ICE1-*-G60L-V1D, ICE1-*-G60L-C1-V1D

Feldbusmodule mit Multiprotokoll-Technologie

Handbuch

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Weltweit

Pepperl+Fuchs-Gruppe Lilienthalstr. 200 68307 Mannheim Deutschland

Telefon: +49 621 776 - 0

E-Mail: info@de.pepperl-fuchs.com https://www.pepperl-fuchs.com

1	Sicher	heit	5
	1.1	Einleitung	5
	1.1.1	Inhalt des Dokuments	5
	1.1.2	2 Hersteller	5
	1.1.3	9 - 1-1	
	1.1.4	Verwendete Symbole	6
2	Produ	ktbeschreibung	
	2.1	Einsatz und Anwendung	
	2.2	Anzeigen und Bedienelemente	
	2.3	Schnittstellen und Anschlüsse	12
	2.4	Abmessungen	15
3	Install	ation	16
	3.1	Allgemeine Hinweise	16
4	Inbetr	iebnahme, Protokolleinstellung	18
	4.1	Protokolleinstellung	18
5	Inbetr	iebnahme bei EtherNet/IP	20
	5.1	Vorbereitung	20
	5.2	Konfiguration	21
	5.2.1	16DIO-Module, Verbindungen und Assembly-Objekte	22
	5.2.2	2 16DI-Module, Verbindungen und Assembly-Objekte	26
	5.2.3	8DI/8DO-Module, Verbindungen und Assembly-Objekte	26
	5.2.4	Konfigurationsparameter	27
	5.2.5	Konfigurationsbeispiel	33
	5.3	Bitbelegung der Prozessdaten	
	5.3.1	16DIO-Module, Bitbelegung der Prozessdaten	40
	5.3.2	Module mit dezentraler Logikfunktion, Bitbelegung der Prozes erweiterung43	sdaten-
	5.3.3	3 16DI-Module, Bitbelegung der Prozessdaten	43
	5.3.4	8DI/8DO-Module, Bitbelegung der Prozessdaten	44
6	Inbetr	iebnahme bei PROFINET	46
	6.1	Vorbereitung	46
	6.2	Konfiguration	46

	6.3	Zuordnung der Prozessdaten	60		
	6.3.	1 16DIO-Module, Bitbelegung der Prozessdaten	60		
	6.3.	2 Module mit dezentraler Logikfunktion, Bitbelegung der Prozess erweiterung63	daten-		
	6.3.	3 16DI-Module, Bitbelegung der Prozessdaten	64		
	6.3.	4 8DI/8DO-Module, Bitbelegung der Prozessdaten	64		
7	Inbetr	riebnahme bei EtherCAT	66		
	7.1	Vorbereitung	66		
	7.2	Konfiguration	66		
	7.2.	1 16DIO-Module, PDO-Zuordnung	66		
	7.2.	2 Module mit dezentraler Logikfunktion, Bitbelegung der Prozess erweiterung78	daten-		
	7.2.	3 16DI-Module, PDO-Zuordnung	80		
	7.2.	4 8DI8DO-Module, PDO-Zuordnung	82		
	7.2.	5 Geräteparameter	86		
	7.2.	6 Konfigurationsbeispiel mit TwinCAT® 3	91		
8	Der in	tegrierte Webserver	107		
	8.1	Überblick und Moduladressierung	107		
	8.2	Menüstruktur	107		
	8.3	Auslesen der Prozess- und Diagnosedaten (JSON)	114		
9	Dezer	ntrale Logikfunktion	119		
	9.1	Grundlegende Informationen	119		
	9.2	LDMircro Programmiertool	123		
	9.3	DCU Web Interface	129		
10	Firmw	ware Update			
11	Störu	ngsbeseitigung	139		
	11.1	Allgemeine Diagnosebearbeitung	139		
	11.2	Diagnoseanzeige im integrierten Webserver	141		
	11.3	Diagnose-Informationen der Module über EtherNet/IP	141		
	11.4	Alarm- und Fehlermeldungen der Module über PROFINET	142		
	11.5	Alarm- und Fehlermeldungen der Module über EtherCAT	143		

1 Sicherheit

1.1 Einleitung

1.1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- · Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung

Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Die Dokumentation besteht aus folgenden Teilen:

- vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- · weitere Dokumente

1.1.2 Hersteller

Pepperl+Fuchs-Gruppe Lilienthalstraße 200, 68307 Mannheim, Deutschland

Internet: www.pepperl-fuchs.com

1.1.3 Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.

2019-10

1.1.4 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.

2 Produktbeschreibung

2.1 Einsatz und Anwendung

Modulbeschreibung

Die ICE1-*-G60L-*-Module fungieren als Schnittstelle in einem industriellen Feldbussystem. Sie ermöglichen die Kommunikation einer zentralen Steuerung in der Leitebene mit dezentralen Sensoren und Aktuatoren in der Feldebene. Dazu verfügen die Module neben der Feldbusschnittstelle, je nach Variante, über eine unterschiedliche Anzahl von Ports für digitale Eingänge und Ausgänge.

Folgende Modultypen sind in diesem Handbuch beschrieben:

Ethernet-IO-Modul mit fester Anzahl von Ein-/Ausgängen

8DI8DO-Module

- ICE1-8DI8DO-G60L-V1D: Ethernet-IO-Modul mit 8 digitalen Eingängen (8DI) und 8 digitale Ausgängen (8DO)
- ICE1-8DI8DO-G60L-C1-V1D: Ethernet-IO-Modul mit 8 digitalen Eingängen (8DI) und 8 digitale Ausgängen (8DO) und dezentraler Logikfunktion

16DI-Module

- ICE1-16DI-G60L-V1D: Ethernet-IO-Modul mit 16 digitalen Eingängen (16DI)
- Ethernet-IO-Modul mit konfigurierbaren Ein-/Ausgängen

16DIO-Module

- ICE1-16DIO-G60L-V1D: Ethernet-IO-Modul mit 16 digitalen Ein-/Ausgängen (16DIO), frei konfigurierbar
- ICE1-16DIO-G60L-C1-V1D: Ethernet-IO-Modul mit 16 digitalen Ein-/Ausgängen (16DIO), frei konfigurierbar und dezentraler Logikfunktion

Die Module haben einen integrierten 2-Port-Switch, sind multiprotokollfähig und können für EtherNet/IP, PROFINET oder EtherCAT konfiguriert werden. Durch die damit realisierbaren Linien- oder Ringtopologien ist eine zuverlässige Datenkommunikation und eine deutliche Reduzierung der Verdrahtung und damit der Kosten für Installation und Instandhaltung möglich. Zudem besteht die Möglichkeit der einfachen und schnellen Erweiterung.

Die Module der ICE1-*-G60L-*-Serie verfügen über ein robustes Metallgehäuse aus Zinkdruckguss. Durch das komplett vergossene Gerätegehäuse ist die Modulelektronik vor Umwelteinflüssen geschützt und über einen breiten Temperaturbereich einsetzbar. Trotz des robusten Designs bieten die Module kompakte Abmessungen und ein geringes Gewicht. Sie eignen sich besonders für den Einsatz in Maschinen und Anlagen mit einer moderaten E/A-Konzentration auf verteilten Baugruppen.

Multiprotokoll (EtherNet/IP, PROFINET oder EtherCAT)

Die Ethernet-IO-Module sind Multiprotokoll-Module und ermöglichen Ihnen, für die Kommunikation innerhalb eines Feldbussystems, aus verschiedenen Protokollen eines auszuwählen. Dadurch lassen sich die Multiprotokoll-Module in verschiedene Netze einbinden, ohne für jedes Protokoll spezifische Module zu erwerben. Außerdem haben Sie durch diese Technik die Option, ein und dasselbe Modul in verschiedenen Umgebungen einzusetzen.

Über Drehcodierschalter im unteren Bereich der Module stellen Sie komfortabel und einfach sowohl das Protokoll als auch die Adresse des Moduls ein, sofern das zu verwendende Protokoll dies unterstützt. Haben Sie eine Protokollwahl vorgenommen und einmal die zyklische Kommunikation gestartet, merkt sich das Modul diese Einstellung und nutzt das gewählte Protokoll ab diesem Zeitpunkt. Um mit diesem Modul ein anderes unterstütztes Protokoll zu nutzen, führen Sie einen Factory Reset durch.

Besondere Produktmerkmale

Robustes Design

Als Anschlussmöglichkeit bietet die Modulreihe den weit verbreiteten M12-Steckverbinder mit A-Kodierung für die E/A-Signale und D-Kodierung für das Netz. Darüber hinaus sind die Steckverbinder farbkodiert, um eine Verwechslung der Ports zu verhindern. Die Ausgangsstromkreise sind galvanisch vom restlichen Netz und der Sensorelektronik getrennt. Dadurch werden Steuerungen zuverlässig vor Störsignalen geschützt. Dies gilt nicht für die 16DIO-Module aufgrund der konfigurierbaren Ein-/Ausgänge.

Integrierter Webserver

Die Anpassung der Netzwerkparameter wie IP-Adresse, Subnetzmaske und Gateway ist über Steuerschalter (letztes Byte der IP-Adresse) oder den integrierten Webserver möglich. Für eine automatisierte Zuweisung der Netzwerkparameter durch entsprechende Server unterstützen die Module die Kommunikationsprotokolle BOOTP und DHCP.

Integrierter Netzwerk-Switch

Der integrierte 2-Port-Ethernet-Switch der Module erlaubt den Aufbau einer Linientopologie für ein EtherCAT®-Netzwerk oder zusätzlich eine Ringtopologie für das EtherNet/IP-oder das PROFINET-Netz. Das zusätzlich implementierte DLR- bzw. MRP-Protokoll ermöglicht den Entwurf einer hochverfügbaren Netzinfrastruktur.

Redundanz-Funktion

Die Firmware der Module unterstützt bei Ring-Topologien die Redundanz-Funktion DLR (Device-Level-Ring) bzw. MRP (Media Redundancy Protokoll). Dadurch wechseln die Module bei einer Unterbrechung der Verbindung sofort auf ein alternatives Ringsegment und sorgen so für einen unterbrechungsfreien Betrieb. Die unterstützte DLR-Klasse ist "Beacon-Based" entsprechend der EtherNet/IP-Spezifikation.

Fail-Safe-Funktion

Die Module mit Ausgangsfunktionalität bieten eine Fail-Safe-Funktion. Damit haben Sie die Möglichkeit, das Verhalten jedes einzelnen Ausgangskanals im Falle einer Unterbrechung oder eines Verlusts der Kommunikation festzulegen.

QuickConnect

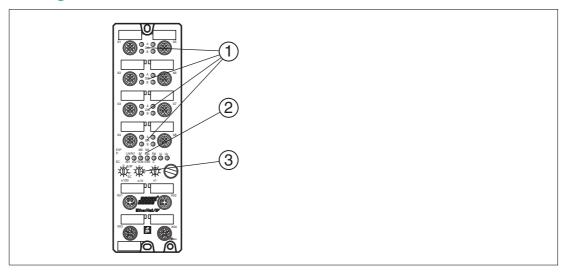
QuickConnect ermöglicht den Modulen durch einen beschleunigten Hochfahrprozess die besonders schnelle Aufnahme der Kommunikation in einem EtherNet/IP-Netz. Damit ist beispielsweise ein schnellerer Werkzeugwechsel möglich.

Force Mode

Der "Force Mode" ermöglicht die Simulation von Prozessdaten der Ein-/Ausgänge, ohne dass Sensoren und Aktoren angeschlossen werden müssen. Somit können Sie eine Applikation ohne vollständige physische Anwendung vorab testen. Es besteht die Möglichkeit Eingangsschaltzustände zu simulieren oder sogar ohne Steuerung Ausgänge zu schalten. Diese Funktion erleichtert und beschleunigt eine Maschineninbetriebnahme und kann für die Überprüfung neuer Produktionsanlagen genutzt werden.

Dezentrale Logikfunktion bei C1-Modulen

ICE1-*-G60L-C1-V1D- Module mit der dezentralen Logikfunktion (DCU-Funktion) können Anwendungen über eine integrierte programmierbare Logik eigenständig steuern. Hierbei können sie Timer und Zähler sowie weitere Funktionen ausführen und optional Daten mit einer übergeordneten Steuerung austauschen. Die remanente Speicherung des Programms eignet sich bestens für einen Plug-and-Play-Betrieb. Dadurch ermöglichen diese Module eine schnelle und intuitive Installation sowie Wartung. Details zur Programmierung der dezentralen Logikfunktion entnehmen Sie dem Kapitel "Dezentrale Logikfunktion".


Flex-Bit-Technologie bei 16DIO-Modulen (IO-Mapping):

Mit der Flex-Bit-Technologie ist es möglich, das IO-Mapping der Prozessdaten zu ändern. In der Regel ist jeder Kanal statisch einem Bit in den Prozessdaten zugeordnet. Mit Hilfe dieser Funktion lassen sich die Datenrichtung eines Kanals sowie dessen Bit-Zuordnung in den Prozessdaten bestimmen. Es können somit Ethernet-IO-Module durch die Konfiguration des IO-Mappings in Applikationen mit Bit-Mappings anderer Hersteller eingesetzt werden.

Automatische Konfiguration der Ein-/Ausgänge bei 16DIO-Modulen über Ein-/Ausgangs-Profile

Die 16DIO Module sind universell einsetzbar und bieten Ihnen unterschiedliche Ein-/Ausgangs-Profile als Basiskonfiguration an. Durch Auswahl eines vordefinierten Profils können Sie ein 16DIO Modul ohne großen Aufwand unter anderem in ein 16DI, 16DO -oder 8DI8DO-Modul vorkonfigurieren. Dadurch ist ein schnelles und unkompliziertes Ersetzen von bestehenden Modulen innerhalb der Anlage möglich.

2.2 Anzeigen und Bedienelemente

- 1 LED Kanalanzeige
- 2 LED Statusanzeige
- 3 Drehschalter

Hinweis!

Die LEDs im unteren Bereich des Ethernet-IO-Moduls haben abhängig vom eingestellten Protokoll unterschiedliche Benennungen und unterschiedliche Funktionen. Die nachfolgenden LED-Beschreibungen sind deshalb aufgeteilt in einen allgemeinen Teil (1), gültig für alle Protokolleinstellungen und LED-Beschreibungen jeweils für eine bestimmte Protokolleinstellung (2).

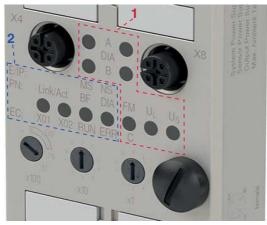


Abbildung 2.1

E/IP: EtherNet/IP

P: PROFINET

EC: EtherCAT

Anzeigen - allgemeiner Teil

Beschreibung für LED A, B, DIA, U_S , U_S , DCU/FM

LED	Funktion			
LED A (jeweils für X1 - X8)	weiß: Kanalstatus A ist "ein" aus: kein Fehler, nicht angeschlossen rot: Peripheriefehler (Sensor- /Aktorüberlast oder Kurzschluss)			
DIA	,			
LED B X1 - X8 B	weiß: Kanalstatus B ist "ein" aus: kein Fehler, nicht angeschlossen			
DIA	rot: Peripheriefehler (Sensor- /Aktorüberlast oder Kurzschluss)			
LED U _S	grün: Spannung 19 V \leq U _S \leq 30 V rot: Spannung U _S $<$ 19 V oder U _S $>$ 30 V			
LED U _L ¹	grün: Spannung 19 V \leq U _L \leq 30 V rot: Spannung U _L $<$ 19 V oder U _L $>$ 30 V			
LED C/FM nur ICE1-8DI8DO- G60L-C1-V1D und ICE1-16DIO- G60L-C1-V1D	blau: DCU-Funktion wird gestoppt blau blinkend: DCU-Funktion arbeitet aus: DCU-Funktion nicht aktiv; Force Mode deaktiviert rot blinkend: Fehler DCU-Funktion blau/rot blinkend: Force Mode aktiviert			
LED FM für Module ohne dezentrale Logikfunk- tion (C1-Module)	aus: Force Mode deaktiviert blau/rot blinkend: Force Mode aktiviert			

Tabelle 2.1

1. nur 8DI8DO und 16DIO

EtherNet/IP-Anzeigen

Bereich E/IP: relevante LEDs Lnk/Act, MS, NS

LED	Funktion			
LED Lnk/Act	grün: Verbindung Ethernet-Teilnehmer gelb blinkend: Datenaustausch IO-Device aus: keine Verbindung			
LED MS	grün: Modul betriebsbereit grün blinkend: Konfiguration fehlt rot/grün blinkend: Selbsttest rot: schwerer, nicht behebbarer Fehler rot blinkend: leichter, behebbarer Fehler (z. B. fehlerhafte Konfiguration) aus: Modul ausgeschaltet			
LED NS	grün: Modul hat mindestens eine existierende Verbindung grün blinkend: Modul hat keine existierenden Verbindungen. IP-Adresse ist vorhanden rot/grün: Modul führt einen Selbsttest durch rot: Modul hat festgestellt, dass zugewiesene IP-Adresse bereits existiert aus: Modul ist ausgeschaltet oder hat keine IP-Adresse.			

Tabelle 2.2

PROFINET-Anzeigen

Bereich P: relevante LEDs Lnk/Act , BF, DIA

LED	Funktion			
LED Lnk/Act	grün: Verbindung Ethernet-Teilnehmer gelb blinkend: Datenaustausch IO-Device aus: keine Verbindung			
LED BF	rot: Konfiguration fehlt, keine oder langsame physikalische Verbindung rot blinkend: kein Datenaustausch mit IO-Device aus: kein Fehler			
LED DIA	rot: Watchdog Tlme-out oder Diagnose liegt vor oder Systemfehler rot blinkend für 3s: DCP-Signal-Service wird über den Bus ausgelöst aus: kein Fehler			

Tabelle 2.3

EtherCAT-Anzeigen

Bereich EC: relevante LEDs X01, X02, RUN, ERR

LED	Funktion			
LED X01	grün: Verbindung Ethernet-Teilnehmer gelb blinkend: Datenaustausch IO-Device aus: keine Verbindung			
LED X02	grün: Verbindung Ethernet-Teilnehmer gelb blinkend: Datenaustausch IO-Device aus: keine Verbindung			

LED Funktion			
LED RUN	grün: Status OPERATIONAL 1 x grün blinkend: Status SAFE-OPERATIONAL grün blinkend: Status PRE-OPERATIONAL grün flackernd: Modul fährt hoch und ist nicht im Status INIT oder Modul befindet sich im Status BOOTSTRAP und lädt Firmware. aus: Status INIT		
LED ERROR	rot: Steuerungsfehler, z. B. PDI Watchdog Timeout flackernd: Fehler beim Booten rot blinkend: fehlerhafte Konfiguration; allgemeiner Konfigurationsfehler 1 x rot blinkend: lokaler Fehler, unerwünschte Statusänderung 2 x rot blinkend: Watchdog-Fehler aus: kein Fehler		

Bedienelemente

Schalter	Funktion
Drehschalter X100	Einstellen des Feldbusprotokolls Einstellen der IP-Adresse ¹
Drehschalter X10	Einstellen der IP-Adresse
Drehschalter X1	Einstellen der IP-Adresse

^{1.} nur EtherNET/IP

Hinweis!

Details zur Einstellung des Protokolls und der IP-Adresse finden Sie im Kapitel "Inbetriebnahme, Protokolleinstellung"

2.3 Schnittstellen und Anschlüsse

Die dargestellten Kontaktanordnungen zeigen die Vorderansicht auf den Steckbereich der Steckverbinder.

Feldbus-Anschluss X01, X02

- Anschluss: M12-Buchse, 4-polig, D-kodiert
- Farbkodierung: grün

Abbildung 2.2 Schemazeichnung Port X01, X02

Port	Pin	Signal	Funktion
Ports X01, X02	1	TD+	Transmit Data +
	2	RD+	Receive Data +
	3	TD-	Transmit Data -
	4	RD-	Receive Data -

Tabelle 2.4 Belegung Port X01, X02

Vorsicht!

Zerstörungsgefahr!

Legen Sie die Spannungsversorgung nie auf die Datenkabel.

Anschluss für die Spannungsversorgung X03, X04

- Spannungsversorgung mit M12-Power L-kodiert
- Farbkodierung: grau

Vorsicht!

Funktionsausfall, wenn Systemspannungsversorgung zu niedrig ist.

Stellen Sie in jedem Fall sicher, dass die Versorgungsspannung gemessen an dem am weitesten entfernten Teilnehmer (Sensor/Aktor) aus Sicht der Systemversorgungsspannung 18 V DC nicht unterschreitet.

Hinweis!

Anschluss der Spannungsversorgung

Beachten Sie beim Anschluss der Spannungsversorgung das Konzept für die getrennte Versorgung von Sensor- und Systemversorgung über $U_{\rm S}$ und der Hilfsversorgung über $U_{\rm L}$ für z. B. Aktoren. Im Falle eines Spannungsversorgungskonzepts der Anlage mit einer getrennten Systemstromversorgung und Laststromversorgung kann so der Sensor- und Systembereich des Ethernet-IO-Moduls auch bei Ausfall der Laststromversorgung weiter arbeiten.

Beachten Sie bei der Stromversorgung mehrerer in Reihe geschalteter Ethernet-IO-Module die richtige Anschlusssystematik der getrennten Spannungsversorgung U_s . U_l .

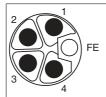


Abbildung 2.3 Schemazeichnung M12 L-Codierung (Stecker); Port X03 (IN)

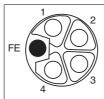


Abbildung 2.4 Schemazeichnung M12 L-Codierung (Buchse); Port X04 (OUT)

Port	Pin	Signal	Funktion
Spannungsversorgung X03, X04	1	U _S (+24V)	Sensor- / Systemversorgung
700, 704	2	GND U _L	Masse/Bezugspotential V _{Aux}
	3	GND U _S	Masse/Bezugspotential V _s
	4	U _L (+24V)	Hilfsversorgung (galv. getrennt)
	FE (5)	FE (FE)	Funktionserde

Hinweis!

Verwenden Sie ausschließlich Netzteile für die System-/Sensor- und Aktorversorgung, welche PELV (Protective-Extra-Low-Voltage) oder SELV (Safety-Extra-Low-Voltage) entsprechen. Spannungsversorgungen nach EN 61558-2-6 (Trafo) oder EN 60950-1 (Schaltnetzteile) erfüllen diese Anforderungen.

Anschluss für Ein-/Ausänge X1 ... X8

- · Anschluss: M12-Buchse, 5-polig, A-kodiert
- Farbkodierung: schwarz

Abbildung 2.5 Schemazeichnung M12-Buchse, 5-polig, A-kodiert, Port X1 ... X8

Hinweis!

Abhängig vom Modultyp sind die Pins der Ports X1... X8 unterschiedlich belegt.

Hinweis!

Bei induktiven Lasten der Gebrauchskategorie DC13 (EN60947-5-1) sind die Ausgänge in der Lage, Ströme von 1,6 A mit einer Frequenz von 1 Hz zu schalten.

Module ICE1-8DI8DO-G60L-V1D und ICE1-8DI8DO-G60L-C1-V1D

Port	Pin	Signal	Funktion
Eingänge	1	+24V DC	Sensor/-Systemversorgung
X1 X4	2	IN B	Digitaler Eingang B
	3	0 V DC	Masse/Bezugspotential
	4	IN A	Digitaler Eingang A
	5	FE (FE)	Funktionserde

Port	Pin	Signal	Funktion
Ausgänge	1	nicht belegt	
X5 X8	2	OUT B	Digitaler Ausgang B
	3	0 V DC	Masse/Bezugspotential
	4	OUT A	Digitaler Ausgang A
	FE (5)	FE (FE)	Funktionserde

Modul ICE1-16DI-G60L-V1D

Port	Pin	Signal	Funktion
Eingänge X1 X8	1	+24V DC	Sensor/-Systemversorgung
	2	In B	Digitaler Eingang B
	3	0 V DC	Masse/Bezugspotential
	4	In A	Digitaler Eingang A
	FE (5)	FE (FE)	Funktionserde

FEPPERL+FUCHS

Module ICE1-16DIO-G60L-V1D und ICE1-16DIO-G60L-C1-V1D

Port	Pin	Signal	Funktion
Ausgänge	1	+24V DC	Sensor/-Systemversorgung
X1 X8	2	IN B/OUT B	Konfigurierbar als digitaler Eingang B oder Ausgang B
	3	0 V DC	Masse/Bezugspotential
	4	IN A/OUT A	Konfigurierbar als digitaler Eingang A oder Ausgang A
	FE (5)	FE (FE)	Funktionserde

2.4 Abmessungen

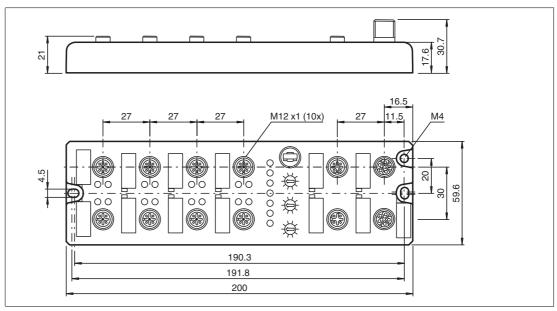


Abbildung 2.6 ICE1-8DI8DO-G60L-V1D ICE1-8DI8DO-G60L-C1-V1D ICE1-16DI-G60L-V1D ICE1-16DIO-G60L-V1D ICE1-16DIO-G60L-C1-V1D

3 Installation

3.1 Allgemeine Hinweise

Montieren Sie das Modul mit 2 Schrauben der Größe M6x25/30 auf einer ebenen Fläche. Das hierfür erforderliche Drehmoment beträgt 1 Nm. Verwenden Sie Unterlegscheiben nach DIN 125. Verwenden Sie für die Montagebohrungen einen Abstand von 237,3 bis 239,7 mm.

Hinweis!

Anschluss der Spannungsversorgung

Beachten Sie beim Anschluss der Spannungsversorgung das Konzept für die getrennte Versorgung von Sensor- und Systemversorgung über U_s und der Hilfsversorgung über U_L für z. B. Aktoren. Im Falle eines Spannungsversorgungskonzepts der Anlage mit einer getrennten Systemstromversorgung und Laststromversorgung kann so der Sensor- und Systembereich des Ethernet-IO-Moduls auch bei Ausfall der Laststromversorgung weiter arbeiten.

Beachten Sie bei der Stromversorgung mehrerer in Reihe geschalteter Ethernet-IO-Module die richtige Anschlusssystematik der getrennten Spannungsversorgung U_s . U_L .

Hinweis!

Für die Ableitung von Störströmen und die EMV-Festigkeit verfügen die Module über einen Erdungsanschluss mit einem M4-Gewinde. Dieser ist mit dem Symbol für Erdung und der Bezeichnung "XE" markiert.

Hinweis!

Verbinden Sie das Modul mittels einer Verbindung von geringer Impedanz mit der Bezugserde. Im Falle einer geerdeten Montagefläche können Sie die Verbindung direkt über die Befestigungsschrauben herstellen.

Hinweis!

