorter

%0 unsigned octal

%8 character string

YU unsigned decimal integers

YoX lowercase unsigned hexadecimal

%X uppercase unsigned hexadecimal
%% insert a percent sign

Flag, width, and precision modifiers are the same as in the standard C library definition.

86 F3PEPPERL+FUCHS

. Supported JavaScript Core

8 Supported JavaScript Core

Objects, Methods, and Properties
Array
Boolean
Date
Function
Math
Number
Object
Packages
RegExp
String

sun

Top-Level Properties and Functions
decodeURI
decodeURIComponent
encodeURI
encodeURIComponent
eval

Infinity

isFinite

isNaN

NaN

Number

parseFloat
parselnt

String

undefined

Statements
break
const

continue

87

do...while
export

for
for...in
function
if...else
import
label
return
switch
throw
try...catch
var

while

with

Operators
Assignment Operators

Comparison Operators

Arithmetic Operators
% (Modulus)

++ (Increment)

-— (Decrement)

- (Unary Negation)

Bitwise Operators

Bitwise Logical Operators

Bitwise Shift Operators

Logical Operators
String Operators

Special Operators

?: (Conditional operator)

, (Comma operator)

F3PEPPERL+FUCHS

. Supported JavaScript Core

delete new
function this
in typeof
instanceof void

88 F3PEPPERL+FUCHS

Symbology ID & Modifier Information

9 Symbology ID & Modifier Information
There are several elements of the decode object that describe properties of the symbology
read by the handheld reader. These elements are:
decode.symbology — Main Symbology Identifier (ID)
decode.symbology_ex — Extended Symbology Identifier (ID_EX)
decode.symbologyModifier - Symbology Modifier (Mod)

decode.symbologyModifier_ex — Extended Symbology Modifier (Mod_EX) (where
this value is blank in the table below, no Extended Symbology Modifier is defined)

B decode.decoder — Which decoder was used in the decode process. For example:

“od”
Symbology Name ID ID_EX Mod Mod_EX
UPC_A 49 0 65

UPC_EO 49 0 66

UPC_EA 49 0 67

EAN_JAN_8 49 0 68

EAN_JAN_13 49 0 69

UPC_D1 41 N/A N/A

UPC_D2 5t N/A N/A

UPC_D3 61 N/A N/A

UPC_D4 7t N/A N/A

UPC_D5 8t N/A N/A

UPC_A plus2 49 0 97

UPC_A_plus5 49 0 48
UPC_EO_plus2 49 0 98
UPC_EO_plus5 49 0 49
UPC_E1_plus2 49 0 99
UPC_E1_plus5 49 0 50
EAN_JAN_8_plus2 49 0 100

89 F3PEPPERL+FUCHS

. Symbology ID & Modifier Information

EAN_JAN_8_plus5 49 0 51

EAN_JAN_13_plus2 49 0 101

EAN_JAN_13_plus5 49 0 52*

EAN Bookland 49 0 52*

EAN_UCC 14 17 0 48*

Interleaved_2_of_5 (Full symbol decoded) 17 0 48* 0

Interleaved_2_of 5 (Partial left-half symbol issued) 17 0 48* +1 (add one to existing
value)

Interleaved_2_of_5 (Partial right-half symbol issued) 17 0 48* +2 (add two to existing
value)

ITF-14 17 0 48*

Code39 (Full symbol decoded) 18 0 48 0

Code39 (Partial left-half symbol issued) 18 0 48 +1 (add one to existing
value)

Code39 (Partial right-half symbol issued) 18 0 48 +2 (add two to existing
value)

Code128 (Full symbol decoded) 19 0 48 0

Code128 (Partial left-half symbol issued) 19 0 48 +1 (add one to existing
value)

Code128 (Partial right-half symbol issued) 19 0 48 +2 (add two to existing
value)

Codabar 20 0 48

Code93 21 0 48

UCC_EAN_128 19 0 49

UPC_A_w_Code_128_Supplemental 23t N/A N/A

UPC_E_w_Code_128_Supplemental 241 N/A N/A

EAN_JAN_8_ w_Code_128_Supplemental 25t N/A N/A

%0 F3PEPPERL+FUCHS

. Symbology ID & Modifier Information

EAN_JAN_13_w_Code_128_Supplemental 26t N/A N/A
num_IBM_symbologies 28t N/A N/A
Australia Post 29 0 50

Aztec 30 0 51

Data Matrix 31 0 49
Straight_2_of_5_2_Bar_Start_Stop 32t N/A N/A
Straight_2_of_5_3_Bar_Start_Stop 33 0 48
Japan Post 34 0 49

