# **SmartRunner Detector**

Laser-line triangulation sensor for high-precision field monitoring

**Manual** 







With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

#### Worldwide

Pepperl+Fuchs Group

Lilienthalstr. 200 68307 Mannheim

Germany

Phone: +49 621 776 - 0

E-mail: info@de.pepperl-fuchs.com

### **North American Headquarters**

Pepperl+Fuchs Inc.

1600 Enterprise Parkway

Twinsburg, Ohio 44087

**USA** 

Phone: +1 330 425-3555

E-mail: sales@us.pepperl-fuchs.com

### **Asia Headquarters**

Pepperl+Fuchs Pte. Ltd.

P+F Building

18 Ayer Rajah Crescent

Singapore 139942

Phone: +65 6779-9091

E-mail: sales@sg.pepperl-fuchs.com https://www.pepperl-fuchs.com

| 1 | Introd         | Introduction5                     |    |  |  |
|---|----------------|-----------------------------------|----|--|--|
|   | 1.1            | Content of this Document          | 5  |  |  |
|   | 1.2            | Target Group, Personnel           | 5  |  |  |
|   | 1.3            | Symbols Used                      |    |  |  |
| 2 | Produ          | ıct Specifications                | 7  |  |  |
|   | 2.1            | Use and Application               | 7  |  |  |
|   | 2.2            | Hazards of Laser Radiation        | 9  |  |  |
|   | 2.3            | Dimensions                        | 10 |  |  |
|   | 2.4            | Displays and Controls             | 11 |  |  |
|   | 2.5            | Interfaces                        | 12 |  |  |
|   | 2.6            | Accessories                       | 13 |  |  |
| 3 | Instal         | lation                            | 14 |  |  |
|   | 3.1            | Storage and Disposal              | 14 |  |  |
|   | 3.2            | Preparation                       | 14 |  |  |
|   | 3.3            | Mounting the Sensor               | 14 |  |  |
|   | 3.4            | Electrical Connection             | 16 |  |  |
|   | 3.5            | Detection Range                   | 19 |  |  |
| 4 | Comn           | nissioning                        | 21 |  |  |
|   | 4.1            | Connecting the Sensor             | 21 |  |  |
| 5 | Visior         | Configurator Software             | 22 |  |  |
|   | 5.1            | Connecting to Vision Configurator | 22 |  |  |
|   | 5.2            | Application Window Structure      | 24 |  |  |
|   | 5.3            | Menu Bar                          |    |  |  |
|   | 5.3.1<br>5.3.2 | File MenuView Menu                |    |  |  |
|   | 5.3.3          | Sensor Menu                       |    |  |  |
|   | 5.3.4          | Image Menu                        | 26 |  |  |
|   | 5.3.5          | Administration Menu               |    |  |  |
|   | 5.3.6          | Help Menu                         |    |  |  |
|   | 5.4            | Toolbar                           |    |  |  |
|   | 5.5            | Sensor Data                       |    |  |  |
|   | 5 G            | Imaga Display                     | 20 |  |  |

| 5.7    | Configuration window                                                                                                   | 30                       |
|--------|------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 5.7.1  | Sensor Information                                                                                                     |                          |
| 5.7.2  | Common Tab                                                                                                             |                          |
| 5.7.3  | Detection                                                                                                              | 33                       |
| Opera  | tion                                                                                                                   | 34                       |
| 6.1    | Configuration Mode                                                                                                     | 34                       |
| 6.2    | Code Card Mode                                                                                                         | 36                       |
| 6.2.1  | Setting Device Parameters via Control Code                                                                             | 37                       |
| 6.3    | Presentation Mode                                                                                                      | 38                       |
| 6.4    | Communication via the RS-485 Interface                                                                                 | 39                       |
| 6.4.1  | Request Telegram                                                                                                       | 39                       |
| 6.4.2  | Response Telegram                                                                                                      | 40                       |
| Mainte | enance and Repair                                                                                                      | 42                       |
| 7.1    | Servicing                                                                                                              | 42                       |
| 7.2    | Repair                                                                                                                 | 42                       |
| Troub  | leshooting                                                                                                             | 43                       |
| 8.1    | What to Do in Case of a Fault                                                                                          |                          |
| Licens | se Note                                                                                                                | 11                       |
|        | 5.7.1<br>5.7.2<br>5.7.3<br>Opera<br>6.1<br>6.2<br>6.2.1<br>6.3<br>6.4<br>6.4.2<br>Mainto<br>7.1<br>7.2<br>Troub<br>8.1 | 5.7.1 Sensor Information |

# 1 Introduction

### 1.1 Content of this Document

This document contains information required to use the product in the relevant phases of the product life cycle. This may include information on the following:

- · Product identification
- Delivery, transport, and storage
- Mounting and installation
- Commissioning and operation
- Maintenance and repair
- Troubleshooting
- Dismounting
- Disposal



#### Note

For full information on the product, refer to the further documentation on the Internet at www.pepperl-fuchs.com.



#### Note

For specific device information such as the year of construction, scan the QR code on the device. As an alternative, enter the serial number in the serial number search at www.pepperl-fuchs.com.

The documentation comprises the following parts:

- This document
- Datasheet

In addition, the documentation may comprise the following parts, if applicable:

- EU-type examination certificate
- · EU declaration of conformity
- Attestation of conformity
- Certificates
- Control drawings
- Instruction manual
- Functional safety manual
- Other documents

# 1.2 Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Only appropriately trained and qualified personnel may carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the product. The personnel must have read and understood the instruction manual and the further documentation.

Prior to using the product make yourself familiar with it. Read the document carefully.

# 1.3 Symbols Used

This document contains symbols for the identification of warning messages and of informative messages.

### **Warning Messages**

You will find warning messages, whenever dangers may arise from your actions. It is mandatory that you observe these warning messages for your personal safety and in order to avoid property damage.

Depending on the risk level, the warning messages are displayed in descending order as follows:



#### Danger!

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.



### Warning!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.



#### Caution!

This symbol indicates a possible fault.

Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

# **Informative Symbols**



# Note

This symbol brings important information to your attention.



### **Action**

1. This symbol indicates a paragraph with instructions. You are prompted to perform an action or a sequence of actions.



# 2 Product Specifications

# 2.1 Use and Application

This manual applies to the SmartRunner Detector (hereafter referred to as sensor). The sensor monitors a defined area and detects objects smaller than 1 mm.

The sensor is based on the SmartRunner technology and combines the light section method with a 2D Vision sensor including LED illumination.

An emitter optic is used to project a laser line onto an object as part of the light section method. This is detected by a camera at a specific angle. A height and width profile is created using the triangulation principle. This laser technology provides reliable measurements on different surfaces.

The integrated camera function, including LED lighting, enables parameterization using Data-Matrix control codes as well as the recording of error images for quick and targeted intervention in the event of process disruptions.

### Structure of the Sensor

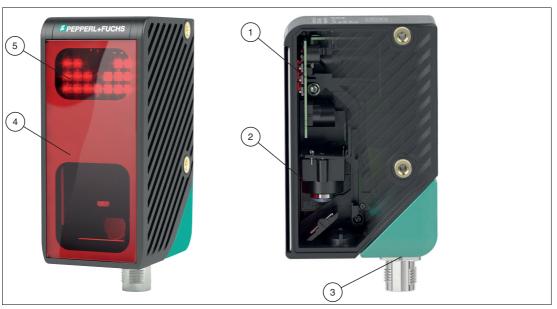



Figure 2.1 Structure of the Sensor

- Emitter optic
- 2 Camera
- 3 Movable connection
- 4 Protective cover
- 5 LED lighting



# **Examples of use**

The illustration shows the inner workings of a laser machine used to calibrate the switching distance of sensors. Different clamping devices (4) are used for the different sensor variants. When the program is activated, the laser moves to the appropriate height and the calibration process begins. However, if a device (4) is used that is too high, protruding objects can damage the lens (1).

To prevent this, the **laser profile sensor** (2) spans a detection field (3) below the lens (1). To do this, the wall (5) in the background is taught in via teach-in. If an object breaks through this previously defined field, the **laser profile sensor** (2) emits a corresponding signal and the process is stopped. This makes it possible to avoid damage to components while simultaneously increasing machine availability.