Verwenden Sie bei nicht geerdeter Montagefläche ein Masseband oder eine geeignete FE-Leitung. Schließen Sie das Masseband oder die FE-Leitung durch eine M4-Schraube am Erdungspunkt an und unterlegen Sie die Befestigungsschraube wenn möglich mit einer Unterleg- und Zahnscheibe.

Hinweis!

Um die Steuerung zu programmieren, ziehen Sie bitte die Herstellerinformationen zu Rate und verwenden Sie nur entsprechendes Zubehör.

Hinweis!

Für UL Anwendung:

Schließen Sie Ethernet-IO-Module nur unter Verwendung eines UL-zertifizierten Kabels mit geeigneten Bewertungen an (CYJV oder PVVA).

Nur für den Innenbereich zugelassen. Bitte beachten Sie die maximale Höhe von 2000 Metern. Zugelassen bis maximal Verschmutzungsgrad 2.

Warnung

Terminals, Gehäuse feldverdrahteter Terminalboxen oder Komponenten können eine Temperatur von 60 $^{\circ}$ C übersteigen.

Warnung!

Verwenden Sie temperaturbeständige Kabel mit Hitzebeständigkeit bis mindestens 96 $^\circ$ C für folgenden Ethernet-IO-Module:

ICE1-8DI8DO-G60L-C1-V1D und ICE1-8DI8DO-G60L-V1D

ICE1-16DIO-G60L-V1D und ICE1-16DIO-G60L-C1-V1D

4 Inbetriebnahme, Protokolleinstellung

4.1 Protokolleinstellung

Multiprotokoll

Mit den Multiprotokollmodulen können Sie verschiedene Protokolle für die Kommunikation innerhalb eines Feldbussystems auswählen. Auf diese Weise können die Multiprotokollmodule in verschiedene Netzwerke integriert werden, ohne dass es notwendig ist, für jedes Protokoll spezifische Module zu erwerben. Diese Technologie bietet Ihnen auch die Möglichkeit, das gleiche Modul in verschiedenen Umgebungen zu verwenden. Mit Hilfe von Drehschaltern auf der Vorderseite der Module können Sie einfach und bequem das Protokoll und die Adresse des Moduls einstellen, wenn das zu verwendende Protokoll dies unterstützt. Nachdem Sie eine Protokollauswahl getroffen und die zyklische Kommunikation gestartet haben, merkt sich das Modul diese Einstellung und verwendet ab diesem Zeitpunkt das gewählte Protokoll. Um ein anderes unterstütztes Protokoll mit diesem Modul zu verwenden, führen Sie einen werkseitigen Reset durch.

Einstellung des Protokolls

Die Multiprotokollmodule haben insgesamt drei Drehschalter. Mit dem ersten Drehschalter X100 stellen Sie das Protokoll über die entsprechende Schalterstellung ein. Bei den anderen Drehschaltern legen Sie die letzten beiden Ziffern der IP-Adresse fest, wenn Sie EtherNet/IP verwenden

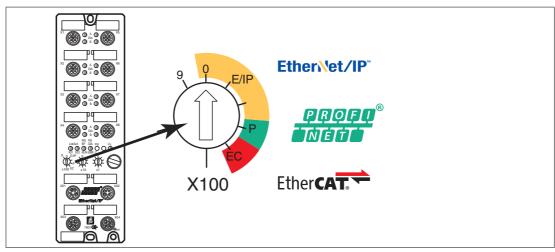


Abbildung 4.1 Drehschalter X100

Zuordnung des Protokolls über Drehschalter

Protokoll	X100	X10	X1
EtherNET/IP	0-2	0-9	0-9
PROFINET	Р	-	-
EtherCAT	EC	-	-

Im Auslieferungszustand sind keine Protokolleinstellungen im Modul gespeichert. In diesem Fall ist nur das gewünschte Protokoll zu wählen. Um eine geänderte Drehschaltereinstellung (Protokolleinstellung) zu übernehmen, ist ein Power-Zyklus oder "Reset" von der Weboberfläche notwendig. Sobald Sie das Protokoll mit den Drehschaltern eingestellt haben, speichert das Modul diese Einstellung, wenn es eine zyklische Kommunikation startet. Das Ändern des Protokolls über den Drehschalter ist nach diesem Zeitpunkt nicht mehr möglich. Um das Protokoll zu ändern, führen Sie zuerst einen werkseitigen Reset durch.

Wenn Sie den Drehcodierschalter auf ungültige Weise positionieren, signalisiert das Gerät dies mit einem Blinkcode: die BF/MS/ERR-LED blinkt dreimal rot.

Die IP-Adresse kann abhängig vom gewählten Protokoll geändert werden.

EtherNET/IP

Wenn Sie sich für EtherNet/IP als Protokoll entscheiden, verwenden Sie den Drehschalter X100, um den Wert 100 des letzten Oktetts der IP-Adresse des Moduls einzustellen. Mit dem Drehschalter X100 können Sie für die IP-Adresse einen Wert von 0 bis 2 einstellen. Mit den Drehschaltern X10 und X1 können Sie Werte zwischen 0 und 9 auswählen. Mit dem Drehschalter X10 können Sie die Position 10 des letzten Oktetts der IP-Adresse konfigurieren. Mit dem Drehschalter X1 können Sie die Position 1 des letzten Oktetts der IP-Adresse konfigurieren.

Die ersten drei Oktette der IP-Adresse sind standardmäßig auf 192.168.1 gesetzt.

Beispiel: die Drehschaltereinstellung 2 (x100), 1 (x10) und 0 (x1) ergibt eine IP-Adresse von 192.168.1.210 für EtherNet/IP.

Alternativ ist es über die Nullstellung der Drehcodierschalter möglich, die erforderlichen Netzwerkparameter über DHCP oder BOOTP zu beziehen.

PROFINET

Wenn Sie sich für PROFINET als Protokoll entscheiden, stellen Sie den Drehschalter X100 auf den Wert P.

EtherCAT

Wenn Sie sich für EtherCAT als Protokoll entscheiden, stellen Sie den Drehschalter X100 auf den Wert EC.

Werkseinstellungen

Ein werkseitiger Reset stellt die ursprünglichen Werkseinstellungen wieder her und nimmt so die Änderungen und Einstellungen zurück, die Sie bis zu diesem Punkt vorgenommen haben. Außerdem wird die gespeicherte Protokollauswahl zurückgesetzt.

Um eine Werkseinstellung durchzuführen, stellen Sie den Drehschalter X100 auf 9, den Drehschalter X10 auf 7 und den Drehschalter X1 auf 9. Schalten Sie danach das Modul aus und wieder an. Nach 10 s ist die Werkseinstellung wieder hergestellt.

Um ein neues Protokoll auszuwählen, folgen Sie den Anweisungen in diesem Kapitel.

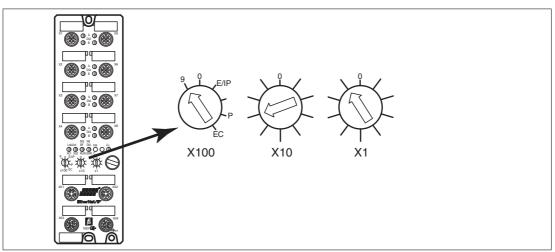


Abbildung 4.2 Werkseinstellung wiederherstellen: X100 = 9, X10 = 7, X1 = 9

Vorsicht!

Zerstörung des Betriebssystems

Stelllen Sie sicher, dass das Modul zur Wiederherstellung der Werkseinstellung **mindestens** 10 Sekunden an der Spannungsversorgung angeschlossen und eingeschaltet ist. Bei weniger als 10 Sekunden kann das Betriebssystem zerstört werden. Das Modul muss dann zur Reparatur an Pepperl+Fuchs geschickt werden.

5 Inbetriebnahme bei EtherNet/IP

5.1 Vorbereitung

Für die Konfiguration eines Moduls in der Steuerung ist eine EDS-Datei erforderlich. Jede der Modulvarianten benötigt eine eigene EDS-Datei.

EDS-Datei herunterladen

Sie finden die passende EDS-Datei auf der Produktdetailseite des Geräts im Bereich **Software**.

Um auf die Produktdetailseite des Geräts zu gelangen, rufen Sie http://www.pepperl-fuchs.com auf und geben Sie z. B. die Produktbezeichnung oder Artikelnummer in die Suchfunktion ein.

Installieren Sie die EDS-Datei für die verwendete Modulvariante mit Hilfe des Hardware- oder Netzwerk-Konfigurationstools Ihres Steuerungsherstellers. Nach der Installation stehen die Module in den Hardwarekatalogen als "General Purpose Discrete I/O"-Gerät zur Verfügung.

Ablesen der MAC-Adressen

Jedes Modul besitzt eine eindeutige, vom Hersteller zugewiesene MAC-Adresse, die nicht durch den Benutzer änderbar ist. Die zugewiesene MAC-Adresse ist auf der rechten Seite des Moduls aufgedruckt.

Einstellen der Netzwerkparameter

Über die 3 Steuerschalter auf der Vorderseite der Module haben Sie die Möglichkeit, den Betriebsart für das Empfangen der Netzwerkparameter wie IP-Adresse, Subnetzmaske und Gateway-Adresse einzustellen.

Bitte beachten Sie, dass für die Nutzung von QuickConnect eine feste IP-Adresse erforderlich ist.

Nach dem Wiederherstellen der Spannungsversorgung lesen die Module die Schalterstellungen ein. Die gewählte Betriebsart überschreibt die gespeicherten Einstellungen.

Die Geräte unterstützen für den Empfang der erforderlichen Netzwerkparameter wie IP-Adresse und Subnetzmaske die Kommunikationsprotokolle DHCP und BOOTP.

Die Werkseinstellung der statischen Netzwerkparameter lauten:

IP-Adresse: 192.168.001.001
Subnetzmaske: 255.255.255.000
Gateway-Adresse: 000.000.000.000

Über die Drehcodierschalter sind folgende Einstellungen möglich:

Drehschalterstel- lung	Funktion
000 (Auslieferzustand)	Im Auslieferzustand ist die DHCP- und BOOTP-Funktionalität aktiviert. Die Netzwerkparameter werden zunächst durch DHCP-Requests angefordert. Wenn dies nicht erfolgreich ist, erfolgt die Anforderung durch BOOTP-Requests. Die Netzwerkparameter werden nicht gespeichert, jedoch ist eine Speicherung über den integrierten Webserver möglich.
000 (Netzwerkparameter bereits gespeichert)	Die zuletzt gespeicherten Netzwerkparameter werden verwendet (IP-Adresse, Subnetzmaske, Gateway-Adresse, DHCP ein/aus, BOOTP ein/aus).
001 bis 254	Die letzten 3 Stellen der gespeicherten oder voreingestellten IP- Adresse werden durch die Einstellung der Steuerschalter überschrie- ben.
255 bis 298 (Default: 299)	Die Netzwerkparameter werden über DHCP und BOOTP angefordert, aber nicht gespeichert.

FEPPERL+FUCHS

Drehschalterstel- lung	Funktion
979	Das Gerät führt ein Rücksetzen auf die Werkseinstellungen durch. Die Netzwerkparameter werden ebenfalls auf die Vorgabewerte zurückgesetzt. In dieser Betriebsart ist keine Kommunikation möglich.

Tabelle 5.1

5.2 Konfiguration

Implicit und Explicit Messaging

Die Ethernet-IO-Module unterstützen für die EthetNet/IP Kommunikation Implicit Messaging und Explicit Messaging. IO-Prozessdaten werden zyklisch über Assembly Objekte und einer bestehenden Verbindung mittels Implicit Messaging übertragen.

Daten mit geringer Priorität, zeitunkritische Daten sowie Konfigurations- und Diagnosedaten können über azyklische Nachrichten mittels Explicit Messaging ausgetauscht werden.

Verbindungen und Assembly-Objekt

Die Ethernet-IO-Module unterstützen für den Austausch von IO-Prozessdaten und die Kommunikation über Implicit Messaging die Verbindungsarten Exclusive Owner, Input Only und Listen Only.

Exclusive Owner

Diese Verbindung ist bidirektional: Die Steuerung sendet Daten an das Modul, und das Modul sendet Daten an die Steuerung. Diese Verbindungsart wird Exclusive Owner genannt, da sie jeweils **ein** Modul und die Steuerung verbindet.

Input Only

Bei dieser Verbindung sendet ausschließlich das Modul Daten an die Steuerung. Das Modul sendet dabei einen Heartbeat, evtl. in reduzierten Intervallen. Dadurch kann die Steuerung Verbindungsunterbrechungen erkennen.

Listen Only

Diese Verbindung entspricht der Input-Only-Verbindung, kann aber nur etabliert werden, wenn gleichzeitig eine Exklusive-Owner- oder Input-Only-Verbindung zwischen einem weiteren Modul und der Steuerung besteht.

Die Verbindungsart "Exclusive Owner" ist ausschließlich bei Modulen mit Ausgangsfunktionalität (Varianten16DIO und 8DI8DO) verfügbar. Durch die Auswahl der entsprechenden Instanz-ID des Assembly-Objektes entscheiden Sie, ob das Modul Diagnosedaten zu den Standardprozessdaten hinzufügt.

Die Ethernet-IO-Module der Varianten 16DIO sind universell einsetzbar und bieten Ihnen unterschiedliche Profile als Basiskonfiguration an. Mit diesen können Sie ein 16DIO-Modul unter anderem als 16DI-, 16DO- oder 8DI/8DO-Modul vorkonfigurieren und z.B. im Austauschfall ersetzen. Jeder E/A-Kanal kann als Eingang oder Ausgang für das 16DI/DO-Profil verwendet werden. Soll ein E/A-Kanal als Eingang verwendet werden, sollte der SPS-Programmierer das entsprechende Ausgangs-Bit nicht setzen.

Bei Nutzung der vorkonfigurierten alternativen Profile lässt sich das Risiko einer Fehlkonfiguration durch die Verwendung der Profile 16DI, 16DO oder 8DI/8DO reduzieren. In diesen Profilen sind die E/A-Kanäle auf "Eingang" oder "Ausgang" konfiguriert.

Ethernet-IO-Module vom Typ ICE1-8DI8DO-G60L-C1-V1D ICE1-16DIO-G60L-C1-V1D besitzen die DCU-Funktion. Bei diesen werden die Prozessdaten in beide Datenrichtungen um zusätzlich 18 Byte erweitert.

5.2.1 16DIO-Module, Verbindungen und Assembly-Objekte

Hinweis!

Nachfolgend sind die möglichen Profile für die Ethernet-IO-Modul mit konfigurierbaren Ein-/Ausgängen aufgeführt.

Zuerst für das Modul ICE1-16DIO-G60L-V1D und danach für das Modul ICE1-16DIO-G60L-C1-V1D mit DCU-Funktion.

ICE1-16DIO-G60L-V1D

ICE1-16DIO-G60L-V1D: Ethernet-IO-Modul mit 16 digitalen Ein-/Ausgängen (16DIO), frei konfigurierbar

16-DI/DO-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI/DO + DIA	Exclusive Owner	ja	Ausgang: 100	2 Byte
			Eingang: 101	7 Byte
16 DI/DO	Exclusive Owner	nein	Ausgang: 100	2 Byte
			Eingang: 102	3 Byte
16 DI/DO + DIA	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	7 Byte
16 DI/DO	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	3 Byte

Tabelle 5.2

8-DI/DO-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI/DO + DIA	Exclusive Owner	ja	Ausgang: 103	1 Byte
			Eingang: 104	6 Byte
8 DI/DO	Exclusive Owner	nein	Ausgang: 103	1 Byte
			Eingang: 105	2 Byte
8 DI/DO + DIA	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	6 Byte
8 DI/DO	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	2 Byte

Tabelle 5.3

16-DI-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI + DIA	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	7 Byte
16 DI	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	3 Byte

Tabelle 5.4

8-DI-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI + DIA	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	6 Byte
8 DI	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	2 Byte

Tabelle 5.5

16-DO-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DO + DIA	Exklusive Owner	ja	Ausgang: 100	2 Byte
			Eingang: 106	5 Byte
16 DO	Exklusive Owner	nein	Ausgang: 100	2 Byte
			Eingang: 107	1 Byte

Tabelle 5.6

8-DO-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DO + DIA	Exklusive Owner	ja	Ausgang: 103	1 Byte
			Eingang: 106	5 Byte
8 DO	Exklusive Owner	nein	Ausgang: 103	1 Byte
			Eingang: 107	1 Byte

Tabelle 5.7

8-DI/8-DO-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI/8 DO + DIA	Exclusive Owner	ja	Ausgang: 103	1 Byte
			Eingang: 104	6 Byte
8 DI/8 DO	Exclusive Owner	nein	Ausgang: 103	1 Byte
			Eingang: 105	2 Byte
8 DI/8 DO + DIA	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	6 Byte
8 DI/8 DO	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	2 Byte

Tabelle 5.8

Generische Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
Generic 16 DI + DIA	Listen Only	ja	Ausgang: 192	0 Byte
			Eingang: 101	7 Byte
Generic 16 DI	Listen Only	nein	Ausgang: 192	0 Byte
			Eingang: 102	3 Byte
Generic 8 DI + DIA	Listen Only	ja	Ausgang: 192	0 Byte
			Eingang: 104	6 Byte

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
Generic 8 DI	Listen Only	nein	Ausgang: 192	0 Byte
			Eingang: 105	2 Byte

Tabelle 5.9

Gerade Anzahl DI/DO-Bytes-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI/DO + DIA	Exklusive Owner	ja	Ausgang: 100	2 Byte
			Eingang: 108	8 Byte
16 DI/DO + DIA	Input	nein	Ausgang: 193	0 Byte
			Eingang: 108	8 Byte
Generic 16 DI + DIA	Listen Only	ja	Ausgang: 192	0 Byte
			Eingang: 104	6 Byte

Tabelle 5.10

ICE1-16DIO-G60L-C1-V1D (DCU-Funktion)

Ethernet-IO-Modul mit 16 digitalen Ein-/Ausgängen (16DIO), frei konfigurierbar und dezentraler Logikfunktion (DCU-Funktion).

16-DI/DO-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI/DO + DIA + DCU	Exclusive Owner	ja	Ausgang: 100	20 Byte
			Eingang: 101	25 Byte
16 DI/DO + DCU	Exclusive Owner	nein	Ausgang: 100	20 Byte
			Eingang: 102	21 Byte
16 DI/DO + DIA + DCU	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	25 Byte
16 DI/DO + DCU	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	21 Byte

Tabelle 5.11

8-DI/DO-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI/DO + DIA + DCU	Exclusive Owner	ja	Ausgang: 103	19 Byte
			Eingang: 104	24 Byte
8 DI/DO + DCU	Exclusive Owner	nein	Ausgang: 103	19 Byte
			Eingang: 105	20 Byte
8 DI/DO + DIA + DCU	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	24 Byte
8 DI/DO + DCU	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	20 Byte

Tabelle 5.12

16-DI-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI + DIA + DCU	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	25 Byte
16 DI + DCU	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	21 Byte

Tabelle 5.13

8-DI-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI + DIA + DCU	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	24 Byte
8 DI +DCU	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	20 Byte

Tabelle 5.14

16-DO-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DO + DIA +DCU	Exklusive Owner	ja	Ausgang: 100	20 Byte
			Eingang: 106	23 Byte
16 DO +DCU	Exklusive Owner	nein	Ausgang: 100	20 Byte
			Eingang: 107	19 Byte

Tabelle 5.15

8-DO-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DO + DIA + DCU	Exklusive Owner	ja	Ausgang: 103	19 Byte
			Eingang: 106	23 Byte
8 DO + DCU	Exklusive Owner	nein	Ausgang: 103	19 Byte
			Eingang: 107	19 Byte

Tabelle 5.16

8-DI/8-DO-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 DI/8 DO + DIA + DCU	Exclusive Owner	ja	Ausgang: 103	19 Byte
			Eingang: 104	24 Byte
8 DI/8 DO + DCU	Exclusive Owner	nein	Ausgang: 103	19 Byte
			Eingang: 105	20 Byte
8 DI/8 DO + DIA +DCU	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 104	24 Byte
8 DI/8 DO + DCU	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 105	20 Byte

Tabelle 5.17

Generische DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
Generic 16 DI + DIA	Listen Only	ja	Ausgang: 192	0 Byte
+DCU			Eingang: 101	25 Byte
Generic 16 DI + DCU	Listen Only	nein	Ausgang: 192	0 Byte
			Eingang: 102	21 Byte
Generic 8 DI + DIA+	Listen Only	ja	Ausgang: 192	0 Byte
DCU			Eingang: 104	24 Byte
Generic 8 DI +DCU	Listen Only	nein	Ausgang: 192	0 Byte
			Eingang: 105	20 Byte

Tabelle 5.18

Gerade Anzahl DI/DO-Bytes-DCU-Profile

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 DI/DO + DIA+ DCU	Exklusive Owner	ja	Ausgang: 100	20 Byte
			Eingang: 108	26 Byte
16 DI/DO + DIA +DCU	Input	nein	Ausgang: 193	0 Byte
			Eingang: 108	26 Byte
Generic 16 DI + DIA	Listen Only	ja	Ausgang: 192	0 Byte
+DCU			Eingang: 104	26 Byte

Tabelle 5.19

5.2.2 16DI-Module, Verbindungen und Assembly-Objekte

Hinweis!

Nachfolgend sind die möglichen Profile für die Ethernet-IO-Modul ICE1-16DI-G60L-V1D mit 16 Eingängen aufgeführt.

ICE1-16DI-G60L-V1D

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
16 Bit In + Diagnostic	Input Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	4 Byte
16 Bit In	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	3 Byte
16 Bit In + Diagnostic	Listen Only	ja	Ausgang: 193	0 Byte
			Eingang: 101	4 Byte
16 Bit In	Listen Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	3 Byte

Tabelle 5.20

5.2.3 8DI/8DO-Module, Verbindungen und Assembly-Objekte

Hinweis!

Nachfolgend sind die möglichen Profile für die Ethernet-IO-Module mit 8 Eingängen und 8 Ausgängen aufgeführt.

ICE1-8DI8DO-G60L-V1D, ICE1-8DI8DO-G60L-C1-V1D

Verbindung	Verbindungsart	Diagnose	Instanz-ID	Länge
8 Bit In / Out + Diagno-	Exclusive Owner	ja	Ausgang: 100	1 Byte
stic			Eingang: 101	6 Byte
8 Bit In / Out	Exclusive Owner	nein	Ausgang: 100	1 Byte
			Eingang: 102	3 Byte
8 Bit In / Out + Diagno-	Input Only	ja	Ausgang: 193	0 Byte
stic			Eingang: 101	6 Byte
8 Bit In / Out	Input Only	nein	Ausgang: 193	0 Byte
			Eingang: 102	3 Byte
8 Bit In / Out + Diagno-	Listen Only	ja	Ausgang: 192	0 Byte
stic			Eingang: 101	6 Byte
8 Bit In / Out	Listen Only	nein	Ausgang: 192	0 Byte
			Eingang: 102	3 Byte

Tabelle 5.21

5.2.4 Konfigurationsparameter

Für die Übertragung der Konfigurationsparameter werden bei den Ethernet-IO-Modulen abhängig vom Modultyp unterschiedliche Assembly Objekte verwendet. Die Verbindungen und Assembly Objekte können den vorangegangenen Abschnitten entnommen werden.

Jedes Ethernet-IO-Modul verfügt über eine feste Anzahl an Konfigurationsparametern. Diese Größe wird über die jeweilige Konfigurations-Assembly-Instanz bestimmt

Länge der Konfigurationsparameter:

- 16DIO-Module: 65/33 Worte (130/66 Byte) abhängig vom gewählten Profil
- 16DI-Module: 1 Wort (2 Byte)
- 8DI/8DO-Module: 17 Worte (34 Byte)

Folgende Konfigurationsparameter stehen nur bestimmten Ethernet-IO-Modulvarianten zur Verfügung:

- 8DI8DO-Module
 - Surveillance Timeout: Verzögerung der Ausgangsüberwachungszeit eines Kanals
 - · Fail Safe: Ausgangszustand eines Kanals im Fehlerfall
- 16DIO-Module
 - Surveillance Timeout: Verzögerung der Ausgangsüberwachungszeit eines Kanals
 - Fail Safe: Ausgangszustand eines Kanals im Fehlerfall
 - Process Data Direction: Prozessdatenrichtung
 - IO-Mapping: Bitzuordnung der Kanäle

QuickConnect Configuration

Der QuickConnect (QC) ermöglicht allen Ethernet-IO-Modulen einen beschleunigten Hochlaufprozess. Mit Aktvierung dieses Parameters ist die besonders schnelle Aufnahme der Netz-Kommunikation möglich.

Wenn Sie QuickConnect aktivieren, akzeptiert das Modul innerhalb von 350 ms nach dem Einschalten eine TCP-Verbindung. Anschließend baut der Controller die Verbindung auf. So erreicht das Modul eine Start-Up-Zeit von ca. 400 bis 500 ms.

Um QC nutzen zu können, muss das Netz in einer Stern- oder Linien-Topologie vorliegen und das Modul eine statische IP-Adresse besitzen. Ringtopologien und DHCP/BOOTP werden nicht unterstützt. Bitte beachten Sie, dass keine automatische Überprüfung auf doppelt vergebene IP-Adressen im selben Netz stattfindet.

Wenn QuickConnect aktiviert ist, sind folgende Parameter für die Ethernet-Schnittstelle des Moduls fest eingestellt:

- 100 Mbit/s Übertragungsrate
- Vollduplex-Verbindung
- Auto-Negotiation und Auto-MDIX abgeschaltet

Hinweis!

Voraussetzung für die Verwendung von QuickConnect ist die Einhaltung einer strikt vorgegebenen Prozedur. Die Ethernet-IO-Module müssen vor dem Abschalten (Inhibit Instructrion) und vor dem Einschalten (Uninhibit Instruction) benachrichtigt werden.

Ein harter Verbindungsabbruch während des Betriebs ist nicht erlaubt. Details zu diesem Verfahren kann dem Dokument ENET-AT001C-ENP von Rockwell Automation entnommen werden

Für die Verwendung von QuickConnect stehen folgenden Optionen zur Verfügung:

- Disabled (0) = QuickConnect deaktiviert (Default-Wert)
- Enabled (1) = QuickConnect aktiviert

General Settings Configuration

Die Anzeige dieser allgemeinen Parameter ist abhängig vom verwendeten Ethenet-IO-Modul. Es lassen sich unterschiedliche Parameter konfigurieren. Jedes Bit in diesem Bitfeld repräsentiert den Zustand eines Parameters.

