HANDBUCH

SmartRunner Matcher*
Lichtschnittsensor zum hochgenauen Profilvergleich
Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".
1 Einleitung .. 5
 1.1 Inhalt des Dokuments... 5
 1.2 Zielgruppe, Personal... 5
 1.3 Verwendete Symbole ... 6

2 Produktspezifikationen ... 7
 2.1 Einsatz und Anwendung ... 7
 2.2 Gefahren durch Laserstrahlung ... 10
 2.3 Abmessungen .. 11
 2.4 Anzeige- und Bedienelemente ... 12
 2.5 Schnittstellen .. 14
 2.6 Zubehör ... 14

3 Installation ... 15
 3.1 Lagerung und Entsorgung ... 15
 3.2 Vorbereitung ... 15
 3.3 Montage des Sensors ... 15
 3.4 Elektrischer Anschluss .. 18
 3.5 Erfassungsbereich ... 22

4 Inbetriebnahme .. 23
 4.1 Anschluss des Sensors ... 23

5 Software Vision Configurator ... 24
 5.1 Verbinden mit dem Vision Configurator .. 25
 5.2 Aufbau des Anwendungsfensters .. 27
5.3 Menüleiste ... 29
 5.3.1 Menü File .. 29
 5.3.2 Menü View ... 29
 5.3.3 Menü Sensor .. 30
 5.3.4 Menü Image ... 31
 5.3.5 Menü Administration .. 31
 5.3.6 Menü Help ... 32

5.4 Symbolleiste ... 33

5.5 Sensor Data ... 34

5.6 Bildanzeige ... 34

5.7 Parametrierbereich ... 39
 5.7.1 Registerkarte Sensor information .. 39
 5.7.2 Registerkarte Common .. 40
 5.7.3 Registerkarte Matcher ... 43

6 Bedienung ... 49
 6.1 Konfigurationsmodus ... 49
 6.2 Codekartenmodus ... 55
 6.2.1 Geräteparameter per Steuercode setzen .. 56
 6.3 Präsentationsmodus ... 57
 6.4 Runtime-Modus .. 58
 6.4.1 Kommunikation über die RS-485-Schnittstelle ... 58

7 Wartung und Reparatur .. 64
 7.1 Wartung .. 64
 7.2 Reparatur .. 64

8 Störungsbeseitigung ... 65
 8.1 Was tun im Fehlerfall ... 65

9 Lizenzhinweis ... 66

10 Anhang ... 68
 10.1 Codekarten für die Profilumschaltung ... 68
1 Einleitung

1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbesetigung
- Demontage
- Entsorgung

Hinweis!

Die Dokumentation besteht aus folgenden Teilen:

- vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- weitere Dokumente

1.2 Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.
1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

- **Gefahr!**
 Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.
 Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

- **Warnung!**
 Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.
 Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

- **Vorsicht!**
 Dieses Symbol warnt Sie vor einer möglichen Störung.
 Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

- **Hinweis!**
 Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.
2 Produktspezifikationen

2.1 Einsatz und Anwendung

Aufbau des Sensors

Abbildung 2.1 Übersicht Komponenten und Messergebnis

1 Flaches Profil
2 Erhöhtes Profil
3 Sendeoptik (Vision-Sensor inklusive LED-Beleuchtung)
4 Kamera
5 Höhenprofil auf Bildaufnehmer (Messergebnis)

Der SmartRunner verfügt über eine optimierte Hard- und Softwareplattform. Er wird in verschiedenen Varianten für bestimmte Applikationen angeboten. Das Gerät ist nach Laserschutzklasse 1 zertifiziert.
Eigenschaften des Sensors

Dafür wird der Sensor auf ein spezifisches Höhenprofil eingelernt und führt per Trigger einen Abgleich zwischen der aktuell erfassten und der Referenzkontur durch. Sind sie identisch, wird ein "Good"-Signal ausgegeben. Unterscheiden sich die beiden Profile, wird ein "Bad"-Signal ausgegeben.

Abbildung 2.2 Erfassung von Objektkontur, -lage und -entfernung

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Good-Signal-Szenario 1</td>
<td>Eingelernte Referenzkontur mit einstellbarem Toleranzbereich</td>
</tr>
<tr>
<td>2</td>
<td>Good-Signal-Szenario 2</td>
<td>Leichte Verdrehung innerhalb des Toleranzbereichs</td>
</tr>
<tr>
<td>3</td>
<td>Bad-Signal-Szenario 3</td>
<td>Zu starke Verdrehung außerhalb des Toleranzbereichs</td>
</tr>
<tr>
<td>4</td>
<td>Bad-Signal-Szenario 4</td>
<td>Zu große Entfernung zwischen Sensor und Objekt</td>
</tr>
<tr>
<td>5</td>
<td>Bad-Signal-Szenario 5</td>
<td>Erkennung eines falschen oder fehlerhaften Objekts</td>
</tr>
</tbody>
</table>

Abbildung 2.3 Sensor
Parametrierung und Betriebsarten

Der Laser-Lichtschnittsensor kann über 3 verschiedene Methoden konfiguriert oder parametriert werden.

- Einlesen von Codekarten über die Sensorkamera
- Verarbeitung von Konfigurationstelegrammen über die Busschnittstelle
- Verwendung der Software Vision Configurator

Der Sensor verfügt verschiedene Betriebsarten, die für Einstellung, Präsentation oder den Normalbetrieb aktiviert werden können.

- Runtime-Modus: Messmodus, Sensor arbeitet wie konfiguriert
- Konfigurationsmodus: Modus zum Konfigurieren des Sensors über Datentelegramme und über das Konfigurationsprogramm Vision Configurator
- Codekartenmodus: Modus zum Konfigurieren des Sensors über Data-Matrix-Steuercodes ohne Zuhilfenahme eines PC
- Präsentationsmodus: Modus für die Präsentation bzw. Test ohne Zuhilfenahme eines PC
2.2 Gefahren durch Laserstrahlung

In diesem Abschnitt werden der Inhalt und die Befestigungsposition des Warnaufklebers erläutert.

Warnung!

Laserstrahlung der Klasse 1

Die Bestrahlung kann zu Irritationen gerade bei dunkler Umgebung führen. Nicht auf Menschen richten!

Niemals in die Laseraustrittsöffnung blicken, wenn der Sensor in Betrieb ist.

Wartung und Reparaturen nur von autorisiertem Servicepersonal durchführen lassen!

Das Gerät ist so anzubringen, dass der Warnhinweise deutlich sichtbar und lesbar ist.

Schutzabdeckung des Sensors nicht entfernen.

Der Warnaufkleber ist auf der Rückseite des Gehäuses gemäß folgender Abbildung angebracht.

![Abbildung 2.4 Warnhinweis Laserstrahlung](image-url)
2.3 Abmessungen

Die Geräte der SmartRunner-Serie haben folgende identische Gehäusemaße.

Abbildung 2.5 Abmessungen der SmartRunner-Serie
2.4 Anzeige- und Bedienelemente

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schutzabdeckung Sendeoptik</td>
<td>Dient zum Schutz vor Beschädigung und Verschmutzung</td>
</tr>
<tr>
<td>2</td>
<td>Schutzabdeckung Empfangoptik</td>
<td>Dient zum Schutz vor Beschädigung und Verschmutzung</td>
</tr>
<tr>
<td>3</td>
<td>LEDs</td>
<td>Die Funktionsbeschreibung der LEDs entnehmen Sie der nachfolgenden Tabelle.</td>
</tr>
</tbody>
</table>
| 4 | Funktionstasten im Präsentationsmodus | - Funktionstaste 1: Auslösen einer Auswertung
 | | - Funktionstaste 2: Kürzer 2 s gedrückt aktiviert den Einlernvorgang Teach In. Länger als 2 s gedrückt aktiviert den Codekartenmodus |
| | Funktionstasten im Runtime-Modus | - Funktionstaste 1: keine Funktion
 | | - Funktionstaste 2: Länger als 2 s gedrückt aktiviert den Codekartenmodus |
| 5 | Elektrischer Anschluss | Der elektrische Anschluss des Sensors erfolgt über einen 8-poligen M12-Gerätestecker MAIN an der Gehäuseunterseite. Siehe Kapitel 3.4. |

Hinweis!

Die Funktionstasten sind nur während einer parametrierbaren Zeitspanne nach Einschalten des Sensors aktiviert, danach sind sie gesperrt. Der Default-Wert dieser Zeitspanne beträgt 5 min.

Abhängig vom eingestellten Betriebszustand haben die Funktionstasten unterschiedliche Funktionen.
Beschreibung der LEDs

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ready (grün/rot)</td>
<td>■ Leuchtet rot, wenn eine Sensorstörung vorliegt
■ Leuchtet grün, wenn der Sensor betriebsbereit ist
■ Blinkt grün, wenn der Sensor im Konfigurationsmodus ist</td>
</tr>
<tr>
<td>2</td>
<td>Match 3/4 (grün/gelb)</td>
<td>■ Leuchtet grün, wenn das gescannte Profil mit dem eingelernten Profil 3 übereinstimmt (MATCH 3)
■ Leuchtet gelb, wenn das gescannte Profil mit dem eingelernten Profil 4 übereinstimmt (MATCH 4)</td>
</tr>
<tr>
<td>3</td>
<td>Result (grün/rot)</td>
<td>■ Leuchtet grün, wenn ein gescanntes Profil mit einem eingelernten Profil übereinstimmt
■ Leuchtet rot, wenn ein gescanntes Profil mit keinem eingelernten Profil übereinstimmt
Im Codekartenmodus gilt
■ Leuchtet grün, wenn korrekter Code gelesen wurde
■ Leuchtet rot, wenn falscher Code gelesen wurde
■ Aus, wenn kein Code gelesen wird</td>
</tr>
<tr>
<td>4</td>
<td>Match 1/2 (grün/gelb)</td>
<td>■ Leuchtet grün, wenn das gescannte Profil mit dem eingelernten Profil 1 übereinstimmt (MATCH 1)
■ Leuchtet gelb, wenn das gescannte Profil mit dem eingelernten Profil 2 übereinstimmt (MATCH 2), optional</td>
</tr>
<tr>
<td>5</td>
<td>Diagnose (rot)</td>
<td>■ Leuchtet rot, wenn ein Busfehler aufgetreten ist
■ Leuchtet rot, wenn ein Systemfehler beim Interface-Controller aufgetreten ist
■ Blinkt rot, wenn Sensor im Update-Modus ist</td>
</tr>
<tr>
<td>6</td>
<td>POWER (grün)</td>
<td>■ Leuchtet auf, sobald Spannung anliegt
■ Blinkt im Konfigurationsmodus</td>
</tr>
<tr>
<td>7</td>
<td>Teach (gelb)</td>
<td>■ Leuchtet gelb während des Einlernvorgangs</td>
</tr>
<tr>
<td>8</td>
<td>TRIGGER (gelb)</td>
<td>■ Leuchtet gelb, wenn das Hardware-TriggerSignal angesteuert wird</td>
</tr>
</tbody>
</table>

Abbildung 2.7 Übersicht LEDs
2.5 Schnittstellen

Die RS-485-Schnittstelle

Die RS-485-Schnittstelle unterstützt folgende Übertragungsdaten:

- 38400 Bit/s
- 57600 Bit/s
- 76800 Bit/s
- **115200 Bit/s** (voreingestellter Wert)
- 230400 Bit/s

Datenstruktur der RS-485-Schnittstelle

<table>
<thead>
<tr>
<th>Datenstruktur der RS-485-Schnittstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0</td>
</tr>
<tr>
<td>Start</td>
</tr>
</tbody>
</table>

2.6 Zubehör

<table>
<thead>
<tr>
<th>Bestellbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>V19-G-5M-PUR-ABG</td>
<td>Kabeldose, M12, 8-polig, abgeschirmt, PUR-Kabel</td>
</tr>
<tr>
<td>VLX-MB1</td>
<td>Montagehilfe, Anpassungsfähige 360° Rundumeinstellung von Montagekopf und Befestigungsfuß</td>
</tr>
<tr>
<td>VLX-MB2</td>
<td>Montagehilfe, Haltewinkel</td>
</tr>
<tr>
<td>PCV-USB-RS485-Converter Set</td>
<td>Schnittstellenkonverter USB auf RS-485</td>
</tr>
</tbody>
</table>

3 Installation

3.1 Lagerung und Entsorgung

Bewahren Sie die Originalverpackung auf. Lagern oder transportieren Sie das Gerät immer in der Originalverpackung.