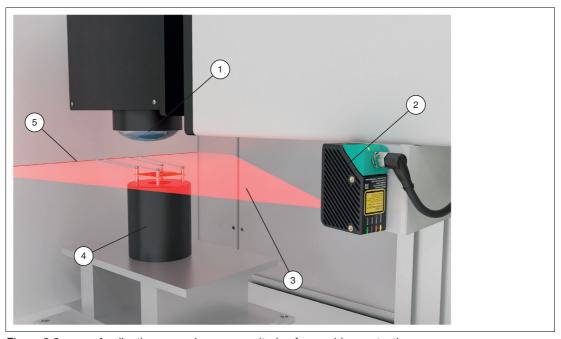



Figure 2.2 Application example: area monitoring for machine protection

#### **Double evaluation**

The sensor also detects objects that are not visible to the camera. For example, the surface of an object might reflect light away so that the camera cannot see the object. Because the SmartRunner Detector evaluates both the laser line on the object and on the background, the measurement results are always reliable. A broken background line or an object in the detection area causes the target to be recognized.

To do this, the background is taught in. If an object breaks through this previously defined field, the sensor emits a corresponding signal. If the defined field is not broken, a "Good" signal is emitted. If the field is broken, a "Bad" signal is emitted.

This is how the sensor works for monitoring the background and detecting objects:

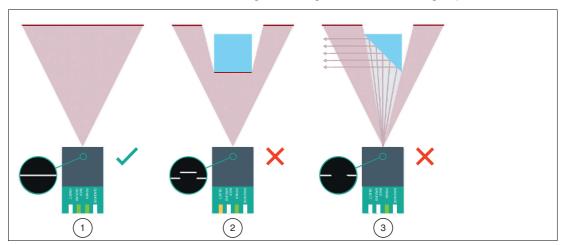



Figure 2.3 Capturing the background and recognizing objects

| Position | Designation            | Function                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Good-signal-scenario 1 | The laser line is not interrupted by any object. The machine operation proceeds as planned.                                                                                                                                                                                                                                                                                                                                                            |
| 2        | Good-signal-scenario 2 | The detector recognizes an object in the monitoring field. The sensor delivers a switching signal. The machine operation is stopped.                                                                                                                                                                                                                                                                                                                   |
| 3        | Good-signal-scenario 3 | A difficult-to-detect object with a mirror surface interrupts the laser line. Since the detector analyzes both the laser line on the object and on the background, the detection results are always reliable. Consequently, an interrupted background line also indicates the presence of an object in the detection area, causing the sensor to respond immediately. This parallel analysis ensures that the user has an absolutely reliable process. |

### **Parameterization and Operating Modes**

The laser-line triangulation sensor can be configured or parameterized via 3 different methods.

- Reading in code cards via the sensor camera
- Processing configuration telegrams via the bus interface
- Using the Vision Configurator software

The sensor has different operating modes, which can be activated for configuration, presentation, or normal operation.

- · Runtime mode: measurement mode, sensor works as configured
- Configuration mode: mode for configuring the sensor via data telegrams and via the Vision Configurator configuration program
- Code card mode: mode for configuring the sensor via Data Matrix control codes without the assistance of a PC
- Presentation mode: mode for presentation or testing without the assistance of a PC



### 2.2 Hazards of Laser Radiation

This section describes the contents and location of the warning label.

The sensor used corresponds to the safety standard IEC 60825-1:2014 for a laser class 1 product. In addition, the US regulation 21 CFR 1040.10 and 1040.11 is fulfilled except for **Laser Notice No. 56** dated May 8, 2019.



#### Warning!

Class 1 laser light

The laser light can be an irritant, especially in a dark environment. Do not point lasers at people!

Never look into the laser beam port if the sensor is operating.

Maintenance and repairs must be carried out by authorized service personnel only! Install the device so that the warning is clearly visible and legible.

Do not remove the sensor's protective cover.

The warning label is fixed to the back of the housing as shown in the following figure.

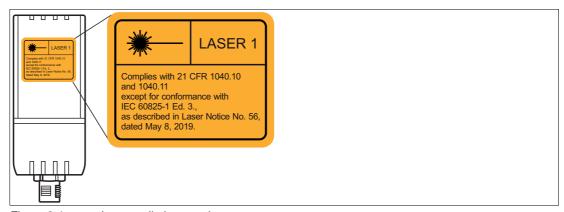



Figure 2.4 Laser radiation warning message

# 2.3 Dimensions

The devices in the SmartRunner series have the following identical housing dimensions.

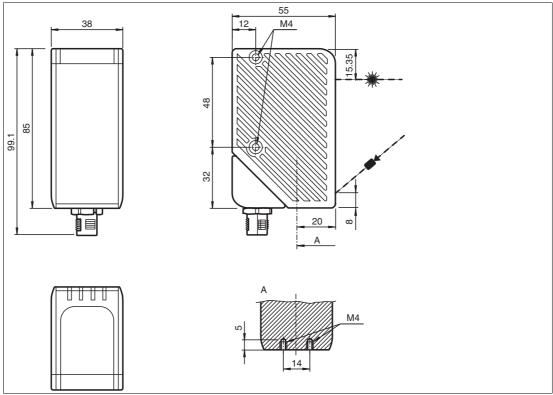



Figure 2.5 Dimensions of the SmartRunner series

# 2.4 Displays and Controls

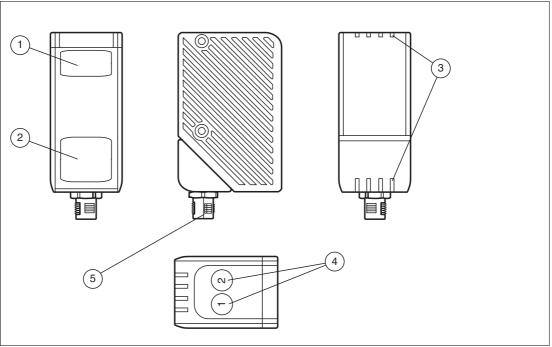



Figure 2.6 Overview of displays and controls

| Position       | Designation                      | Function                                                                                                                                                                           |  |
|----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1              | Emitter optic protective cover   | Is used to protect against damage and contamination                                                                                                                                |  |
| 2              | Reception optic protective cover | Is used to protect against damage and contamination                                                                                                                                |  |
| 3              | LEDs                             | The functional description for the LEDs can be found in the table below.                                                                                                           |  |
| 4              | Function keys in Pre-            | Function key 1: triggers an evaluation                                                                                                                                             |  |
| sentation mode |                                  | <ul> <li>Function key 2: when pressed and held for 2 seconds, activates the teach-in process. When pressed and held for longer than 2 seconds, activates Code Card mode</li> </ul> |  |
|                | Function keys in Run-            | Function key 1: no function                                                                                                                                                        |  |
|                | time mode                        | <ul> <li>Function key 2: when pressed and held for longer than 2 sec-<br/>onds, activates Code Card mode</li> </ul>                                                                |  |
| 5              | Electrical Connection            | The sensor is connected electrically via a MAIN 8-pin M12 connector plug on the bottom of the housing. See chapter 3.4.                                                            |  |



### Note

The function keys are only activated during a parameterizable time span after the sensor is switched on, after which they are locked. The default value for this time span is 5 minutes.

The function keys have different functions depending on the selected operating state.

# **Description of the LEDs**

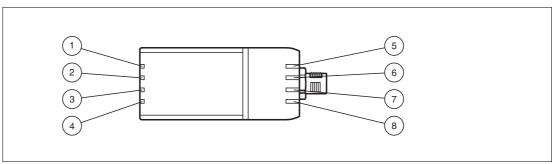



Figure 2.7 LEDs overview

| Position<br>Designa-<br>tion | Bezeichnung          | Function                                                                                                             |
|------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|
| 1                            | Ready (green/red)    | Lights up red if there is a sensor fault                                                                             |
|                              |                      | Lights up green when the sensor is ready for operation                                                               |
|                              |                      | Flashes green if the sensor is in Configuration mode                                                                 |
|                              |                      | Flashes green quickly when the sensor is in code card mode                                                           |
| 2                            | Teach in (yellow)    | Lights up yellow during the teach in process                                                                         |
| 3                            | Result (green/red)   | <ul> <li>Lights up green when the background line is not interrupted<br/>and no object has been detected.</li> </ul> |
|                              |                      | <ul> <li>Lights up red when an object is detected and the back-<br/>ground line is interrupted.</li> </ul>           |
| •                            | Applies in Code Card | Lights up green when a correct code has been read                                                                    |
|                              | mode                 | Lights up red when an incorrect code has been read                                                                   |
|                              |                      | Off if no code has been read                                                                                         |



| Position<br>Designa-<br>tion | Bezeichnung        | Function                                                                 |
|------------------------------|--------------------|--------------------------------------------------------------------------|
| 4                            | TRIGGER (yellow)   | Lights up yellow if the hardware trigger signal is activated             |
| 5                            | Diagnosis (red)    | Lights up red if a bus error has occurred                                |
|                              |                    | Lights up red if a system error has occurred on the interface controller |
|                              |                    | Flashes red if the sensor is in Update mode                              |
| 6                            | POWER (green)      | Lights up as soon as voltage is present                                  |
| 7                            | Background (green) | Lights up green when output 1 is set                                     |
| 8                            | Object (yellow)    | Lights up yellow when output 2 is set                                    |

### 2.5 Interfaces

### The RS-485 Interface

The reader is equipped with an RS-485 interface for communication purposes, i.e., parameterizing the reader functions or reading out current process data during operation. This interface is operated in 8-E-1 operating mode and fitted with a terminator that can be activated or deactivated by parameterizing the sensor head.