KIX 35 0 53
MSI_Plessey 36 0 48

Maxi 37 0 49
PDF417 38 0 48 0
Micro PDF417 38 0 48 1
PLANET 39 0 51
POSTNET 40 0 48

QR 41 0 49 0
Micro QR 41 0 49 1
Royal_Mail_4_State_Customer 42 0 52
RSS_Expanded 43 0 48
RSS_Expanded_Stacked 44 0 48
RSS_Limited 45 0 48
RSS_14 46 0 48
RSS_14_Stacked / RSS_14_Stacked_Omni 47 0 48
GoCode 48 0 N/A

91 F3PEPPERL+FUCHS

. Symbology ID & Modifier Information

Codablock F 50 0 52
Code11 51 0 51
Pharmacode 52 0 49
Telepen 56 2 48
Hong Kong 2 of 5 0 64 57
Matrix 2 of 5 (checksum not checked) 0 1 50
Matrix 2 of 5 (Checksum checked and included in 0 1 51
output string)

Matrix 2 of 5 (Checksum checked and stripped from 0 1 52
output string)

NEC 2 of 5 (checksum not checked) 0 4 53
NEC 2 of 5 (Checksum checked and included in output 0 4 54
string)

NEC 2 of 5 (Checksum checked and stripped from 0 4 55
output string)

Trioptic Code 39 0 8 56
Royal Mail InfoMail A 0 4096 57
Royal Mail InfoMail B 0 4096 58
Korea Post 0 16384 N/A
UPU (57-bar) ? N/A 54
UPU (75-bar) ? N/A 55
USPS 4CB ? N/A 56
? Unknown *Symbology ID + Modifier Conflict T Not tested yet

92 F3PEPPERL+FUCHS

. Symbology ID & Modifier Information

9 F3PEPPERL+FUCHS

FACTORY AUTOMATION -
SENSING YOUR NEEDS

— e

— -3

Worldwide Headguarters
Pepperi+fuchs GmbH

68307 Mannheim - Germany

Tel. «49 621 7760

E-mail: info@®de.peppert-fuchs.com

USA Headquarters

Pepperi«Ffuchs Inc,

Twinsburg, Ohio 44087 « USA

Tel. +1 330 4253555

E-mail: sales@us peppert-fuchs.com

Asia Pacific Headgquanters

Pepperi«Fuchs Pte Lid.

Company Registration No. 199003130

Singapore 139942

Tel. +65 67795091

E-mail; sales@sg.peppert-fuchs.com |

www.pepperl-fuchs.com PEPPERL+FUCHS

SENSING YOUR NEEDS

Subject to modifications
(:pyvigh! Km:l +FUCHS o Priated in Germany TDOCT_4981—ENG
11/2015

	JavaScript Programming Guide
	1 Introduction
	1.1 Document Organization
	1.2 Document and Coding Conventions
	1.3 Related Documents
	1.4 Related Utility

	2 Programming Environment
	2.1 Editor
	2.2 CodeViewer Application
	2.3 Security
	2.4 Debugging

	3 Programming Concepts
	3.1 Simplicity
	3.2 The OHV300 gui Object
	3.2.1 Softkey Implementation
	3.2.2 Forms
	3.2.3 Menus
	3.2.4 Text

	3.3 Event
	3.3.1 Decode Events
	3.3.2 Key Events
	3.3.3 Command Execution

	3.4 Reader Configuration
	3.5 Symbol Decoding
	3.5.1 Transform Data by Symbology
	3.5.2 Evaluate Data Format
	3.5.3 Detect Format Errors
	3.5.4 Let the Handheld Process the Decode
	3.5.5 Ignore the Decode
	3.5.6 Determine the Orientation of the Decode

	3.6 Host Communication
	3.7 Data in Handheld Local Storage
	3.8 Demo Programs

	4 Class Reference
	4.1 decode
	4.1.1 Properties
	4.1.1.1 data
	4.1.1.2 symbology
	4.1.1.3 symbology_ex
	4.1.1.4 symbologyModifier
	4.1.1.5 symbologyModifier_ex
	4.1.1.6 symbologyIdentifier
	4.1.1.7 x
	4.1.1.8 y
	4.1.1.9 time
	4.1.1.10 quality_percent
	4.1.1.11 qrPosition
	4.1.1.12 qrTotal
	4.1.1.13 qrParity
	4.1.1.14 linkage
	4.1.1.15 bounds
	4.1.1.16 numExtraFields
	4.1.1.17 decoderType
	4.1.1.18 aimSymbology
	4.1.1.19 aimModifier
	4.1.1.20 decodeOutputFormat