Lagern Sie das Gerät immer in trockener und sauberer Umgebung. Beachten Sie die zulässigen Umgebungsbedingungen, siehe Datenblatt.

Das Gerät, die eingebauten Komponenten, die Verpackung sowie eventuell enthaltene Batterien müssen entsprechend den einschlägigen Gesetzen und Vorschriften im jeweiligen Land entsorgt werden.

3.2 Vorbereitung

Gerät auspacken

1. Prüfen Sie Verpackung und Inhalt auf Beschädigung.

 Benachrichtigen Sie bei Beschädigung den Spediteur und verständigen Sie den Lieferanten.

2. Prüfen Sie den Lieferumfang anhand Ihrer Bestellung und der Lieferpapiere auf Vollständigkeit und Richtigkeit.

 Bei auftretenden Fragen wenden Sie sich an Pepperl+Fuchs.

3. Bewahren Sie die Originalverpackung für den Fall auf, dass das Gerät zu einem späteren Zeitpunkt eingelagert oder verschickt werden soll.

3.3 Montage des Sensors

Hinweis!

Montage eines optischen Gerätes

- Zielen Sie mit dem Sensor nicht in die Sonne.
- Schützen Sie den Sensor vor direkter und dauerhafter Sonneneinwirkung.
- Beugen Sie die Bildung von Kondensation vor, indem Sie den Sensor keinen großen Temperaturschwankungen aussetzen.
- Setzen Sie den Sensor keinen Einflüssen von aggressiven Chemikalien aus.
- Halten Sie die Scheiben des Gerätes sauber. Verwenden Sie dazu weiche Tücher und gegebenenfalls handelsübliche Glasreiniger.

Wir empfehlen in regelmäßigen Abständen die Optikfläche zu reinigen und Verschraubungen, sowie die elektrischen Verbindungen zu überprüfen.

Der Arbeitsabstand ist je nach Sensor unterschiedlich. Entnehmen Sie den passenden Arbeitsabstand aus dem Datenblatt des zu montierenden Sensors.

Die folgenden beiden Abbildung zeigen die Orientierung des Sensors bei Fremdlicht:
Befestigung des Gehäuses

■ Einseitige seitliche Befestigung mit M4-Schrauben: Über die 2 M4-Gewindehülsen, können Sie das Gehäuse mit seiner rechten oder linken Seite montieren. Die maximale Einschraubtiefe der M4-Schrauben beträgt 8 mm.

■ Durchgehende seitliche Befestigung mit M3-Schrauben: Die M4-Gewindehülsen sind so angebracht, dass M3-Schrauben ganz durch das Gehäuse durchgehen. Verwenden Sie 2 ausreichend lange M3-Schrauben mit 2 Kontermuttern, um das Gerät in der Anlage zu montieren

■ Befestigung an Geräteunterseite mit M4-Schrauben: Über die 2 Gewindehülsen können Sie das Gehäuse an der Geräteunterseite montieren. Die maximale Einschraubtiefe der M4-Schrauben beträgt 5 mm.

Positionierung des Sensors

Achten Sie bei der Positionierung des Sensors, dass der Sichtbereich der Kamera nicht durch Objekte verdeckt wird, die gescannt werden sollen.
3.4 Elektrischer Anschluss

Versorgungsspannung anlegen

Der elektrische Anschluss des Sensors erfolgt über einen 8-poligen M12-Gerätestecker **MAIN** an der Gehäuseunterseite. Über diesen Anschluss erfolgen die Stromversorgung und die Datenübertragung. Um den Sensor anzuschließen, gehen Sie wie folgt vor:

1. Stecken Sie die Buchse M12, 8-polig in den Stecker an der Gehäuseunterseite.

Tipp

Die Gehäuseecke mit dem 8-poligen M12-Gerätestecker **MAIN** ist drehbar. Um eine einfache Verkabelung zu gewährleisten, können Sie je nach Montageposition den Gerätestecker in eine andere Richtung drehen.

Abbildung 3.3 M12-Gerätestecker

Kabeldosen von Pepperl+Fuchs sind gemäß DIN EN 60947-5-2 gefertigt. Bei Verwendung einer Kabeldose mit offenem Leitungsende vom Typ V19-G-5M-PUR-ABG gilt folgende Steckerbelegung:

Abbildung 3.4 Anschlussbelegung
<table>
<thead>
<tr>
<th>Pin</th>
<th>Aderfarbe</th>
<th>Signal</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>weiß</td>
<td>IN-Trigger</td>
<td>Triggereingang: Wenn Sensor im kontinuierlichen Auswertemodus ist (freilaufend), wird eine Auswertung ausgelöst.</td>
</tr>
<tr>
<td>2</td>
<td>braun</td>
<td>+UB</td>
<td>+ 24 V-Stromversorgung</td>
</tr>
<tr>
<td>3</td>
<td>grün</td>
<td>Data+ RS-485</td>
<td>RS-485-Schnittstelle: Data +</td>
</tr>
<tr>
<td>4</td>
<td>gelb</td>
<td>Data- RS-485</td>
<td>RS-485-Schnittstelle: Data -</td>
</tr>
<tr>
<td>5</td>
<td>grau</td>
<td>Teach</td>
<td>Steuersignal für das Einlernen der Hintergrundlinie</td>
</tr>
<tr>
<td>6</td>
<td>rosa</td>
<td>Good</td>
<td>Wenn das erfasste Höhenprofil mit dem eingelernten Profil in Form und Position übereinstimmt, wird Ausgang 1 gesetzt. Nach dem Einlernvorgang wird ein gutes Einlernen signalisiert.</td>
</tr>
<tr>
<td>7</td>
<td>blau</td>
<td>GND</td>
<td>Masse für + 24 V-Stromversorgung</td>
</tr>
</tbody>
</table>
| 8 | rot | Bad | Ausgang 2 wird gesetzt, wenn
- kein Objekt erkannt wurde
oder
- die erfasste Form nicht der eingelernten Form entspricht
oder
- die erfasste Position außerhalb der Toleranz ist.
Nach dem Einlernvorgang signalisiert es einen schlechten Einlernvorgang |
Anschluss mit RS-485-Schnittstelle

Abbildung 3.5 PCV-USB-RS-485-Converter Set

1. Stecken Sie Steckernetzteil in eine Steckdose und verbinden Sie dieses mit dem Schnittstellenkonverter.
 ➤ Die Anzeige-LEDs am Sensor leuchten auf.
2. Stellen Sie eine USB-Verbindung zwischen PC-System und Schnittstellenkonverter her.
 ➤ Die Betriebsanzeige (PWR-LED) am Schnittstellenkonverter leuchtet rot.

Vorsicht!
Beschädigung des Geräts
Anschließen von Wechselspannung oder zu hoher Versorgungsspannung kann das Gerät beschädigen oder die Gerätefunktion stören.
Falscher elektrischer Anschluss durch Verpolung kann das Gerät beschädigen oder die Gerätefunktion stören.
Gerät an Gleichspannung (DC) anschließen. Stellen Sie sicher, dass die Höhe der Versorgungsspannung im spezifizierten Bereich des Geräts liegt. Stellen Sie sicher, dass die Anschlussdrähte der verwendeten Kabeldose richtig angeschlossen sind.

Abschirmung von Leitungen

In Ausnahmefällen kann eine einseitige Anbindung günstiger sein, wenn
- keine Potenzialausgleichsleitung verlegt ist bzw. keine Potenzialausgleichsleitung verlegt werden kann.
- ein Folienschirm verwendet wird.

Bei der Abschirmung müssen ferner folgende Punkte beachtet werden:
- Verwenden Sie Kabelschellen aus Metall, die die Abschirmung großflächig umschließen.
Legen Sie den Kabelschirm direkt nach Eintritt in den Schaltschrank auf die Potenzialausgleichsschiene.

Führen Sie Schutzerdungsanschlüsse sternförmig zu einem gemeinsamen Punkt.

Verwenden Sie für die Erdung möglichst große Leitungsquerschnitte.

Zusätzlicher Erdungsanschluss

<table>
<thead>
<tr>
<th>Bestellbezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCV-SC12</td>
<td>Clip zur Befestigung eines zusätzlichen Erdungsanschlusses.</td>
</tr>
<tr>
<td>PCV-SC12A</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Erfassungsbereich

Beachten Sie bei der Planung Ihrer Anlage den Erfassungsbereich des SmartRunner Matcher. Detaillierte Informationen zum Erfassungsbereich finden Sie im jeweiligen Datenblatt des Sensors.

Hinweis!
4 Inbetriebnahme

4.1 Anschluss des Sensors

Der Sensor wird über die Software Vision Configurator konfiguriert. Sie haben die Möglichkeit, Einstellungen am Sensor direkt über die Software Vision Configurator vorzunehmen.

Ausrichtung des Sensors

Verwenden Sie zur optimalen Ausrichtung des Sensors die Bild- und Diagrammanzeige in der Software Vision Configurator.

1. Versorgen Sie das Lesegerät über die 24 V DC Buchse am Gerät mit Spannung.
2. Stellen Sie über die automatische Belichtungsregelung einen passenden Belichtungswert ein.
 ❯ Die Belichtungsregelung war erfolgreich, wenn die Result-LED "grün" leuchtet.
3. Richten Sie den Sensor so aus, dass in der Bildanzeige eine möglichst schmale komplette Linie zu sehen ist.
 ❯ Der optimale Leseabstand zwischen Sensor und Messobjekt ist eingestellt.
5

Software Vision Configurator

Die Inbetriebnahme und die Bedienung des Sensors erfolgen mit der Software Vision Configurator.

Hinweis!
Im Vision Configurator sind bereits folgende Benutzerrollen mit unterschiedlicher Berechtigung vordefiniert.