The RS-485 interface supports the following transfer rates:

- 38400 bit/s
- 57600 bit/s
- 76800 bit/s
- 115200 bit/s (default value)
- 230400 bit/s

### Data structure of the RS-485 interface



### 2.6 Accessories

| Order designation           | Description                                                                |
|-----------------------------|----------------------------------------------------------------------------|
| V19-G-5M-PUR-ABG            | Single-ended female cordset, M12, 8-pin, shielded, PUR cable               |
| VLX-MB1                     | Mounting aid, adaptable 360° adjustment of mounting head and mounting foot |
| VLX-MB2                     | Mounting aid, fixing bracket                                               |
| PCV-USB-RS485 Converter Set | USB to RS 485 interface converter                                          |

Other accessories can be found online at www.pepperl-fuchs.com.

# 3 Installation

# 3.1 Storage and Disposal

Keep the original packaging. Always store and transport the device in the original packaging.

Store the device in a clean and dry environment. The permitted ambient conditions must be considered, see datasheet.

The device, built-in components, packaging, and any batteries contained within must be disposed in compliance with the applicable laws and guidelines of the respective country.

# 3.2 Preparation



### **Unpacking the Device**

Check the packaging and contents for damage.

→ In the event of damage, inform the shipping company and notify the supplier.

- Check the package contents against your order and the shipping documents to ensure that all items are present and correct.
  - → Should you have any questions, direct them to Pepperl+Fuchs.
- 3. Retain the original packaging in case the device is to be stored or shipped again at a later date.

# 3.3 Mounting the Sensor



#### Note

### Mounting an optical device

- Do not aim the sensor at the sun.
- Protect the sensor from direct long-term exposure to sun.
- Prevent condensation from forming by not exposing the sensor to any major fluctuations in temperature.
- Do not expose the sensor to the effects of any aggressive chemicals.
- Keep the lenses and reflector of the device clean. Clean with a soft cloth, using standard commercial glass cleaner if necessary.

We recommend to clean the optical surface and to check screw fittings and electrical connections at regular intervals.

The operating distance differs depending on the sensor. The correct operating distance can be found in the datasheet for the sensor to be installed.

The following two figures show the orientation of the sensor under extraneous light:



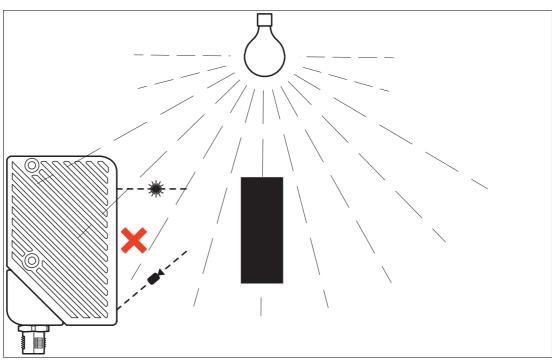



Figure 3.1 Incorrect orientation

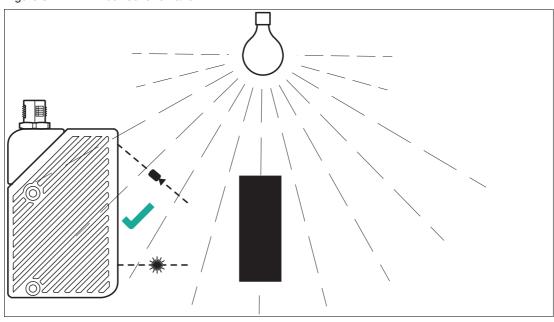



Figure 3.2 Correct orientation

The surface must be level to prevent the housing from becoming misaligned when the fittings are tightened. We advise securing the screws with spring disks to prevent the sensor becoming misaligned. Following installation of the sensor, ensure that there is still sufficient space to connect the connection cable to the sensor



#### Caution!

### Damage to the equipment caused by improper installation!

Device components can be damaged if the permissible screw-in depths and the maximum permissible tightening torque is exceeded.

Note that the threads on the bottom of the housing are not thru-holes.

Observe the maximum permissible screw-in depth to avoid damaging the device or mounting incorrectly.

Never exceed the maximum permissible tightening speed of the fixing screws. The maximum tightening torque of the mounting screws must not exceed 2 Nm.

# **Mounting the Housing**

The device has 2 M4 threads on the base and on both sides of the housing to allow easy installation of the sensor in your plant. This means there are 3 different ways to mount the sensor in your plant.

- One-sided lateral mounting with M4 screws: You can mount the housing on its right-hand or left-hand side using the 2 M4 threaded sleeves. The maximum screw-in depth of the M4 screws is 8 mm.
- Continuous lateral mounting with M3 screws: M4 threaded sleeves are designed in such a
  manner that M3 screws pass all the way through the housing. Use 2 sufficiently long M3
  screws with 2 lock nuts to mount the device in the plant
- Mounting on the underside of the device with M4 screws: You can use the 2 threaded sleeves to mount the housing on the underside of the device. The maximum screw-in depth of the M4 screws is 5 mm.

### **Positioning the Sensor**

When positioning the sensor, ensure that the camera's field of vision is not obscured by the objects being scanned.

## 3.4 Electrical Connection



# **Connecting the Supply Voltage**

The sensor is connected electrically via a **MAIN** 8-pin M12 connector plug on the bottom of the housing. The power supply and data transfer take place via this connection. To connect the sensor, proceed as follows:

- 1. Plug the 8-pin M12 socket into the plug on the bottom of the housing.
- 2. Screw the lock nut onto the connector as far as it will go. This ensures that the power cable cannot be pulled out inadvertently.



#### Tip

The corner of the housing where the **MAIN** 8-pin M12 connector plug is located can be rotated. Depending on the mounting position, you can rotate the connector plug in a different direction to ensure simple cabling.

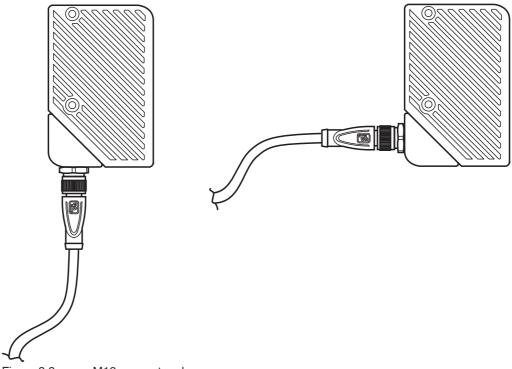



Figure 3.3 M12 connector plug



Figure 3.4 Connection layout

Pepperl+Fuchs single-ended female cordsets are manufactured in accordance with EN60947-5-2. When using a V19-G-5M-PUR-ABG single-ended female cordset with an open cable end, connector pins are assigned as follows:

| Pin | Wire color | Signal       | Description                                                                                                                                                                                                 |
|-----|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | white      | IN trigger   | Trigger input. Triggers an evaluation, if the sensor is in continuous evaluation mode (independent)                                                                                                         |
| 2   | brown      | +UB          | + 24 V power supply                                                                                                                                                                                         |
| 3   | green      | Data+ RS-485 | RS-485 interface: Data +                                                                                                                                                                                    |
| 4   | yellow     | Data- RS-485 | RS-485 interface: Data -                                                                                                                                                                                    |
| 5   | gray       | Teach        | Control signal for teaching in the background line                                                                                                                                                          |
| 6   | pink       | Good         | Output 1 is set if the height profile detected matches the taught-in profile in terms of form and position.  Once the teach-in process has been performed, this output signals that teach-in was successful |
| 7   | blue       | GND          | Ground for the + 24 V power supply                                                                                                                                                                          |
| 8   | red        | Bad          | Output 2 is set if:  No object has been detected or  The form detected does not match the taught-in                                                                                                         |
|     |            |              | or • The position detected is outside the tolerance.                                                                                                                                                        |
|     |            |              | Once the teach-in process has been per-<br>formed, this output signals that teach-in has<br>not been successful                                                                                             |



# **Connection using the RS-485 Interface**

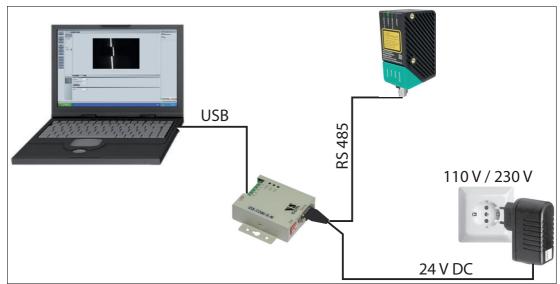



Figure 3.5 PCV-USB-RS-485 Converter Set

- 1. Plug a plug-in power supply into a socket and connect it to the interface converter.
  - ☐ The indicator LEDs on the sensor light up.
- 2. Establish a USB connection between the PC system and interface converter.
  - → The PWR LED on the interface converter lights up red.