Folgenden Optionen stehen zur Verwendung jedes einzelnen Parameters zur Verfügung:

- Disabled (0) = Parameter deaktiviert
- Enabled (1) = Parameter aktiviert

	MS	В							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bei 16DI-	ode	er 16	DIC)-Mc	dul	en n	nit E	I-Pi	rofilen							•
Wort 0									RES	DOR	DCR	DCL	RDO	RUL	WIL	FML
Bei 16DIO	O-M	odul	en i	nit [010-	Pro	fil, C	O-F	Profil u	ınd 8E	I/8DC	-Profi	len			•
Wort 32									RES	DOR	DRC	DCL	RDO	RUL	WIL	FML
Bei 8DI/8	DO-	Mod	lule	n		•	•	•								
Wort 16									RES		DRC	DCL	RDO	RUL	WIL	FML

Tabelle 5.22

Legende

- **FML** (Force Mode Lock): Verwendung des Force Modes über den Webserver erlauben (0) / sperren (1), Default-Wert: erlauben (0)
- WIL (Web Interface Lock): Verwendung des Webservers erlauben (0) / sperren (1), Default-Wert: erlauben (0)
- RUL (Report U_L Supply Voltage Fault): Diagnosemeldung bei fehlender Versorgung der Aktorik (U_L) deaktivieren (0) / aktivieren (1), Default-Wert: aktivieren (1)

- RDO (Report DO Fault without U_L): Diagnosemeldung bei fehlender Versorgung der Aktorik (U_L) und Ansteuerung eines Ausgangs deaktivieren (0) / aktivieren (1), Default-Wert: aktivieren (1)
- **DCL** (DCU Lock) nur bei Modulen mit DCU-Funktion: Dezentrale Logikfunktion erlauben (0) / sperren (1), Default-Wert: erlauben (0)
- DCR (DCU Run) nur bei Modulen mit DCU-Funktion: DCU-Programm deaktivieren (0) / starten (1), Default- Wert: (0)
- DOR (Digital Out Restart Mode) Rücksetzen der Kanal-Diagnose beim Rücksetzen des digitalen Ausgangs (0) oder Automatischer Neustart nach Kurzschluss des digitalen Ausgangs bzw. nach Wiederkehr der Aktorikversorgung (1), Default-Wert: Automatischer Neustart (1)
- RES (Reserved): Reservierter Parameter, Default-Wert: 0

Surveillance-Timeout

Die Firmware der Module ermöglicht das Festlegen einer Verzögerungszeit, bevor die Überwachung der Ausgangsströme beginnt, der sogenannte Surveillance-Timeout. Sie haben die Möglichkeit, diesen für jeden einzelnen Ausgangskanal einzustellen.

Die Verzögerungszeit beginnt nach einer Zustandsänderung des Ausgangskanals, wenn dieser also aktiviert (nach einer steigenden Flanke) oder deaktiviert (nach einer abfallenden Flanke) wird. Nach Ablauf dieser Zeit beginnt die Überwachung des Ausgangs und die Diagnose meldet Fehlerzustände.

Der mögliche Wert des "Surveillance-Timeout" beträgt 0 bis 255 ms. Der Standardwert ist 80 ms. Im statischen Zustand des Ausgangskanals, wenn der Kanal also permanent ein- oder ausgeschaltet ist, beträgt der Wert 100 ms.

Surveillance-Timeout-Werte bei 8DI/8DO-Modulen

	MSE	3							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 0	Port	Port X5, Kanal A (Pin 4), mögliche Werte 0 255 Port X5, Kanal B (Pin 2), mögliche Werte 0 255														
Wort 1	Port	Port X5, Kanal B (Pin 2), mögliche Werte 0 255														
Wort 6	Port	X8, k	(anal	A (Pir	1 4), r	nöglic	he W	erte C) 2	55						
Wort 7	Port	X8, k	(anal	B (Pir	12), r	nöglic	he W	erte C) 2	55						

Tabelle 5.23

Surveillance-Timeout-Werte bei 16DIO-Modulen mit DIO-, DO- und 8DI/8DO-Profilen

	MSE	3							LSE	3						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 0	Port	Port X1, Kanal A (Pin 4), mögliche Werte 0 255														
Wort 1	Port	Port X1, Kanal B (Pin 2), mögliche Werte 0 255														
Wort 14	Port	X8, I	Kanal	A (P	in 4),	mögl	iche '	Werte	90	255						
Wort 15	Port	X8, I	Kanal	В (Р	in 2),	mögl	iche '	Werte	90	255						

Tabelle 5.24

Fail-Safe-Funktion

Die Firmware der Module stellt eine Fail-Safe-Funktion für die Ausgänge bereit. Während der Konfiguration der Module haben Sie die Möglichkeit, den Status der Ausgänge nach einer Unterbrechung oder einem Verlust der EtherNet/IP-Kommunikation festzulegen.

Die folgenden Optionen stehen Ihnen zur Verfügung:

- Set low (0) = Deaktivieren des Ausgangskanals (digitaler Wert = 0)
- Set high (1) = Aktivieren des Ausgangskanals (digitaler Wert = 1)
- Hold last (2) = Halten des letzten Ausgangszustands (digitaler Wert entspricht dem letzten Status)

Fail-Safe-Werte bei 8DI/8DO-Modulen

	MSE	3							LSE	3						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 8	Port	Port X5, Kanal A (Pin 4), mögliche Werte 0 2														
Wort 9	Port	Port X5, Kanal B (Pin 2), mögliche Werte 0 2														
Wort 14	Port	X8, ł	Kanal	A (P	n 4),	mögl	iche \	Verte	0	2						
Wort 15	Port	X8, ł	Kanal	B (P	n 2),	mögl	iche \	Verte	0	2						

Tabelle 5.25

Fail-Safe-Werte bei 16DIO-Modulen mit DIO-, DO- und 8DI/8DO-Profilen

	MS	В							LSE	3						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 16	Port	X1, I	Kanal	A (Pi	n 4),	mögl	iche \	Nerte	0	2						
Wort 17	Port	Port X1, Kanal B (Pin 2), mögliche Werte 0 2														
Wort 30	Port	X8, I	Kanal	A (Pi	n 4),	mögl	iche \	Nerte	0	2						
Wort 31	Port	X8, I	Kanal	B (Pi	n 2),	mögl	iche \	Nerte	0	2						

Tabelle 5.26

Process Data Direction Configuration (nur bei 16DIO-Modulen)

Diese Parameter werden nur von Etherne-IO-Modulen unterstützt, bei denen ein IO-Mapping konfiguriert werden kann, dies sind

- ICE1-16DIO-G60L-V1D
- ICE1-16DIO-G60L-C1-V1D.

Mit der "Process Data Direction" können Sie in Abhängigkeit des gewählten Profils und des IO-Mappings für jeden Kanal die Datenrichtung bestimmen.

Bei einem 16 DI/DO Profil kann z.B. jeder Kanal als Ein- und Ausgang, als reiner Eingang oder als reiner Ausgang konfiguriert werden. Dies bietet den Vorteil, dass jeder Kanal universell verwendbar ist.

Die folgenden Optionen stehen Ihnen zur Verfügung:

- Input 5/Output (0) = Ein- und Ausgangskanal
- Input (1) = Eingangskanal
- Output (2) = Ausgangskanal

Process Data Direction bei 16DIO-Modulen mit DIO-Profil

	MSE	3							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 16	Port	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0														
Wort 17	Port	Port X1, Kanal A (Pin 4), mögliche Werte 0 2, Default-Wert = 0 Port X1, Kanal B (Pin 2), mögliche Werte 0 2, Default-Wert = 0														

	MSB	LSB
Wort 47	Port X8, Kanal A (Pin 4), mögliche Werte	0 2, Default-Wert = 0
Wort 48	Port X8, Kanal B (Pin 2), mögliche Werte	0 2, Default-Wert = 0

Tabelle 5.27

Process Data Direction bei 16DIO-Modulen mit 16DI-Profil

	MSE	3							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 1	Port	Port X1, Kanal A (Pin 4), statischer Wert 1														
Wort 2	Port	Port X1, Kanal B (Pin 2), statischer Wert 1														
Wort 15	Port	X8, ł	Kanal	A (Pi	n 4),	statis	cher\	Wert	1							
Wort 16	Port	X8, ł	Kanal	B (Pi	n 2),	statis	cher\	Wert	1							

Tabelle 5.28

Process Data Direction bei 16DIO-Modulen mit 16DO-Profil

	MSE	3							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 33	Port	Port X1, Kanal A (Pin 4), statischer Wert 2														
Wort 34	Port	Port X1, Kanal B (Pin 2), statischer Wert 2														
Wort 47	Port	X8, ł	Kanal	A (Pi	n 4),	statis	cher\	Wert 2	2							
Wort 48	Port	X8, ł	Kanal	B (Pi	n 2),s	statisc	her V	Vert 2								

Tabelle 5.29

Process Data Direction bei 16DIO-Modulen mit 8DI/8DO-Profil

	MSE	3							LSB							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wort 33	Port	Port X1, Kanal A (Pin 4), mögliche Werte 1 2, Default-Wert = 1														
Wort 34	Port	Port X1, Kanal B (Pin 2), mögliche Werte 1 2, Default-Wert = 1														
Wort 47	Port	X8, ł	Kanal	A (Pi	n 4),	mögli	che V	Verte	1 2	2, Det	fault-\	Nert :	= 2			
Wort 48	Port	X8, ł	Kanal	B (Pi	n 2),	mögli	che V	Verte	1 2	2, De	fault-\	Nert :	= 2			

Tabelle 5.30

IO-Mapping Configuration (nur bei 16DIO Modulen)

Über die Konfiguration des IO-Mappings ist es möglich, die Datenstruktur der Eingangs-/Ausgangsdaten (E/A-Daten) zu verändern. Standardmäßig ist jeder E/A-Kanal der Reihenfolge nach in den Prozessdaten abgebildet. Bestehende SPS-Programme verwenden allerdings unter Umständen eine andere Kanalzuordnung.

Über diese Parameter können somit alle E/A-Kanäle frei einem Bit in den E/A-Daten zugeordnet werden. Hierbei ist zu beachten, dass Doppelbelegungen nicht möglich sind. Wird eine Fehlparametrierung des IO-Mappings bei Übertragung der Konfiguration erkannt, meldet das Ethernet-IO-Modul einen Fehler. Eine Fehlkonfiguration kann über die Status-Seite des Web Interfaces eingesehen werden.

Der erlaubte Wertebereich und der Default-Wert der Parameter sind abhängig vom gewählten Profil. Ein Kanal kann zudem über den Wert 255 auch inaktiv gesetzt werden.

Wurde ein Kanal beispielsweise mit dem Wert 3 konfiguriert, wird dessen Zustandswert auf das 3. Bit der Prozessdaten übertragen. Dies gilt für beide Datenrichtungen, sofern diese über die "Process Data Direction" des Kanals konfiguriert wurden. Für weitere Informationen zu den Prozessdaten, siehe Kaptiel "Bitbelegung der Prozessdaten".

IO-Mapping bei 16DIO-Modulen mit 16DI/DO- und 16DO-Profilen

	MSB									LSB								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Wort 49	Port	X1, ł	Kanal	A (Pi	n 4), r	nögli	che V	/erte	0 1	5, 25	5, De	fault-	Wert	= 0				
Wort 50	Port X1, Kanal A (Pin 2), mögliche Werte 0 15, 255, Default-Wert = 1																	
Wort 63	Port	X8, ł	Kanal	A (Pi	n 4), r	mögli	che V	/erte	0 1	5, 25	5, De	fault-	Wert	= 14				
Wort 64	Port	X8, ł	Kanal	B (Pi	n 2), r	mögli	che V	/erte	0 1	5, 25	5, De	fault-	Wert	= 15				

Tabelle 5.31

IO-Mapping bei 16DIO-Modulen mit 8DI/DO- und 8DO-Profilen

	MSB								LSB								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Wort 49	Port X1, Kanal A (Pin 4), mögliche Werte 0 7, 255, Default-Wert = 0																
Wort 50	Port X1, Kanal A (Pin 2), mögliche Werte 0 7, 255, Default-Wert = 255																
Wort 63	Port X8, Kanal A (Pin 4), mögliche Werte 0 7, 255, Default-Wert = 7																
Wort 64	Port	X8, k	Kanal	B (Pi	n 2), ı	mögli	che V	Verte	0 7	7, 255	, Def	ault-V	Vert =	= 255			

Tabelle 5.32

IO-Mapping bei 16DIO-Modulen mit 16DI-Profilen

	MSB									LSB								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Wort 17	Port	X1, ł	Kanal	A (Pi	n 4),	mögli	che V	Verte	0	15, 2	55, D	efault	t-Wer	t = 0				
Wort 18	Port X1, Kanal A (Pin 2), mögliche Werte 0 15, 255, Default-Wert = 1																	
Wort 31	Port	X8, ł	Kanal	A (Pi	n 4),	mögli	che V	Verte	0	15, 2	55, D	efault	t-Wer	t = 14	ŀ			
Wort 32	Port	X8, ł	Kanal	B (Pi	n 2),	mögli	che V	Verte	0	15, 2	55, D	efault	t-Wer	t = 15	5			

Tabelle 5.33

IO-Mapping bei 16DIO-Modulen mit 8DI-Profilen

	MSB								LSB								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Wort 17	Port X1, Kanal A (Pin 4), mögliche Werte 0 7, 255, Default-Wert = 0																
Wort 18	Port X1, Kanal A (Pin 2), mögliche Werte 0 7, 255, Default-Wert = 255																
Wort 31	Port X8, Kanal A (Pin 4), mögliche Werte 0 7, 255, Default-Wert = 7																
Wort 32	Port	X8, ł	Kanal	B (Pi	n 2),	mögli	che V	Verte	0	7, 25	5, De	fault-\	Wert :	= 255	,		

Tabelle 5.34

IO-Mapping bei 16DIO-Modulen mit 8DI/DO-Profilen

	MSB									LSB								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Wort 49	9 Port X1, Kanal A (Pin 4), mögliche Werte 0 7, 255, Default-Wert = 0																	
Wort 50	Port X1, Kanal A (Pin 2), mögliche Werte 0 7, 255, Default-Wert = 1																	
Wort 63	Port	X8, ł	Kanal	A (Pi	n 4), ı	mögli	che V	/erte	0 7	7, 255	, Def	ault-V	Vert =	= 6				
Wort 64	Port	X8, Ł	Kanal	B (Pi	n 2), ı	nögli	che V	/erte	0 7	7, 255	, Def	ault-V	Vert =	= 7				

Tabelle 5.35

5.2.5 Konfigurationsbeispiel

Die auf den folgenden Seiten beschriebene Konfiguration und Inbetriebnahme der Module bezieht sich auf die RSLogix5000-Software von Rockwell Automation. Bei Verwendung eines Steuerungssystems eines anderen Anbieters beachten Sie bitte die zugehörige Dokumentation. Die Konfiguration ist am Beispiel eines ICE1-16DIO-G60L-V1D-Modul beschrieben. Für andere Modulvarianten erfolgt die Konfiguration entsprechend mit einigen Detailunterschieden.

- 1. Installieren Sie die EDS-Dateien der Module in "RSLogix5000" mit dem EDS-Hardware-Installation-Tool unter dem Menü "Tools".
- 2. Wählen Sie den richtigen Controller aus.
- 3. Fügen Sie ihrem EtherNet/IP-Kommunikationsinterface durch Rechtsklick der Maustaste, über den Befehl "New Module", das gewünschte Ethernet-IO-Modul hinzu.

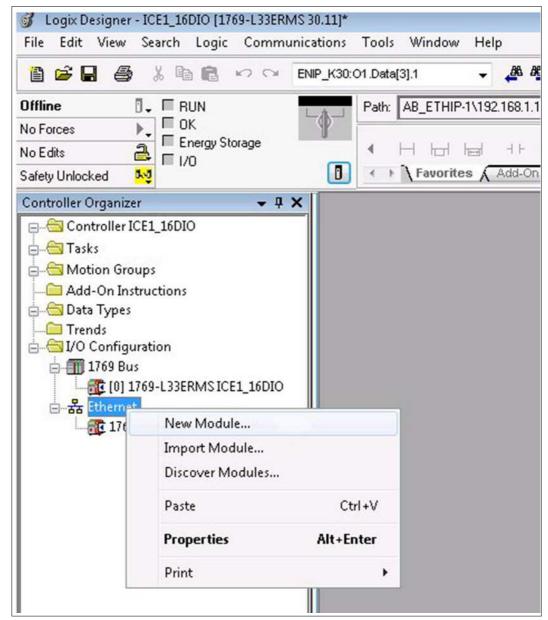


Abbildung 5.1

4. Wählen Sie das hinzuzufügende Ethernet-IO-Modul aus und klicken Sie die Schaltfläche "Create".

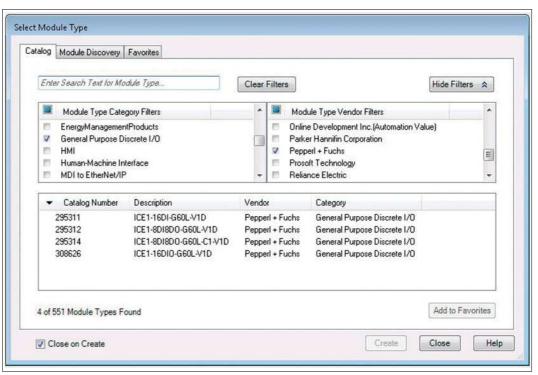


Abbildung 5.2

- 5. Geben Sie einen Namen für das Ethernet-IO-Modul und die richtige IP-Adresse ein. In diesem Beispiel sind das der Name "Name01" und die IP-Adresse 192.168.100.10.
- 6. Klicken Sie die Schaltfläche "Change".

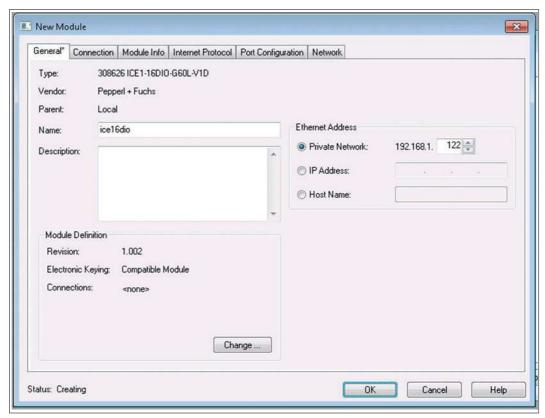


Abbildung 5.3

7. Ändern Sie die Einstellungen für die Modulrevision, Electronic-Keying und Verbindungstyp. Weiterführende Details zu Verbindungstypen finden Sie in den vorher gehenden Abschnitten zu Verbindungen und Assembly-Objekten.

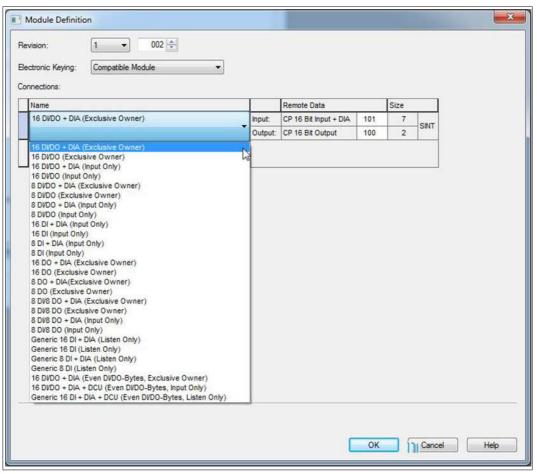


Abbildung 5.4

- 8. Wählen Sie die Verbindungsart in "Connections" aus. Sie bestimmt, welche Prozess- und Diagnosedaten das Modul zur Verfügung stellt.
- 9. In der Registerkarte "Connections" der Moduleigenschaften "Properties" sehen Sie die gewählte Verbindungsart. Dieser Ordner ermöglicht auch die Einstellung des "Requested-Packet-Interval (RPI)" und des Input-Typs ("Input Type"). Ein Wert von 5 ms ist das Minimum für den Parameter RPI.

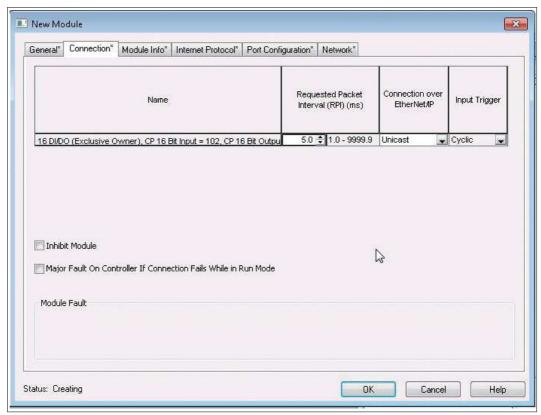


Abbildung 5.5

- 10. Bestätigen Sie die Eingaben mit "OK".
- 11. Wechseln Sie im "Controller Organizer" in den Abschnitt "Controller-Tags". Die Controller-Tags für die Konfigurationsparameter tragen den Namen des Moduls, gefolgt von einem : C. Das Festlegen der Parameter Surveillance-Timeout und Fail-Safe ist für jeden Ausgangskanal einzeln möglich, siehe folgendes Bild als Beispiel:

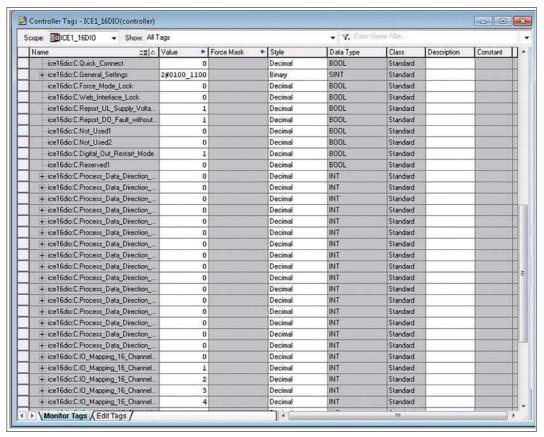


Abbildung 5.6

 Konfigurieren Sie das EtherNet/IP-Modul und übertragen sie Parameter per Download an die Steuerung.

Anfangseinstellungen der Verbindungsparameter

Konfigurations-Tools anderer Steuerungshersteller fordern Sie möglicherweise dazu auf, weitere Parameter für den Aufbau einer Kommunikationsverbindung zwischen Ihrem EtherNet/IP-I/O-Scanner und den Ethernet-IO-Modulen einzugeben. Für diesen Fall liefert die folgende Tabelle eine Liste nützlicher Parameter:

ICE1-16DIO-G60L-V1D/ICE1-16DIO-G60L-C1-V1D mit 16DI/DO-Profil und Diagnose

Transporttyp	Exclusive Owner
Triggermodus	Cyclic
Requested-Packet-Interval (RPI)	Minimum 1 ms
Absender zu Zielgerät (O->T) Verbindungs	parameter
Echtzeit-Transferformat	32-bit Run/Idle Header
Verbindungstyp	POINT2POINT
Assembly-Instanz-ID	100
Datentyp	USINT
Datengröße	1 Byte
Datenlänge	2 Byte
Zielgerät zu Absender (T->O) Verbindungs	parameter
Echtzeit-Transferformat	Reine, nichtmodale Datenverbindung
Verbindungstyp	MULTICAST
Assembly-Instanz-ID	101

Datentyp	USINT
Datengröße	1 Byte
Datenlänge	7 Byte

ICE1-16DI-G60L-V1D mit Diagnose

Transporttyp	Input only
Triggermodus	Cyclic
Requested-Packet-Interval (RPI)	Minimum 1 ms
Absender zu Zielgerät (O->T) Verbindungs	parameter
Echtzeit-Transferformat	Heartbeat
Verbindungstyp	POINT2POINT
Assembly-Instanz-ID	193
Datentyp	USINT
Datengröße	1 Byte
Datenlänge	0 Byte
Zielgerät zu Absender (T->O) Verbindungs	parameter
Echtzeit-Transferformat	Reine, nichtmodale Datenverbindung
Verbindungstyp	MULTICAST
Assembly-Instanz-ID	101
Datentyp	USINT
Datengröße	1 Byte
Datenlänge	4 Byte

ICE1-8DI8DO-G60L-V1D/ICE1-8DI8DO-G60L-C1-V1D mit Diagnose

Transporttyp	Exlusive Owner
Triggermodus	Cyclic
Requested-Packet-Interval (RPI)	Minimum 1 ms
Absender zu Zielgerät (O->T) Verbindungs	parameter
Echtzeit-Transferformat	32-bit Run/Idle Header
Verbindungstyp	POINT2POINT
Assembly-Instanz-ID	100
Datentyp	USINT
Datengröße	1 Byte
Datenlänge	1 Byte
Zielgerät zu Absender (T->O) Verbindungs	parameter
Echtzeit-Transferformat	Reine, nichtmodale Datenverbindung
Verbindungstyp	MULTICAST
Assembly-Instanz-ID	101
Datentyp	USINT
Datengröße	1 Byte
Datenlänge	6 Byte

5.3 Bitbelegung der Prozessdaten

Eingangs- und Ausgangsdaten

Bei Eingangsdaten sind Istwerte angegeben, bei Ausgangsdaten Sollwerte. Bitte beachten Sie, dass die Anzahl der Provider-Daten (Eingabedaten) variabel ist. Sie ist abhängig von der Auswahl, ob Diagnosedaten übertragen werden. Die Module bieten ein Byte zur Steckplatzoder Kanaldiagnose, das sogenannte **Modulinformations-Byte**. Die Diagnosedaten ergänzen als zusätzliche Bytes die Standard-Prozesseingangsdaten.

16DIO-Module mit dezentraler Logikfunktion

16DIO-Module mit dezentraler Logikfunktion (DCU-Funktion) haben einen erweiterten Prozessdatenbereich mit zusätzlichen 18 Bytes in beide Richtungen. Diese werden den Ausgangsdaten bzw. dem Modulinformations-Byte oder Diagnosen der Eingangsdaten angehängt. Weiterführende Details zur Verwendung der erweiterten Prozessdatenbereiche entnehmen Sie dem Kapitel "Dezentrale Logikfunktion".

5.3.1 16DIO-Module, Bitbelegung der Prozessdaten

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror).