Benutzerrechte und Passwort

<table>
<thead>
<tr>
<th>Benutzerrechte</th>
<th>Beschreibung</th>
<th>Passwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Anzeige aller Informationen, Konfiguration des Sensors, Anlegen von Benutzern gleicher oder niedriger Stufe</td>
<td>Es wird kein Passwort benötigt</td>
</tr>
<tr>
<td>User</td>
<td>Anzeige aller Informationen, Konfiguration des Sensors, Anlegen von Benutzern gleicher oder niedriger Stufe</td>
<td>User</td>
</tr>
<tr>
<td>Admin</td>
<td>Anzeige aller Informationen, Konfiguration des Sensors</td>
<td>Erfragen Sie das Admin-Passwort bei Pepperl+Fuchs</td>
</tr>
</tbody>
</table>

Tabelle 5.1 Abhängig von der jeweiligen Benutzerrolle haben die Benutzer unterschiedliche Zugriffs- und Verwaltungsrechte.

Netzwerkverbindung herstellen

Um eine Netzwerkverbindung mit dem Sensor herzustellen, gehen Sie wie folgt vor:
2. Starten Sie die Software Vision Configurator.
3. Geben Sie den Benutzernamen und das Passwort ein.

Hinweis!
5.1 Verbinden mit dem Vision Configurator

Vision Configurator verbinden

Verbinden Sie den SmartRunner mit einem PC.

Hinweis!

Verwenden Sie dazu ein passendes Verbindungskabel RS-485/USB und ein Adapterkabel:

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Bestellbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schnittstellenkonverter USB auf RS-485 inklusive Kabeleinheit mit Netzteil</td>
<td>PCV-USB-RS485-Converter Set</td>
</tr>
<tr>
<td>Kabeleinheit mit Netzteil für Schnittstellenkonverter USB / RS-485</td>
<td>PCV-KBL-V19-STR-RS-485</td>
</tr>
</tbody>
</table>

Abbildung 5.1 Startbildschirm
Wizard - Bedienungsassistent für Vision Configurator

Der **Wizard** ist eine Ergänzung zur Konfigurationsoftware Vision Configurator. Per Doppelklick auf die Wizard-Schaltfläche startet der Bedienungsassistent. Anschließend werden Sie Schritt für Schritt durch die einzelnen Einstellungen geführt.

Um den Vision Configurator zu starten, gehen Sie wie folgt vor.

Vision Configurator starten

1. Wählen Sie unter der Registerkarte "Sensorfamilie" die Schaltfläche 2D/3D an.
2. Wählen Sie im "Parametrierbereich" SMARTRUNNER mit Verbindungstyp RS485 an.
3. Wählen Sie den benötigten COM-Port aus.
5. Stellen Sie sicher, dass im Fenster Head address die Adresse Address 0 eingestellt ist. Andernfalls die Adresse wählen.
6. Bestätigen Sie Ihre Einstellungen mit der Schaltfläche OK.

⇒ Der Anwendungsfenster wird geöffnet.
5.2 Aufbau des Anwendungsfensters

Nach erfolgreichem Login öffnet sich der Anwendungsbildschirm.

Hinweis!
Die einzelnen Funktionen sind abhängig vom angeschlossenen Sensortyp und aktueller Berechtigungsstufe und sind somit nicht immer alle sichtbar.

Die Software ist analog zu den meisten Windows-Applikationen aufgebaut.

| | Titelleiste | Zeigt die IP-Adresse, die Softwarebezeichnung und die Versionsummer an
| | | enthält die Schaltflächen **Minimieren / Maximieren / Schließen** |
| 1 | Menüleiste | zeigt alle Menüs des Programms an
2		dient als Übersicht und Navigation
3	Maske *Sensor data*	zeigt die Sensordaten des angeschlossenen Sensors an
4	Maske *Sensor output*	zeigt die Loganzeige an
5	Statusleiste	zeigt die Statusinformationen zur Anwendung
6	Parametrierbereich	enthält die sensorspezifischen Parameter, die Sie einstellen können
7	Symbolleiste	enthält symbolische Schaltflächen als Erweiterung zum Menü
8	Kontrollkästchen	**Show images**: Aktiviert oder deaktiviert die Bildanzeige
		Show results: Aktiviert oder deaktiviert den Ergebnisbereich
9	Ergebnisbereich	■ zeigt Ergebnisinformationen des Sensors
■ Es können abhängig vom angeschlossenen Sensor unterschiedlich viele Registerkarten angezeigt werden.		
■ Dieses Feld kann mit dem Punkt **Show results** aktiviert oder deaktiviert werden		
10	Bildanzeige	■ zeigt die aufgenommenen oder im Fehlerspeicher liegenden Bilder an
■ Dieses Feld kann mit dem Punkt **Show images** aktiviert oder deaktiviert werden		
11	Registerkarte	Zeigt Informationen über aktuelles Bild und des sich unter der Maus befindlichen Pixels an. So werden folgende Punkte angezeigt:
■ Bildgröße
■ Zoomstufe
■ Mausposition in Bildkoordinaten
■ aktueller Grauwert
■ Bildnummer |
5.3 Menüleiste

In der Menüleiste werden verschiedene Menüfunktionen aufgeführt. Der Funktionsumfang ist abhängig vom angeschlossenen Sensortyp und von den Berechtigungen des angemeldeten Benutzers.

![Abbildung 5.2 Menüleiste](image)

5.3.1 Menü File

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change device</td>
<td>Trennt die Verbindung zum Gerät und wechselt zurück zum Login-Dialog.</td>
</tr>
<tr>
<td>Open job</td>
<td>Lädt eine auf dem PC abgespeicherte Senorkonfiguration.</td>
</tr>
<tr>
<td>Save job</td>
<td>Speichert die aktuelle Senorkonfiguration auf dem PC.</td>
</tr>
<tr>
<td>Quit</td>
<td>Beendet das Programm.</td>
</tr>
</tbody>
</table>

![Abbildung 5.3 Menü File](image)

5.3.2 Menü View

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show standard buttons</td>
<td>Schaltet die Anzeige der Buttons in der linken Leiste ein und aus.</td>
</tr>
<tr>
<td>Show sensor data</td>
<td>Schaltet die Anzeige der Sensordaten rechts oben aus.</td>
</tr>
<tr>
<td>Displayed message types</td>
<td>Öffnet ein Auswahlfenster, in dem folgende Anzeigefenster aktiviert bzw. deaktiviert werden können: Info, Result OK, Result not OK, Warning, Error Critical, Assert</td>
</tr>
</tbody>
</table>

![Abbildung 5.4 Menü View](image)

![Tabelle 5.2 Menü File](image)

![Tabelle 5.3 Menü View](image)
5.3.3 Menü Sensor

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load settings</td>
<td>Lädt die gespeicherten Einstellungen aus dem Sensor</td>
</tr>
<tr>
<td>Save settings</td>
<td>Speichert die Einstellungen in den Sensor</td>
</tr>
<tr>
<td>Change network settings</td>
<td>Netzwerkeinstellungen ändern. In dem Einstellungsfenster können Sie die IP-Adresse, Subnetzmaske, Gatewayadresse und DHCP einstellen.</td>
</tr>
<tr>
<td>Make firmware update</td>
<td>Führt Firmwareupdates durch. Dieser Befehl sollte nur durch erfahrene Anwender benutzt werden.</td>
</tr>
<tr>
<td>Show device version</td>
<td>Zeigt die Geräteversion an</td>
</tr>
<tr>
<td>Sync with sensor</td>
<td>Synchronisation mit dem Sensor</td>
</tr>
<tr>
<td>Adjust sensor calibration</td>
<td>Kalibrierung des Sensors anpassen</td>
</tr>
</tbody>
</table>

Tabelle 5.4 Menü Sensor

Hinweis!

Firmwareupdate

Nachdem Sie die Firmware aktualisiert haben und Update complete angezeigt wird, starten Sie den Sensor neu.
5.3.4 Menü *Image*

<table>
<thead>
<tr>
<th>Menüpost</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load image file</td>
<td>Bilddatei laden</td>
</tr>
<tr>
<td>Open image folder</td>
<td>Öffnet den Ordner, in dem aktuell Bilder abgespeichert werden.</td>
</tr>
<tr>
<td>Save image</td>
<td>Speichert das aktuell angezeigte Bild auf dem PC ab.</td>
</tr>
<tr>
<td>Copy image to clipboard</td>
<td>Lädt eine Bilddatei in den Zwischenspeicher.</td>
</tr>
<tr>
<td>Upload image to device</td>
<td>Bild auf das Gerät hochladen</td>
</tr>
<tr>
<td>Show graphic</td>
<td>Schaltet vom Sensor gesendete Anzeigedaten im Bild ein und aus.</td>
</tr>
</tbody>
</table>

Tabelle 5.5 Menü *Image*

5.3.5 Menü *Administration*

<table>
<thead>
<tr>
<th>Menüpost</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change password</td>
<td>Ändert das Passwort des aktuellen Benutzers.</td>
</tr>
<tr>
<td>Change user</td>
<td>Der Anmeldebildschirm wird geöffnet und es kann ein anderer Benutzer und / oder Sensor ausgewählt werden.</td>
</tr>
<tr>
<td>Send XML file...</td>
<td>Speichert die XML-Daten auf einem Computer.</td>
</tr>
<tr>
<td>Load XML file...</td>
<td>Lädt XML-Daten von einem Computer.</td>
</tr>
<tr>
<td>Create reader programming code</td>
<td>Erstellen einer Leser-Programmiercode</td>
</tr>
</tbody>
</table>

Tabelle 5.6 Menü *Administration*
5.3.6 Menü Help

Abbildung 5.8 Menü Help

Tabelle 5.7 Menü Help

<table>
<thead>
<tr>
<th>Info</th>
<th>Zeigt Informationen über den Vision Configurator an.</th>
</tr>
</thead>
</table>

Zeigt Informationen über den Vision Configurator an.
5.4 Symbolleiste

Über die Symbolleiste können verschiedene Funktionen angewählt werden.

<table>
<thead>
<tr>
<th>Symbolleiste</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect</td>
<td>Beim Anwählen der Schaltfläche Connect, wird eine Verbindung zwischen PC und Sensor aufgebaut.</td>
</tr>
<tr>
<td>Disconnect</td>
<td>Die Verbindung zwischen PC und Sensor wird getrennt.</td>
</tr>
<tr>
<td>Open job</td>
<td>Öffnen einer abgespeicherten Einstellung.</td>
</tr>
<tr>
<td>Save job</td>
<td>Speichert die vorgenommenen Einstellungen.</td>
</tr>
<tr>
<td>Load settings</td>
<td>Einstellungen werden aus dem Sensor ausgelesen.</td>
</tr>
<tr>
<td>Save settings</td>
<td>Alle vorgenommenen Einstellungen werden auf dem Sensor gespeichert.</td>
</tr>
<tr>
<td>Reset</td>
<td>Zurücksetzen auf Standardeinstellungen.</td>
</tr>
<tr>
<td>Trigger laser</td>
<td>Manuellen Trigger ausführen.</td>
</tr>
<tr>
<td>Trigger LED</td>
<td>LEDs-Trigger ausführen</td>
</tr>
<tr>
<td></td>
<td>Vorsicht: Bei aktivierten Autotrigger wird mit dem "Trigger LED" ein Linienbild ausgegeben.</td>
</tr>
<tr>
<td>Get image</td>
<td>Aktuelles Sensorbild wird geladen.</td>
</tr>
<tr>
<td>Get lines</td>
<td>Das Linienbild wird geladen.</td>
</tr>
<tr>
<td>Teach</td>
<td>Profil wird mit nächsten Trigger eingelernt.</td>
</tr>
</tbody>
</table>
5.5 Sensor Data

 Dieser Bereich zeigt den angeschlossenen Gerätetyp und die Firmware-Version.