#### Caution!

Damage to the device

Connecting an alternating current or excessive supply voltage can damage the device or cause the device to malfunction.

Electrical connections with reversed polarity can damage the device or cause the device to malfunction.

Connect the device to direct current (DC). Ensure that the supply voltage rating is within the specified device range. Ensure that the connecting wires on the female cordset are connected correctly.

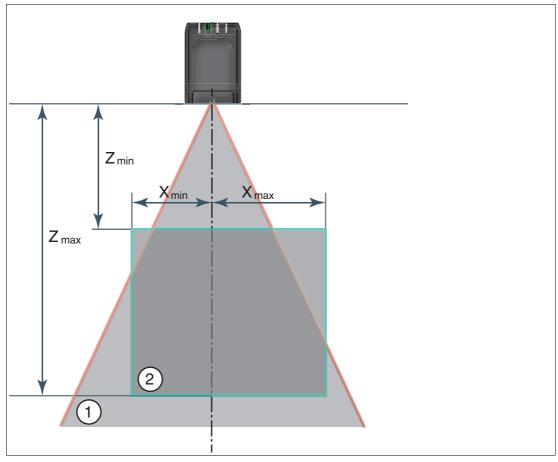


# **Shielding Cables**

The shielding of connection lines is required to suppress electromagnetic interference. Establishing a low resistance or low impedance connection with the protective conductor or equipotential bonding circuit is a particularly important factor in ensuring that these interference currents do not become a source of interference themselves. Only use connection lines with braid. Avoid connection lines with foil shield because this would increase the line capacities. The shielding is integrated at both ends, i.e., in the switch cabinet or on the PLC, **and** on the read head. The grounding terminal available as an accessory allows easy integration in the equipotential bonding circuit.

In exceptional cases, the shielding of a connection at one end may be more favorable if:

- An equipotential bonding cable is not laid or cannot be laid.
- A film shield is used.


The following points relating to shielding must be noted:

- · Use metal cable clips that cover large areas of the shielding.
- Place the cable shield onto the equipotential bonding rail immediately on entering the switch cabinet.
- Direct the protective grounding connections to a common point in a star configuration.
- The cross-section of the cables used for grounding should be as large as possible.

#### **Additional Ground Connection**

| Order designation | Description                                 |
|-------------------|---------------------------------------------|
|                   | Clip for mounting an additional ground con- |
| PCV-SC12A         | nection.                                    |

# 3.5 Detection Range



- 1 Field of view
- 2 Detection range

Note the detection range of the SmartRunner detector when planning your plant. The following table contains information on the detection range and the resolution.

|     | Detection range X | Distance Y to the sensor | Minimum object size |
|-----|-------------------|--------------------------|---------------------|
| min | 45 mm             | 55 mm                    | 0.25 mm             |
| max | 350 mm            | 700 mm                   | 1.0 mm              |



### Note

The smallest possible object size increases linearly with the distance Y to the sensor.

# 4 Commissioning

# 4.1 Connecting the Sensor

The sensor is configured using the Vision Configurator software. You have the opportunity to carry out settings on the sensor directly using the Vision Configurator software.



## **Aligning the Sensor**

Use the image display and diagram display in the Vision Configurator software to optimally align the sensor.

- 1. Power the reader via the 24 VDC socket on the device.
- 2. Use the automatic exposure time control to set an appropriate exposure value.
  - → If exposure time control was successful, the result LED will light up green.
- 3. Align the sensor so that a complete line that is as narrow as possible can be seen in the image display.
  - → The optimal reading distance between the sensor and the measurement object is set.

# 5 Vision Configurator Software

The sensor is commissioned and operated using the Vision Configurator software.

The Vision Configurator software makes it easy to operate the sensor with its user-friendly interface. Standard functions include making connections to the sensor, specifying the operating parameters, saving data sets, and displaying data and error diagnostics.



### Note

The following user roles are predefined with different authorizations in the Vision Configurator.

### **User Rights and Password**

| User rights | Description                                                                         | Password                                           |
|-------------|-------------------------------------------------------------------------------------|----------------------------------------------------|
| Default     | View all information<br>Sensor configuration<br>Create users at same or lower level | A password is not required                         |
| User        | View all information Sensor configuration Create users at same or lower level       | User                                               |
| Admin       | View all information<br>Sensor configuration                                        | Request the admin pass-<br>word from Pepperl+Fuchs |

Table 5.1 The users have different access and administration rights depending on the respective user role.



# **Establishing a Network Connection**

To establish a network connection with the sensor, proceed as follows:

- 1. Supply the sensor with power.
- 2. Start the Vision Configurator software.
- 3. Enter your user name and password.



#### Note

Additional steps for user-defined installation and installation of additional components are described in the Vision Configurator manual. The Vision Configurator manual can be found online at www.pepperl-fuchs.com.

# 5.1 Connecting to Vision Configurator



# **Connect Vision Configurator**

Connect the SmartRunner to a PC.



#### Note

Use a suitable RS-485/USB connecting cable and an adapter cable to do this:

| Function                                                                 | Order designation           |
|--------------------------------------------------------------------------|-----------------------------|
| USB interface converter to RS-485 including cable unit with power supply | PCV-USB-RS485-Converter Set |
| Cable unit with power supply for USB/RS-485 interface converter          | PCV-KBL-V19-STR-RS485       |

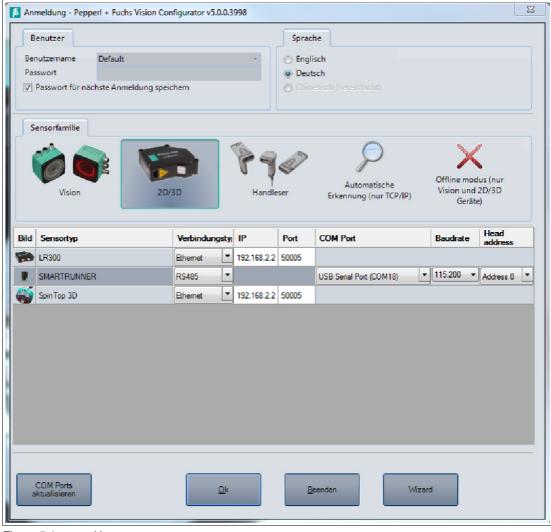



Figure 5.1 Home screen



# **Wizard - Operation assistant for Vision Configurator**

The **Wizard** complements the Vision Configurator configuration software. Double-click on the Wizard button to launch the operation assistant. You will be guided step-by-step through the individual settings.

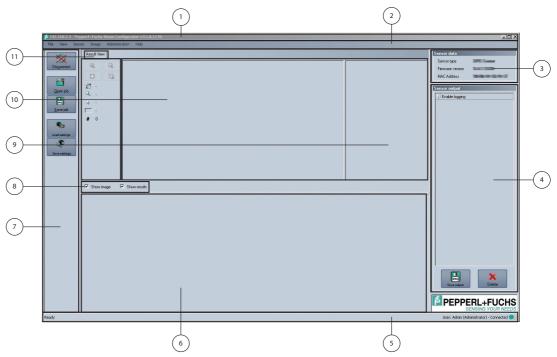
Proceed as follows to launch the Vision Configurator.



# **Starting Vision Configurator**

- 1. Select the 2-D/3-D button on the "Sensor Family" tab.
- 2. Select **SMARTRUNNER** in the "parameter range" with connection type **RS485**.
- 3. Select the required COM port.
- 4. In the **Baud rate** window ensure that the value **115,200** is set. Otherwise select the value.
- 5. In the **Head address** window, ensure that the address is set to **Address 0**. Otherwise select the address.
- **6.** Use the **OK** button to confirm your settings.
  - → The application window will open.




# 5.2 Application Window Structure

The application screen opens after you log in.



### Note

The individual functions depend on the type of sensor connected and the current authorization level, so they are not always all visible.