16 Bit Ausgangsdaten, Default IO-Mapping (Assembly ID 100)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A

Tabelle 5.36

16 Bit Eingangsdaten mit Diagnose, Default IO-Mapping (Assembly ID 101)

						-		
INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 3	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 4	0	0	0	0	0	0	0	0
Byte 5	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A
Byte 6	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 5.37

16 Bit Eingangsdaten mit Diagnose und Padding Byte, Default IO-Mapping (Assembly ID 108)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	Х7-В	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 3	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 4	0	0	0	0	0	0	0	0
Byte 5	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A

2019-10

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 6	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A
Byte 7	0	0	0	0	0	0	0	0

Tabelle 5.38

16 Bit Eingangsdaten ohne Diagnose, Default IO-Mapping (Assembly ID 102)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	Х7-В	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS

Tabelle 5.39

8 Bit Ausgangsdaten, Default IO-Mapping, nicht für 8DI/8DO (Assembly ID 103)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X7-A	X6-B	X5-A	X4-B	ХЗ-А	X2-B	X1-A

Tabelle 5.40

8 Bit Eingangsdaten mit Diagnose, Default IO-Mapping, nicht für 8DI/8DO (Assembly ID 104)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X7-A	X6-B	X5-A	X4-B	ХЗ-А	X2-B	X1-A
Byte 1	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 2	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 3	0	0	0	0	0	0	0	0
Byte 4	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A
Byte 5	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 5.41

8 Bit Eingangsdaten ohne Diagnose, Default IO-Mapping, nicht für 8DI/8DO (Assembly ID 105)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X7-A	X6-B	X5-A	X4-B	ХЗ-А	X2-B	X1-A
Byte 1	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS

Tabelle 5.42

8 Bit Ausgangsdaten, Default IO-Mapping, nur für 8DI/8DO (Assembly ID 103)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A

Tabelle 5.43

8 Bit Eingangsdaten mit Diagnose, Default IO-Mapping, nur für 8DI/8DO (Assembly ID 104)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 2	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 3	0	0	0	0	0	0	0	0
Byte 4	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A
Byte 5	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 5.44

8 Bit Eingangsdaten ohne Diagnose, Default IO-Mapping, nur für 8DI/8DO (Assembly ID 105)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X7-A	X6-B	X5-A	X4-B	ХЗ-А	X2-B	X1-A
Byte 1	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS

Tabelle 5.45

0 Bit Eingangsdaten mit Diagnose, Default IO-Mapping (Assembly ID 106)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 1	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 2	0	0	0	0	0	0	0	0
Byte 3	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A
Byte 4	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 5.46

0 Bit Eingangsdaten ohne Diagnose, Default IO-Mapping (Assembly ID 107)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS

Tabelle 5.47

Legende

- X1-A...X8-A: Status Kanal A (Pin 4) der Steckplätze X1 bis X8
- X1-B...X8-B: Status Kanal B (Pin 2) der Steckplätze X1 bis X8
- MI-LVS: Modulinformations-Byte Unterspannung System-/Sensorversorgung
- MI-LVA: Modulinformations-Byte Unterspanning Aktorversorgung
- MI-SCS: Modulinformations-Byte Sensorkurzschluss an einem M12-Steckplatz
- MI-SCA: Modulinformations-Byte Aktorkurzschluss an einem M12-Steckplatz
- MI-IME: Modulinformations-Byte Interner Modulfehler (Error)
- SCS-X1...SCS-X8: Sensorkurzschluss am Steckplatz X1 bis X8
- CE-X1A...CE-X8A: Kanalfehler Kanal A (Pin 4) an Steckplatz X1 bis X8
- CE-X1B...CE-X8B: Kanalfehler Kanal B (Pin 2) an Steckplatz X1 bis X8

5.3.2 Module mit dezentraler Logikfunktion, Bitbelegung der Prozessdatenerweiterung

Bei Ethernet-IO-Modulen mit dezentraler Logikfunktion (DCU-Funktion) ist der Prozessdatenbereich der Eingangs- und Ausgangsdaten um zusätzliche 18 Byte erweitert. Nachfolgend ist diese Prozessdatenerweiterung für folgende Ethernet-IO-Module beschrieben:

- ICE1-8DI8DO-G60L-C1-V1D
- ICE1-16DIO-G60L-C1-V1D.

Eingangsdaten DCU-Erweiterung

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte n	16 Blt I/C	DCU Ex	tension	•	•				
Byte n + 1									
Byte n + 2	INT I/O D	NT I/O DCU Extension							
Byte n + 3									
Byte n + 16	INT I/O D	CU Exter	nsion						
Byte n + 17	1								

Tabelle 5.48

Legende

- 16 Bit I/O DCU Extension: Bit-Zustände als Eingangsdaten der dezentralen Logikfunktion (DCU-Funktion)
- INT I/O DCU Extension: 8 Wort-Datentypen als Eingangsdaten der der dezentralen Logikfunktion (DCU-Funktion), z. B. zur Übertragung von Programmparametern.

Ausgangsdaten DCU-Erweiterung

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	16 Bit I/C	DCU Ext	ension	•				
Byte n + 1								
Byte n + 2	INT I/O D	CU Exter	nsion					
Byte n + 3								
Byte n + 16	INT I/O	CU Exter	nsion					
Byte n + 17								

Tabelle 5.49

Legende

- 16 Bit I/O DCU: Bit-Zustände als Ausgangssdaten der dezentralen Logikfunktion (DCU-Funktion)
- INT I/O DCU Extension: 8 Wort-Datentypen als Ausgangsdaten der der dezentralen Logikfunktion (DCU-Funktion), z. B. zur Übertragung von Zählerständen.

5.3.3 16DI-Module, Bitbelegung der Prozessdaten

Eingangsdaten mit Diagnose (Assembly ID 101)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 2	0	0	0	0	0	MI-SCS	0	MI-LVS
Byte 3	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1

Tabelle 5.50

Eingangsdaten ohne Diagnose (Assembly ID 101)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	Х7-В	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	MI-IME	0	0	0	0	MI-SCS	0	MI-LVS

Tabelle 5.51

Legende 16DI

- X1-A...X8-A: Eingangsstatus Kanal A (Pin 4) der Steckplätze X1 bis X8
- X1-B...X8-B: Eingangsstatus Kanal B (Pin 2) der Steckplätze X1 bis X8
- MI-LVS: Modulinformations-Byte Unterspannung System-/Sensorversorgung
- MI-SCS: Modulinformations-Byte Sensorkurzschluss an einem M12Steckplatz
- MI-IME: Modulinformations-Byte Interner Modulfehler (Error)
- SCS-X1...SCS-X8: Sensorkurzschluss am Steckplatz X1 bis X8

5.3.4 8DI/8DO-Module, Bitbelegung der Prozessdaten

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror).

Eingangsdaten mit Diagnose (Assembly ID 101)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	MI-IME	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 3	0	0	0	0	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 4	0	0	0	0	0	0	0	0
Byte 5	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 5.52

Eingangsdaten ohne Diagnose (Assembly ID 102)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	Х7-В	X7-A	X6-B	X6-A	X5-B	X5-A
Byte 2	0	0	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS

Tabelle 5.53

Ausgangsdaten (Assembly ID 100)

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A

Tabelle 5.54

Legende 8DI8DO

- X1-A...X4-A: Eingangsstatus Kanal A (Pin 4) der Steckplätze X1 bis X4
- X1-B...X4-B: Eingangsstatus Kanal B (Pin 2) der Steckplätze X1 bis X4
- X5-A...X8-A: Ausgangsstatus Kanal A (Pin 4) der Steckplätze X5 bis X8
- X5-B...X8-B: Ausgangsstatus Kanal B (Pin 2) der Steckplätze X5 bis X8
- MI-LVS: Modulinformations-Byte Unterspannung System-/Sensorversorgung
- MI-LVA: Modulinformations-Byte Unterspanning Aktorversorgung
- MI-SCS: Modulinformations-Byte Sensorkurzschluss an einem M12-Steckplatz
- MI-SCA: Modulinformations-Byte Aktorkurzschluss an einem M12-Steckplatz
- MI-IME: Modulinformations-Byte Interner Modulfehler (Error)
- SCS-X1...SCS-X4: Sensorkurzschluss am Steckplatz X1 bis X4
- CE-X5A...CE-X8A: Kanalfehler Kanal A (Pin 4) an Steckplatz X1 bis X8
- CE-X5B...CE-X8B: Kanalfehler Kanal B (Pin 2) an Steckplatz X1 bis X8

6 Inbetriebnahme bei PROFINET

6.1 Vorbereitung

Die auf den nachfolgenden Seiten beschriebene Konfiguration und Inbetriebnahme der Module wurde mit der SIEMENS Projektierungssoftware TIA Portal V14 durchgeführt. Bei Verwendung eines Steuerungssystems eines anderen Steuerungsanbieters beachten Sie bitte die zugehörige Dokumentation.

GSDML-Datei

Zur Konfiguration der Module im Steuerungssystem benötigen Sie eine GSD-Datei im XML-Format. Sie können diese Datei von unserer Homepage https://www.pepperl-fuchs.de herunterladen

Die Datei für die PROFINET-Module trägt den Namen GSDML-V2.3*-Pepperl+Fuchs-ICE1yyyymmdd.xml, **yyyymmdd** steht dabei für das Ausgabedatum der Datei.

Binden Sie die GSDML-Datei im TIA Portal mit dem GSD-Verwaltungsmanager über das Hauptmenü "Options > Manage general station description files (GSD)" ein. Die Module mit PROFINET-Schnittstelle stehen Ihnen anschließend im Hardwarekatalog zur Verfügung.

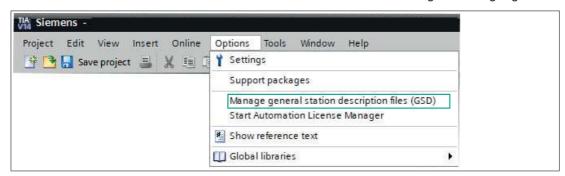


Abbildung 6.1

MAC-Adressen

Die Module bekommen bei der Auslieferung drei MAC-Adressen zugewiesen. Diese sind eindeutig und können vom Anwender nicht geändert werden.

SNMP

Die Module unterstützen das Ethernet-Netzwerkprotokoll SNMP (Simple Network Management Protokoll). Die Informationen des Netzwerkmanagements werden gemäß der MIB-II (Management Information Base) dargestellt, welche in der RFC 1213 definiert ist.

6.2 Konfiguration

Die auf den nachfolgenden Seiten beschriebene Konfiguration und Inbetriebnahme der Module wurde mit SIEMENS Projektierungssoftware TIA Portal V 14 durchgeführt. Bei Verwendung eines Steuerungssystems eines anderen Steuerungsanbieters beachten Sie bitte die zugehörige Dokumentation.

Die Konfiguration ist am Beispiel eines ICE1-16DIO-G60L-V1D-Modul beschrieben. Für andere Modulvarianten erfolgt die Konfiguration entsprechend mit einigen Detailunterschieden.

Hinweis!

Für die Konfiguration eines Moduls im Steuerungssystem ist eine GSDML-Datei erforderlich

Einbindung des PROFINET-IO-Moduls im TIA

Nachfolgend ist beispielhaft die Konfiguration eines Ethernet-IO-Moduls als Profinet-Typ am Beispiel des Moduls ICE1-16DIO-G60L-C1-V1D im TIA-Portal erläutert.

- 1. Installieren Sie die GSDML-Datei für das gewünschte Modul im TIA-Portal
 - → Nach der Installation der GSDML-Datei für die PROFINET-Module stehen diese im Hardwarekatalog des TIA-Portals zur Verfügung.

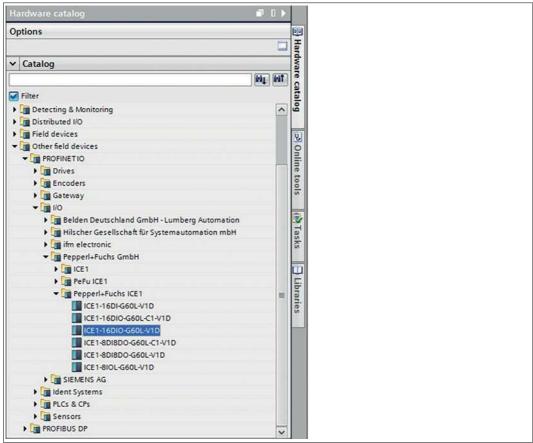


Abbildung 6.2

2. Führen Sie einen Doppelklick auf das gewünschte Modul durch und wählen Sie die entsprechende PROFINET-Schnittstelle aus.

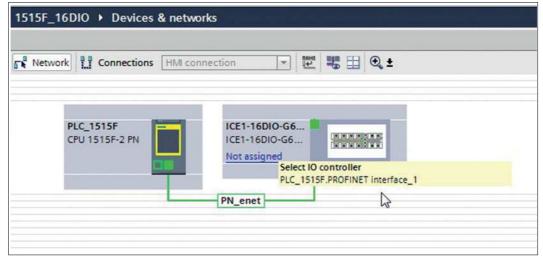
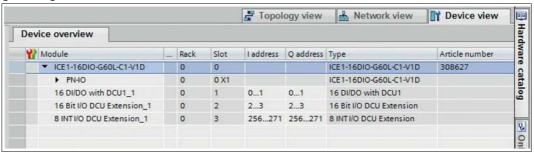



Abbildung 6.3

→ Ein geeignetes Modul für die E/A-Funktion wird automatisch in Slot 1 des Baugruppenträgers eingesetzt.

Abbildung 6.4

- → Sie können die in der Geräteübersicht vorgegebenen Eingangs- und Ausgangsadressen ändern. Die 16DIO-Module haben einen erweiterten E/A-Funktionsumfang. Sie können bei diesen Modulen zwischen unterschiedlichen Profilen wählen (z. B. 16 DI/DO) und unterschiedliche Module in Slot 1 des Baugruppenträgers verwenden. Dies hat den Vorteil, dass sämtliche Altbestände von digitalen I/O-Modulen jeweils durch ein 16DIO-Modul ersetzt werden können. Durch die Auswahl eines geeigneten Profils und die Verwendung des IO-Mappings in den Baugruppenparametern können ohne Änderungen der E/A-Adressen im SPS-Programm diese IO-Module ersetzt werden.
 - Zum Wechsel eines Profils ist es erforderlich, das Modul in Slot 1 zu löschen und ein anderes dafür einzusetzen. Dies erfolgt wie beim Hinzufügen eines PROFINET Moduls über den Hardware-Katalog.
- → Folgende Modul-Profile stehen für die Konfiguration eines 16DIO-Moduls zur Verfügung:



Abbildung 6.5

Vergabe eines eindeutigen Gerätenamens im Steuerungssystem

PROFINET-IO-Geräte werden im PROFINET Netzwerk über einen eindeutigen Gerätenamen angesprochen. Dieser kann vom Anwender frei vergeben werden, darf jedoch nur einmal im Netzwerk vorkommen.

1. Wählen Sie in der Gerätesicht des Moduls Slot 0 aus und vergeben Sie einen geeigneten Modulnamen. Im Beispiel ist das die Produktbezeichnung "ICE-16DIO-G60L-V1D".

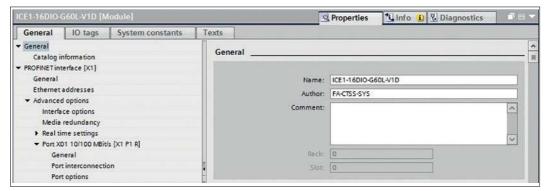


Abbildung 6.6

- 2. Kontrollieren Sie in "PROFINET interface [X1] -> Ethernet addresses" die automatisch vergebene IP-Adresse.
- 3. Prüfen Sie dabei, ob sich Steuerungssystem und Modul im gleichen Ethernet-Subsystem befinden. Ändern Sie bei Bedarf die Einstellung.

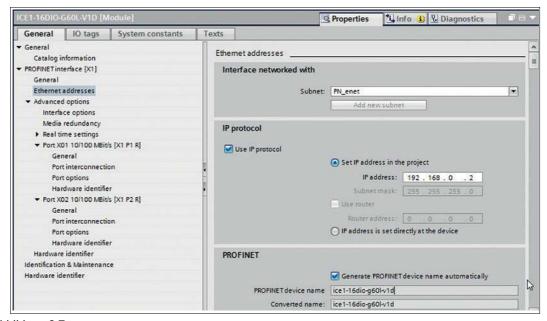


Abbildung 6.7

4. Aktivieren Sie die Auswahl "Generate PROFINET device name automatically", damit der zuvor vergebene Gerätenamen verwendet wird.

Hinweis!

Die Verwendung eines geänderten Gerätenamens ist wegen der Übersichtlichkeit nicht zu empfehlen.

Zuweisen des Gerätenamens an ein PROFINET-IO-Modul

Damit im PROFINET-Netzwerk einem Teilnehmer eine IP-Adresse zugewiesen werden kann, muss für jedes Modul ein Gerätename vergeben werden. Eine Teilnehmer-Suche ermöglicht die Anzeige der gefundenen PROFINET-Geräte.

Die Ethernet-IO-Module bekommen bei der Auslieferung drei MAC-Adressen zugewiesen. Diese sind eindeutig und können vom Anwender nicht geändert werden. Die erste MAC-Adresse ist auf dem Gehäuse des Ethernet-IO-Module abgebildet. (siehe zwischen X2 und X3). Anhand dieser kann jedes Gerät in der Liste erreichbarer Teilnehmer gefunden und jeweils ein Gerätename zugewiesen werden.

- 1. Verbinden Sie das Modul mit dem PROFINET-Netzwerk.
- 2. Wählen Sie in der "Device View" des Moduls "Slot 0".
- 3. Öffnen Sie über das Hauptmenü "Online -> Accessible devices ..." den Dialog "Accessible devices".

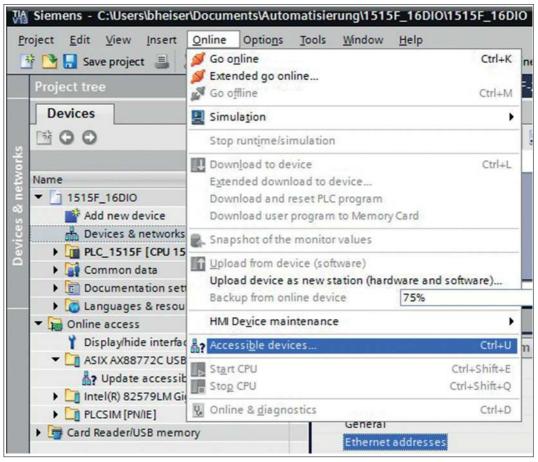


Abbildung 6.8

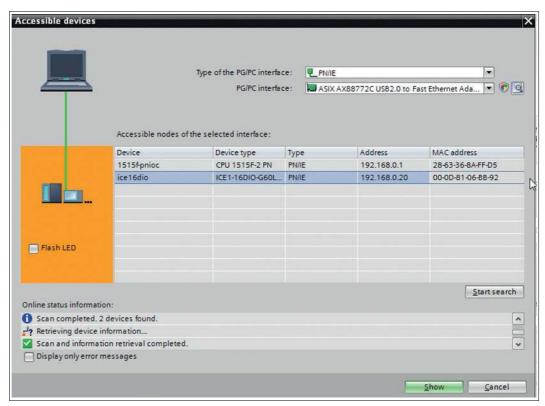


Abbildung 6.9

- 4. Wählen Sie ein gefundenes Modul aus.
 - → Wenn das gewünschte Modul nicht in der Liste erreichbarer Teilnehmer im Netzwerk angezeigt wird, können Sie den Gerätefilter ändern und die Liste aktualisieren lassen. Falls das Gerät weiterhin nicht erscheint, prüfen Sie bitte Ihre Firewall-Einstellungen.
- 5. Weisen Sie dem Modul den gewählten PROFINET-Gerätenamen zu.

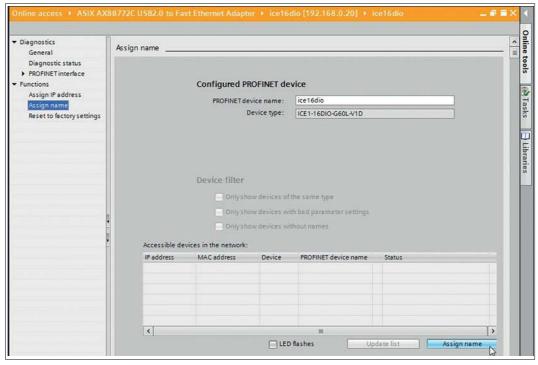


Abbildung 6.10

→ Konnte der Gerätename erfolgreich gesetzt werden, wird dies über den Status mitgeteilt.

6. Schließen Sie den Vorgang ab, durch Betätigen der Taste "Assign name".

Gerätetausch ohne Wechselmedium/PG

Hinweis!

Das Austauschgerät muss sich für den Austausch ohne Wechselmedium/PG im Auslieferungszustand (Werkseinstellungen) befinden. Gegebenenfalls müssen die Werkseinstellungen wiederhergestellt werden.

PROFINET IO-Geräte, die die Funktion des "Gerätetauschs ohne Wechselmedium" oder Programmiergerät unterstützen, können in einem bestehenden PROFINET-Netzwerk durch gleiche Geräte ausgetauscht werden. Der IO-Controller übernimmt in diesem Fall die Vergabe des Gerätenamens. Dabei nutzt er die projektierte Topologie und die von den IO-Devices ermittelten Nachbarschaftsbeziehungen. Die Ethernet-IO-Module unterstützen die Funktion des Gerätetauschs ohne Wechselmedium/PG.

- 1. Klicken Sie den PLC in Slot 1 (1) an.
- Klicken Sie im Bereich "Profinet interface_1 [Module]" den Einstellbereich "Advanced options"
 (2).
- 3. Wechseln Sie in die Registerkarte "Properties" (3) und klicken Sie die Option für den Gerätetausch ohne Wechselmedium (4) an.

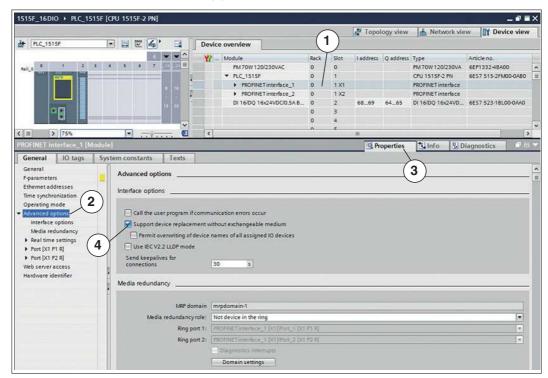
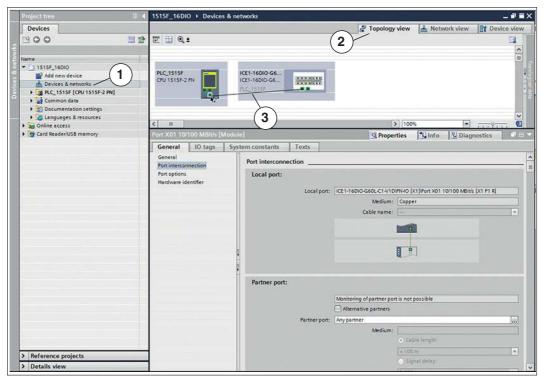
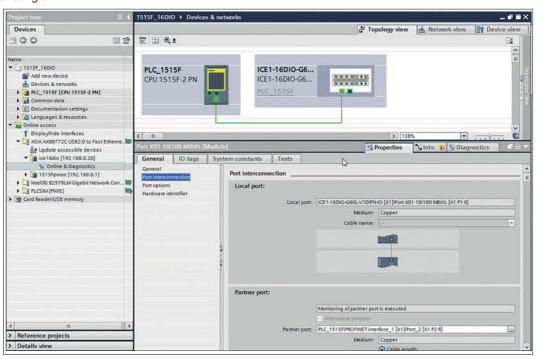


Abbildung 6.11



Hinweis!


Eine Netzwerktopologie wird über die Verschaltung der PROFINET-Ports der einzelnen Geräte konfiguriert. Diese erreichen Sie über Steckplatz 0 der verwendeten PROFINET-Geräte. Durch Anzeige aller nicht verknüpften Ports können Sie jeweils einen geeigneten Partnerport festlegen.

- 4. Legen Sie die Netzwerktopologie für den Gerätetausch fest. Wählen Sie dazu "Devices & networks" (1) und die "Topologie view" (2).
- 5. Ziehen Sie mit der Maus eine Verbindung zwischen dem Modul und dem PLC (3).

Abbildung 6.12

Abbildung 6.13

→ Die Portverschaltung war erfolgreich, wenn die Verknüpfung in der "Topologie View" und beim "Partner Port" angezeigt wird.

Die Parametereinstellungen der Module

Die Anzeige der Parametereinstellung ist abhängig von der verwendeten Modulvariante sowie der Version der Gerätebeschreibungsdatei. Jedes Modul verfügt über einen individuellen Parametersatz.

Die Parametereinstellungen erreichen Sie über die Gerätesicht des Moduls:

- Steckplatz 0 (für die Module 16DO und 8DI/8DO) und
- Steckplatz 1 (für Modul 16DIO)
- 1. Wählen Sie die Gerätesicht über "Device View" (1) und das gewünschte Modul (2) an (hier Steckplatz 1 für Beispiel mit 16DIO-Modul).
- 2. Wählen Sie dann in der Registerkarte "General" den Bereich "Module parameters" (3) aus.

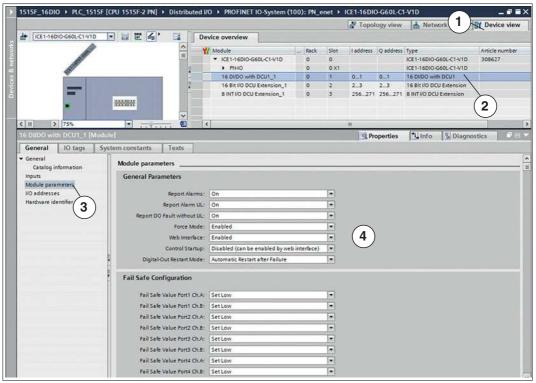


Abbildung 6.14

→ Sie können nun in dem Dialog (4) die gewünschten Parametereinstellungen durchführen.

Parameterüberblick

Nachfolgend sind die Parametergruppen kurz erläutert.

Report Alarms

Globale PROFINET Alarmmeldungen aktivieren/deaktivieren.

Report Alarm U_I

PROFINET Alarmmeldung bei fehlender Versorgung der Aktorik (U_L) aktivieren/deaktivieren. Wenn die globalen PROFINET Alarmmeldungen deaktiviert sind, wird dieser Alarm nicht gemeldet.

Report Alarm DO without U_L

PROFINET Alarmmeldung bei fehlender Versorgung der Aktorik (U_L) und Ansteuerung eines Ausgangs aktivieren/deaktivieren. Wenn die globalen PROFINET Alarmmeldungen deaktiviert sind, wird dieser Alarm nicht gemeldet.

Force Mode

Verwendung des Force Modes über den Webserver erlauben/sperren.

Web Interface

Verwendung des Webservers erlauben/sperren.

Dezentrale Logikfunktion DCU Startup (nur bei C1-Modulen)

Dezentrale Logikfunktion deaktivieren/sperren oder DCU-Programm starten.

Digital-Out Restart Mode (unterstützt bei 16DIO-Modulen)

Automatischer Neustart nach Kurzschluss des digitalen Ausgangs oder Rücksetzen der Kanaldiagnose beim Rücksetzen des digitalen Ausgangs.

Fail Safe Configuration

Diese Parameter werden von den Modultypen mit digitalen Ausgängen zur Verfügung gestellt. Während der Konfiguration der Module haben Sie die Möglichkeit, den Status der Ausgänge nach einer Unterbrechung oder einem Verlust der Kommunikation festzulegen.

Die folgenden Optionen stehen zur Verfügung:

- 1. **Set Low** Deaktivieren des Ausgangskanals (digitaler Wert = 0)
- 2. Set High Aktivieren des Ausgangskanals (digitaler Wert = 1)
- Hold Last Halten des letzten Ausgangszustands (digitaler Wert entspricht dem letzten Status)

Der Parameter Surveillance Timeout

Dieser Parameter wird von den Modultypen mit digitalen Ausgängen zur Verfügung gestellt.