![Device data]

Abbildung 5.9 Gerätedaten

5.6 Bildanzeige

Um Fehler bei der Aufnahme zu vermeiden, stehen Ihnen unterschiedliche Möglichkeiten die aufgenommenen Daten anzuzeigen und anschließend zu korrigieren.

Image View

Unter der Registerkarte *Image View* können Sie das aktuell aufgenommene Bild öffnen. Dazu müssen Sie in der Symbolleiste die Schaltflächen *Teach* > *Trigger laser* > *Get image* anklicken.

![Image View]

Abbildung 5.10 Image View

Durch Betätigen der rechten Maustaste über das aufgenommene Bild erscheint folgendes Kontextmenü:

![Context menu]

Abbildung 5.11 Bildanzeige Image View Kontextmenü
Die Werkzeugleiste befindet sich auf der linken Seite unter der Registerkarte Image View. In der Werkzeugleiste sind einige nützliche Funktionen, die zur weiteren Bearbeitung aufgenommener Bilder verwendet werden. Folgende Funktionen stehen Ihnen zur Verfügung.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load image file...</td>
<td>Lädt ein Sensorbild. Das Sensorbild kann ausgewählt werden.</td>
</tr>
<tr>
<td>Open image folder</td>
<td>Öffnet den Speicherort</td>
</tr>
<tr>
<td>Copy image to clipboard</td>
<td>Bild in die Zwischenablage kopieren</td>
</tr>
<tr>
<td>Save image</td>
<td>Speichert das angezeigte Sensorbild</td>
</tr>
</tbody>
</table>

Image View - Werkzeugleiste

Abbildung 5.12 Werkzeugleiste

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lupe +</td>
<td>Bild vergrößern</td>
</tr>
<tr>
<td>2</td>
<td>Lupe -</td>
<td>Bild verkleinern</td>
</tr>
<tr>
<td>3</td>
<td>Fenster anpassen</td>
<td>Bildgröße im Fenster anpassen</td>
</tr>
<tr>
<td>4</td>
<td>Originalgröße</td>
<td>Originalbildgröße einstellen</td>
</tr>
<tr>
<td>5</td>
<td>Größenangabe</td>
<td>Informationsfeld Bildgröße</td>
</tr>
<tr>
<td>6</td>
<td>Zoomfaktor</td>
<td>Informationsfeld Zoomfaktor, Zoomfaktor 100% ist Originalbildgröße</td>
</tr>
<tr>
<td>7</td>
<td>Positionsangabe</td>
<td>Zeigt die Position des Mauszeigers</td>
</tr>
<tr>
<td>8</td>
<td>Grauwertangabe</td>
<td>Grauwertangabe des Pixels, auf dem der Mauszeiger steht</td>
</tr>
<tr>
<td>9</td>
<td>Bildzähler</td>
<td>Zeigt die aktuelle Bildnummer an</td>
</tr>
<tr>
<td>10</td>
<td>Bild speichern</td>
<td>Bild nach der Übertragung speichern</td>
</tr>
<tr>
<td>11</td>
<td>Pfad auswählen</td>
<td>Pfad auf dem Speichermedium auswählen</td>
</tr>
</tbody>
</table>
Diagram View

Unter der Registerkarte **Diagram View** können Sie die grafische Darstellung der Ergebnisdaten öffnen. Dazu müssen Sie in der Symbolleiste die Schaltflächen **Teach > Trigger laser > Get lines** anklicken. Anschließend kann über die Schaltfläche **Get lines** die grafische Darstellung abgerufen werden. Dabei wird über die Schaltfläche **Get lines** keine neue Bildaufnahme und Auswertung ausgelöst, hierzu muss vorher **Trigger laser** angeklickt werden.

![Diagram View](image)

Abbildung 5.13 Diagram View

Durch Betätigen der rechten Maustaste über die grafische Darstellung erscheint folgendes Kontextmenü:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Diagramm in Arbeitsspeicher kopieren</td>
</tr>
<tr>
<td>Save Image As...</td>
<td>Diagramm auf Festplatte speichern</td>
</tr>
<tr>
<td>Page Setup...</td>
<td>Seiteneinrichtung für die Druckfunktion</td>
</tr>
<tr>
<td>Print...</td>
<td>Diagramm drucken</td>
</tr>
<tr>
<td>Show Point Values</td>
<td>Zeigt Werte der diskreten Linienpunkte in Weltkoordinaten [mm] als Tooltip an.</td>
</tr>
<tr>
<td>Un-Zoom</td>
<td>Letzten Zoomvorgang rückgängig machen</td>
</tr>
<tr>
<td>Undo All Zoom/Pan</td>
<td>Alle Zoom- und Schwenkvorgänge rückgängig machen</td>
</tr>
<tr>
<td>Set Scale to Default</td>
<td>Skaliert den Maßstab anhand der Liniendaten</td>
</tr>
</tbody>
</table>

Abbildung 5.14 Bildanzeige Diagram View Kontextmenü
Diagram View - Werkzeugleiste

Die Werkzeugleiste befindet sich unterhalb der Diagrammanzeige. In der Werkzeugleiste sind einige nützliche Funktionen, die zur weiteren Bearbeitung der Diagramme verwendet werden. Folgende Funktionen stehen Ihnen zur Verfügung.

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grauwert</td>
<td>Grauwertangabe des Pixels</td>
</tr>
<tr>
<td>2</td>
<td>Positionsangabe</td>
<td>Zeigt die Position des Mauszeigers im Weltkoordinatensystem [mm]</td>
</tr>
<tr>
<td>3</td>
<td>Show ROIs</td>
<td>Ist das Feld angewählt, wird der Auswertebereich angezeigt. Ist das Feld deaktiviert, wird der Auswertebereich ausgeblendet.</td>
</tr>
<tr>
<td>4</td>
<td>Auto reset view</td>
<td>Automatisch in den Auswertebereich zurück springen</td>
</tr>
<tr>
<td>5</td>
<td>Reset view</td>
<td>Setzt auf die Ursprungsansicht zurück</td>
</tr>
</tbody>
</table>
Result View

Beim SmartRunner kann eine Qualitätsschwelle **Quality Good** eingegeben werden, ab der Gut- von schlecht-Teilen unterschieden werden. Um die Qualitätsschwelle einzustellen, wird ein Gut-Teil eingelernt und der Wert von **Quality Good** unter der Registerkarte **Result View** angezeigt. Dazu muss der **Autotigger** aktiviert sein. Über die Schaltfläche **Start request** werden die Ergebnisse ausgespielt. Durch Anklicken der Schaltfläche **Stop request** wird die Vermessung angehalten.

Abbildung 5.15 Result View

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>Der Sensor gibt automatisch das Ausgabenergebnis Good oder Bad.</td>
</tr>
<tr>
<td>Counter</td>
<td>Zähler</td>
</tr>
<tr>
<td>Quality Good</td>
<td>Maß für das Verhältnis der Pixelanzahl in der Hüllkurve vom eingelernten Profil zum Vergleichsprofil.</td>
</tr>
<tr>
<td>Quality Variation</td>
<td>Ein Maß für die mittlere Abweichung des eingelernten Profils im Bereich von 0% - 100%, bewertet mit der Hüllkurve. Das heißt, wenn das eingelernte Profil und das Vergleichsprofil in allen Punkten gleich sind ergibt sich ein Wert von 100%. Falls sich das Vergleichsprofil für alle Punkte auf der Hüllkurve oder darüber befindet, ergibt sich ein Wert 0%.</td>
</tr>
<tr>
<td>Quality Outliers</td>
<td>Maß für die Qualität der Kurve. Der Wert wird schlechter, wenn Teile der Kurve außerhalb der Hüllkurve erkannt werden. Das heißt, wenn kein Teil des Profils außerhalb der Hüllkurve liegt, ergibt sich ein Wert von 100%.</td>
</tr>
<tr>
<td>X-Position</td>
<td>Position des Objekts in X-Richtung.</td>
</tr>
<tr>
<td>Z-Position</td>
<td>Position des Objekts in Z-Richtung.</td>
</tr>
</tbody>
</table>
5.7 Parametrierbereich

5.7.1 Registerkarte Sensor information

Unter der Registerkarte Sensor information steht Ihnen der Menüpunkt Sensor information zur Verfügung. Unter dem Menüpunkt Sensor information können Sie nähere Informationen zum Sensor einsehen.

Name: "Pepperl+Fuchs GmbH"
Homepage: https://www.pepperl-fuchs.com
Product Name: “SmartRunner”
Firmwareversion: aktuelle Firmwareversion des Hauptprozessors.
Tag Number– Revision Number

Abbildung 5.16 Registerkarte Sensor information
5.7.2 Registerkarte Common

Unter der Registerkarte **Common** stehen Ihnen 4 Menüpunkte zur Verfügung. In diesem Abschnitt werden die Menüpunkte im Detail erläutert.

Menüpunkt Illumination

Unter dem Menüpunkt **Illumination** können Sie die Belichtung des Sensors einstellen.

![Abbildung 5.17 Menüpunkt Illumination](image)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure time</td>
<td>Einstellung der manuellen Belichtungszeit. Um die Belichtungszeit manuell einzustellen, muss die Funktion "Use manual exposure time" aktiviert sein. Durch Erhöhung des Wertes nimmt die Belichtungszeit und damit die Bildhelligkeit zu. In den meisten Fällen sind Werte unter 1000 µs geeignet</td>
</tr>
<tr>
<td>Use manual exposure time</td>
<td>Bei Aktivierung wird die manuell eingestellte Belichtungszeit verwendet. Ist der Haken nicht gesetzt, wird die Belichtungszeit beim Teach automatisch geregelt</td>
</tr>
<tr>
<td>Auto exposure time</td>
<td>In dieses Feld wird die aktuell verwendete Belichtungszeit ausgegeben</td>
</tr>
<tr>
<td>Refresh auto exposure time</td>
<td>Durch Betätigung der Taste wird das Feld "Auto exposure time" aktualisiert</td>
</tr>
</tbody>
</table>
Menüpunkt Trigger

Unter dem Menüpunkt **Trigger** können Sie den Autotrigger aktivieren bzw. deaktivieren.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotrigger</td>
<td>Im "Präsentationsmodus" muss der Autotrigger aktiviert sein. Um die "Qualitätsschwelle" einzustellen, muss der Autotrigger ebenfalls aktiviert sein.</td>
</tr>
</tbody>
</table>

Abbildung 5.18 Menüpunkt Trigger

Menüpunkt Mode

Unter dem Menüpunkt **Mode** können Sie den "Presentation mode" und die "Funktionstasten 1 und 2" aktivieren bzw. deaktivieren. Mit gesetztem Häkchen sind der "Presentation mode" und die "Funktionstasten 1 und 2" aktiviert, ohne Häkchen deaktiviert.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation mode</td>
<td>Betriebsmodus für die Präsentation bzw. Test ohne Zuhilfenahme eines PC</td>
</tr>
</tbody>
</table>

Abbildung 5.19 Menüpunkt Mode
Menüpunkt Communication

Unter dem Menüpunkt **Communication** können Sie die Verbindungsparameter zwischen Sensor und Computer einstellen.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus termination</td>
<td>Aktiviert den integrierten Abschluss-Widerstand, um den RS-485-Bus am Sensor zu terminieren</td>
</tr>
</tbody>
</table>
5.7.3 Registerkarte Matcher

Unter der Registerkarte **Matcher** stehen Ihnen 4 Menüpunkte zur Verfügung. In diesem Abschnitt werden die Menüpunkte im Detail erläutert.