The software is designed to be similar to most Windows applications.

| 1 | Title bar            | <ul> <li>Shows the IP address, the software name, and the version<br/>number</li> </ul>                  |
|---|----------------------|----------------------------------------------------------------------------------------------------------|
|   |                      | Contains the Minimize/Maximize/Close buttons                                                             |
| 2 | Menu bar             | Displays all the menus in the program                                                                    |
|   |                      | Provides an overview and helps with navigation                                                           |
| 3 | Sensor data screen   | Displays data for the connected sensor                                                                   |
| 4 | Sensor output screen | Shows the log display                                                                                    |
| 5 | Status bar           | Displays status information about the application                                                        |
| 6 | Configuration window | Contains the sensor-specific parameters that you can set                                                 |
| 7 | Toolbar              | Contains icon buttons as an extension to the menu                                                        |
| 8 | Check boxes          | Show images: Enables or disables the image display                                                       |
|   |                      | Show results: Enables or disables the results area                                                       |
| 9 | Results area         | Displays results from the sensor                                                                         |
|   |                      | <ul> <li>A varying number of tabs can be displayed depending on<br/>which sensor is connected</li> </ul> |
|   |                      | This field can be enabled or disabled via Show results                                                   |

| 10 | Image display | Displays the images captured or stored in the error memory                                                                           |
|----|---------------|--------------------------------------------------------------------------------------------------------------------------------------|
|    |               | This field can be enabled or disabled via Show images                                                                                |
| 11 | Tab           | Displays information about the current image and the pixel under the mouse pointer. The following items are displayed:  • Image size |
|    |               | Zoom level                                                                                                                           |
|    |               | Mouse position in image coordinates                                                                                                  |
|    |               | Current grayscale value                                                                                                              |
|    |               | Image number                                                                                                                         |

# 5.3 Menu Bar

The menu bar contains a list of menu items. The functionality depends on the type of sensor that is connected and the permissions of the user logged in.



Figure 5.2 Menu Bar

## 5.3.1 File Menu

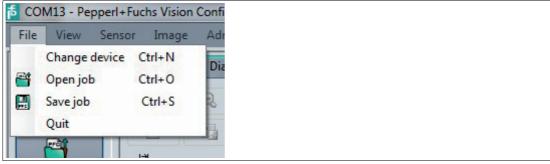



Figure 5.3 File Menu

| Change device | Disconnects the device and returns to the Login dialog. |
|---------------|---------------------------------------------------------|
| Open job      | Loads a sensor configuration stored on the PC.          |
| Save job      | Saves the current sensor configuration on the PC.       |
| Quit          | Terminates the program.                                 |

Table 5.2 File Menu

## 5.3.2 View Menu



Figure 5.4 View Menu

| Show standard buttons   | Toggles the display of the buttons in the bar on the left on and off.                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Show device data        | Hides the display of the sensor data in the top right of the screen.                                                                                               |
| Displayed message types | Opens a selection window in which the following display windows can be activated or deactivated: Info, Result OK, Result not OK, Warning, Error, Critical, Assert. |

Table 5.3 View menu

### 5.3.3 Sensor Menu

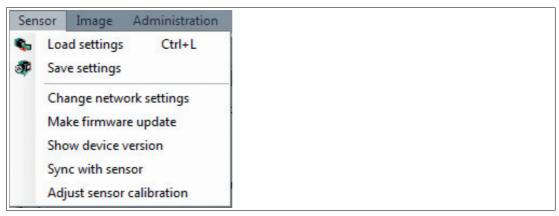



Figure 5.5 Sensor menu

| Load settings             | Loads the saved settings from the sensor                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Save settings             | Saves the settings to the sensor                                                                                          |
| Change network settings   | Change the network settings. The settings window allows you to set the IP address, subnet mask, gateway address, and DHCP |
| Make firmware update      | Performs firmware updates. This command should be used by experienced users only                                          |
| Show device version       | Displays the device version                                                                                               |
| Sync with sensor          | Synchronization with the sensor                                                                                           |
| Adjust sensor calibration | Adjust the sensor calibration                                                                                             |

Table 5.4 Sensor menu



### Note

### **Firmware Update**

Once you have upgraded the firmware and **Update complete** is displayed, restart the sensor.

# 5.3.4 *Image* Menu



Figure 5.6 **Image** menu

| Load imagefile          | Loads the image file                                                |
|-------------------------|---------------------------------------------------------------------|
| Open image folder       | Opens the folder in which images are currently saved                |
| Save image              | Saves the image currently displayed on the PC                       |
| Copy image to clipboard | Loads an image file to the clipboard                                |
| Upload image to device  | Uploads an image to the device                                      |
| Show graphic            | Switches display data sent from the sensor on and off in the image. |

Table 5.5 **Image** menu

### 5.3.5 Administration Menu



Figure 5.7 **Administration** menu

| User administration            | Opens a window that shows all currently created users at the same authorization level or lower. New users at the same authorization level or lower can also be created and deleted here. In addition, a user password can be reset to the default password for the relevant user level. |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change password                | Changes the current user's password.                                                                                                                                                                                                                                                    |
| Change user                    | The login screen opens and a different user and/or sensor can be selected.                                                                                                                                                                                                              |
| Send XML file                  | Saves the XML data on a computer.                                                                                                                                                                                                                                                       |
| Load XML file                  | Loads XML data from a computer.                                                                                                                                                                                                                                                         |
| Create reader programming code | Creates a reader programming code                                                                                                                                                                                                                                                       |

Table 5.6 **Administration** menu



# 5.3.6 Help Menu

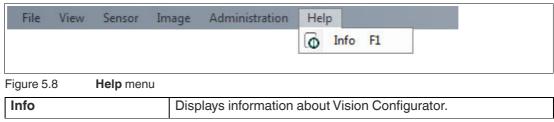



Table 5.7 **Help** menu

# 5.4 Toolbar

The toolbar can be used to select various functions.

| <u>C</u> onnect     | Selecting the Connect button establishes a connection between the PC and the sensor.                            |
|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Dis <u>c</u> onnect | The connection between the PC and the sensor is disconnected.                                                   |
| Open job            | Opens a saved setting.                                                                                          |
| Save job            | Saves the settings made.                                                                                        |
| Load settings       | Settings are read out from the sensor.                                                                          |
| Save settings       | All settings made are saved on the sensor.                                                                      |
| Reset               | Reset to default settings.                                                                                      |
| Trigger laser       | Perform manual trigger.                                                                                         |
| Trigger LED         | Perform LEDs trigger Caution: If autotrigger is activated, a line image will be issued using the "Trigger LED." |
| Get image           | Current sensor image is loaded.                                                                                 |

| Get lines | The line image is loaded.                    |
|-----------|----------------------------------------------|
| Teach     | Profile is taught in using the next trigger. |

# 5.5 Sensor Data

This section shows the connected device type and firmware version.



Figure 5.9 Device data

# 5.6 Image Display

## **Image View**

Displays image data. Selected via the "Image View" button. "Get image" loads the last captured image on the PC and displays it in the window. To capture a new image, "Trigger" must have been clicked.



Figure 5.10 Image View

### **Diagram View**

Displays the results data in graphical form. The results data is retrieved by clicking "Get lines". The most recent results are then retrieved and displayed graphically. The "Get lines" function does not trigger a new image capture and evaluation process. "Trigger" must have been clicked in order to do this.

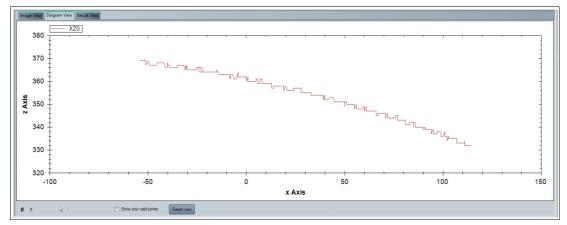



Figure 5.11 Diagram View

## **Result View**

Displays the results of the image evaluation. "Start request" starts the transfer.

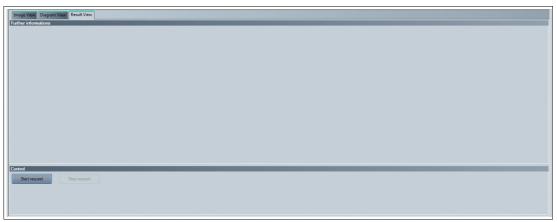



Figure 5.12 Result View - Start request

"Stop request" stops the transfer.