Die Firmware der Module ermöglicht das Festlegen einer Verzögerungszeit, bevor die Überwachung der Ausgangsströme beginnt, der sogenannte Surveillance-Timeout. Sie haben die Möglichkeit, diesen für jeden einzelnen Ausgangskanal einzustellen.

Die Verzögerungszeit beginnt nach einer Zustandsänderung des Ausgangskanals, wenn dieser also aktiviert (nach einer steigenden Flanke) oder deaktiviert (nach einer abfallenden Flanke) wird. Nach Ablauf dieser Zeit beginnt die Überwachung des Ausgangs und die Diagnose meldet Fehlerzustände.

Der mögliche Wert des Surveillance-Timeout beträgt 0 bis 255 ms. Der Standardwert ist 80 ms. Im statischen Zustand des Ausgangskanals, wenn der Kanal also permanent ein- oder ausgeschaltet ist, beträgt der Wert 100 ms.

IO Mapping Configuration (nur bei 16DIO-Modulen)

Über die Konfiguration des IO-Mappings ist es möglich, die Datenstruktur der E/A-Daten zu verändern. Standardmäßig ist jeder E/A-Kanal der Reihenfolge nach in den Prozessdaten abgebildet. Bestehende SPS-Programme verwenden allerdings unter Umständen eine andere Kanalzuordnung

Über diese Parameter können somit alle E/A-Kanäle frei einem Bit in den E/A-Daten zugeordnet werden. Hierbei ist zu beachten, dass Doppelbelegungen nicht möglich sind. Wird eine Fehlparametrierung des IO-Mappings bei Übertragung der Konfiguration erkannt, meldet das Modul einen Fehler.

Priorisierter Hochlauf /Fast Start-Up (FSU)

Die Module unterstützen mit Fast Start-Up (FSU) einen optimierten Systemhochlauf. Dieser gewährleistet einen schnellen Wiederanlauf nach einer Wiederherstellung einer unterbrochenen der Spannungsversorgung.

- 1. Wählen Sie die Gerätesicht über "Device View" (1) und das gewünschte Modul an (hier Steckplatz 1 für Beispiel mit 16DIO-Modul mit Profil 8DI/8DO).
- 2. Wählen Sie dann in der Registerkarte "General" den Bereich "Advanced Options" (2) aus.
- 3. Klicken Sie die Option "Prioritized startup" an (3), um den priorisierten Hochlauf zu aktivieren.

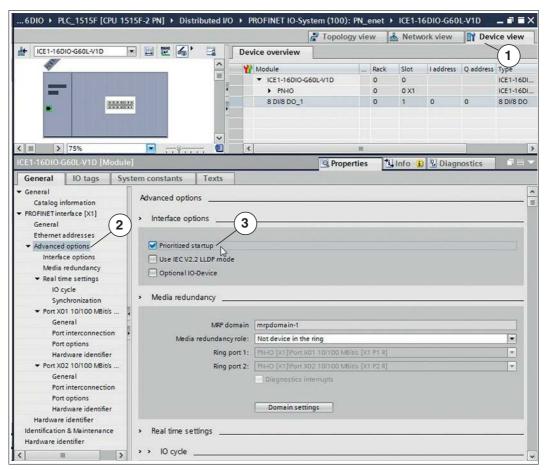


Abbildung 6.15

Rücksetzen der Module auf Werkseinstellungen

Für das Rücksetzen der Module auf die Werkseinstellungen müssen Sie im TIA Portal nach erreichbaren PROFINET-Teilnehmern suchen.

 Öffnen Sie über das Hauptmenü "Online -> Accessible devices ..." den Dialog "Accessible devices".

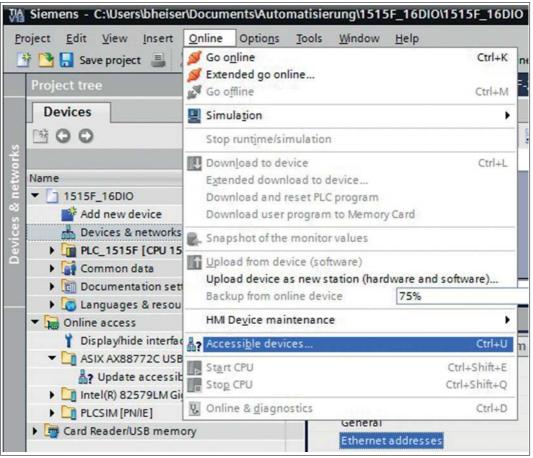


Abbildung 6.16

2. Wählen Sie das Modul aus, dass Sie auf die Werkseinstellung zurücksetzen möchten.

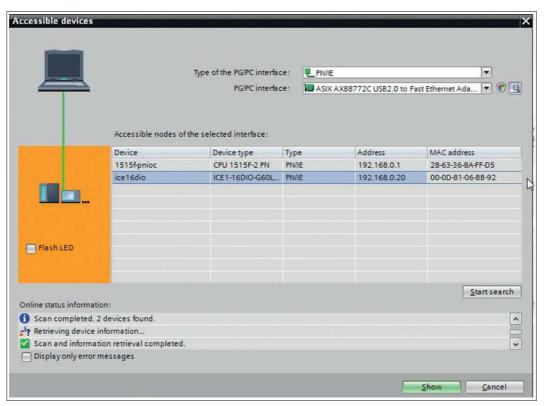


Abbildung 6.17

3. Lösen Sie das Rücksetzen durch Betätigen der Taste "Reset" und anschließender Bestätigung der Sicherheitsabfrage aus.

Abbildung 6.18

Media Redundancy Protocol (MRP)

Mit den Modulen kann über eine Ringtopologie ohne Verwendung zusätzlicher Switches eine redundante PROFINET-Kommunikation realisiert werden. Ein MRP-Redundanz-Manager schließt dabei den Ring, erkennt Einzelausfälle und sendet im Fehlerfall die Datenpakete über den redundanten Pfad.

Für die Verwendung von MRP sind folgende Voraussetzungen zu erfüllen:

- Alle Geräte müssen MRP unterstützen.
- MRP muss bei allen Geräten aktiviert werden.
- Eine Verbindung der Geräte ist ausschließlich über die Ringports möglich. Eine vermaschte Topologie ist daher nicht zulässig.
- Es sind max. 50 Geräte im Ring zulässig.
- Alle Geräte haben die gleiche Redundanz-Domäne.
- Ein Gerät muss als Redundanz-Manager konfiguriert werden.

- Alle anderen Geräte müssen als Redundanz-Clients konfiguriert werden.
- Es ist kein priorisierter Hochlauf (FSU) zulässig.
- Die Ansprechüberwachungszeit aller Geräte muss jeweils größer als die Rekonfigurationszeit sein (typ. 200 ms, bei ICE1-*-Modulen min. 90 ms).
- Es wird empfohlen, an allen Geräten die automatische Netzwerkeinstellung zu verwenden.

In den folgenden Abbildungen wird eine mögliche MRP-Ringkonfiguration dargestellt. Die SPS wird als Redundanz-Manager und alle anderen Geräte als Clients verwendet. Um einen Einzelausfall zu detektieren, empfiehlt es sich die Diagnosealarme zu aktivieren.

- 1. Wählen Sie die Gerätesicht über "Device View" (1) und das gewünschte Modul an Steckplatz 0 (2) aus.
- 2. Wählen Sie dann in der Registerkarte "General" den Bereich "Advanced Options -> Media redundancy" (3) aus. Stellen Sie die Option " Media redundancy role" auf "Client" (4) ein.

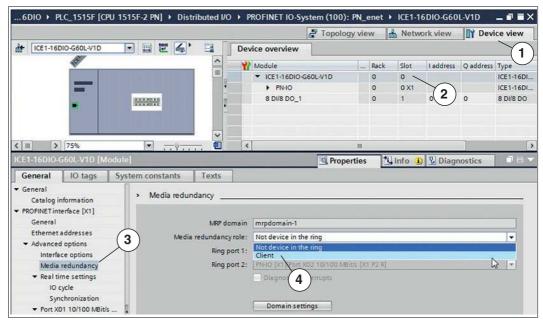


Abbildung 6.19

- 3. Überprüfen Sie die Ansprechzeitüberwachung "Watchdog time". Wählen Sie dazu den Bereich "Real time settings" in diesem Modul aus.
- **4.** Stellen Sie die Ansprechzeitüberwachung "Watchdog time" erforderlichenfalls neu ein (mindestens auf 90 ms, typ. 200 ms).

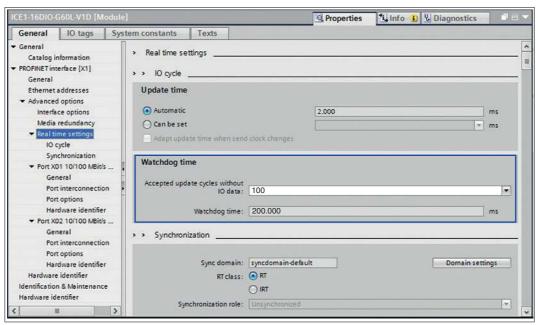


Abbildung 6.20

6.3 Zuordnung der Prozessdaten

Dieses Kapitel beschreibt die Zuordnung der Prozessdaten der Steuerung zu den E/A-Kanälen in Steckplatz 1 der Module.

Zudem sind die Erweiterungen im Prozessdatenbereich bei 16DIO-Modulen mit dezentraler Logikfunktion (DCU-Funktion) beschrieben.

6.3.1 16DIO-Module, Bitbelegung der Prozessdaten

Die Datenstruktur der Prozessdaten in Steckplatz 1 ist abhängig vom verwendeten IO-Mapping. Ethernet IO-Module mit dezentraler Logikfunktion (DCU-Funktion) haben einen erweiterten Prozessdatenbereich in Steckplatz 2 und 3. Dieser ist daher optional mit aufgeführt. Weiterführende Details zur Verwendung der erweiterten Prozessdatenbereiche entnehmen Sie dem Kapitel "Dezentrale Logikfunktion".

Die folgenden Darstellungen beziehen sich auf die Default-Einstellungen der jeweiligen Profile.

Eingangsdaten 16DI/DO-Profil (Default-Profil)

Dieses Modul liefert zwei Byte Eingangsdaten, die den aktuellen Status der Ein- und Ausgangskanäle wiedergeben.

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror).

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A
Byte n+1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.1

Hierbei sind:

 1A ... 8A: Ist-Zustand des Eingangs-/Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.

 1B ... 8B: Ist-Zustand des Eingangs-/Ausgangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

Ausgangsdaten 16DI/DO-Profil (Default-Profil)

Dieses Modul erfordert zwei Byte Ausgangsdaten zur Steuerung der digitalen Ausgänge.

Aus- gang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A
Byte n+1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.2

Hierbei sind:

- 1A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8
- 1B ... 8B: Soll-Zustand des Ausgangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

Eingangsdaten 8DI/DO-Profil

Dieses Modul liefert ein Byte Eingangsdaten, die den aktuellen Status der Ein- und Ausgangskanäle wiedergeben.

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror).

Ei	ngang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ву	/te n	8A	7A	6A	5A	4A	3A	2A	1A

Tabelle 6.3

Hierbei sind:

1A ... 8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.

Ausgangsdaten 8DI/DO-Profil

Dieses Modul erfordert ein Byte Ausgangsdaten zur Steuerung der digitalen Ausgänge.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	8A	7A	6A	5A	4A	3A	2A	1A

Tabelle 6.4

Hierbei sind:

1A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis
 8.

Eingangsdaten 16DI-Profil

Dieses Modul liefert zwei Byte Eingangsdaten, die den aktuellen Status der Eingangskanäle wiedergeben.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n+1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.5

Hierbei sind:

- 1A ... 8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.
- 1B ... 8B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

Eingangsdaten 8DI-Profil

Dieses Modul liefert ein Byte Eingangsdaten, die den aktuellen Status der Eingangskanäle wiedergeben.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	8A	7A	6A	5A	4A	3A	2A	1A

Tabelle 6.6

Hierbei sind:

1A ... 8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.

Ausgangsdaten 16DO-Profil

Dieses Modul erfordert zwei Byte Ausgangsdaten zur Steuerung der digitalen Ausgänge.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4B	3B	ЗА	2B	2A	1B	1A
Byte n +1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.7

Hierbei sind:

- 1A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis
- 1B ... 8B: Soll-Zustand des Ausgangskanals A (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

Ausgangsdaten 8DO-Profil

Dieses Modul erfordert ein Byte Ausgangsdaten zur Steuerung der digitalen Ausgänge.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	8A	7A	6A	5A	4A	3A	2A	1A

Tabelle 6.8

Hierbei sind:

 1A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.

Eingangsdaten 8DI/8DO-Profil

Dieses Modul liefert ein Byte Eingangsdaten, die den aktuellen Status der Eingangskanäle wiedergeben.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A

Tabelle 6.9

Hierbei sind:

- 1A ... 4A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 4.
- 1B ... 4B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 4.

Ausgangsdaten 8DI/8DO-Profil

Dieses Modul erfordert ein Byte Ausgangsdaten zur Steuerung der digitalen Ausgänge.

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.10

Hierbei sind:

- 5A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 5 bis 8
- 5B ... 8B: Soll-Zustand des Ausgangskanals B (Kontaktpin 4) der M12-Anschlüsse 5 bis

6.3.2 Module mit dezentraler Logikfunktion, Bitbelegung der Prozessdatenerweiterung

Bei Ethernet-IO-Modulen mit dezentraler Logikfunktion (DCU-Funktion) ist der Prozessdatenbereich der Eingangs- und Ausgangsdaten erweitert. Die Erweiterung bietet 16 Bit Ausgangsdaten in Steckplatz 2 und 8 INT Ausgangsdaten in Steckplatz 3.

Nachfolgend ist diese Prozessdatenerweiterung für folgende Ethernet-IO-Module beschrieben:

- ICE1-8DI8DO-G60L-C1-V1D
- ICE1-16DIO-G60L-C1-V1D

Ausgangsdaten DCU-Erweiterung

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	16 Bit I/C	DCU Ext	ension: Ste	ecktplatz 2	<u> </u>		•	
Byte n + 1								
Byte n	INT I/O D	CU Exten	sion: Stec	kplatz 3				
Byte n + 1								
Byte n + 14	INT I/O	CU Exten	sion: Stec	kplatz 3				
Byte n + 15								

Tabelle 6.11

Hierbei sind:

- 16 Bit I/O DCU Extension: Bit-Zustände als Ausgangsdaten der dezentralen Logikfunktion (DCU-Funktion)
- INT I/O DCU Extension: 8 Wort-Datentypen als Ausgangsdaten der dezentralen Logikfunktion (DCU-Funktion), z. B. zur Übertragung von Zählerständen.

Eingangsdaten DCU-Erweiterung

INPUT	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	16 Bit I/C	DCU Ext	ension: St	ecktplatz	2			
Byte n + 1								
Byte n	INT I/O D	CU Exten	sion: Stec	kplatz 3				
Byte n + 1								
Byte n + 14	INT I/O	CU Exten	sion: Stec	kplatz 3				
Byte n + 15								

Tabelle 6.12

Hierbei sind:

- 16 Bit I/O DCU Extension: Bit-Zustände als Eingangsdaten der dezentralen Logikfunktion (DCU-Funktion)
- INT I/O DCU Extension: 8 Wort-Datentypen als Eingangsdaten der dezentralen Logikfunktion (DCU-Funktion), z. B. zur Übertragung von Programmparametern).

6.3.3 16DI-Module, Bitbelegung der Prozessdaten

Eingangsdaten

Das Modul liefert 2 Bytes an Statusinformationen der digitalen Eingänge. Die Bitzuordnung ist wie folgt:

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A
Byte n+1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.13

Hierbei sind:

- 1A ... 8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.
- 1B ... 8B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

6.3.4 8DI/8DO-Module, Bitbelegung der Prozessdaten

Eingangsdaten

Dieses Modul liefert 2 Bytes Eingangsdaten, die den aktuellen Status der Ein- und Ausgangskanäle wiedergeben.

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror).

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A
Byte n+1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.14

Hierbei sind:

- 1A ... 4A: lst-Zustand des Eingangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 4.
- 1B ... 4B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 4.
- 5A ... 8A: lst-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 5 bis 8.
- 5B ... 8B: Ist-Zustand des Ausgangskanals B (Kontaktpin 2) der M12-Anschlüsse 5 bis 8.

Ausgangsdaten

Dieses Modul erfordert 2 Bytes Statusinformationen zur Steuerung der digitalen Ausgänge.

Aus- gang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 6.15

Hierbei sind:

- 5A ... 8A: Soll-Zustand des Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 5 bis 8
- 5B ... 8B: Soll-Zustand des Ausgangskanals B (Kontaktpin 2) der M12-Anschlüsse 5 bis 8.

7 Inbetriebnahme bei EtherCAT

7.1 Vorbereitung

Herunterladen und Installieren der ESI-Datei

Eine ESI-Datei (EtherCAT Slave Information File) wird für die Konfiguration eines Moduls in der Steuerung benötigt. Die ESI-Datei unterstützt alle Modulvarianten.

Sie finden die passende ESI-Datei auf der Produktdetailseite des Geräts im Bereich Inbetriebnahme. Um auf die Produktdetailseite des Geräts zu gelangen, rufen Sie http://www.pepperlfuchs.com auf und geben Sie z. B. die Produktbezeichnung oder Artikelnummer in die Suchfunktion ein.

Installieren Sie die ESI-Datei für die verwendete Modulvariante mit Hilfe der Hardware oder Netzwerkkonfigurationstool Ihres Controllerherstellers. Für TwinCat® muss die ESI-Datei normalerweise in den Installationsordner kopiert werden, zum Beispiel: C:\TwinCAT\3.1\Config\Io\EtherCAT. Nach der Installation stehen die Module In den Hardwarekatalogen zur Verfügung.

Lesen der MAC-Adressen

Jedes Modul hat eine eindeutige MAC-Adresse, die vom Hersteller zugewiesen ist. Die MAC-Adresse kann vom Benutzer nicht geändert werden. Die zugewiesene MAC-Adresse ist auf der Vorderseite des Moduls aufgedruckt.

Für EtherCAT hat diese MAC-Adresse keine Funktion. Für EoE (Ethernet over EtherCAT) wird dem I/O-Modul eine virtuelle MAC-Adresse zugewiesen.

7.2 Konfiguration

PDO-Zuordnungen

Das Modul unterstützt unterschiedliche PDO-Zuordnungen für Ein- und Ausgabedaten. Es gibt Zuordnungen für Bit- oder Byte-Zugriff mit oder ohne Diagnosedaten, die mit den Eingangsdaten verknüpft sind (TxPDO, E/A-Modul zu EtherCAT®-Steuerung).

Durch Auswahl des entsprechenden PDO bestimmen Sie den Dateninhalt.

Die Module bieten folgende PDO-Zuordnungen:

7.2.1 16DIO-Module, PDO-Zuordnung

Die Ethernet-IO-Module der Varianten 16DIO sind universell einsetzbar und bieten Ihnen unterschiedliche Profile als Basiskonfiguration an. Mit diesen können Sie ein 16DIO-Modul unter anderem als 16DI-, 16DO- oder 8DI/8DO-Modul vorkonfigurieren und z. B. im Austauschfall ersetzen. Jeder E/A-Kanal kann als Eingang oder Ausgang für das 16DI/DO-Profil verwendet werden. Soll ein E/A-Kanal als Eingang verwendet werden, sollte der SPS-Programmierer das entsprechende Ausgangs-Bit nicht setzen.

Bei Nutzung der vorkonfigurierten alternativen Profile lässt sich das Risiko einer Fehlkonfiguration durch die Verwendung der Profile 16DI, 16DO oder 8DI/8DO reduzieren. In diesen Profilen sind die E/A-Kanäle auf "Eingang" oder "Ausgang" konfiguriert.

Ethernet-IO-Module vom Typ ICE1-8DI8DO-G60L-C1-V1D ICE1-16DIO-G60L-C1-V1D besitzen die DCU-Funktion. Bei diesen werden die Prozessdaten in beide Datenrichtungen um zusätzlich 4 Byte erweitert.

Aus diesem Grund unterstützt jedes der Profile flexibles E/A-Bit-Mapping. Informationen zur Verwendung des flexiblen E/A-Bit-Mappings finden im noch folgenden Kapitel "Geräteparameter" mit den Abschnitten "Konfiguration der E/A-Richtung (für 16DIO-Module mit/ohne DCU)" und "E/A-Mapping Konfiguration (für 16DIO-Module mit/ohne DCU)"

Übersicht der 16DIO-Profile im Byte-Format

Die folgende Tabelle bietet eine Übersicht über die verfügbaren E/A-Profile und die zugehörigen PDOs im Byte-Format

Profil	For- mat	PDO			PDO-Inhalt	PDO-Inhalt			
		Тур	Index	Größe	Index	Größe	Тур	Name	
16DI/DO	Byte	Input	0x1A00	2	0x6000:01	1.0	USINT	Physical Inputs 0 7	
					0x6000:02	1.0	USINT	Physical Inputs 8 15	
		Output	0x1600	2	0x6000:01	1.0	USINT	Physical Outputs 0 7	
					0x6000:02	1.0	USINT	Physical Outputs 8 15	
16DI	Byte	Input	0x1A00	2	0x6000:01	1.0	USINT	Physical Inputs 0 7	
					0x6000:02	1.0	USINT	Physical Inputs 8 15	
16DO	Byte	Output	0x1600	2	0x6200:01	1.0	USINT	Physical Outputs 0 7	
					0x6200:02	1.0	USINT	Physical Outputs 8 15	
8DI/DO	Byte	Input	0x1A10	1	0x6000:01	1.0	USINT	Physical Inputs 0 7	
		Output	0x1610	1	0x6200:01	1.0	USINT	Physical Outputs 0 7	
8DI	Byte	Input	0x1A10	1	0x6000:01	1.0	USINT	Physical Inputs 0 7	
8DO	Byte	Output	0x1610	1	0x6200:01	1.0	USINT	Physical Outputs 0 7	
8DI/8DO	Byte	Input	0x1A10	1	0x6000:01	1.0	USINT	Physical Inputs 0 7	
		Output	0x1610	1	0x6200:01	1.0	USINT	Physical Outputs 0 7	

Tabelle 7.1

Übersicht der 16DIO-Profile im Bit-Format

Profil	For- mat	PDO			PDO-Inhalt			
		Тур	Index	Größe	Index	Größe	Тур	Name
16DI/DO	Bit	Input	0x1A01	2	0x6020:01	0.1	BIT	Physical Input 0
					0x6020:10	0.1	BIT	Physical Input 15
		Output	0x1601	2	0x6220:01	0.1	BIT	Physical Output 0
					0x6220:10	0.1	BIT	Physical Output 15
16DI	Bit	Input	0x1A01	2	0x6020:01	0.1	BIT	Physical Input 0
					0x6020:10	0.1	BIT	Physical Input 15
16DO	Bit	Output	0x1601	2	0x6220:01	0.1	BIT	Physical Output 0
					0x6220:10	0.1	BIT	Physical Output 15

Profil	For- mat	PDO			PDO-Inhalt			
		Тур	Index	Größe	Index	Größe	Тур	Name
8DI/DO	Bit	Input	0x1A11	1	0x6020:01	0.1	BIT	Physical Input 0
					0x6020:08	0.1	BIT	Physical Input 7
		Output	0x1611	1	0x6220:01	0.1	BIT	Physical Output 0
					0x6220:08	0.1	BIT	Physical Output 7
8DI	Bit	Input	0x1A11	1	0x6020:01	0.1	BIT	Physical Input 0
					0x6220:08	0.1	BIT	Physical Input 7
8DO	Bit	Output	0x1611	1	0x6220:01	0.1	BIT	Physical Output 0
					0x6220:08	0.1	BIT	Physical Output 7
8DI/8DO	Bit	Input	0x1A11	1	0x6020:01	0.1	BIT	Physical Input 0
					0x6020:08	0.1	BIT	Physical Input 7
		Output	0x1611	1	0x6220:01	0.1	BIT	Physical Output 0
					0x6220:08	0.1	BIT	Physical Output 7

Tabelle 7.2

Die folgenden Tabellen zeigen das Prozessdaten-Mapping für jedes Profil mit der Standard-E/A-Richtung und den voreingestellten Mapping-Parametern.

Hinweis!

Die folgenden Tabellen zeigen die Prozessdaten für jedes Profil an, bei den voreingestellten Mapping-Parametern für die Ethernet-IO-Module ICE1-16DIO-G60L-V1D und ICE1-16DIO-G60L-C1-V1D mit DCU-Funktion

- X1A ... X8A: Daten von Kanal A (Pin 4) von Steckplatz X1 bis X8
- X1B ... X8B: Daten von Kanal B (Pin 2) von Steckplatz X1 bis X8

PDOs 0x1A00/0x1600, 16DI/DO-Profil mit Daten im Byte-Format

Mapping-Pa (Default-We renz)			Prozessdaten						
			Input-PDO: 0x1A00		Output-PDO: 0x1600				
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit			
0x2304:01	0	X1A	Physical Inputs 0 7	0	Physical Outputs 0 7	0			
0x2304:02	1	X1B	Physical Inputs 0 7	1	Physical Outputs 0 7	1			
0x2304:03	2	X2A	Physical Inputs 0 7	2	Physical Outputs 0 7	2			
0x2304:04	3	X2B	Physical Inputs 0 7	3	Physical Outputs 0 7	3			
0x2304:05	4	ХЗА	Physical Inputs 0 7	4	Physical Outputs 0 7	4			
0x2304:06	5	ХЗВ	Physical Inputs 0 7	5	Physical Outputs 0 7	5			

Mapping-Pa (Default-We			Provocadator							
renz)			Prozessdaten							
			Input-PDO: 0x1A00		Output-PDO: 0x1600					
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit				
0x2304:07	6	X4A	Physical Inputs 0 7	6	Physical Outputs 0 7	6				
0x2304:08	7	X4B	Physical Inputs 0 7	7	Physical Outputs 0 7	7				
0x2304:09	8	X5A	Physical Inputs 8 15	0	Physical Outputs 8 15	0				
0x2304:0A	9	X5B	Physical Inputs 8 15	1	Physical Outputs 8 15	1				
0x2304:0B	10	X6A	Physical Inputs 8 15	2	Physical Outputs 8 15	2				
0x2304:0C	11	X6B	Physical Inputs 8 15	3	Physical Outputs 8 15	3				
0x2304:0D	12	X7A	Physical Inputs 8 15	4	Physical Outputs 8 15	4				
0x2304:0E	13	X7B	Physical Inputs 8 15	5	Physical Outputs 8 15	5				
0x2304:0F	14	X8A	Physical Inputs 8 15	6	Physical Outputs 8 15	6				
0x2304:10	15	X8B	Physical Inputs 8 15	7	Physical Outputs 8 15	7				

Tabelle 7.3

PDO 0x1A0, 16DI-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: **Eingang**.