Menüpunkt Teach

Abbildung 5.21 Menüpunkt Teach

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI Min X</td>
<td>der kleinste Wert auf der x-Achse</td>
</tr>
<tr>
<td>ROI Max X</td>
<td>der größte Wert auf der x-Achse</td>
</tr>
<tr>
<td>ROI Min Z</td>
<td>der kleinste Wert auf der z-Achse</td>
</tr>
<tr>
<td>ROI Max Z</td>
<td>der größte Wert auf der z-Achse</td>
</tr>
</tbody>
</table>
Menüpunkt Evaluation

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI Min X</td>
<td>der kleinste Wert auf der x-Achse</td>
</tr>
<tr>
<td>ROI Max X</td>
<td>der größte Wert auf der x-Achse</td>
</tr>
<tr>
<td>ROI Min Z</td>
<td>der kleinste Wert auf der z-Achse</td>
</tr>
<tr>
<td>ROI Max Z</td>
<td>der größte Wert auf der z-Achse</td>
</tr>
</tbody>
</table>
Hinweis!

Rahmengröße festlegen

Einlern- und Auswertebereich verschieben

Einlern- und Auswertebereich verkleinern/ vergrößern

Menüpunkt Match

Unter dem Menüpunkt Match können Sie den x- und z-Toleranzbereich des Sensors einstellen. Der Toleranzbereich gibt an um welchen Wert sich das zu erkennende Höhenprofil innerhalb des Auswertebereichs verschieben darf.

Abbildung 5.23 Menüpunkt Match

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object contrast</td>
<td>Kontrastschwelle, die für die Erkennung der Laserlinie auf dem Objekt benutzt wird.</td>
</tr>
<tr>
<td>Tolerance object</td>
<td>Mit "Tolerance object" wird die Breite der Hüllkurve um das eingelernte Objekt in 0,1-mm-Schritten eingegeben. Die Hüllkurve ist die Basis für die Qualitätsparameter. Die Breite der Hüllkurve ist so zu wählen, dass sich trotz Höhenprofilabweichungen alle Gutteile-Profile innerhalb der Hüllkurve befinden.</td>
</tr>
<tr>
<td>Tolerance X</td>
<td>Maximal erlaubte Verschiebung des Objekts innerhalb des Auswertebereiches in X-Richtung.</td>
</tr>
<tr>
<td>Tolerance Z</td>
<td>Maximal erlaubte Verschiebung des Objekts innerhalb des Auswertebereiches in Z-Richtung.</td>
</tr>
<tr>
<td>Quality Good</td>
<td>Qualitätsschwelle, ab der Gut- von Schlechtteilen unterschieden werden.</td>
</tr>
<tr>
<td>Quality Variation</td>
<td>Qualitätsschwelle, ab der Gut- von Schlechtteilen unterschieden werden.</td>
</tr>
<tr>
<td>Quality Outliers</td>
<td>Qualitätsschwelle, ab der Gut- von Schlechtteilen unterschieden werden.</td>
</tr>
</tbody>
</table>

Hinweis!

Nähere Informationen zu den Qualitätsparametern finden Sie im Kapitel Bildanzeige unter Result View (siehe Kapitel 5.6).
Menüpunkt Multiprofile

Abbildung 5.24 Menüpunkt Multiprofile

Das Informationsfenster besteht aus 5 Spalten und 3 Schaltflächen. Diese werden in der folgenden Tabelle näher erläutert:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Durch einen grünen Pfeil wird das aktivierte Profil gekennzeichnet. Über die Schaltfläche Active selected parameter set wird ein Profil aktiviert. Dazu wird das benötigte Profil durch einen Klick mit der rechten Maustaste angewählt und mit der Schaltfläche Active selected parameter set aktiviert.</td>
</tr>
<tr>
<td>State</td>
<td>Sobald ein neues Profil angelegt und mit der Schaltfläche Rename/Save selected parameter set bestätigt wird, wechselt die Statusleuchte von gelb auf grün.</td>
</tr>
<tr>
<td>Number</td>
<td>Profil-Nummer</td>
</tr>
<tr>
<td>Name</td>
<td>Profil-Name, der Profil Name wird über die Schaltfläche Rename/Save selected parameter set geändert. Im Eingabefeld Parameter set name die benötigte Profilbezeichnung eingeben und mit Ok bestätigen.</td>
</tr>
<tr>
<td>Information</td>
<td>Im Informationsfeld können Angaben über das Profil eingetragen werden. Die Informationen werden über die Schaltfläche Parameter set information eingetragen. Im Eingabefeld Parameter set information die benötigte Information eingeben und mit Ok bestätigen.</td>
</tr>
</tbody>
</table>
Parametereinstellungen speichern

Die Dateitypen haben folgende Eigenschaften:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bezeichnung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pepperl+Fuchs Config Files (.*SMARTRUNNER_pfc)</td>
<td>Speichert alle Parametereinstellungen inklusive Kommunikationsparameter für 1 Profil</td>
</tr>
<tr>
<td>2</td>
<td>Pepperl+Fuchs Parameter Set (.*SMARTRUNNER_pfs)</td>
<td>Speichert alle Parametereinstellungen ohne Kommunikationsparameter für 1 Profil</td>
</tr>
<tr>
<td>3</td>
<td>Pepperl+Fuchs Complete Parameter Set (.*SMARTRUNNER_pfa)</td>
<td>Speichert alle Parametereinstellungen ohne Kommunikationsparameter für 32 Profile</td>
</tr>
</tbody>
</table>

Hinweis!
Eine auf dem Datenträger gespeicherte Parameterdatei kann nur mit der Software **Vision Configurator** geöffnet werden.

Hinweis!
Bitte beachten Sie, dass die übertragenen Parameterdateien die aktuellen Parameter auf der Software **Vision Configurator** überschreiben. Dies kann zu Datenverlust führen.
Bedienung

Der Lichtschnittsensor ist ab Werk jeweils auf eine spezifische Applikation vorkonfiguriert. Dadurch liefert er keine Rohdaten, die erst ausgewertet werden müssen, sondern einfach zu verarbeitende Schaltsignale. Der Sensor muss lediglich montiert, angeschlossen und per Teach-In parametriert werden. Der Sensor verfügt über 4 unterschiedliche Betriebsarten, die für Einstellungen, Präsentation oder den Normalbetrieb aktiviert werden.

Im Folgenden werden Ihnen die Betriebsarten näher erläutert.

6.1 Konfigurationsmodus

Configuration protocol in configuration mode

Um den Sensor einzustellen, muss er in den Konfigurationsmodus versetzt werden.

Der Befehl dazu lautet 0xA8 0x57. Nach erfolgreichem Umsetzen des Modus antwortet er mit einem Acknowledge (0x81 0x00 0x2D). Nach einem Fehler beim Umsetzen der Konfiguration antwortet der Sensor mit einem No Acknowledge (0x81 0x53 XX YY, dabei sind XX = Fehlercode und YY = Checksumme). Um zu prüfen, ob sich der Sensor im Konfigurationsmodus befindet, kann der Befehl Is_In_Config_Mode (0x00 0xFE 0xFE) gesendet werden. Befindet sich der Sensor im Konfigurationsmodus, so antwortet er mit einem Acknowledge, ansonsten kommt keine Antwort.

Fehlercodes bei "No Acknowledge":

<table>
<thead>
<tr>
<th>Fehlercode</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Alles OK</td>
</tr>
<tr>
<td>0x01</td>
<td>Checksumme falsch</td>
</tr>
<tr>
<td>0x04</td>
<td>Parameter hat andere Länge als übertragen</td>
</tr>
<tr>
<td>0x05</td>
<td>Interner Fehler</td>
</tr>
<tr>
<td>0x06</td>
<td>Parameter-Index unbekannt</td>
</tr>
<tr>
<td>0x07</td>
<td>Lese-/Schreibzugriff, obwohl nicht erlaubt</td>
</tr>
<tr>
<td>0x09</td>
<td>Parameterwertebereich verletzt</td>
</tr>
<tr>
<td>0x0B</td>
<td>Sonstiger Fehler</td>
</tr>
<tr>
<td>0x0E</td>
<td>Konfigurationskommando zu lang/zur kurz</td>
</tr>
</tbody>
</table>

In diesem Modus werden Telegramme nach dem erweiterten Protokoll gesendet:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R/W</td>
<td>Length6</td>
<td>Length5</td>
<td>Length4</td>
<td>Length3</td>
<td>Length2</td>
<td>Length1</td>
<td>Length0</td>
</tr>
<tr>
<td>2</td>
<td>Index7</td>
<td>Index6</td>
<td>Index5</td>
<td>Index4</td>
<td>Index3</td>
<td>Index2</td>
<td>Index1</td>
<td>Index0</td>
</tr>
<tr>
<td>3</td>
<td>Data 1.7</td>
<td>Data 1.6</td>
<td>Data 1.5</td>
<td>Data 1.4</td>
<td>Data 1.3</td>
<td>Data 1.2</td>
<td>Data 1.1</td>
<td>Data 1.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>Data (n-2).7</td>
<td>Data (n-2).6</td>
<td>Data (n-2).5</td>
<td>Data (n-2).4</td>
<td>Data (n-2).3</td>
<td>Data (n-2).2</td>
<td>Data (n-2).1</td>
<td>Data (n-2).0</td>
</tr>
<tr>
<td>n+1</td>
<td>xor</td>
<td>B1.7...B(n).7</td>
<td>xor</td>
<td>B1.6...B(n).6</td>
<td>xor</td>
<td>B1.5...B(n).5</td>
<td>xor</td>
<td>B1.4...B(n).4</td>
</tr>
</tbody>
</table>

Tabelle 6.1 R/W:

0: write
1: read / command

Length: row Datalength (Data1 ... Data(n-2))
<table>
<thead>
<tr>
<th>Index</th>
<th>Parametername</th>
<th>Daten Länge/Byte</th>
<th>Read/Write</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA8</td>
<td>GotoParamMode</td>
<td>0</td>
<td>W</td>
<td>Versetzt den Sensor in den Konfigurationsmodus</td>
</tr>
<tr>
<td>0x01</td>
<td>VendorName</td>
<td>Variabel</td>
<td>R</td>
<td>String mit "Pepperl+Fuchs"</td>
</tr>
<tr>
<td>0x02</td>
<td>VendorHomepage</td>
<td>Variabel</td>
<td>R</td>
<td>String mit der Pepperl+Fuchs Homepage</td>
</tr>
<tr>
<td>0x03</td>
<td>ProductName</td>
<td>Variabel</td>
<td>R</td>
<td>String mit dem Produktnamen</td>
</tr>
<tr>
<td>0x07</td>
<td>SoftwareVersionD,SP</td>
<td>Variabel</td>
<td>R</td>
<td>String mit der Versionsinformation</td>
</tr>
<tr>
<td>0xFE</td>
<td>InParamMode</td>
<td>0</td>
<td>R</td>
<td>Anfrage, ob sich der Sensor im ParameterMode befindet</td>
</tr>
<tr>
<td>0xFF</td>
<td>LeaveParamMode</td>
<td>0</td>
<td>W</td>
<td>Anfrage zum Verlassen des ParameterMode</td>
</tr>
<tr>
<td>0x20</td>
<td>Interface_Address</td>
<td>1</td>
<td>R/W</td>
<td>Einstellen der Busadresse, Wertebereich 0-3</td>
</tr>
<tr>
<td>0x23</td>
<td>Interface Baudrate</td>
<td>4</td>
<td>R/W</td>
<td>Baudrate int32 little endian in Baud (9600 - 230400)</td>
</tr>
<tr>
<td>0x25</td>
<td>Termination enable</td>
<td>1</td>
<td>R/W</td>
<td>Terminierung des RS-485-Busses aktivieren/deaktivieren</td>
</tr>
<tr>
<td>0x68</td>
<td>Laser exposure time</td>
<td>4</td>
<td>R/W</td>
<td>Einstellung der Belichtungszeit in μs-Schritten</td>
</tr>
<tr>
<td>0x10</td>
<td>Flash time</td>
<td>4</td>
<td>R/W</td>
<td>Einstellung der Belichtungszeit (LED-Beleuchtung) in μs</td>
</tr>
<tr>
<td>0xFD</td>
<td>Presentation mode</td>
<td>4</td>
<td>R/W</td>
<td>Presentationsmodus an [0] oder aus [1]</td>
</tr>
<tr>
<td>0x6D</td>
<td>Go to teach mode</td>
<td>0</td>
<td>W</td>
<td>Versetzt den Sensor in den Teach-In-Modus</td>
</tr>
<tr>
<td>0xC8</td>
<td>ROI Evaluation</td>
<td>16</td>
<td>R/W</td>
<td>"Region of interest"-Evaluation, jeweils 4 Byte X_min, X_max, Z_min, Z_max in mm</td>
</tr>
<tr>
<td>0xC9</td>
<td>ROI Teach</td>
<td>16</td>
<td>R/W</td>
<td>"Region of interest"-Teach-In, jeweils 4 Byte X_min, X_max, Z_min, Z_max in mm</td>
</tr>
<tr>
<td>0xAD</td>
<td>Quality Good</td>
<td>4</td>
<td>R/W</td>
<td>Schwelle für Teil der Kontur, der innerhalb der Variation liegen muss in % [0 - 100]</td>
</tr>
<tr>
<td>0xAE</td>
<td>Quality Variation</td>
<td>4</td>
<td>R/W</td>
<td>Schwelle für die mittlere Abweichung von der eingelernten Kurve in % [0 - 100]</td>
</tr>
<tr>
<td>0xAF</td>
<td>Quality Outliers</td>
<td>4</td>
<td>R/W</td>
<td>Maß für die Qualität der Kurve in % [0 - 100]. Der Wert wird schlechter, wenn Teile der Kurve außerhalb der Hüllkurve detektiert werden</td>
</tr>
<tr>
<td>0x51</td>
<td>Autotrigger</td>
<td>4</td>
<td>R/W</td>
<td>Aktiviert die Autotrigger-Funktion. Der Sensor triggert sich mit Autotrigger selbst zyklisch 00 = aus 01 = an</td>
</tr>
<tr>
<td>0x9F</td>
<td>Object contrast</td>
<td>4</td>
<td>R/W</td>
<td>Schwelle, die für die Erkennung der Laserlinie benutzt wird in % [0 - 100]</td>
</tr>
<tr>
<td>0xCD</td>
<td>Tolerance object</td>
<td>1</td>
<td>R/W</td>
<td>Hüllkurve um das eingelernte Profil in 0,1-mm-Schritten. Die Hüllkurve ist die Basis für die Qualitätsparameter</td>
</tr>
<tr>
<td>0x29</td>
<td>Tolerance X</td>
<td>4</td>
<td>R/W</td>
<td>Maximal erlaubte Verschiebung des Objekts in X-Richtung gegenüber der eingelernten Position in mm</td>
</tr>
</tbody>
</table>
Save settings
01 F3 10 E2
Speichert die aktuellen Einstellungen im Flash

Reset
01 F3 02 F0
Setzt auf Standardeinstellungen zurück.

Load settings
01 F3 00 F2
Der aktuelle Auftrag und die Einstellungen werden neu geladen.

Switch to Profile
02 F3 03 XX XOR
XX = Profilnummer (1…32)
Beispiel: Profilnummer [2]: 02 F3 03 02 F0

Trigger Laser
01 64 01 XOR
Löst eine Bilddauaufnahme mit Auswertung aus

Trigger LED
01 64 02 XOR
Triggert die LEDs

Hinweis!
Alle Werte werden im Format Little-Endian übertragen. Dabei wird das kleinstwertige Byte an der Anfangsadresse gespeichert beziehungsweise die kleinstwertige Komponente zuerst genannt. Read-Befehle haben immer eine Länge von 0 Byte.

1 gilt für alle SmartRunner Matcher außer Typ VLM350-F280-2E2-1000
Beispiel

In diesem Beispiel wird der ROI Evaluation wie folgt eingestellt: Setzen des ROI auf ±50 mm in X-Richtung und auf +100 mm bis +200 mm in Z-Richtung.

<table>
<thead>
<tr>
<th>0x10</th>
<th>10 C8 CE FF FF FF 32 00 00 00 64 00 00 00 C8 00 00 00 77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datenlänge</td>
</tr>
<tr>
<td>0xC8</td>
<td>Index</td>
</tr>
<tr>
<td>0xCEFFFFFF</td>
<td>X$_{\text{min}}$ -50 mm (Little-Endian, Zweier-Komplement)</td>
</tr>
<tr>
<td>0x32000000</td>
<td>X$_{\text{max}}$ +50 mm (Little-Endian, Zweier-Komplement)</td>
</tr>
<tr>
<td>0x64000000</td>
<td>Z$_{\text{min}}$ +100 mm (Little-Endian, Zweier-Komplement)</td>
</tr>
<tr>
<td>0xC8000000</td>
<td>Z$_{\text{max}}$ +200 mm (Little-Endian, Zweier-Komplement)</td>
</tr>
</tbody>
</table>

Antwort-Telegramm:

[TX] -80 C8 48
[RX] -90 C8 CE FF FF FF 32 00 00 00 64 00 00 00 C8 00 00 00 F7

Beispiel

In diesem Beispiel wird der Sensor in den Parametermodus versetzt, um einige Einstellungen zu verändern. Danach wird in den Runtime-Modus gewechselt, ein Profil eingelernt und nacheinander dieses und ein weiteres Profil verglichen (Object_1 unterscheidet sich stark von Object_2).

[TX] - A8 57 = GotoParamMode
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 00 FE FE = InParamMode
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 80 AD 2D = Read Quality Good
[RX] - 84 AD 50 00 00 00 7F = Quality Good=80 (0x50)
[TX] - 04 AD 55 00 00 00 FF = Write Quality Good=55 (0x55)
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 04 51 00 00 00 00 55 = Write Autotrigger = Off
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 01 F3 10 E2 = Save settings
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 00 FF FF = LeaveParamMode
[RX] - 81 AC 00 2D = Acknowledge
[TX] - 94 6B = Teach (Object_1)
[TX] - D8 27 = Trigger
[TX] - 90 6F = Teach Result
[RX] - 00 00 00 64 00 00 00 64 = Result=Good
[TX] - D8 27 = Trigger (Object_1)
[TX] - 84 7B = Result Data
[RX] - 00 01 4C 64 64 64 00 00 00 29 = Result Data=Good
[TX] - D8 27 = Trigger (Object_2)
[TX] - 84 7B = Result Data
Multiprofil:

| TX | 81 AC 00 02D |
| RX | 81 55 02 D6 |

GotoParamMode

| TX | 81 55 02 D6 |
| RX | 81 AC 00 2D |

Acknowledge

| RX | 81 AC 00 2D |
| TX | 02 F3 03 02 F0 |

Switch to Profile 2

| RX | 81 55 02 D6 |
| TX | 04 51 00 00 00 00 55 |

Set Profile Name to "Bar"

| RX | 81 AC 00 2D |
| TX | 13 56 54 68 69 73 20 69 73 20 74 68 65 20 42 61 72 06 |

Set Profile information to "This is the Bar job"

| RX | 81 AC 00 2D |
| TX | 80 55 D5 |

Read Profile index

| RX | 81 AC 00 2D |
| TX | 04 51 00 00 00 00 55 |

Write Autotrigger=Off

| RX | 81 AC 00 2D |
| TX | 01 F3 10 E2 |

Save settings

| RX | 81 AC 00 2D |
| TX | 00 FF FF |

LeaveParamMode

| RX | 81 AC 00 2D |
| TX | D8 27 |

Trigger (Object_2)

| RX | 84 7B |
| TX | 80 02 11 64 64 64 00 00 00 00 77 |

Result Data=Good

| RX | 84 7B |
| TX | 00 02 12 64 63 64 00 06 00 00 75 |

Result Data=Good

| RX | 84 7B |
| TX | D0 01 01 2F |

choose Profile 1

| RX | 84 7B |
| TX | D8 27 |

Trigger (Object_1)

| RX | 84 7B |
| TX | 00 01 13 64 64 64 00 00 00 00 5D |

Result Data=Good

| RX | 00 02 12 64 63 64 00 06 00 00 75 |

Result Data=Good

| RX | 84 7B |

Trigger (Object_2 shifted in X-direction)

Result Data

Result Data
Beschreibung der Qualitätsparameter

1. Variation
2. Eingelernte Kurve
3. Aktuelle Kurve

Quality Variation = \(100 - \sum_{x=0}^{X_T} \left(\frac{\min(\text{Z}_s(x) - \text{Z}_T(x), v)}{v} \right) \) * 100

Quality Good = \(100 \cdot \left(\frac{X_N + X_B + X_L}{X_T} \right) \) * 100

Quality Outliers = \(100 \cdot \left(\frac{X_B}{X_T} \right) \) * 100

Legende
- \(X_T \): Anzahl Werte der eingelernten Profilkurve
- \(Z_T(x) \): Abstandswert des eingelernten Profils an Position x
- \(Z_s(x) \): Abstandswert des aktuellen Profils an Position x
- \(v \): eingestellte Variation
- \(X_N \): Anzahl Werte, die bei der Auswertung erkannt wurden, obwohl bei Teach nicht vorhanden
- \(X_B \): Anzahl Werte, die außerhalb der Hüllkurve liegen
- \(X_L \): Anzahl Werte, die beim Teach vorhanden waren, bei der Auswertung nicht mehr gefunden werden
6.2 Codekartenmodus

Tipp

Steuercode erzeugen

1. Wählen Sie in der Menüleiste Administration > Create reader programming code.
2. Wählen Sie im Bereich Device type den Sensortyp SMARTRUNNER aus.
3. Wählen Sie die benötigten Parameter im Bereich Select function.
 → Der Steuercode wird im Bereich Control Code in unterschiedlichen Größen angezeigt.
4. Um den Steuercode auszudrucken, klicken Sie auf Print bzw. Print preview. Um den Steuercode zu speichern, klicken Sie auf Save image.

Abbildung 6.1 Steuercode erzeugen
6.2.1 Geräteparameter per Steuercode setzen

Um Steuercodes zu erzeugen, benutzen Sie Vision Configurator.