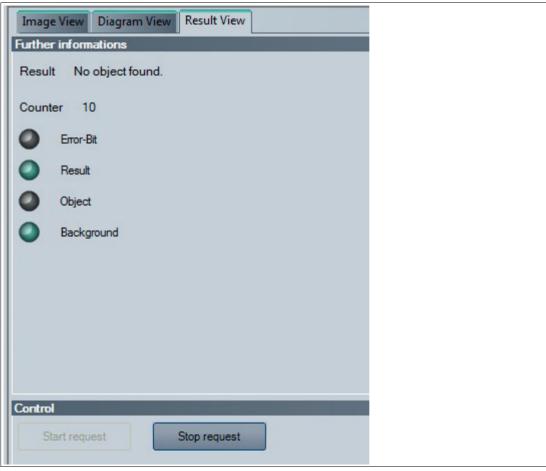



Figure 5.13 Result View

# 5.7 Configuration window

Various parameters are specified in the configuration window. The individual parameters depend on the current authorization level and are, therefore, not always all visible. Some features are available in different variants only. Depending on the parameters set, some fields will be grayed out.

### 5.7.1 Sensor Information

### **Sensor Information Tab**

Name: "Pepperl+Fuchs GmbH"

Homepage: "http://www.pepperl-fuchs.com/"

Product name: "Smartrunner"

Firmware version: Current firmware version of the main processor.

The version designation as a whole is made up as follows: Major Version. Minor Version.

Tag Number-Revision Number



Figure 5.14 Sensor Information Tab



### 5.7.2 Common Tab

There are 4 menu items available under the **Common** tab. The purpose of this section is to present the menu items in detail.

### **Communication menu item**

You can adjust the connection parameters between the sensor and computer under the **Communication** menu item.



Figure 5.15 Communication menu item

| Designation         | Function                                                                                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RS-485 head address | Address in the RS-485 bus. The address is sent with every RS485 command (see chapter 2.5) and is used for identification purposes if multiple sensors are installed in the bus.                                      |
| Baud rate           | Data transfer speed setting. The default value of the sensor is 115200 bps. When you change the baud rate, the baud rate of the Vision Configurator is automatically changed so that communication remains possible. |
| Bus termination     | Activates the integrated terminating resistor to terminate the RS-485 bus on the sensor                                                                                                                              |

## **Trigger menu item**

You can enable or disable the autotrigger under the Trigger menu item.



Figure 5.16 Trigger menu item

| Designation | Function                                                  |
|-------------|-----------------------------------------------------------|
| Autotrigger | A cyclic trigger is activated when the check mark is set. |

### Illumination menu item

You can adjust the sensor's exposure under the **Illumination** menu item.



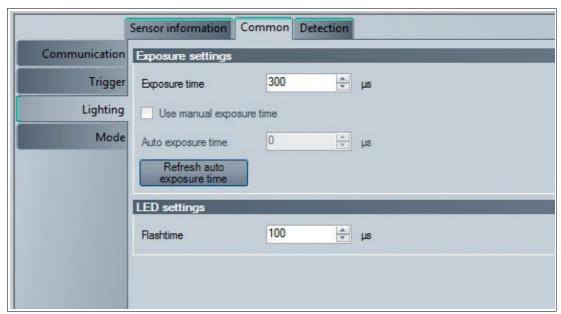



Figure 5.17 Illumination menu item

| Bezeichnung                | Funktion                                                                                                                                                                                                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure time              | Setting the manual exposure time. The "Use manual exposure time" function must be activated to manually adjust the exposure time. By increasing the value, the exposure time and thus the image brightness increase. Values below 1000 µs are suitable in most cases |
| Use manual exposure time   | When enabled, the manually set exposure time is used. If this box is not checked, the exposure time during the teach-in process is controlled automatically                                                                                                          |
| Auto exposure time         | The current exposure time is output in this field                                                                                                                                                                                                                    |
| Refresh auto exposure time | The "Auto exposure time" field is updated by pressing the button                                                                                                                                                                                                     |

## Mode menu item

You can enable or disable "Presentation mode" and "function keys 1 and 2" under the **Mode** menu item. "Presentation mode" and "function keys 1 and 2" are activated if checked and deactivated if unchecked.



Figure 5.18 Mode menu item

| Designation       | Function                                                                     |
|-------------------|------------------------------------------------------------------------------|
| Presentation mode | Mode of operation for presentation or testing without the assistance of a PC |



#### 5.7.3 Detection

#### **Detection Tab**

General tab for configuring the camera

#### "Detection" Tab



Figure 5.19 Detection tab—Detection

• Minimum object size: camera setting, adjust the resolution to the object size.

#### "ROI" Tab

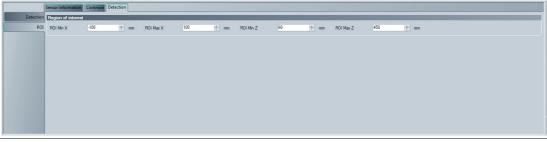



Figure 5.20 Detection tab—region of interest

• ROI: defines the detection area

# 6 Operation

# 6.1 Configuration Mode

To adjust the sensor, it must be in configuration mode.

The command to put the sensor in this mode is 0xA8 0x57. After successfully changing mode, the sensor responds with an Acknowledge (0x81 0xAC 0x00 0x2D). After an error when converting the configuration, the sensor responds with a No Acknowledge (0x81 0x53 0xXX 0xYY, where XX = error code and YY = checksum). To check whether the sensor is in configuration mode, the command Is\_In\_Config\_Mode (0x00 0xFE 0xFE) can be sent. If the sensor is in configuration mode, it responds with an Acknowledge, otherwise there is no response.

Error codes with "No Acknowledge":

0x00 = everything OK

0x01 = checksum incorrect

0x04 = parameter has a different length than that transferred

0x05 = internal error

0x06 = parameter index is unknown

0x07 = read/write access, although not allowed

0x09 = parameter value range is violated

0x0B = other error

0x0E = configuration command too long/short

In configuration mode, messages are sent according to the extended protocol:

| Byte/<br>bit | 8      | 7                     | 6                     | 5                     | 4                     | 3                     | 2                     | 1                     | 0                     |
|--------------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1            | Parity | R/W                   | Length6               | Length5               | Length4               | Length3               | Length2               | Length1               | Length0               |
| 2            | Parity | Index7                | Index6                | Index5                | Index4                | Index3                | Index2                | Index1                | Index0                |
| 3            | Parity | Data 1.7              | Data 1.6              | Data 1.5              | Data 1.4              | Data 1.3              | Data 1.2              | Data 1.1              | Data 1.0              |
|              | Parity |                       |                       |                       |                       |                       |                       |                       |                       |
| n            | Parity | Data (n-<br>2).7      | Data (n-<br>2).6      | Data (n-<br>2).5      | Data (n-<br>2).4      | Data (n-<br>2).3      | Data (n-<br>2).2      | Data (n-<br>2).1      | Data (n-<br>2).0      |
| n+1          | Parity | xor<br>B1.7B<br>(n).7 | xor<br>B1.6B<br>(n).6 | xor<br>B1.5B<br>(n).5 | xor<br>B1.4B<br>(n).4 | xor<br>B1.3B<br>(n).3 | xor<br>B1.2B<br>(n).2 | xor<br>B1.1B<br>(n).1 | xor<br>B1.0B<br>(n).0 |

Table 6.1 R/W:

0: write

1: read/command

Length: row data length (Data1 ... Data(n-2))

# **Description of Messages**

| Index | Parameter name            | Data<br>Length/<br>bytes | Read/<br>write | Description                                                                                                |
|-------|---------------------------|--------------------------|----------------|------------------------------------------------------------------------------------------------------------|
| 0x01  | VendorName                | Variable                 | R              | String containing "Pepperl+Fuchs"                                                                          |
| 0x02  | VendorHomep-<br>age       | Variable                 | R              | String containing the Pepperl+Fuchs homepage                                                               |
| 0x03  | ProductName               | Variable                 | R              | String containing the product name                                                                         |
| 0x07  | SoftwareVer-<br>sionDSP   | Variable                 | R              | String containing the version information                                                                  |
| 0x64  | Trigger                   | -                        | W              | Triggers an image capture with evaluation                                                                  |
| 0xE0  | GetImage                  | -                        | W              | Loads the current image from the sensor                                                                    |
| 0xFE  | InParamMode               | -                        | R              | Queries whether the sensor is in parameter-<br>ization mode                                                |
| 0xF3  | Save settings             | -                        | W              | Saves the current settings in the flash memory                                                             |
| 0xFF  | LeaveParam-<br>Mode       | -                        | W              | Request to exit parameterization mode                                                                      |
| 0x20  | Interface_Ad-<br>dress    | 1                        | R/W            | Set the bus address, value range 0-3                                                                       |
| 0x23  | Interface Bau-<br>drate   | 4                        | R/W            | Baud rate int32 little endian in baud (9600 - 230400)                                                      |
| 0x25  | Termination enable        | 1                        | R/W            | Enable/disable termination of the RS-485 bus                                                               |
| 0x68  | Laser exposure time       | 4                        | R/W            | Sets the exposure time in µs increments                                                                    |
| 0x10  | Flash time                | 4                        | R/W            | Sets the exposure time (LED lighting) in µs                                                                |
| 0xFD  | Presentation mode         | 4                        | R/W            | Presentation mode on [0] or off [1]                                                                        |
| 0x6D  | Go to teach mode          | -                        | W              | Puts the sensor in teach-in mode                                                                           |
| 0xC8  | ROI Evaluation            | 16                       | R/W            | "Region of interest" evaluation, 4 bytes in each case: $X_{min}$ , $X_{max}$ , $Z_{min}$ , $Z_{max}$ in mm |
| 0xC6  | MinObjectsize             | 4                        | R/W            | Minimum object size in 0.1 mm increments. All smaller objects are ignored                                  |
| 0xC7  | Background tol-<br>erance | 4                        | R/W            | Tolerance band around the background line in 0.1 mm increments                                             |
| 0x9F  | Switching threshold       | 4                        | R/W            | Sensitivity for object detection in % [0 - 100]                                                            |
| 0x51  | Autotrigger               | 4                        | R/W            | Activates the autotrigger function. When enabled, the sensor triggers itself cyclically.                   |