Mapping-Pa (Default-We renz)			Prozessdaten				
			Input-PDO: 0x1A00		Output-PDO:		
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit	
0x2304:01	0	X1A	Physical Inputs 0 7	0	-	-	
0x2304:02	1	X1B	Physical Inputs 0 7	1	-	-	
0x2304:03	2	X2A	Physical Inputs 0 7	2	-	-	
0x2304:04	3	X2B	Physical Inputs 0 7	3	-	-	
0x2304:05	4	ХЗА	Physical Inputs 0 7	4	-	-	
0x2304:06	5	ХЗВ	Physical Inputs 0 7	5	-	-	
0x2304:07	6	X4A	Physical Inputs 0 7	6	-	-	
0x2304:08	7	X4B	Physical Inputs 0 7	7	-	-	
0x2304:09	8	X5A	Physical Inputs 8 15	0	-	-	
0x2304:0A	9	X5B	Physical Inputs 8 15	1	-	-	
0x2304:0B	10	X6A	Physical Inputs 8 15	2	-	-	
0x2304:0C	11	X6B	Physical Inputs 8 15	3	-	-	
0x2304:0D	12	X7A	Physical Inputs 8 15	4	-	-	
0x2304:0E	13	X7B	Physical Inputs 8 15	5	-	-	
0x2304:0F	14	X8A	Physical Inputs 8 15	6	-	-	
0x2304:10	15	X8B	Physical Inputs 8 15	7	-	-	

Tabelle 7.4

PDO 0x1600, 16DO-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: Ausgang.

Mapping-Pa (Default-We renz)			Prozessdaten				
			Input-PDO:		Output-PDO: 0x1600		
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit	
0x2304:01	0	X1A	-	-	Physical Outputs 0 7	0	
0x2304:02	1	X1B	-	-	Physical Outputs 0 7	1	
0x2304:03	2	X2A	-	-	Physical Outputs 0 7	2	
0x2304:04	3	X2B	-	-	Physical Outputs 0 7	3	
0x2304:05	4	ХЗА	-	-	Physical Outputs 0 7	4	
0x2304:06	5	ХЗВ	-	-	Physical Outputs 0 7	5	
0x2304:07	6	X4A	-	-	Physical Outputs 0 7	6	
0x2304:08	7	X4B	-	-	Physical Outputs 0 7	7	
0x2304:09	8	X5A	-	-	Physical Outputs 8 15	0	
0x2304:0A	9	X5B	-	-	Physical Outputs 8 15	1	
0x2304:0B	10	X6A	-	-	Physical Outputs 8 15	2	
0x2304:0C	11	X6B	-	-	Physical Outputs 8 15	3	
0x2304:0D	12	X7A	-	-	Physical Outputs 8 15	4	
0x2304:0E	13	Х7В	-	-	Physical Outputs 8 15	5	
0x2304:0F	14	X8A	-	-	Physical Outputs 8 15	6	
0x2304:10	15	X8B	-	-	Physical Outputs 8 15	7	

Tabelle 7.5

PDOs 0x1A10/0x1610, 8DI/DO-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: **Eingang/ Ausgang**.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten					
			Input-PDO: 0x1A10		Output-PDO: 0x1610		
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit	
0x2304:01	0	X1A	Physical Inputs 0 7	0	Physical Outputs 0 7	0	
0x2304:02	Inaktiv	X1B	-	-	-	-	
0x2304:03	1	X2A	Physical Inputs 0 7	1	Physical Outputs 0 7	1	
0x2304:04	Inaktiv	X2B	-	-	-	-	
0x2304:05	2	ХЗА	Physical Inputs 0 7	2	Physical Outputs 0 7	2	
0x2304:06	Inaktiv	ХЗВ	-	-	-	-	
0x2304:07	3	X4A	Physical Inputs 0 7	3	Physical Outputs 0 7	3	
0x2304:08	Inaktiv	X4B	-	-	-	-	
0x2304:09	4	X5A	Physical Inputs 0 7	0	Physical Outputs 0 7	4	
0x2304:0A	Inaktiv	X5B	-	-	-	-	
0x2304:0B	5	X6A	Physical Inputs 0 7	5	Physical Outputs 0 7	5	

EPPERL+FUCHS

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten				
			Input-PDO: 0x1A10		Output-PDO: 0x1610	
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit
0x2304:0C	Inaktiv	X6B	-	-	-	-
0x2304:0D	6	X7A	Physical Inputs 0 7	6	Physical Outputs 0 7	6
0x2304:0E	Inaktiv	X7B	-	-	-	-
0x2304:0F	7	X8A	Physical Inputs 0 7	7	Physical Outputs 0 7	7
0x2304:10	Inaktiv	X8B	-	-		-

Tabelle 7.6

PDO 0x1A10, 8DI-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: Eingang.

Mapping-Parameter (Default-Werte, Referenz)			Prozessdaten				
			Input-PDO: 0x1A10		Output-PDO:		
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit	
0x2304:01	0	X1A	Physical Inputs 0 7	0	-	-	
0x2304:02	Inaktiv	X1B	-	-	-	-	
0x2304:03	1	X2A	Physical Inputs 0 7	1	-	-	
0x2304:04	Inaktiv	X2B	-	-	-	-	
0x2304:05	2	ХЗА	Physical Inputs 0 7	2	-	-	
0x2304:06	Inaktiv	ХЗВ	-	-	-	-	
0x2304:07	3	X4A	Physical Inputs 0 7	3	-	-	
0x2304:08	Inaktiv	X4B	-	-	-	-	
0x2304:09	4	X5A	Physical Inputs 0 7	0	-	-	
0x2304:0A	Inaktiv	X5B	-	-	-	-	
0x2304:0B	5	X6A	Physical Inputs 0 7	5	-	-	
0x2304:0C	Inaktiv	X6B	-	-	-	-	
0x2304:0D	6	X7A	Physical Inputs 0 7	6	-	-	
0x2304:0E	Inaktiv	X7B	-	-	-	-	
0x2304:0F	7	X8A	Physical Inputs 0 7	7	-	-	
0x2304:10	Inaktiv	X8B	-	-		-	

Tabelle 7.7

PDO 0x1610, 8DO-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: Ausgang.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten				
			Input-PDO:		Output-PDO: 0x1610	
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit
0x2304:01	0	X1A	-	-	Physical Outputs 0 7	0
0x2304:02	Inaktiv	X1B	-	-	-	-
0x2304:03	1	X2A	-	-	Physical Outputs 0 7	1
0x2304:04	Inaktiv	X2B	-	-	-	-
0x2304:05	2	ХЗА	-	-	Physical Outputs 0 7	2
0x2304:06	Inaktiv	ХЗВ	-	-	-	-
0x2304:07	3	X4A	-	-	Physical Outputs 0 7	3
0x2304:08	Inaktiv	X4B	-	-	-	-
0x2304:09	4	X5A	-	-	Physical Outputs 0 7	4
0x2304:0A	Inaktiv	X5B	-	-	-	-
0x2304:0B	5	X6A	-	-	Physical Outputs 0 7	5
0x2304:0C	Inaktiv	X6B	-	-	-	-
0x2304:0D	6	X7A	-	-	Physical Outputs 0 7	6
0x2304:0E	Inaktiv	X7B	-	-	-	-
0x2304:0F	7	X8A	-	-	Physical Outputs 0 7	7
0x2304:10	Inaktiv	X8B	-	-		-

Tabelle 7.8

PDOs 0x1A10/0x1610, 8DI/8DO-Profil mit Daten im Byte-Format

Prozessdaten für jeden E/A-Port: **Eingang/ Ausgang**.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten					
			Input-PDO: 0x1A10	Input-PDO: 0x1A10		Output-PDO: 0x1610	
Index: Byte	Wert	Port	Bytename	Bit	Bytename	Bit	
0x2304:01	0	X1A	Physical Inputs 0 7	0	-	-	
0x2304:02	1	X1B	Physical Inputs 0 7	1	-	-	
0x2304:03	2	X2A	Physical Inputs 0 7	2	-	-	
0x2304:04	3	X2B	Physical Inputs 0 7	3	-	-	
0x2304:05	4	ХЗА	Physical Inputs 0 7	4	-	-	
0x2304:06	5	ХЗВ	Physical Inputs 0 7	5	-	-	
0x2304:07	6	X4A	Physical Inputs 0 7	6	-	-	
0x2304:08	7	X4B	Physical Inputs 0 7	7	-	-	
0x2304:09	8	X5A	-	-	Physical Outputs 0 7	0	
0x2304:0A	9	X5B	-	-	Physical Outputs 0 7	1	
0x2304:0B	10	X6A	-	-	Physical Outputs 0 7	2	
0x2304:0C	11	X6B	-	-	Physical Outputs 0 7	3	
0x2304:0D	12	X7A	-	-	Physical Outputs 0 7	4	

Mapping-Pa (Default-We renz)							
			Input-PDO: 0x1A10		Output-PDO: 0x1610		
Index: Byte	Wert	Port	Bytename	Bytename Bit		Bit	
0x2304:0E	13	X7B	-	-	Physical Outputs 0 7	5	
0x2304:0F	14	X8A	-	-	Physical Outputs 0 7	6	
0x2304:10	15	X8B	-	-	Physical Outputs 0 7	7	

Tabelle 7.9

PDOs 0x1A01/0x1601, 16DI/DO-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Eingang/ Ausgang.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten			
			Input-PDO: 0x1A01	Output-PDO: 0x1601	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:01	0	X1A	Physical Input 0	Physical Output 0	
0x2304:02	1	X1B	Physical Input 1	Physical Output 1	
0x2304:03	2	X2A	Physical Input 2	Physical Output 2	
0x2304:04	3	X2B	Physical Input 3	Physical Output 3	
0x2304:05	4	ХЗА	Physical Input 4	Physical Output 4	
0x2304:06	5	ХЗВ	Physical Input 5	Physical Output 5	
0x2304:07	6	X4A	Physical Input 6	Physical Output 6	
0x2304:08	7	X4B	Physical Input 7	Physical Output 7	
0x2304:09	8	X5A	Physical Input 8	Physical Output 8	
0x2304:0A	9	X5B	Physical Input 9	Physical Output 9	
0x2304:0B	10	X6A	Physical Input 10	Physical Output 10	
0x2304:0C	11	X6B	Physical Input 11	Physical Output 11	
0x2304:0D	12	X7A	Physical Input 12	Physical Output 12	
0x2304:0E	13	X7B	Physical Input 13	Physical Output 13	
0x2304:0F	14	X8A	Physical Input 14	Physical Output 14	
0x2304:10	15	X8B	Physical Input 15 Physical Output 15		

Tabelle 7.10

PDO 0x1A01, 16DI-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: **Eingang**.

Mapping-Parameter (Default-Werte, Referenz)			Prozessdaten		
			Input-PDO: 0x1A01	Output-PDO	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:01	0	X1A	Physical Input 0	-	
0x2304:02	1	X1B	Physical Input 1	-	
0x2304:03	2	X2A	Physical Input 2	-	

Mapping-Parameter (Default-Werte, Referenz)			Prozessdaten		
			Input-PDO: 0x1A01	Output-PDO	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:04	3	X2B	Physical Input 3	-	
0x2304:05	4	ХЗА	Physical Input 4	-	
0x2304:06	5	ХЗВ	Physical Input 5	-	
0x2304:07	6	X4A	Physical Input 6	-	
0x2304:08	7	X4B	Physical Input 7	-	
0x2304:09	8	X5A	Physical Input 8	-	
0x2304:0A	9	X5B	Physical Input 9	-	
0x2304:0B	10	X6A	Physical Input 10	-	
0x2304:0C	11	X6B	Physical Input 11	-	
0x2304:0D	12	X7A	Physical Input 12	-	
0x2304:0E	13	X7B	Physical Input 13	-	
0x2304:0F	14	X8A	Physical Input 14	-	
0x2304:10	15	X8B	Physical Input 15	-	

Tabelle 7.11

PDO 0x1601, 16DO-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Ausgang.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten		
			Input-PDO: 0x1A01	Output-PDO: 0x1601
Index: Byte	Wert	Port	Bit	Bit
0x2304:01	0	X1A	-	Physical Output 0
0x2304:02	1	X1B	-	Physical Output 1
0x2304:03	2	X2A	-	Physical Output 2
0x2304:04	3	X2B	-	Physical Output 3
0x2304:05	4	ХЗА	-	Physical Output 4
0x2304:06	5	ХЗВ	-	Physical Output 5
0x2304:07	6	X4A	-	Physical Output 6
0x2304:08	7	X4B	-	Physical Output 7
0x2304:09	8	X5A	-	Physical Output 8
0x2304:0A	9	X5B	-	Physical Output 9
0x2304:0B	10	X6A	-	Physical Output 10
0x2304:0C	11	X6B	-	Physical Output 11
0x2304:0D	12	X7A	-	Physical Output 12
0x2304:0E	13	X7B	-	Physical Output 13
0x2304:0F	14	X8A	-	Physical Output 14
0x2304:10	15	X8B	- Physical Output 15	

Tabelle 7.12

PDOs 0x1A11/0x1611, 8DI/DO-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Eingang/ Ausgang.

Mapping-Parameter (Default-Werte, Referenz)			Prozessdaten		
			Input-PDO: 0x1A11	Output-PDO: 0x1611	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:01	0	X1A	Physical Input 0	Physical Output 0	
0x2304:02	Inaktiv	X1B	-	-	
0x2304:03	1	X2A	Physical Input 1	Physical Output 1	
0x2304:04	Inaktiv	X2B	-	-	
0x2304:05	2	ХЗА	Physical Input 2	Physical Output 4	
0x2304:06	Inaktiv	ХЗВ	-	-	
0x2304:07	3	X4A	Physical Input 3	Physical Output 3	
0x2304:08	Inaktiv	X4B	-	-	
0x2304:09	4	X5A	Physical Input 4	Physical Output 4	
0x2304:0A	Inaktiv	X5B	-	-	
0x2304:0B	5	X6A	Physical Input 5	Physical Output 5	
0x2304:0C	Inaktiv	X6B	-	-	
0x2304:0D	6	X7A	Physical Input 6	Physical Output 6	
0x2304:0E	Inaktiv	X7B	-	-	
0x2304:0F	7	X8A	Physical Input 7	Physical Output 7	
0x2304:10	Inaktiv	X8B	-	-	

Tabelle 7.13

PDO 0x1A11, 8DI-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Eingang.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten		
			Input-PDO: 0x1A11	Output-PDO:
Index: Byte	Wert	Port	Bit	Bit
0x2304:01	0	X1A	Physical Input 0	-
0x2304:02	Inaktiv	X1B	-	-
0x2304:03	1	X2A	Physical Input 1	-
0x2304:04	Inaktiv	X2B	-	-
0x2304:05	2	ХЗА	Physical Input 2	-
0x2304:06	Inaktiv	ХЗВ	-	-
0x2304:07	3	X4A	Physical Input 3	-
0x2304:08	Inaktiv	X4B	-	-
0x2304:09	4	X5A	Physical Input 4	-
0x2304:0A	Inaktiv	X5B	-	-
0x2304:0B	5	X6A	Physical Input 5	-
0x2304:0C	Inaktiv	X6B	-	-

Mapping-Parameter (Default-Werte, Referenz) **Prozessdaten** Input-PDO: 0x1A11 **Output-PDO: Index: Byte** Wert **Port** Bit Bit 0x2304:0D X7A Physical Input 6 0x2304:0E X7B Inaktiv 0x2304:0F 7 X8A Physical Input 7 0x2304:10 Inaktiv X8B

Tabelle 7.14

PDO 0x1611, 8DO-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Ausgang.

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten			
			Input-PDO: 0x1A11	Output-PDO: 0x1611	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:01	0	X1A	-	Physical Output 0	
0x2304:02	Inaktiv	X1B	-	-	
0x2304:03	1	X2A	-	Physical Output 1	
0x2304:04	Inaktiv	X2B	-	-	
0x2304:05	2	ХЗА	-	Physical Output 4	
0x2304:06	Inaktiv	ХЗВ	-	-	
0x2304:07	3	X4A	-	Physical Output 3	
0x2304:08	Inaktiv	X4B	-	-	
0x2304:09	4	X5A	-	Physical Output 4	
0x2304:0A	Inaktiv	X5B	-	-	
0x2304:0B	5	X6A	-	Physical Output 5	
0x2304:0C	Inaktiv	X6B	-	-	
0x2304:0D	6	X7A	-	Physical Output 6	
0x2304:0E	Inaktiv	X7B	-	-	
0x2304:0F	7	X8A	-	Physical Output 7	
0x2304:10	Inaktiv	X8B	-	-	

Tabelle 7.15

PDOs 0x1A11/0x1611, 8DI/8DO-Profil mit Daten im Bit-Format

Prozessdaten für jeden E/A-Port: Eingang/ Ausgang.

Mapping-Parameter (Default-Werte, Referenz)			Prozessdaten		
			Input-PDO: 0x1A01	Output-PDO: 0x1611	
Index: Byte	Wert	Port	Bit	Bit	
0x2304:01	0	X1A	Physical Input 0	-	
0x2304:02	1	X1B	Physical Input 1	-	

Mapping-Parameter (Default-Werte, Referenz)		Prozessdaten		
			Input-PDO: 0x1A01	Output-PDO: 0x1611
Index: Byte	Wert	Port	Bit	Bit
0x2304:03	2	X2A	Physical Input 2	-
0x2304:04	3	X2B	Physical Input 3	-
0x2304:05	4	ХЗА	Physical Input 4	-
0x2304:06	5	ХЗВ	Physical Input 5	-
0x2304:07	6	X4A	Physical Input 6	-
0x2304:08	7	X4B	Physical Input 7	-
0x2304:09	8	X5A	-	Physical Output 0
0x2304:0A	9	X5B	-	Physical Output 1
0x2304:0B	10	X6A	-	Physical Output 2
0x2304:0C	11	X6B	-	Physical Output 3
0x2304:0D	12	X7A	-	Physical Output 4
0x2304:0E	13	X7B	-	Physical Output 5
0x2304:0F	14	X8A	-	Physical Output 6
0x2304:10	15	X8B	-	Physical Output 7

Tabelle 7.16

PDO 0x1A04, Fehlerregister

Die PDOs 0x1A00, 0x1A01, 0x1A10 oder 0x1A11 können flexibel mit den PDOs 0x1A04 (Fehlerregister) und/oder 0x1A05 (Diagnoseregister) kombiniert werden.

PDO		Inhalt					
Index	Index Größe		Index Größe Typ				
0x1A04	1	0x1001:01	1.0	USINT	Fehlerregister		

Tabelle 7.17

Inhalt des Fehlerregisters

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Beschreibung
0	0	0	0	0	0	0	0	Kein Fehler
-	0	0	0	0	-	1	1	Überlast Aus- gang, MI-SCS
-	0	0	0	0	1	-	1	Spannungsfeh- ler, MI-LVS
1	0	0	0	0	-	-	1	Zusatzfunktion Parameterfehler, MI-PRM
1	0	0	0	0	-	-	1	Force Mode aktiv, MI-FC
1	0	0	0	0	-	-	1	Zusatzfunktion Gerätediagnose, MI-IME

Tabelle 7.18

Das Symbol "-" kann "0" oder "1" sein, wenn jeweils mehr als 1 Fehler aktiv ist.

PDO 0x1A05, Diagnoseregister

Die PDOs 0x1A00, 0x1A01, 0x1A10 oder 0x1A11 können flexibel mit den PDOs 0x1A04 (Fehlerregister) und/oder 0x1A05 (Diagnoseregister) kombiniert werden.

PDO		Inhalt				
Index	Größe	Index Größe Typ Name				
0x1A05	1	0x2001:01	4.0	UDINT	Diagnoseregister	

Tabelle 7.19

Inhalt des Diagnoseregisters

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	MI-IME	MI-FC	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 2	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 3	CE-X4B	CE-X4A	CE-X3B	CE-X3A	CE-X2B	CE-X2A	CE-X1B	CE-X1A
Byte 4	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 7.20

TwinCAT-Darstellung als UDINT: 0x Byte 4 - Byte 3 - Byte 2 - Byte 1

Legende

MI-LVS	Modulinformationsbyte - Spannung für System-/Sensorleistung niedrig
MI-LVA	Modulinformationsbyte - Spannung für Aktuator niedrig
MI-SCS	Modulinformationsbyte - Sensorkurzschluss an einem M12-Steckplatz
MI-SCA	Modulinformationsbyte - Aktuatorkurzschluss
MI-PRM	Modulinformationsbyte - Parameterfehler
MI-FC	Modulinformationsbyte - Force Mode aktiv
MI-IME	Modulinformationsbyte - interner Fehler
SCS-X1 SCS-X8	Sensorkurzschluss an Steckplatz X1 bis X8
CE-X5A CE-X8A	Kanalfehler Ausgangskanal A (Kontaktpin 4) der Ausgänge X5 bis X8.
CE-X5B CE-X8B	Kanalfehler Ausgangskanal B (Kontaktpin 2) der Ausgänge X5 bis X8.

7.2.2 Module mit dezentraler Logikfunktion, Bitbelegung der Prozessdatenerweiterung

Ethernet-IO-Modulen mit dezentraler Logikfunktion (DCU-Funktion) verfügen über zusätzliche spezifische Prozessdatenobjekte. Sie erweitern den Prozessdatenbereich die Eingangs- und Ausgangsdaten jeweils um 2 Byte.

Nachfolgend ist diese Prozessdatenerweiterung für folgende Ethernet-IO-Module beschrieben:

- ICE1-8DI8DO-G60L-C1-V1D
- ICE1-16DIO-G60L-C1-V1D

PDO 0x1A06, DCU-Eingänge (2 Byte)

Diese 2 Byte können für die dezentrale Logikfunktion (DCU-Funktion) als zusätzliche Eingangsdaten verwendet werden (TxPDO, EtherCAT®-Slave an Steuerung). Die Übertragung der Dateien können Sie in der Prozessdaten-PDO-Zuordnung des Engineering Tool deaktivieren.

PDO		PDO-Inhalt				
Index Größe		Index	Größe	e Typ Name		
0x1A06	2	0x6040:01	1.0	USINT	DCU-Inputs 0 7	
		0x6040:02	1.0	USINT	DCU-Inputs 8 15	

Tabelle 7.21

PDO 0x1602, DCU-Ausgänge (2 Byte)

Diese 2 Byte können für die dezentrale Logikfunktion (DCU-Funktion) als zusätzliche Ausgangsdaten verwendet werden (RxPDO, EtherCAT®-Steuerung an Slave). Die Übertragung der Dateien können Sie in der Prozessdaten-PDO-Zuordnung des Engineering Tool deaktivieren.

PDO		PDO-Inhalt	PDO-Inhalt				
Index	Größe	Index	Größe	Тур	Name		
0x1602	2	0x6040:01	1.0	USINT	DCU-Outputs 0 7		
		0x6040:02	1.0	USINT	DCU-Outputs 8 15		

Tabelle 7.22

PDO 0x1A08, zusätzliche DCU-Eingänge, (8 Signed Integer)

Diese 8 Integer-Werte (Ganzzahl) mit Vorzeichen können die dezentrale Logikfunktion (z. B. für Zähler) als zusätzliche Eingangsdaten verwendet werden (TxPDO, EtherCAT®-Slave an Steuerung). Die Übertragung der Dateien kann in der Prozessdaten-PDO-Zuordnung des Engineering Tool deaktiviert werden.

PDO		PDO-Inhalt					
Index	Größe	Index	Größe	Тур	Name		
0x1A08	2	0x6080:01	2.0	INT	DCU Additional Input 0		
		0x6080:02	2.0	INT	DCU Additional Input 1		
		0x6080:03	2.0	INT	DCU Additional Input 2		
		0x6080:04	2.0	INT	DCU Additional Input 3		
			0x6080:05	2.0	INT	DCU Additional Input 4	
		0x6080:06	2.0	INT	DCU Additional Input 5		
			2.0	INT	DCU Additional Input 6		
		0x6080:08	2.0	INT	DCU Additional Input 7		

Tabelle 7.23

PDO 0x1604, zusätzliche DCU-Ausgänge (8 Signed Integer)

Diese 8 Integer-Werte (Ganzzahl) mit Vorzeichen können für die dezentrale Logikfunktion (DCU-Funktion) als zusätzliche Ausgangsdaten verwendet werden (RxPDO, EtherCAT®-Steuerung an Slave). Die Übertragung der Dateien können Sie in der Prozessdaten-PDO-Zuordnung des Engineering Tool deaktivieren.

PDO		PDO-Inhalt					
Index	Größe	Index	Größe	Тур	Name		
0x1604	2	0x6280:01	2.0	INT	DCU Additional Output 0		
		0x6280:02	2.0	INT	DCU Additional Output 1		
		0x6280:03	2.0	INT	DCU Additional Output 2		
		0x6280:04	2.0	INT	DCU Additional Output 3		
		0x6280:05	2.0	INT	DCU Additional Output 4		
		0x6280:06	2.0	INT	DCU Additional Output 5		
			2.0	INT	DCU Additional Output 6		
		0x6280:08	2.0	INT	DCU Additional Output 7		

Tabelle 7.24

7.2.3 16DI-Module, PDO-Zuordnung

PDO für das ICE1-16DI-G60L-V1D

Die PDOs 0x1A00 oder 0x1A01 steuern die Eingangsdaten des Moduls

PDO 0x1A00, Eingangsdaten im Byte-Format

PDO		Inhalt					
Index Größe		Index	Größe	Тур	Name		
0x1A00	2	0x6000:01	1.0	USINT	Eingangskanal X1A X4B		
		0x6000:02	1.0	USINT	Eingangskanal X5A X8B		

Tabelle 7.25

Inhalt von Eingangskanal X1A..X4B und Eingangskanal X5A..X8B

Inde	X	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x60 1	00:0	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
0x60 2	00:0	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Tabelle 7.26

Hierbei sind:

- X1A ... X8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der Eingänge X1 bis X8.
- X1B ... X8B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der Eingänge X1 bis X8.

PDO 0x1A01, Eingangsdaten im Bit-Format

PDO		Inhalt			
Index	Größe	Index	Größe	Тур	Name
0x1A01	2	0x6020:01	0.1	BIT	Eingangskanal X1A
		0x6020:02	0.1	BIT	Eingangskanal X1B
		0x6020:03	0.1	BIT	Eingangskanal X2A
	0x6020:04	0.1	BIT	Eingangskanal X2B	
		0x6020:05	0.1	BIT	Eingangskanal X3A
		0x6020:06	0.1	BIT	Eingangskanal X3B
		0x6020:07	0.1	BIT	Eingangskanal X4A
		0x6020:08	0.1	BIT	Eingangskanal X4B
		0x6020:09	0.1	BIT	Eingangskanal X5A
		0x6020:0A	0.1	BIT	Eingangskanal X5B
		0x6020:0B	0.1	BIT	Eingangskanal X6A
		0x6020:0C	0.1	BIT	Eingangskanal X6B
		0x6020:0D	0.1	BIT	Eingangskanal X7A
		0x6020:0E	0.1	BIT	Eingangskanal X7B
		0x6020:0F	0.1	BIT	Eingangskanal X8A
		0x6020:10	0.1	BIT	Eingangskanal X8B

Tabelle 7.27

Die PDOs 0x1A00 und 0x1A01 können mit dem PDO 0x1A04 (Fehlerregister) und/oder dem PDO 0x1A05 (Diagnoseregister) kombiniert werden.