	4.2 gui
	4.2.1 Methods
	4.2.1.1 alert
	4.2.1.2 confirm
	4.2.1.3 prompt
	4.2.1.4 putBox
	4.2.1.5 sendKey
	4.2.1.6 sendText
	4.2.1.7 show
	4.2.1.8 showForm
	4.2.1.9 showMenu
	4.2.1.10 showSubMenu
	4.2.1.11 splash and clearSplash
	4.2.1.12 sync

	4.2.2 Properties
	4.2.2.1 inputMode
	4.2.2.2 key
	4.2.2.3 leftSoftkey
	4.2.2.4 rightSoftkey
	4.2.2.5 statusText

	4.2.3 Objects
	4.2.3.1 gui.Button
	4.2.3.2 gui.Edit
	4.2.3.3 gui.Form
	4.2.3.4 gui.Image
	4.2.3.5 gui.Label
	4.2.3.6 gui.Menu
	4.2.3.7 gui.MenuItem
	4.2.3.8 gui.MultiLineEdit
	4.2.3.9 gui.Separator
	4.2.3.10 gui.Softkey
	4.2.3.11 gui.Text
	4.2.3.12 gui.ToggleButton

	4.2.4 Predefined Softkey Objects
	4.2.4.1 backSoftkey
	4.2.4.2 cancelSoftkey
	4.2.4.3 okSoftkey
	4.2.4.4 selectSoftkey

	4.2.5 Form and Menu Common Methods
	4.2.5.1 append(control)
	4.2.5.2 prepend(control)
	4.2.5.3 setActiveChild(control)

	4.2.6 Form and Menu Common Properties
	4.2.6.1 caption
	4.2.6.2 onKey

	4.3 reader
	4.3.1 Methods
	4.3.1.1 beep
	4.3.1.2 defaultSettings
	4.3.1.3 getKeyboardStatus
	4.3.1.4 processCommand
	4.3.1.5 readSetting
	4.3.1.6 runScript
	4.3.1.7 saveSettings
	4.3.1.8 setDisplayLed
	4.3.1.9 setInterval
	4.3.1.10 clearInterval
	4.3.1.11 setTimeout
	4.3.1.12 clearTimeout
	4.3.1.13 shiftJisToUnicode
	4.3.1.14 writeSetting
	4.3.1.15 unicodeToShiftJis

	4.3.2 Properties
	4.3.2.1 onCommand
	4.3.2.2 onCommandFinish
	4.3.2.3 onDecode
	4.3.2.4 onDecodeAttempt
	4.3.2.5 onIdle
	4.3.2.6 onStandby
	4.3.2.7 batteryLevel
	4.3.2.8 red
	4.3.2.9 green
	4.3.2.10 amber
	4.3.2.11 none
	4.3.2.12 cabled
	4.3.2.13 charging
	4.3.2.14 hardwareVersion
	4.3.2.15 oemId
	4.3.2.16 readerId
	4.3.2.17 softwareVersion
	4.3.2.18 bdAddr

	4.4 storage
	4.4.1 Methods
	4.4.1.1 append
	4.4.1.2 erase
	4.4.1.3 findFirst
	4.4.1.4 findNext
	4.4.1.5 read
	4.4.1.6 rename
	4.4.1.7 size
	4.4.1.8 upload
	4.4.1.9 write
	4.4.1.10 getHeader
	4.4.1.11 saveOffsetWindow

	4.4.2 Properties
	4.4.2.1 fullness_percent
	4.4.2.2 isFull
	4.4.2.3 logFullness_percent

	4.5 comm
	4.5.1 Methods
	4.5.1.1 connect
	4.5.1.2 disconnect
	4.5.1.3 sendPacket
	4.5.1.4 sendText

	4.5.2 Properties
	4.5.2.1 isConnected

	4.6 Functions
	4.6.1 Dialog
	4.6.1.1 alert
	4.6.1.2 confirm
	4.6.1.3 prompt

	4.6.2 Other Functions
	4.6.2.1 gc
	4.6.2.2 include
	4.6.2.3 print
	4.6.2.4 setStandbyMessage
	4.6.2.5 wdt

	5 Glossary and Acronyms
	6 Input Modes
	7 Format Specifiers
	8 Supported JavaScript Core
	9 Symbology ID & Modifier Information