#### Note

All values are transferred in little-endian format. This saves the least significant byte at the lowest address, i.e. the least significant component is specified first.

#### **Example**

ROI for evaluation: Sets the ROI to ±50 mm in the X direction and to between +100 mm and +200 mm in the Z direction:

 $0x\ 10\ C8\ CE\ FF\ FF\ FF\ 32\ 00\ 00\ 00\ 64\ 00\ 00\ 00\ C8\ 00\ 00\ 00\ 77$ 

 $0 \times 10 = data length$ 

0xC8 = Index

OxCEFFFFFF = X<sub>min</sub> -50 mm (little-endian, two's complement)

 $0x32000000 = X_{min} +50 \text{ mm}$  (little-endian, two's complement)

 $0 \times 64000000 = Z_{min} + 100 \text{ mm}$  (little-endian, two's complement)

 $0xC8000000 = Z_{min} + 200 \text{ mm}$  (little-endian, two's complement)

#### Response telegram:

13.02.2017 11:39:17.68 [TX] -80 C8 48

13.02.2017 11:39:17.69 [RX] -90 C8 CE FF FF FF 32 00 00 00 64 00 00 00 C8 00 00 00 F7

#### 6.2 Code Card Mode

The built-in camera function including LED lighting allows for parameterization using Data Matrix control codes. The control codes are generated using the "Vision Configurator" operating software. All sensor parameters can be specified in a Data Matrix control code. For this purpose, the Data Matrix control code is placed in front of the camera. The control code is registered immediately and decoded. The sensor automatically activates the parameters contained within. So a large number of sensors can be put into operation easily and quickly.



#### Note

#### Combination of several parameters in a control code

Combining several parameters in a control code reduces the resolution of the code, which can affect readability by the sensor. It is therefore important to limit the number of parameters per control code. If the number is too large, the parameters should be divided between several control codes.

If <u>all</u> parameters are enabled, a minimum of 3 control codes for the parameters and 1 additional control code for "Save settings" are required for reliable detection.



#### Tip

It is also possible to generate control codes when no sensor is connected to Vision Configurator. In this case, you can, for example, generate a control code to assign a particular IP address to a sensor and then establish a connection with a PC.





# Generating a control code

- 1. In the menu bar, select Administration > Create reader programming code.
- 2. In the **Device type** section, select sensor type **SMARTRUNNER**.
- 3. Select the required parameters in the **Select function** section.
  - → The control code is displayed in different sizes in the **Control Code** section.
- **4.** To print the control code, click **Print** or **Print preview**. To save the control code, click **Save image**.

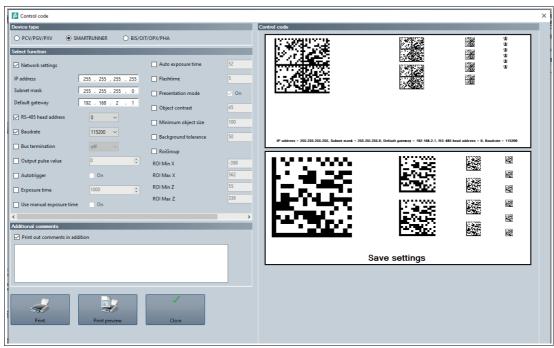



Figure 6.1 Generating a control code



# 6.2.1 Setting Device Parameters via Control Code

Use Vision Configurator to generate control codes.



#### Note

Parameterization mode can be activated only within 10 minutes of the sensor being switched on.



#### **Enabling Code Card Mode**

1. Hold down the 2 button on the back of the sensor for more than 2 seconds. Then release the button.

→ The Ready LED flashes rapidly and the sensor's camera system begins to flash.



# **Setting Parameters**

- 1. To assign a parameter, position the relevant control code in the sensor's field of view.
  - If a valid code is detected, the Result LED lights up green briefly If an invalid code is detected, the Result LED lights up red briefly
- 2. The modified parameter is now saved in the sensor's volatile memory. The "Save settings" control code saves the parameter in the non-volatile memory if necessary.



# **Disabling Code Card Mode**

1. Press the 2 button on the back of the sensor.

→ The Ready LED stops flashing and the camera system stops flashing.



#### 6.3 Presentation Mode

You can demonstrate or test the sensor in Presentation mode without the assistance of a PC. Furthermore, the control buttons are activated/deactivated.



# **Setting Presentation Mode**

- 1. Connect the sensor to a power supply.
- 2. Align the sensor to the measurement object.
- 3. Teach in the measurement object by tapping button 2 on the sensor.



Figure 6.2 Result LED

→ The result LED lights up red.

#### 4. Press button 1.

→ The trigger is activated. The result LED lights up green. The measurement object is taught in

The result LED lights up red if the profile contour deviates.



#### Note

If the autotrigger is activated in the Vision Configurator operating software, you just need to press button 2 to teach in the measurement object. If the autotrigger is deactivated, the trigger must be activated by pressing button 1 once the measurement object has been taught in.



#### 6.4 Communication via the RS-485 Interface

The control panel and reader communicate via the RS-485 interface during operation. Make sure that the basic communication settings have been made on the reader, such as setting the reader address and baud rate.

A distinction is made between request telegrams that the control panel sends to the reader and response telegrams that the reader sends to the control panel. Each byte of a request or response telegram consists of 9 bits (8 data bits + 1 parity bit).

#### **Parity Bit**

A bit assigned to a binary string used to detect errors. It is added in such a way that the sum modulo 2 of all bits that are regarded as binary digits in the string, including the parity bit, is either 0 or 1 depending on the requirement; additional bit that is added to each string or each byte for control purposes so that the sum of all bits containing binary 1 in the characters or bytes including control bit results in an odd or even value.

#### 6.4.1 Request Telegram

A request telegram always consists of 2 bytes. The second byte corresponds to the first byte, however the 8 data bits of the first byte are inverted.

#### Structure of a Request Telegram

|        |        | Bit 7 | Bit 6          | Bit 5          | Bit 4          | Bit 3          | Bit 2          | Bit 1 | Bit 0 |
|--------|--------|-------|----------------|----------------|----------------|----------------|----------------|-------|-------|
| Byte 1 | Parity | R/W   | Req. bit<br>4  | Req. bit       | Req. bit<br>2  | Req. bit<br>1  | Req. bit<br>0  | A1    | A0    |
| Byte 2 | Parity | ~R/W  | ~Req. bit<br>4 | ~Req. bit<br>3 | ~Req. bit<br>2 | ~Req. bit<br>1 | ~Req. bit<br>0 | ~A1   | ~A0   |

Meaning of bits:

R/W: 0 = response, 1 = request

#### **Meaning of Bits**

| 8      | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | <- Bit |                                |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------------------------------|
| PAR    | R/W | R.4 | R.3 | R.2 | R.1 | R.0 | A.1 | A.0 | Value  | Function                       |
| Parity | 0   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |        | Answer                         |
| Parity | 1   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |        | Request                        |
| Parity | 1   | Х   | Х   | Х   | Х   | Х   | 0   | 0   |        | Read head addr. 0              |
| Parity | 1   | Х   | Х   | Х   | Х   | Х   | 0   | 1   |        | Read head addr. 1              |
| Parity | 1   | Х   | Х   | Х   | Х   | Х   | 1   | 0   |        | Read head addr. 2              |
| Parity | 1   | Х   | Х   | Х   | Х   | Х   | 1   | 1   |        | Read head addr. 3              |
| Parity | 1   | 0   | 0   | 0   | 0   | 0   | Х   | Х   | 0x80   | Status (is alive)              |
| Parity | 1   | 0   | 0   | 0   | 0   | 1   | Х   | Х   | 0x84   | Result data                    |
| Parity | 1   | 0   | 0   | 1   | 0   | 1   | Х   | Х   | 0x94   | Teach                          |
| Parity | 1   | 0   | 1   | 0   | 1   | 0   | Х   | Х   | 0xA8   | Enable Configura-<br>tion Mode |
| Parity | 1   | 1   | 0   | 1   | 1   | 0   | Х   | Х   | 0xD8   | Generate a software trigger    |

### 6.4.2 Response Telegram

The response telegram may contain 6 to 9 bytes, depending on the content. The first byte contains the address of the responding reader and status information. The X position of the reader is transmitted in bytes 2 to 5, starting with the MSB. Depending on the controller request, information such as speed and the Y position is transmitted in the subsequent bytes. These bytes are omitted if a corresponding request is not sent. The last byte is used to detect faults during the data transfer.