Hinweis!
Der Parametriermodus kann nur innerhalb der ersten 10 Minuten nach dem Einschalten des Sensors aktiviert werden.

Codekartenmodus aktivieren
Halten Sie die Taste 2 auf der Rückseite des Sensors länger als 2 Sek. gedrückt. Lassen Sie die Taste dann los.

⇒ Die Ready-LED blinkt schnell und das Kamerasystem des Sensors beginnt zu blitzen.

Parameter setzen
1. Um einen Parameter zu vergeben, bringen Sie den entsprechenden Steuercode in das Sichtfeld des Sensors.

⇒ Wurde ein gültiger Code erkannt, so leuchtet die Result-LED kurz grün
Wurde ein ungültiger Code erkannt, so leuchtet die Result-LED kurz rot

Codekartenmodus deaktivieren
Drücken Sie die Taste 2 auf der Rückseite des Sensors.

⇒ Die Ready-LED hört auf zu blinken und das Blitzen des Kamerasystems stoppt.
6.3 Präsentationsmodus

Im Präsentationsmodus können Sie den Sensor vorführen bzw. testen ohne Zuhilfenahme eines PCs. Des Weiteren werden die Bedientasten aktiviert bzw. deaktiviert.

Präsentationsmodus einstellen
2. Richten Sie den Sensor zum Messobjekt aus.

Abbildung 6.2 Result-LED

Die Result-LED leuchtet "rot".

4. Taste 1 drücken.

Der Trigger ist betätigt. Result-LED leuchtet "grün". Das Messobjekt ist eingelernt. Weicht die Profilkontur ab, leuchtet die Result-LED "rot".

Hinweis!
Ist in der Bediensoftware Vision Configurator der Autotrigger aktiviert, reicht es die Taste 2 zum einlernen des Messobjekts zu drücken. Falls der Autotrigger deaktiviert ist, muss nach dem Einlernen des Messobjekts der Trigger über die Taste 1 betätigt werden.
6.4 Runtime-Modus

Der Runtime-Modus ist der Hauptmodus, bei dem der Messvorgang wie in der Bediensoftware konfiguriert arbeitet.

6.4.1 Kommunikation über die RS-485-Schnittstelle

Die Kommunikation zwischen Steuerung und Lesekopf findet im laufenden Betrieb über die RS-485-Schnittstelle statt. Stellen Sie sicher, dass die grundlegenden Kommunikationseinstellungen am Lesekopf vorgenommen wurden, wie z. B. Setzen der Lesekopfadresse und Baudrate.

Unterschieden wird zwischen Anforderungstelegrammen, die die Steuerung an den Lesekopf sendet und Antworttelegrammen, die der Lesekopf an die Steuerung sendet. Jedes Byte eines Anforderungs- oder Antworttelegramms besteht aus 9 Bit (= 8 Datenbits + 1 Paritätsbit).

Paritätsbit

Das Paritätsbit ist eine zusätzliche Binärzahl, die einer zu übertragenden Gruppe von Bits hinzugefügt wird. Dieses Bit dient zur Kontrolle, ob die Daten erfolgreich angekommen sind. Vor der Übertragung werden die gesetzten Datenbits gezählt. Wenn ihre Anzahl gerade ist, erhält das Paritätsbit den Wert 1. Damit wird insgesamt eine ungerade Zahl übertragen. Ist die Anzahl der auf 1 gesetzten Datenbits bereits ungerade, wird das Paritätsbit auf 0 gesetzt.

Die Empfängerseite prüft jede Gruppe eingehender Bit darauf, ob sich eine ungerade Zahl ergibt. Ist die Summe gerade, dann ist ein Übertragungsfehler aufgetreten.

Anforderungstelegramm

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>R/W</td>
<td>Anf.-Bit4</td>
<td>Anf.-Bit3</td>
<td>Anf.-Bit2</td>
<td>Anf.-Bit1</td>
<td>Anf.-Bit0</td>
<td>A1</td>
</tr>
<tr>
<td>Byte 2</td>
<td>~R/W</td>
<td>~Anf.-Bit4</td>
<td>~Anf.-Bit3</td>
<td>~Anf.-Bit2</td>
<td>~Anf.-Bit1</td>
<td>~Anf.-Bit0</td>
<td>~A1</td>
</tr>
</tbody>
</table>

Bedeutung der Bits:
R/W: 0 = Antwort, 1 = Anforderung
Bedeutung der Bits

<table>
<thead>
<tr>
<th>Bit</th>
<th>Funktion</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Answer</td>
<td>0x80</td>
</tr>
<tr>
<td>6</td>
<td>Read head Adr. 0</td>
<td>0x84</td>
</tr>
<tr>
<td>5</td>
<td>Read head Adr. 1</td>
<td>0x90</td>
</tr>
<tr>
<td>4</td>
<td>Read head Adr. 2</td>
<td>0xA8</td>
</tr>
<tr>
<td>3</td>
<td>Read head Adr. 3</td>
<td>0xD0</td>
</tr>
<tr>
<td>2</td>
<td>Status (is alive)</td>
<td>0xA8</td>
</tr>
<tr>
<td>1</td>
<td>Result data</td>
<td>0x94</td>
</tr>
<tr>
<td>0</td>
<td>Teach result</td>
<td>0xD0</td>
</tr>
<tr>
<td></td>
<td>Enable Configuration Mode</td>
<td>0x94</td>
</tr>
<tr>
<td></td>
<td>Enable Teach Mode</td>
<td>0xD0</td>
</tr>
<tr>
<td></td>
<td>Generate a software trigger</td>
<td>0xA8</td>
</tr>
</tbody>
</table>

1. gilt für alle SmartRunner Matcher außer Typ VLM350-F280-2E2-1000
Antworttelegramm
Status (is alive)
Der Status liefert immer 0x55, wenn der Sensor betriebsbereit ist.

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Result Protocol
Result Data liefert als Antwort Status und Ergebnis der Messung.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 4</th>
<th>Bit 5</th>
<th>Bit 6</th>
<th>Bit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Addr0</td>
<td>Event</td>
<td>WRN</td>
<td>NoMatch</td>
<td>ERR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>R6</td>
<td>R5</td>
<td>R4</td>
<td>R3</td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>C06</td>
<td>C05</td>
<td>C04</td>
<td>C03</td>
<td>C02</td>
<td>C01</td>
<td>C00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Q06</td>
<td>Q05</td>
<td>Q04</td>
<td>Q03</td>
<td>Q02</td>
<td>Q01</td>
<td>Q00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Q16</td>
<td>Q15</td>
<td>Q14</td>
<td>Q13</td>
<td>Q12</td>
<td>Q11</td>
<td>Q10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Q26</td>
<td>Q25</td>
<td>Q24</td>
<td>Q23</td>
<td>Q22</td>
<td>Q21</td>
<td>Q20</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PosX13</td>
<td>PosX12</td>
<td>PosX11</td>
<td>PosX10</td>
<td>PosX9</td>
<td>PosX8</td>
<td>PosX7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PosX06</td>
<td>PosX05</td>
<td>PosX04</td>
<td>PosX03</td>
<td>PosX02</td>
<td>PosX01</td>
<td>PosX00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PosZ13</td>
<td>PosZ12</td>
<td>PosZ11</td>
<td>PosZ10</td>
<td>PosZ09</td>
<td>PosZ08</td>
<td>PosZ07</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PosZ06</td>
<td>PosZ05</td>
<td>PosZ04</td>
<td>PosZ03</td>
<td>PosZ02</td>
<td>PosZ01</td>
<td>PosZ00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td></td>
</tr>
</tbody>
</table>

Legende
Status
- **Event** Ereignis aufgetreten (zukünftig) aktuell als 0 gelesen
- **WRN** Nicht benutzt
- **No Match** Profil stimmt nicht mit gespeichertem Profil überein
- **ERR** Systemfehler oder Auswertungsfehler

Result Profilnummer 1 ... 32
- 0x00 = kein Objekt gefunden

Quality Qualität des aktuellen Profils (0 = kein Profil gefunden, 100 = perfekte Übereinstimmung)
- **Quality** Qualität Good
- **Quality2** Quality Variation
- **Quality3** Quality Outliers

Counter Zählt bei jeder Auswertung hoch, wird bei 0x3F neu gestartet

Position Data
- **PosX** X-Abweichung aktuelles Profil zu gespeichertem Profil
- **PosZ** Z-Abweichung aktuelles Profil zu gespeichertem Profil

1 gilt für alle SmartRunner Matcher außer Typ VLM350-F280-2E2-1000
Beispiel für PosX und PosZ

Result Protocol - PosX und PosZ

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 4</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7 - PosX</td>
<td>0</td>
<td>PosX13</td>
<td>PosX12</td>
<td>PosX11</td>
<td>PosX10</td>
<td>PosX09</td>
<td>PosX08</td>
<td>PosX07</td>
</tr>
<tr>
<td>Byte 8 - PosX</td>
<td>0</td>
<td>PosX06</td>
<td>PosX05</td>
<td>PosX04</td>
<td>PosX03</td>
<td>PosX02</td>
<td>PosX01</td>
<td>PosX00</td>
</tr>
<tr>
<td>Byte 9 - PosZ</td>
<td>0</td>
<td>PosZ13</td>
<td>PosZ12</td>
<td>PosZ11</td>
<td>PosZ10</td>
<td>PosZ09</td>
<td>PosZ08</td>
<td>PosZ07</td>
</tr>
<tr>
<td>Byte10 - PosZ</td>
<td>0</td>
<td>PosZ06</td>
<td>PosZ05</td>
<td>PosZ04</td>
<td>PosZ03</td>
<td>PosZ02</td>
<td>PosZ01</td>
<td>PosZ00</td>
</tr>
</tbody>
</table>

Beispiel mit negativen Vorzeichen für PosX:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 4</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 7 - PosX</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Byte 8 - PosX</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vorzeichen (PosX13) 0000000000000001 v (=Value) 0011111111111100 3FFF 0000000000000011 NOT v 0011111111111111 NOT v AND 3FFF +1 BIN 0000000000010100 ((NOT v) AND 3FFF) +1

HEX 14 DEC 20 * (-1) = -20 (X-Achse)

Beispiel mit positiven Vorzeichen für PosZ:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 4</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 9 - PosZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte10 - PosZ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Vorzeichen (PosZ13) 0000000000000001 v (=Value) 0000000000000001 0000000000000001 11 BIN 0000000000000001 0000000000000001 v (=Value)

HEX 11 DEC 17 (Z-Achse)