PDO 0x1A04, Fehlerregister

PDO		Inhalt			
Index	Größe	Index Größe Typ Name			
0x1A04	1	0x1001:01	1.0	USINT	Fehlerregister

Tabelle 7.28

Inhalt des Fehlerregisters

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Beschreibung
0	0	0	0	0	0	0	0	Kein Fehler
-	0	0	0	0	-	1	1	Überlast Aus- gang, MI-SCS
-	0	0	0	0	1	-	1	Spannungsfeh- ler, MI-LVS
1	0	0	0	0	-	-	1	Force Mode aktiv, MI-FC
1	0	0	0	0	-	-	1	Zusatzfunktion Gerätediagnose, MI-IME

Tabelle 7.29

Das Symbol "-" kann "0" oder "1" sein, wenn jeweils mehr als 1 Fehler aktiv ist.

PDO 0x1A05, Diagnoseregister

PDO		Inhalt				
Index Größe Index		Index	Größe	Тур	Name	
0x1A05	1	0x2001:01	4.0	UDINT	Diagnoseregister	

Tabelle 7.30

Inhalt des Diagnoseregisters

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	MI-IME	MI-FC	0	0	0	MI-SCS	0	MI-LVS
Byte 2	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 3	0	0	0	0	0	0	0	0
Byte 4	0	0	0	0	0	0	1	0

Tabelle 7.31

TwinCAT-Darstellung als UDINT: 0x Byte 4 - Byte 3 - Byte 2 - Byte 1

Legende

MI-LVS Modulinformationsbyte - Spannung für System-/Sensorleistung niedrig
MI-SCS Modulinformationsbyte - Sensorkurzschluss an einem M12-Steckplatz
MI-FC Modulinformationsbyte - Force Mode aktiv
MI-IME Modulinformationsbyte - interner Fehler
SCS-X1 ... Sensorkurzschluss an Steckplatz X1 bis X8

7.2.4 8DI8DO-Module, PDO-Zuordnung

PDO für die ICE1-8DI8DO-G60L-V1D und ICE1-8DI8DO-G60L-C1-V1D

Die PDOs 0x1A00 oder 0x1A01 steuern die Eingangsdaten der Module.

Die PDOs 0x1600 oder 0x1601 steuern die Ausgänge der Module.

PDO 0x1A00, Eingangsdaten im Byte-Format

PDO		Inhalt					
Index Größe		Index Größe Typ			Name		
0x1A00	1	0x6000:01	1.0	USINT	Eingangskanal X1A X8B		

Tabelle 7.32

Inhalt von Port X1A...X4B und Port X5A ... X8B

Index	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x6000:0	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
0x6000:0 2	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Tabelle 7.33

Hierbei sind:

• X1A ... X8A: Ist-Zustand des Eingangskanals A (Kontaktpin 4) der Eingänge X1 bis X8.

• X1B ... X8B: Ist-Zustand des Eingangskanals B (Kontaktpin 2) der Eingänge X1 bis X8.

PDO 0x1A01, Eingangsdaten im Bit-Format

PDO		Inhalt			
Index	Größe	Index	Größe	Тур	Name
0x1A01	2	0x6020:01	0.1	BIT	Eingangskanal X1A
		0x6020:02	0.1	BIT	Eingangskanal X1B
		0x6020:03	0.1	BIT	Eingangskanal X2A
		0x6020:04	0.1	BIT	Eingangskanal X2B
	0x6020:05	0.1	BIT	Eingangskanal X3A	
		0x6020:06	0.1	BIT	Eingangskanal X3B
		0x6020:07	0.1	BIT	Eingangskanal X4A
		0x6020:08	0.1	BIT	Eingangskanal X4B
		0x6020:09	0.1	Bit	Eingangskanal X5A
		0x6020:0A	0.1	Bit	Eingangskanal X5B
		0x6020:0B	0.1	Bit	Eingangskanal X6A
		0x6020:0C	0.1	Bit	Eingangskanal X6B
		0x6020:0D	0.1	Bit	Eingangskanal X7A
		0x6020:0E	0.1	Bit	Eingangskanal X7B
		0x6020:0F	0.1	Bit	Eingangskanal X8A
		0x6020:10	0.1	Bit	Eingangskanal X8B

Tabelle 7.34

Für die Eingangsdaten (TxPDO des Moduls) stehen die folgenden PDOs zur Verfügung.

PDO 0x1A02, Ausgangsstatus im Byte-Format

Dieses Objekt liefert optional wählbar die realen Ausgangszustände als Eingangsdaten an die Steuerung (Output Mirror):

PDO		Inhalt			
Index	Größe	Index	Größe	Тур	Name
0x1A02	2	0x2200:01	1.0	USINT	Ausgangskanal X5A X8B

Tabelle 7.35

Inhalt von Ausgangskanal X5A ... X8B

Index	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x2200:0 1	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Tabelle 7.36

Hierbei sind:

- X5A ... X8A: Ist-Zustand des Ausgangskanals A (Kontaktpin 4) der Ausgänge X5 bis X8.
- X5B ... X8B: Ist-Zustand des Ausgangskanals B (Kontaktpin 2) der Ausgänge X5 bis X8.

PDO 0x1A03, Ausgangsstatus im Bit-Format

PDO		Inhalt			
Index	Größe	Index	Größe	Тур	Name
0x1A03	2	0x2220:01	0.1	BIT	Ausgangskanal X5A
		0x2220:02	0.1	BIT	Ausgangskanal X5B
		0x2220:03	0.1	BIT	Ausgangskanal X6A
		0x2220:04	0.1	BIT	Ausgangskanal X6B
		0x2220:05	0.1	BIT	Ausgangskanal X7A
		0x2220:06	0.1	BIT	Ausgangskanal X7B
		0x2220:07	0.1	BIT	Ausgangskanal X8A
		0x2220:08	0.1	BIT	Ausgangskanal X8B

Tabelle 7.37

Die PDOs 0x1A01, 0x1A02 und 0x1A03 können mit dem PDO 0x1A04 (Fehlerregister) und/oder dem PDO 0x1A05 (Diagnoseregister) kombiniert werden.

PDO 0x1A04, Fehlerregister

PDO		Inhalt					
Index	Größe	Index	Größe	Тур	Name		
0x1A04	1	0x1001:01	1.0	USINT	Fehlerregister		

Tabelle 7.38

Inhalt des Fehlerregisters

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Beschreibung
0	0	0	0	0	0	0	0	Kein Fehler
-	0	0	0	0	-	1	1	Überlast Aus- gang, MI-SCS
-	0	0	0	0	1	-	1	Spannungsfeh- ler, MI-LVS
1	0	0	0	0	-	-	1	Force Mode aktiv, MI-FC
1	0	0	0	0	-	-	1	Zusatzfunktion Gerätediagnose, MI-IME

Tabelle 7.39

Das Symbol "-" kann "0" oder "1" sein, wenn jeweils mehr als 1 Fehler aktiv ist.

PDO 0x1A05, Diagnoseregister

PDO		Inhalt				
Index	Größe	Index	Größe	Тур	Name	
0x1A05	1	0x2001:01	4.0	UDINT	Diagnoseregister	

Tabelle 7.40

Inhalt des Diagnoseregisters

Eingang	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	MI-IME	MI-FC	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 2	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 3	0	0	0	0	0	0	0	0
Byte 4	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6B	CE-X6A	CE-X5B	CE-X5A

Tabelle 7.41

TwinCAT-Darstellung als UDINT: 0x Byte 4 - Byte 3 - Byte 2 - Byte 1

Legende

MI-LVS	Modulinformationsbyte - Spannung für System-/Sensorleistung niedrig
MI-LVA	Modulinformationsbyte - Spannung für Aktuator niedrig
MI-SCS	Modulinformationsbyte - Sensorkurzschluss an einem M12-Steckplatz
MI-SCA	Modulinformationsbyte - Aktuatorkurzschluss
MI-FC	Modulinformationsbyte - Force Mode aktiv
MI-IME	Modulinformationsbyte - interner Fehler
SCS-X1 SCS-X8	Sensorkurzschluss an Steckplatz X1 bis X8
CE-X5A CE-X8A	Kanalfehler Ausgangskanal A (Kontaktpin 4) der Ausgänge X5 bis X8.
CE-X5B CE-X8B	Kanalfehler Ausgangskanal B (Kontaktpin 2) der Ausgänge X5 bis X8.

PDO 0x1600, Ausgangsdaten im Byte-Format

PDO		Inhalt				
Index	Größe	Index	Größe	Тур	Name	
0x1600	2	0x6200:01	1.0	USINT	Ausgangskanal X5A X8B	

Tabelle 7.42

Inhalt von Ausgangskanal X5A..X8B

Index	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x6200:0 1	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Tabelle 7.43

Hierbei sind:

- X5A ... X8A: Ausgangsdaten Kanal A (Kontaktpin 4) der Ausgänge X5 bis X8.
- X5B ... X5B: Ausgangsdaten Kanal B (Kontaktpin 2) der Ausgänge X5 bis X8.

PDO 0x1601, Ausgangsdaten im Bit-Format

PDO		Inhalt					
Index	Größe	e Index Größe Typ		Name			
0x1601	2	0x6220:01	0.1	BIT	Ausgangskanal X5A		
		0x6220:02	0.1	BIT	Ausgangskanal X5B		
		0x6220:03	0.1	BIT	Ausgangskanal X6A		
		0x6220:04	0.1	BIT	Ausgangskanal X6B		
		0x6220:05	0.1	BIT	Ausgangskanal X7A		
		0x6220:06	0.1	BIT	Ausgangskanal X7B		
		0x6220:07	0.1	BIT	Ausgangskanal X8A		
		0x6220:08	0.1	BIT	Ausgangskanal X8B		

Tabelle 7.44

7.2.5 Geräteparameter

Die Module unterstützen unterschiedliche Parameter. Die Parameter werden bei der Inbetriebnahme von der Steuerung an das Modul gesendet.

Folgende Parameter können eingestellt werden:

Mögliche Parameteroptionen für die allgemeinen Moduleinstellungen

Index (Byte)	Parameter	Standard- wert	Verfügbar in Modulvari- ante
0x2300:01	Webinterface gesperrt: 0 = false, 1 = true	0	Alle Modulvarianten
0x2300:02	Force Mode gesperrt: 0 = false, 1 = true	1	Alle Modulvarianten
0x2300:03	Alle Notfallmeldungen deaktivieren: 0 = false, 1 = true	0	Alle Modulvarianten
0x2300:04	UL-Notfallmeldungen deaktivieren: 0 = false, 1 = true	0	Modulvarianten mit Aus- gängen wie 16DO, 8DI/8DO, 16DIO
0x2300:05	Aktuator-Notfallmeldungen ohne U _L deaktivieren: 0 = false, 1 = true	0	Modulvarianten mit Aus- gängen wie 16DO, 8DI/8DO, 16DIO
0x2300:06	DCU Start: 0 = gesperrt, 1 = deaktiviert, 2 = ausführen	1	Modulvarianten mit dezen- traler Logikfunktion (DCU- Funktion)'
0x2300:07	Automatischer Neustart des Ausgangs nach Fehler: 0 = false, 1 = true	1	Nur 16DIO-Modulvariante

Tabelle 7.45

Failsafe-Funktion (für Module mit Ausgangskanälen)

Die Firmware der Module bietet eine Failsafe-Funktion für die Ausgänge für Unterbrechungen oder Verlust der Kommunikation. Bei der Konfiguration der Module haben Sie die Möglichkeit, den Status der Ausgänge nach einer Unterbrechung oder einem Kommunikationsverlust zu definieren.

Folgende Optionen stehen zur Verfügung:

Deaktivierung des Ausgangskanals, Wert = 0

Aktivierung des Ausgangskanals, Wert = 1

Halten des letzten Ausgabestatus, Wert = 2

Vorsicht!

Mögliche Störungen bei Falschkonfiguration von 16DIO-Modulen

Für das 16DIO-Modul mit den Profilen 8DI/DO und 8DI/8DO ist aufgrund der flexiblen Richtungskonfiguration der E/A-Ports die Parametrierung jedes der 16 möglichen Ausgangskanäle möglich. Berücksichtigen Sie Ihre spezifische E/A-Richtungskonfiguration, wenn Sie den Parameter "Failsafe-Funktion" anpassen, um Störungen bei Ihrer Anwendung zu vermeiden.

Mögliche Failsafe-Werte für Module 16DIO und Profile(n) mit Ausgängen

Index (Byte)	Parameter
0x2301:01	Failsafe-Funktion Port X1, Kanal A (Pin 4), Wertebereich 0 2
0x2301:02	Failsafe-Funktion Port X5, Kanal B (Pin 2), Wertebereich 0 2
0x2301:0F	Failsafe-Funktion Port X8, Kanal A (Pin 4), Wertebereich 0 2
0x2301:10	Failsafe-Funktion Port X8, Kanal B (Pin 2), Wertebereich 0 2

Tabelle 7.46

Mögliche Failsafe-Werte für Module 8DI/8DO

Index (Byte)	Parameter
0x2301:01	Failsafe-Funktion Port X5, Kanal A (Pin 4), Wertebereich 0 2
0x2301:02	Failsafe-Funktion Port X5, Kanal B (Pin 2), Wertebereich 0 2
0x2301:07	Failsafe-Funktion Port X8, Kanal A (Pin 4), Wertebereich 0 2
0x2301:08	Failsafe-Funktion Port X8, Kanal B (Pin 2), Wertebereich 0 2

Tabelle 7.47

Surveillance Timeout (für Module mit Ausgangskanälen)

Die Firmware der Module erlaubt eine Verzögerungszeit vor dem Beginn der Überwachung der Ausgangsströme einzustellen. Die Verzögerungszeit wird auch "Surveillance Timeout" (Überwachungs-Timeout) genannt. Sie können diese für jeden einzelnen Ausgangskanal definieren.

Die Verzögerungszeit beginnt, nachdem sich der Status des Ausgabekanals ändert, d.h. wenn diese nach einer ansteigenden Flanke aktiviert oder nach einer abfallenden Flanke deaktiviert wird. Nach Ablauf dieser Zeit beginnt die Überwachung des Ausgangs und die Diagnose meldet Fehlerzustände. Der Wert des Überwachungszeitlimits ist 0 bis 255 ms. Der Standardwert beträgt 80 ms. Wenn der Ausgangskanal im statischen Zustand ist, d.h. der Kanal ist dauerhaft ein- oder ausgeschaltet, beträgt der Wert 100 ms.

Vorsicht!

Mögliche Störungen bei Falschkonfiguration von 16DIO-Modulen

Für das 16DIO-Modul mit den Profilen 8DI/DO und 8DI/8DO ist aufgrund der flexiblen Richtungskonfiguration der E/A-Ports die Parametrierung jedes der 16 möglichen Ausgangskanäle möglich. Berücksichtigen Sie Ihre spezifische E/A-Richtungskonfiguration, wenn Sie den Parameter "Surveillance Timeout" anpassen, um Störungen bei Ihrer Anwendung zu vermeiden.

Mögliche Surveillance-Timeout-Werte für Module 16DIO und Profile(n) mit Ausgängen

Index (Byte)	Parameter
0x2302:01	Surveillance-Timeout Port X1, Kanal A (Pin 4), Wertebereich 0 255
0x2302:02	Surveillance-Timeout Port X1, Kanal B (Pin 2), Wertebereich 0 255
0x2302:0F	Surveillance-Timeout Port X8, Kanal A (Pin 4), Wertebereich 0 255
0x2302:10	Surveillance-Timeout Port X8, Kanal B (Pin 2), Wertebereich 0 255

Tabelle 7.48

Mögliche Surveillance-Timeout-Werte für Module 8DI/8DO

Index (Byte)	Parameter
0x2302:01	Surveillance-Timeout Port X5, Kanal A (Pin 4), Wertebereich 0 255
0x2302:02	Surveillance-Timeout Port X5, Kanal B (Pin 2), Wertebereich 0 255
0x2302:07	Surveillance-Timeout Port X8, Kanal A (Pin 4), Wertebereich 0 255
0x2302:08	Surveillance-Timeout Port X8, Kanal B (Pin 2), Wertebereich 0 255

Tabelle 7.49

Konfiguration der E/A-Richtung (für Module 16DIO)

Der Parameter "E/A-Richtung" ermöglicht die Konfiguration der Ein-/Ausgabekanäle (E/A-Kanäle) des Moduls.

Folgende Einstellungen sind möglich:

Input/Output = 0

Input = 1

Output = 2

Durch die Konfiguration der E/A-Richtung und mit der entsprechenden E/A-Mapping-Konfiguration (siehe nächsten Abschnitt) können Sie das Modul an die gängigsten Standard-E/A-Module auf dem Markt anpassen. Für jedes Profil (16DI/DO, 16DI, 16DO, 8DI/DO, 8DI, 8DO, 8DI/8DO) sind die entsprechenden Einstellungen vorkonfiguriert. Somit sind für die meisten Anwendungen keine Anpassungen dieser Parameter notwendig.

Mögliche Konfiguration der E/A-Richtung

Index (Byte)	Parameter
0x2303:01	I/O Direction Configuration Port X1A: Input/Output = 0, Input = 1, Output = 2
0x2303:02	I/O Direction Configuration Port X1A: Input/Output = 0, Input = 1, Output = 2
0x2303:0F	I/O Direction Configuration Port X1A: Input/Output = 0, Input = 1, Output = 2
0x2303:10	I/O Direction Configuration Port X1A: Input/Output = 0, Input = 1, Output = 2

Tabelle 7.50

Die folgende Tabelle ist eine Übersicht der vorhandenen 16DIO-Profile mit vorkonfigurierter E/A-Richtung. Bestimmte Kanäle sind inaktiv gesetzt. Details zu diesen Einstellungen siehe Tabelle "Standard-E/A-Mapping-Konfiguration" auf Seite 90 im nachfolgenden Abschnitt.

Standardkonfiguration der E/A-Richtung der 16DIO-Profile

Index	Port	16DI/DO	16DI	16DO	8DI/DO	8DI	8DO	8DI/8DO
0x2303:01	X1A	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:02	X1B	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:03	X2A	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:04	X2B	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:05	ХЗА	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:06	ХЗВ	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:07	X4A	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:08	X4B	Input/Out put	Input	Output	Input/Out put	Input	Output	Input
0x2303:09	X5A	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0A	X5B	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0B	X6A	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0C	X6B	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0D	X7A	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0E	X7B	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:0F	X8A	Input/Out put	Input	Output	Input/Out put	Input	Output	Output
0x2303:10	X8B	Input/Out put	Input	Output	Input/Out put	Input	Output	Output

Tabelle 7.51

Vorsicht!

Mögliche Fehlfunktionen bei Falschkonfiguration von 16DIO-Modulen

Wählen Sie sorgfältig die Einstellungen für die "Konfiguration der E/A-Richtung" und die "E/A-Mapping- Konfiguration", um Fehlfunktionen zu vermeiden.

E/A-Mapping Konfiguration (für Module 16DIO)

Mit diesem Parameter können Sie die Zuordnung der E/A-Kanäle zu den zugehörigen Prozessdaten einstellen.

- Jedes Ausgangssteuerungs-Bit im Ausgangsdatentelegramm der EtherCAT®-Steuerung können Sie dem bevorzugten Ausgangskanal (X1A ... X8B) zuordnen. Die verfügbaren Einstellungen sind 0 ... 7, 0 ...15, abhängig vom E/A-Profil oder 255 für die Einstellung inaktiv.
- Jedes physische Eingangsbit, das zur EtherCAT®-Steuerung übertragen werden soll, können Sie der bevorzugten Bit-Position im Eingangsdatentelegramm zuweisen. Die verfügbaren Einstellungen sind 0 ... 7, 0 ... 15 (0 = X1A ... 15 = X8B) oder 255 für die Einstellung inaktiv.

Für E/A-Kanäle, die als "Eingang/Ausgang" konfiguriert sind, ist die Mapping-Konfiguration für die Eingangsrichtung (Erzeugen von Daten) und Ausgangsrichtung (Verbrauchen von Daten) gültig.

Für jedes Profil (16DI/DO, 16DI, 16DO, 8DI/DO, 8DI, 8DO, 8DI/8DO) sind die entsprechenden Einstellungen vorkonfiguriert. Für die meisten Anwendungen ist daher keine Anpassung dieser Parameter erforderlich.

Mögliche E/A-Mapping-Konfiguration

Index (Byte?)	Parameter
0x2304:01	I/O Mapping Configuration Port X1A: 0 15 = Prozessdatenkanal 0 15, 255 = inaktiv
0x2304:02	I/O Mapping Configuration Port X1B: 0 15 = Prozessdatenkanal 0 15, 255 = inaktiv
0x2304:0F	I/O Mapping Configuration Port X8A: 0 15 = Prozessdatenkanal 0 15, 255 = inaktiv
0x2304:10	I/O Mapping Configuration Port X8B: 0 15 = Prozessdatenkanal 0 15, 255 = inaktiv

Tabelle 7.52

Die folgende Tabelle bietet eine Übersicht über die Beziehung zwischen dem vorkonfigurierten E/A-Port-Kanal (X1A ... X8B) und dem E/A-Prozessdatenkanal (0 ... 15) für jedes Profil.

Standard-E/A-Mapping-Konfiguration

		E/A-Prozessdatenkanal (0 15), 255 = inaktiv/nicht verfügbar						
Index (Byte)	Port	16DI/DO	16DI	16DO	8DI/DO	8DI	8DO	8DI/8DO
0x2304:01	X1A	0	0	0	0	0	0	0
0x2304:02	X1B	1	1	1	255	255	255	1
0x2304:03	X2A	2	2	2	1	1	1	2
0x2304:04	X2B	3	3	3	255	255	255	3
0x2304:05	ХЗА	4	4	4	2	2	2	4
0x2304:06	X3B	5	5	5	255	255	255	5
0x2304:07	X4A	6	6	6	3	3	3	6
0x2304:08	X4B	7	7	7	255	255	255	7
0x2304:09	X5A	8	8	8	4	4	4	0
0x2304:0A	X5B	9	9	9	255	255	255	1
0x2304:0B	X6A	10	10	10	5	5	5	2
0x2304:0C	X6B	11	11	11	255	255	255	3
0x2304:0D	X7A	12	12	12	6	6	6	4
0x2304:0E	X7B	13	13	13	255	255	255	5
0x2304:0F	X8A	14	14	14	7	7	7	6
0x2304:10	X8B	15	15	15	255	255	255	7

Tabelle 7.53

Beispiel für Prozessdaten im Byte-Format:

 0x2304:0B (X6A) = 10 für das Profil 16DI/DO bedeutet, dass das Eingangsbit von X6A dem Producing-Bit 10 (Byte 1/Bit 2) zugeordnet ist und das Ausgangs-Bit des Consuming-Byte 1 /Bit 2 als Ausgangssteuerungsinformationen für Port X6A verwendet wird.

Beispiel für Prozessdaten im Bit-Format:

 0x2304:0B (X6A) = 10 für das Profil 16DI/DO bedeutet, dass das Eingangsbit von X6A dem Producing-Bit 10 zugeordnet ist und das Ausgangs-Bit des Cosuming-Bit 10 als Ausgangssteuerungsinformationen für Port X6A verwendet werden.

7.2.6 Konfigurationsbeispiel mit TwinCAT® 3

Die Konfiguration und Inbetriebnahme der nachfolgend beschriebenen Module bezieht sich auf die Software TwinCAT® 3 der Beckhoff Automation GmbH.

Die Konfiguration ist am Beispiel eines ICE1-16DIO-G60L-V1D-Modul beschrieben. Für andere Modulvarianten erfolgt die Konfiguration entsprechend mit einigen Detailunterschieden.

Wenn Sie ein Leitsystem von einem anderen Anbieter verwenden, beachten Sie bitte die entsprechende Dokumentation des Anbieters.

Vorsicht!

Personen- und Sachschäden

Bevor Sie die Ein- oder Ausgänge des Moduls einstellen, stellen Sie sicher, dass keine Personen- oder Sachschäden auftreten können.

Einbindung der SPS

1. Installieren Sie die ESI-Datei der Modulfamilie in TwinCat®. In TwinCAT® 3 wird die ESI-Datei normalerweise in den Installationsordner C:\TwinCAT\3.1\Config\Io\EtherCAT eingefügt.

→ Nach einem Neustart von TwinCAT® sind die Module im Hardware-Katalog verfügbar.

Starten Sie TwinCat und öffnen Sie ein neues Projekt.

Hinweis!

Nach dem Anlegen des Projektes müssen Sie mit den nachfolgenden Schritten als erstes die Kommunikation zur SPS aufbauen.

 Wählen Sie im "Solution Explorer" den Option "SYSTEM" und klicken Sie die Taste "Choose Target" an.

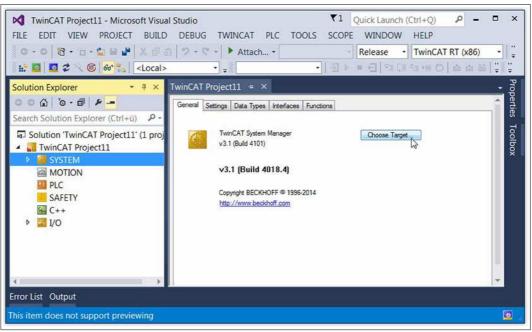


Abbildung 7.1

4. Klicken Sie im Menü "Choose Target System" auf die Taste "Search (Ethernet)"

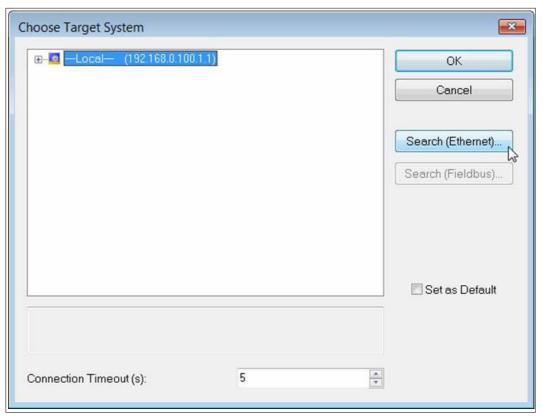


Abbildung 7.2

5. Klicken Sie im Menü "Add Route Dialog" auf die Taste "Broadcast Search".

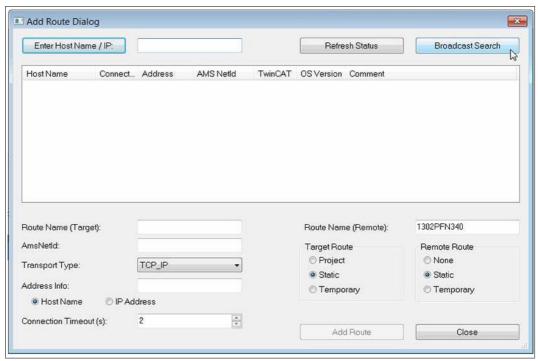


Abbildung 7.3

- → TwinCAT® listet die gefundenen Teilnehmer im Menü auf.
- 6. Klicken Sie das geüwnschte Gerät an, in diesem Beispiel hier "CX-19FDE4" für die SPS.