#### Status (is alive)

The status always returns 0x55 if the sensor is ready for operation.

|      | 8      | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| Byte | PAR    | R/W | R.4 | R.3 | R.2 | R.1 | R.0 | A.1 | A.0 |
| 1    | Parity | 0   | 1   | 0   | 1   | 0   | 1   | 0   | 1   |

#### **Result Data**

Result Data provides the measurement status and result as a response.

| Byte              | Bit 8  | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1   | Bit 0 |
|-------------------|--------|-------|-------|--------|--------|-------|-------|---------|-------|
| Byte 1 - Status   | Parity | 0     | -     | Addr 1 | Addr 0 | Event | WRN   | No Pos. | ERR   |
| Byte 2 - Result   | Parity | 0     | 0     | R5     | R4     | R3    | R2    | R1      | R0    |
| Byte 3 - Counter  | Parity | 0     | C06   | C05    | C04    | C03   | C02   | C01     | C00   |
| Byte 4 - Checksum | Parity | 0     | xor   | xor    | xor    | xor   | xor   | xor     | xor   |

#### Legend

| Chatura | A al alu | Davies address                                       |
|---------|----------|------------------------------------------------------|
| Status  | Addr     | Device address                                       |
|         | Event    | Event occurred, currently read as 0                  |
|         | WRN      | Unused                                               |
|         | No Pos.  | Is always read as 0                                  |
|         | ERR      | System error or evaluation error                     |
| Result  | R0       | Faulty background line                               |
|         | R1       | Object detected                                      |
|         | R3       | Unused                                               |
|         | R4       | Unused                                               |
|         | R5       | Unused                                               |
| Counter |          | Increments for each evaluation, is restarted at 0x3F |

#### **Software Trigger**

After sending the sequence for the software trigger, the sensor triggers an image capture. No response telegram is generated to the command.

#### Teach-In

After sending the sequence for the teach-in, the sensor begins the teach-in routine. No response telegram is generated to the command.

# 7 Maintenance and Repair

# 7.1 Servicing



#### Danger!

Danger to life due to electrical current!

Contact with live parts causes immediate danger to life.

- Allow only qualified electricians to carry out work on the electrical installation.
- Switch off the power supply before carrying out servicing, cleaning, and repairs, and prevent the supply from being switched on again.
- Keep the live parts free from moisture.

The device is maintenance-free. To get the best possible performance out of your device, keep the optical unit on the device clean, and clean it when necessary.

Observe the following instructions when cleaning:

- Do not touch the optical unit with your fingers.
- Do not immerse the device in water. Do not spray the device with water or other liquids.
- Do not use abrasive agents to clean the surface of the device.
- Use a cotton or paper cloth moistened (not soaked) with water or isopropyl alcohol.
- Remove any residual alcohol using a cotton or paper cloth moistened (not soaked) with distilled water.
- Wipe the device surfaces dry using a lint-free cloth.

# 7.2 Repair

The device must not be repaired, changed, or manipulated. In case of failure, always replace the device with an original device.

# 8 Troubleshooting

#### 8.1 What to Do in Case of a Fault

Before you have the device repaired, take the following actions:

- · Test the plant according to the checklist below.
- · Contact our service center to localize the problem.

#### Checklist

| Fault                                          | Cause                                                             | Remedy                                                                                                                                                    |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| "Power" LED<br>does not light<br>up            | The power supply is switched off                                  | Check whether there is a reason why the power supply is switched off (installation or maintenance work, etc.). Switch on the power supply if appropriate. |  |  |  |
|                                                | Wiring fault in the splitter or control cabinet, cable break      | Check the wiring carefully and repair any faults with the wiring. Check the cable to ensure proper function.                                              |  |  |  |
| Control panel receiving no                     | Connection cable not connected                                    | Connect the connection cable.                                                                                                                             |  |  |  |
| measurement<br>data                            | Incorrect connection cable used                                   | Use the appropriate connection cable only.                                                                                                                |  |  |  |
|                                                | Incorrect baud rate set                                           | Make sure that you have set the correct baud rate for the sensor.                                                                                         |  |  |  |
| Measurement                                    | Protective cover dirty                                            | Clean protective cover.                                                                                                                                   |  |  |  |
| object not rec-<br>ognized                     | Reflections                                                       | Avoid reflections                                                                                                                                         |  |  |  |
|                                                | Foreign exposure                                                  | Avoid foreign exposure                                                                                                                                    |  |  |  |
|                                                | Exposure time control                                             | Set exposure ()                                                                                                                                           |  |  |  |
|                                                | Teach-in range set incorrectly                                    | Set teach-in range ()                                                                                                                                     |  |  |  |
|                                                | Evaluation range set incorrectly                                  | Set evaluation range ()                                                                                                                                   |  |  |  |
|                                                | Tolerance range set incorrectly                                   | Set tolerance range ()                                                                                                                                    |  |  |  |
| Measurement errors                             | Surfaces with pronounced scored structure and reflective surfaces | Improved arrangement of sensor components to the measurement object                                                                                       |  |  |  |
|                                                | Temperature change in the sensor                                  | Allow sensor to warm up for around 15 minutes before the measuring process is started.                                                                    |  |  |  |
|                                                | Incorrect distance to the measuring object                        | Note distance values                                                                                                                                      |  |  |  |
|                                                | Housing incorrectly mounted                                       | Install housing correctly (see chapter 3.3)                                                                                                               |  |  |  |
| Presentation<br>mode not<br>working            | Presentation mode not activated                                   | Enable <b>Presentation mode</b> and <b>Autotrigger</b> and confirm using "Save settings"                                                                  |  |  |  |
| No connection to the sensor                    | AC voltage or supply voltage too high                             | Connect sensor to direct current (DC) only.<br>Ensure that the level of supply voltage is within<br>the specified sensor range.                           |  |  |  |
| Data Matrix<br>control code is<br>not detected | Maximum number of parameters exceeded                             | We recommend a maximum of 10 parameters                                                                                                                   |  |  |  |

If none of the above remedies the problem, please contact our service center. Please
have the fault patterns and the version number of the firmware available. The firmware
version number can be found at the top right of the user interface.



License Note

# 9 License Note

The SmartRunner sensor ships with firmware ("software") programmed into it. This software is based in part on the work of the Independent JPEG Group. The software is based on works by Texas Instruments Incorporated, which are distributed under the following licenses:

#### **SYS/BIOS License**

Copyright (c) 2012-2015, Texas Instruments Incorporated. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- \* Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.
- \* Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
- \* Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#### **Eclipse Distribution License - v 1.0**

Copyright (c) 2007, Eclipse Foundation, Inc. and its licensors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the Eclipse Foundation, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



# Your automation, our passion.

# **Explosion Protection**

- Intrinsic Safety Barriers
- Signal Conditioners
- FieldConnex® Fieldbus
- Remote I/O Systems
- Electrical Ex Equipment
- Purge and Pressurization
- Industrial HMI
- Mobile Computing and Communications
- HART Interface Solutions
- Surge Protection
- Wireless Solutions
- Level Measurement

# **Industrial Sensors**

- Proximity Sensors
- Photoelectric Sensors
- Industrial Vision
- Ultrasonic Sensors
- Rotary Encoders
- Positioning Systems
- Inclination and Acceleration Sensors
- Fieldbus Modules
- AS-Interface
- Identification Systems
- Displays and Signal Processing
- Connectivity

Pepperl+Fuchs Quality

Download our latest policy here:

www.pepperl-fuchs.com/quality