Abbildung 6.3 Beispielrechnung
Teach Result Protocol

Teach Result Data liefert als Antwort Satus und Ergebnis des Teach-In-Vorgangs.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1 - Status</td>
<td>0</td>
<td>-</td>
<td>Addr 1</td>
<td>Addr 0</td>
<td>Event</td>
<td>WRN</td>
<td>0</td>
<td>ERR</td>
</tr>
<tr>
<td>Byte 2 - Result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Byte 3 - Counter</td>
<td>0</td>
<td>C06</td>
<td>C05</td>
<td>C04</td>
<td>C03</td>
<td>C02</td>
<td>C01</td>
<td>C00</td>
</tr>
<tr>
<td>Byte 4 - Quality A</td>
<td>0</td>
<td>QA6</td>
<td>QA5</td>
<td>QA4</td>
<td>QA3</td>
<td>QA2</td>
<td>QA1</td>
<td>QA0</td>
</tr>
<tr>
<td>Byte 5 - Quality B</td>
<td>0</td>
<td>QB6</td>
<td>QB5</td>
<td>QB4</td>
<td>QB3</td>
<td>QB2</td>
<td>QB1</td>
<td>QB0</td>
</tr>
<tr>
<td>Byte 6 - Quality C</td>
<td>0</td>
<td>QC6</td>
<td>QC5</td>
<td>QC4</td>
<td>QC3</td>
<td>QC2</td>
<td>QC1</td>
<td>QC0</td>
</tr>
<tr>
<td>Byte 7 - Quality D</td>
<td>0</td>
<td>QD6</td>
<td>QD5</td>
<td>QD4</td>
<td>QD3</td>
<td>QD2</td>
<td>QD1</td>
<td>QD0</td>
</tr>
<tr>
<td>Byte 8 - Checksum</td>
<td>0</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
</tr>
</tbody>
</table>

Legende

Status	Addr	Gerätadresse
Event	Erreignis aufgetreten - für die zukünftige Verwendung, aktuell als 0 gelesen	
WRN	Nicht benutzt	
ERR	Systemfehler oder Auswertungsfehler	
Result	R0	Für erweitertes Protokoll
Immer 0		
Counter	C00 ... C06	Zählt bei jedem Teach-In hoch
Quality A	Qualität des aktuellen Teach-In	
Wert zwischen 0 und 100		
0 = kein Teach-In möglich		
100 = perfektes Teach-In		
Quality B-D | Nicht benutzt
Softwaretrigger

Nach Senden der Sequenz für den Softwaretrigger löst der Sensor eine Bildaufnahme aus. Es wird kein Antworttelegramm auf den Befehl generiert.

Teach-In

Nach Senden des Befehls zum Starten des Teach-Inn (0x94) beginnt der Sensor mit der Einlern-Routine. Danach muss ein Trigger gesendet werden.

Choose profile

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1 - Request</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Address1</td>
<td>Address0</td>
</tr>
<tr>
<td>Byte 2 - Data length</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Byte 3 - Data</td>
<td>0</td>
<td>P6</td>
<td>P5</td>
<td>P4</td>
<td>P3</td>
<td>P2</td>
<td>P1</td>
<td>P0</td>
</tr>
<tr>
<td>Byte 4 - Checksum</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
<td>xor</td>
</tr>
</tbody>
</table>

Legende

- **Request Bit 7 ... 2** ID des Befehls
- **Adresse** Adresse des aktuellen Gerätes
- **Data Bit 7** 0
- **Bit 6** 0
- **P5 ... P0** 1 ... 32: Profilnummer
 0... : nicht definiert
 > 32: nicht definiert

1 gilt für alle SmartRunner Matcher außer Typ VLM350-F280-2E2-1000
7 Wartung und Reparatur

7.1 Wartung

Das Gerät ist wartungsfrei. Um die bestmögliche Geräteleistung zu erzielen, halten Sie die Optikeinheit des Gerätes sauber und reinigen Sie diese bei Bedarf.

Beachten Sie bei der Reinigung folgende Hinweise:

- Berühren Sie die Optikeinheit nicht mit den Fingern.
- Tauchen Sie das Gerät nicht in Wasser ein. Besprühen Sie es nicht mit Wasser oder anderen Flüssigkeiten.
- Verwenden Sie zum Reinigen der Geräteoberfläche keine Scheuermittel.
- Benutzen Sie ein Baumwoll- oder Zellstofftuch, das mit Wasser oder Isopropylalkohol angefeuchtet (nicht getränkt) ist.
- Entfernen Sie Alkoholrückstände mit einem Baumwoll- oder Zellstofftuch, das mit destilliertem Wasser angefeuchtet (nicht getränkt) ist.
- Wischen Sie die Geräteoberflächen mit einem fusselfreien Tuch trocken.

7.2 Reparatur

Das Gerät darf nicht repariert, verändert oder manipuliert werden. Ersetzen Sie das Gerät im Fall eines Ausfalls immer durch ein Originalgerät.

Gefahr!
Lebensgefahr durch elektrischen Strom!

Bei Berührung mit spannungsführenden Teilen besteht unmittelbare Lebensgefahr.

- Arbeiten an der elektrischen Anlage nur von Elektrofachkräften ausführen lassen.
- Vor Wartungs-, Reinigungs- und Reparaturarbeiten Stromversorgung abschalten und gegen Wiedereinschalten sichern.
- Feuchtigkeit von spannungsführenden Teilen fernhalten.
8 Störungsbeseitigung

8.1 Was tun im Fehlerfall

Bevor Sie das Gerät reparieren lassen, führen Sie folgende Maßnahmen durch:

- Testen Sie die Anlage gemäß der folgenden Checkliste.
- Kontaktieren Sie unser Service-Center, um das Problem einzugrenzen.

Checkliste

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Ursache</th>
<th>Behebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED "Power" leuchtet nicht</td>
<td>Die Stromversorgung ist abgeschaltet</td>
<td>Ermitteln Sie, ob es einen Grund für die Abschaltung gibt (Installationsarbeiten, Instandhaltungen, usw.). Schalten Sie ggf. die Stromversorgung ein.</td>
</tr>
<tr>
<td>Verdrahtungsfehler im Verteiler oder Schaltschrank, Kabelbruch</td>
<td>Überprüfen Sie sorgfältig die Verdrahtung und beheben Sie ggf. vorhandene Verdrahtungsfehler. Prüfen Sie die Kabel auf Funktion.</td>
<td></td>
</tr>
<tr>
<td>Steuerung empfängt keine Messdaten</td>
<td>Anschlusskabel nicht verbunden</td>
<td>Verbinden Sie das Anschlusskabel.</td>
</tr>
<tr>
<td>Falsches Anschlusskabel verwendet</td>
<td>Verwenden Sie ausschließlich das passende Anschlusskabel.</td>
<td></td>
</tr>
<tr>
<td>Falsche Baudrate eingestellt</td>
<td>Stellen Sie sicher, dass Sie die richtige Baudrate des Sensors eingestellt haben.</td>
<td></td>
</tr>
<tr>
<td>Messobjekt nicht erkannt</td>
<td>Schutzabdeckung verschmutzt</td>
<td>Schutzabdeckung reinigen.</td>
</tr>
<tr>
<td>Reflexionen</td>
<td>Reflexionen vermeiden</td>
<td></td>
</tr>
<tr>
<td>Fremdbelichtung</td>
<td>Fremdbelichtung vermeiden</td>
<td></td>
</tr>
<tr>
<td>Belichtungsregelung</td>
<td>Belichtung einstellen (siehe Kapitel 5.7.2)</td>
<td></td>
</tr>
<tr>
<td>Einlernbereich falsch eingestellt</td>
<td>Einlernbereich einstellen (siehe Kapitel 5.7.2)</td>
<td></td>
</tr>
<tr>
<td>Auswertebereich falsch eingestellt</td>
<td>Auswertebereich einstellen (siehe Kapitel 5.7.2)</td>
<td></td>
</tr>
<tr>
<td>Toleranzbereich falsch eingestellt</td>
<td>Toleranzbereich einstellen (siehe Kapitel 5.7.2)</td>
<td></td>
</tr>
<tr>
<td>Messfehler</td>
<td>Oberflächen mit ausgeprägter Riefenstruktur und spiegelnde Oberflächen</td>
<td>Bessere Anordnung der Sensorkomponenten zum Messobjekt</td>
</tr>
<tr>
<td>Temperaturänderung im Sensor</td>
<td>Sensor ca. 15 Minuten warmlaufen lassen, bevor der Messvorgang gestartet wird.</td>
<td></td>
</tr>
<tr>
<td>Falscher Abstand zum Messobjekt</td>
<td>Abstandsgaben beachten</td>
<td></td>
</tr>
<tr>
<td>Gehäuses falsch befestigt</td>
<td>Gehäuse korrekt montieren (siehe Kapitel 3.3)</td>
<td></td>
</tr>
<tr>
<td>Präsentationsmodus funktioniert nicht</td>
<td>Präsentationsmodus nicht aktiviert</td>
<td>Presentation mode und Autotrigger aktivieren und mit "Save settings" bestätigen</td>
</tr>
<tr>
<td>Keine Verbindung zum Sensor</td>
<td>Wechselspannung oder zu hohe Versorgungsspannung</td>
<td>Sensor ausschließlich an Gleichspannung (DC) anschließen. Stellen Sie sicher, dass die Höhe der Versorgungsspannung im spezifizierten Bereich des Sensors liegt.</td>
</tr>
<tr>
<td>DataMatrix-Steuercode wird nicht erkannt</td>
<td>Anzahl der max. Parameter überschritten</td>
<td>Wir empfehlen max. 10 Parameter</td>
</tr>
</tbody>
</table>

- Falls keiner der vorherigen Punkte zum Ziel geführt hat, nehmen Sie bitte Kontakt zu unserem Service-Center auf. Halten Sie hier bitte die Fehlerbilder und die Versionsnummer der Firmware bereit. Die Firmware-Versionsnummer finden Sie auf der Bedienoberfläche oben rechts.
The Smartrunner sensor ships with firmware ("software") programmed into it. This software is based in part on the work of the Independen JPEG Group. The software is based on works by Texas Instruments Incorporated, which are distributed under the following licenses:

SYS/BIOS License

Copyright (c) 2012-2015, Texas Instruments Incorporated. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Texas Instruments Incorporated nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

Eclipse Distribution License - v 1.0

Copyright (c) 2007, Eclipse Foundation, Inc. and its licensors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of the Eclipse Foundation, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "AS IS" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10 Anhang
10.1 Codekarten für die Profilumschaltung
Hier finden Sie die Codekarten, mittels derer Sie zwischen den Profilen umschalten können.
Für die genaue Vorgehensweise bei der externen Parametrierung siehe Kapitel 6.2.1.

Hinweis!
Für die externe Profilumschaltung mit Codekarten empfehlen wir, die gewünschten Seiten dieses Handbuchs zu kopieren bzw. auszudrucken und die benötigten Codekarten auszuschneiden. Dies verhindert, dass irrtümlicherweise eine andere Codekarte auf derselben Seite vom Lesekopf erkannt wird. Falls Sie dieses Handbuch direkt für die Parametrierung verwenden, bedecken Sie die nicht benötigten Codekarten z. B. mit einem Blatt Papier.

Profil 1

Abbildung 10.1 Profil 1

Profil 2

Abbildung 10.2 Profil 2
Abbildung 10.3 Profil 3

Abbildung 10.4 Profil 4

Abbildung 10.5 Profil 5
Abbildung 10.9 Profil 9

Abbildung 10.10 Profil 10

Abbildung 10.11 Profil 11
Abbildung 10.12 Profil 12

Abbildung 10.13 Profil 13

Abbildung 10.14 Profil 14
Profil 15

Abbildung 10.15 Profil 15

Profil 16

Abbildung 10.16 Profil 16

Profil 17

Abbildung 10.17 Profil 17
Profil 18

Abbildung 10.18 Profil 18

Profil 19

Abbildung 10.19 Profil 19

Profil 20

Abbildung 10.20 Profil 20