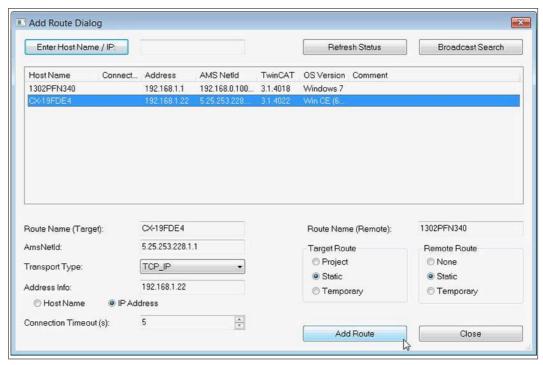


Abbildung 7.4

- 7. Ändern Sie im Bereich "Address Info" die Einstellung auf "IP Address".
- 8. Klicken Sie danach auf die Taste "Add Route".

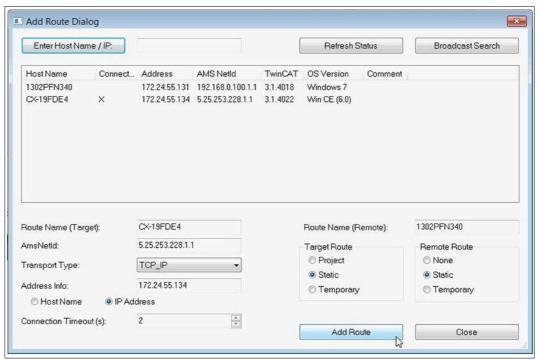


Abbildung 7.5

9. Es erscheint eine Aufforderung zum Erstellen eines Passwortes, die Sie aber nicht durchführen müssen. Klicken Sie auf die Taste "OK" ohne eine Eingabe von Daten.

Abbildung 7.6

10. Klicken Sie im Menü "Add Route Dialog" auf die Taste "Close".

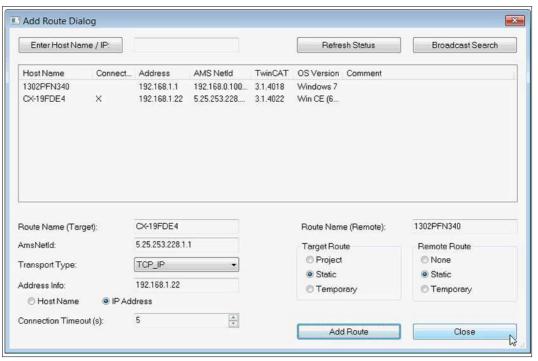


Abbildung 7.7

11. Um die Verbindung zu "CX-19FDE4" im Projekt zu speichern, müssen Sie m noch offenen Dialog "Choose Target System" nochmal "CX-19FDE4" anklicken.

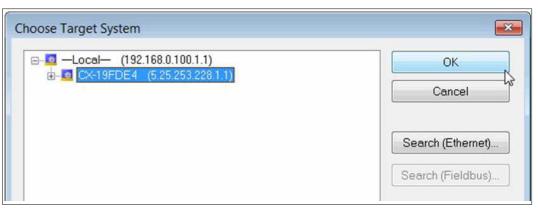


Abbildung 7.8

- 12. Bestätigen Sie die Speicherung mit der Taste "OK".
 - → Jetzt wechselt der Status in TwinCAT von "Local" in "CX-19FDE4"
- 13. Wechseln Sie im "Solution Explorer" im linken Arbeitsbereich auf die Option "I/O"...
- 14. Wählen Sie mit einem rechten Mausklick auf "Devices" die Option "Add New Item ...".

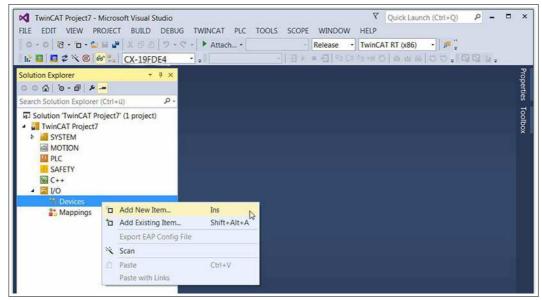


Abbildung 7.9

15. Wählen Sie dann "EtherCAT Master" aus und bestätigen Sie mit "OK".

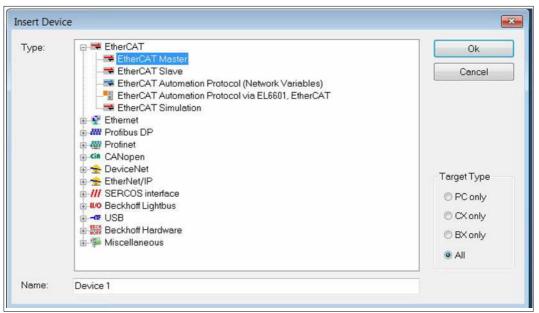


Abbildung 7.10

16. Wählen Sie im Dialog "Device Found At" den Port ihrer SPS aus, in diesem Beispiel ist das "PCI\Tcl8254x1"

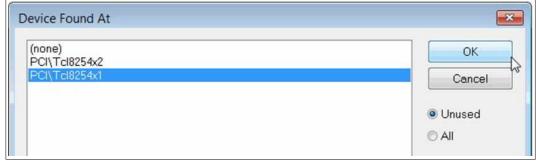


Abbildung 7.11

- 17. Klicken Sie zur Bestätigung der Auswahl auf die Taste "OK". "
- 18. Rufen Sie die Konfigurations-Registerkarten des TwinCAT-Projekts durch Doppelklick auf "Device 3" auf.

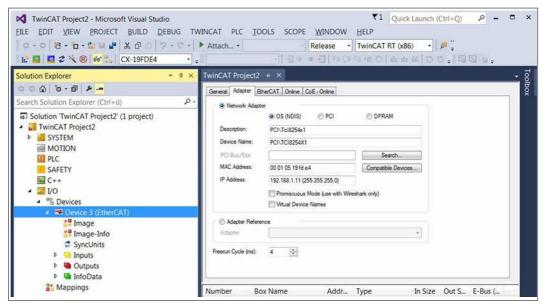


Abbildung 7.12

- Falls noch nicht geschehen, wählen Sie den Netzwerkadapter aus und installieren den Treiber für die EtherCAT-Echtzeitkommunikation.
- 20. Klicken Sie auf die Registerkarte "Adapter", klicken Sie danach auf "Compatible Devices ..." für die Auswahl des Treibers und der Installation des EtherCAT-Treibers. Folgen Sie den weiteren Anweisungen der Software zur Installation des Treibers.

Einbindung des Ethernet-IO-Moduls

1. Wählen Sie das Gerät aus. Navigieren Sie dazu zu "Device 1 (EtherCAT)" und wählen Sie mit einem rechten Mausklick auf "Devices" die Option "Add New Item ...".

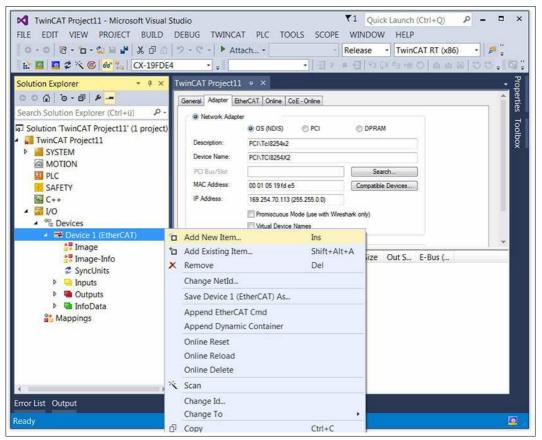


Abbildung 7.13

2. Wählen Sie das gewünschte Modul aus.

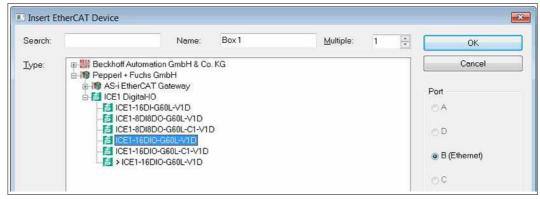


Abbildung 7.14

Hinweis!

Die nachfolgende Auswahl eines Profils ist nur bei den 16DIO-Modulen möglich wie ICE1-16DIO-G60L-V1D und ICE1-16DIO-G60L-C1-V1D. Bei anderen Modulvarianten entfällt der nachfolgende Arbeitsschritt.

3. Wählen Sie das E/A-Profil aus, falls Sie ein 16DIO-Modul verwenden.

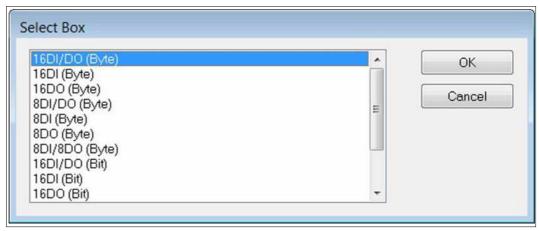


Abbildung 7.15

Klicken Sie zur Bestätigung der Auswahl auf die Taste "OK".

Hinweis!

Gemäß ausgewähltem Profil werden voreingestellte Standard-PDOs verwendet. Wenn Sie es für erforderlich halten, können Sie aber über die nachfolgend beschriebenen Arbeitsschritte das E/A-Profil ändern.

Wenn Sie das E/A-Profil ändern wollen oder die standardmäßige Aktivierung des Fehler- oder Diagnoseregisters entfernen wollen, können Sie dies über die Registerkarte "Slots" durchführen. Über die Registerkarte "Process Data" können Sie zudem die Einstellungen für das Fehler- und Diagnoseregister festlegen.

5. Konfigurieren Sie falls erforderlich die "Slots". Navigieren Sie zur Registerkarte "Slots", um die Steckplatzkonfiguration zu ändern.

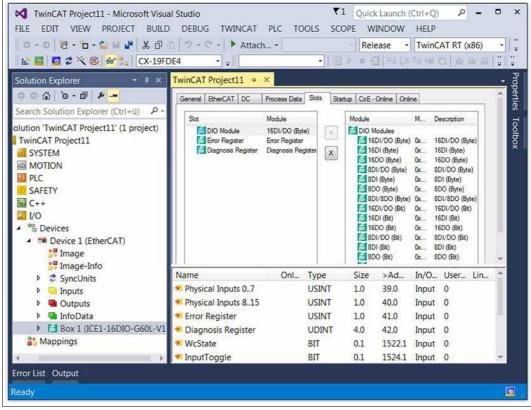


Abbildung 7.16

Vorsicht!

Vorsicht bei Parameteränderungen

Wenn Sie das E/A-Profil nach der Änderung der Parametereinstellungen auf der Registerkarte "Startup" ändern, verbleiben alle bereits geänderten Parameter auf der Registerkarte "Startup". Löschen Sie in diesem Fall das Gerät aus der Konfiguration und fügen Sie es erneut ein. Damit werden die Default-Parametereinstellungen wiederhergestellt, und Sie vermeiden unerwünschte Parametereinstellungen.

Wechseln Sie zur Konfiguration der Prozessdaten zur Registerkarte "Process Data".

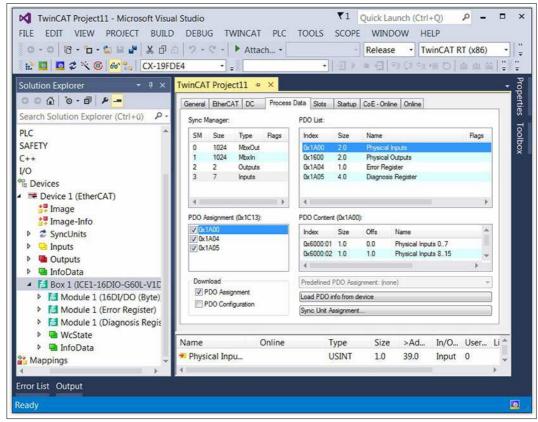


Abbildung 7.17

- Wählen Sie die Eingangs- und Ausgangs-PDOs wie in den vorangegangenen Kapiteln zur PDO-Zuordnung beschrieben.
- **8.** Klicken Sie im Bereich "Sync Manager" auf die Option "Inputs" und wählen Sie Ihre Eingangs-PDOs im Bereich "PDO Assignment".
- **9.** Deaktivieren Sie beispielsweise die Kontrollkästchen "0x1A04" und "0x1A05", wenn keine Fehler- und Diagnoseregisterdaten an die EtherCAT®-Steuerung übertragen werden sollen.
- 10. Klicken Sie im Bereich "Sync Manager" die auf Option "Outputs" und w\u00e4hlen Sie die PDOs Ihrer Ausg\u00e4nge im Feld "PDO Assignment", wenn \u00e4nderungen erforderlich sind.

Abbildung 7.18

 Navigieren Sie zur Registerkarte "Startup" und überprüfen Sie die standardmäßigen Geräteparameter-Einstellungen.

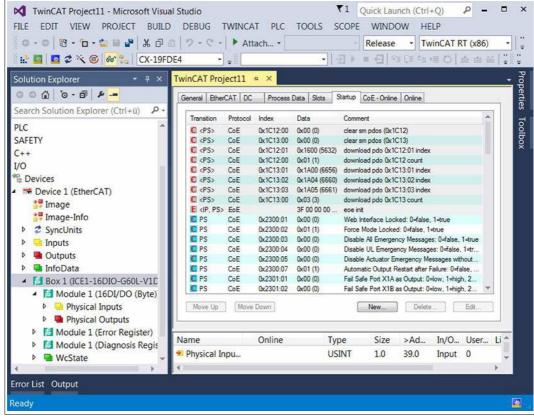


Abbildung 7.19

12. Um eine Parametereinstellung zu verändern, doppelklicken Sie auf einen Parameter, dann öffnet sich das Dialogfeld "Edit". Der neue Wert kann in die Dateneingabeleiste eingegeben werden.

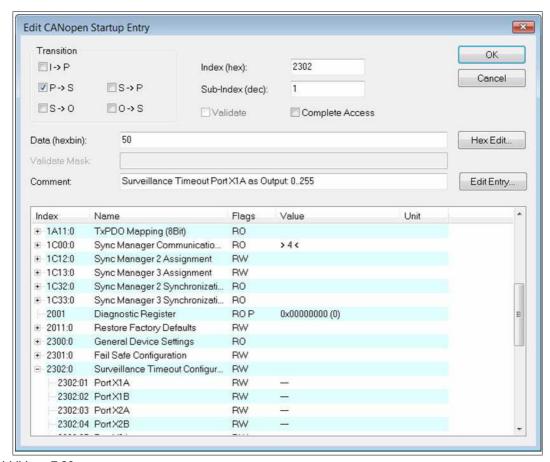


Abbildung 7.20

13. Klicken Sie zur Bestätigung der Eingaben auf die Taste "OK".

EoE-IP-Adresse

Hinweis!

Für die spätere Nutzung des Webservers für das Modul muss die IP-Adresse festgelegt werden. Wenn keine Webserver-Dienste ermöglicht werden sollen, können Sie die Möglichkeit auch deaktivieren. Nachfolgend sind die Schritte hierzu beschrieben.

1. Navigieren Sie zur Registerkarte "EtherCAT".

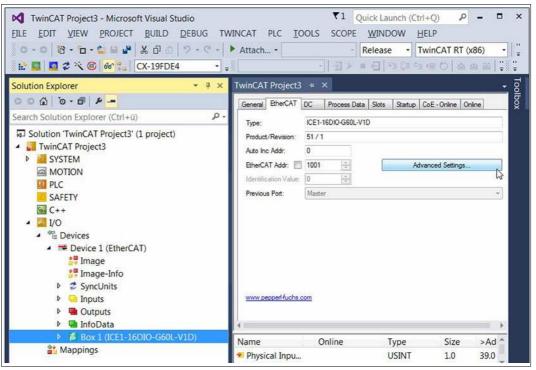


Abbildung 7.21

- 2. Klicken Sie die Taste "Advanced Settings".
- 3. Navigieren Sie zur Option "Mailbox", Eintrag "EoE".

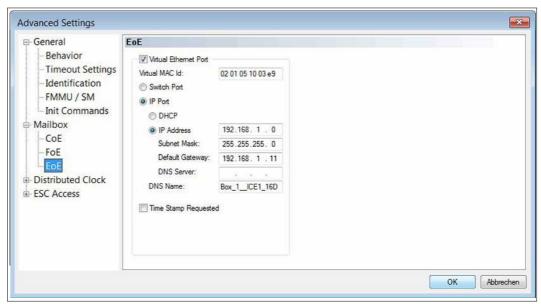


Abbildung 7.22

- **4.** Wenn keine Webserver-Dienste verwendet werden sollen, deaktivieren die Option "Virtual Ethernet Port" durch Klicken auf den Haken.
- 5. Wenn Webserver-Dienste ermöglicht werden sollen, klicken Sie auf "IP-Port" und "IP-Address" und geben Sie die IP-Einstellungen in Abhängigkeit von den lokalen Netzadapter-Einstellungen ein.
- 6. Klicken Sie zur Bestätigung der Änderungen auf die Taste "OK".

Konfiguration aktivieren

1. Wenn das Modul mit dem EtherCAT-Netz verbunden ist, wählen Sie in der Menüleiste "TWINCAT" und anschließend "Activate Configuration".

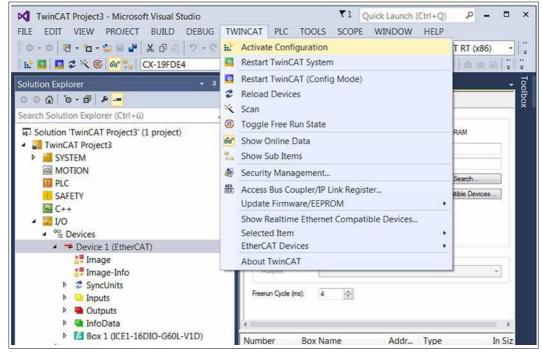


Abbildung 7.23

Vorsicht!

Personen- und Sachschäden

Bevor Sie die Ein- oder Ausgänge des Moduls einstellen, stellen Sie sicher, dass keine Personen- oder Sachschäden auftreten können.

- 2. Wählen Sie erneut in der Menüleiste "TWINCAT" und dann "Restart TwinCAT (Config Mode)".
- 3. Bestätigen Sie die Kontrollkästchen mit "Yes". Anschließend wechselt das Gerät in den Zustand "OP" und überträgt E/A-Daten.

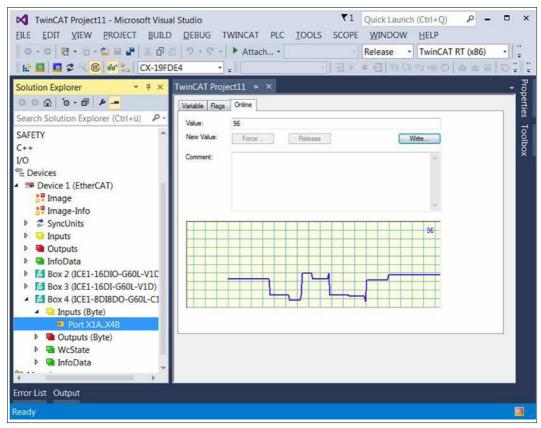
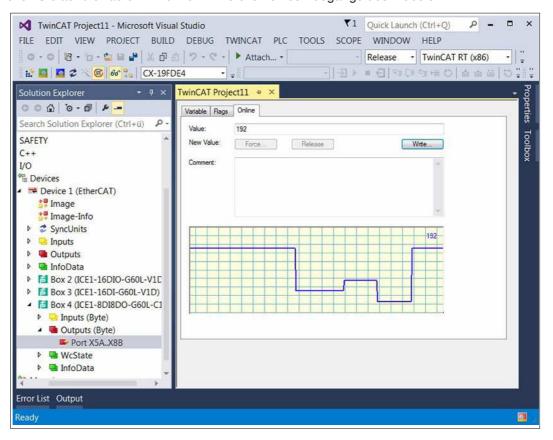



Abbildung 7.24

4. Klicken Sie auf die Taste "Write" zum Einstellen eines Ausgangs des Moduls.

Hinweis!

Die Konfiguration von SPS und Modul sind nun abgeschlossen. Ab diesem Zeitpunkt können Sie ihr Anwenderprogramm erstellen.

8 Der integrierte Webserver

8.1 Überblick und Moduladressierung

Die Module verfügen über einen integrierten Webserver, der Funktionen für die Konfiguration der Module und Status- und Diagnose-Informationen zur Verfügung stellt.

Mit Hilfe eines Standard-Webbrowsers kann über eine bestehende TCP/IPVerbindung auf die bereitgestellten Funktionen zugegriffen werden. Für die Nutzung des Webservers benötigen die Module eine eigene IP-Adresse. Abhängig von der eingestellten Protokollvariante haben die Module unterschiedlich voreingestellte IP-Adressen.

Hinweis!

Sie müssen den Modulen vor Verwendung des Webservers eine von der Werkseinstellung abweichende, freie IP-Adresse zuweisen. Details, siehe Kapitel "Anzeigen und Bedienelemente", Abschnitt "Bedienelemente".

8.2 Menüstruktur

Hinweis!

Die Nutzung des Webservers ist mit unterschiedlichen Webbrowser möglich. Die Webrowser "Mozilla Firefox" und "Google Chrome" sind ohne weitere Einstellungen verwendbar. Bei Verwendung des "Microsoft Internet Explorer" kann es unter Umständen erforderlich sein, bei den LAN-Einstellungen die automatische Konfiguration zu deaktivieren.

Startseite (Status)

Diese Webseite zeigt den aktuellen Zustand des gesamten Moduls und jeweils den Status der einzelnen Kanäle an. Aufkommende Diagnosen werden wie bei der Steuerung gemeldet.

Diese Seite dient als Ausgangspunkt für den Zugriff auf den integrierten Webserver.

Abhängig vom eingestellten Protokoll müssen Sie unterschiedliche URLs für den Aufruf der Startseite eingeben.

Bei EtherNet/IP und Profinet:

Geben Sie in der Adresszeile Ihres Webbrowsers http://, gefolgt von der IP-Adresse ein, z. B. http://192.168.1.1.

Bei EtherCAT:

Geben Sie in der Adresszeile Ihres Webbrowsers http://[IP-Adresse]/status.htm ein, z. B. http://192.168.1.1/status.htm.

Falls sich die Startseite der Module nicht öffnet, überprüfen Sie Ihre Browser- und Firewalleinstellungen.

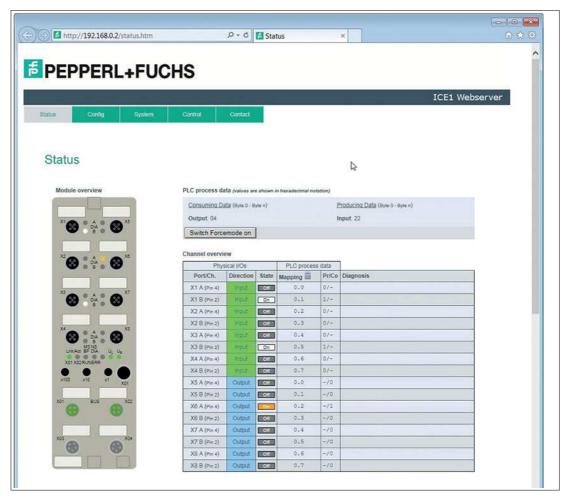


Abbildung 8.1

PLC process data und Module Overview

Die Prozessdaten "Consuming Data / Producing Data" inklusive der Diagnosedaten "Diagnosis" werden tabellarisch hexadezimal im Bereich "PLC process data" sowie auch grafisch im Bereich "Module overview" dargestellt.

Die Codierung der Diagnose können Sie, abhängig vom eingestellten Protokoll, den entsprechenden Kapiteln für die Bitbelegung der Prozessdaten entnehmen.

Channel Overview

Die Tabelle "Channel overview" unterteilt sich in drei unterschiedliche Bereiche. Diese zeigen den Status der physikalischen Ein- und Ausgangsdaten der Kanäle sowie die zur Steuerung gesendeten und von der Steuerung erhaltenen Prozessdaten an. Kanalfehler werden in der letzten Spalte gemeldet.

Die Tabelle zeigt für jeden Kanal die Kanalrichtung, den aktuelle Kanalstatus, das über die Steuerung konfigurierte IO-Mapping sowie die aktuell abgebildeten Prozessdaten (Pr/Co) an. Pr/Co steht für "produced" und "consumed" jeweils aus Sicht des Moduls.

Durch Betätigung des Taschenrechner-Symbols können zur Übersicht den Mapping-Werten die Ein- und Ausgangsadressen aus der Steuerung zugeordnet werden. Änderungen des IO-Mappings sind nur bei 16DIO-Modulen über die Steuerung möglich.

Vorsicht!

Schwere Verletzungen oder Sachschäden

Die Verwendung der Funktion "Force Mode" kann bei unsachgemäßer Nutzung zu schweren Verletzungen oder Sachschäden führen. Seien Sie vorsichtig, wenn Sie die Funktion "Fore Mode" verwenden. Beachten Sie die Situation ihrer Anwendung.

Force Mode

Der Force Mode kann bei der Inbetriebnahme der Maschine oder bei der Fehlerbehebung innerhalb der Maschine hilfreich sein. Die Daten für die Eingangs- und Ausgangskanäle können überschrieben und unabhängig über den Webserver gesetzt werden. Daher ist es möglich, unabhängig von den Ausgangsprozessdaten der Steuerung oder des tatsächlichen Status des physischen Eingangs jeden Ausgang manuell festzulegen und jeden Eingang zu simulieren.

Über die Taste "Switch Forcemode on" können Sie "Force Mode" aktivieren. Die Verwendung ist generell im Offline-Betrieb möglich, ohne Verbindung zur Steuerung, oder im Online-Betrieb, mit Verbindung zur Steuerung. Wenn Sie die Statusseite bzw. den Webserver verlassen, schaltet sich der "Force Mode" automatisch aus.

Diese Funktion dient zu Testzwecken. Die Eingabe- und Ausgabedaten können von dieser Webseite aus eingestellt und die physikalischen Eingabedaten sowie die logischen Ausgabedaten der Steuerung überschrieben werden.

Wenn der "Force Mode" im Offline-Betrieb über den Webserver aktiviert ist, kann keine Verbindung zu einer Steuerung aufgenommen werden.

Für die Verwendung des "Force Mode" im Online-Betrieb ist es erforderlich, dass das Webinterface und der "Force Mode" in der Parametrierung der Steuerung aktiviert werden.

Wenn der "Force Mode" im Online-Betrieb über den Webserver aktiviert ist, wird bei Eintreten von "Failsafe" (z. B. Verbindungsunterbrechung, Steuerung auf STOP, interner Modulfehler) der "Force Mode" automatisch ausgeschaltet.

Hinweis!

Zur Verwendung des "Force Mode" ist die Eingabe einer Benutzer-Authentifizierung notwendig. Benutzer lassen sich über die Systemseite anlegen und ändern. Der Benutzer "admin" verwendet als Default-Passwort "private".

Klicken Sie auf die Taste "Switch Forcemode on".

Abbildung 8.2

Zu einer Passworteingabe erscheint folgendes Fenster

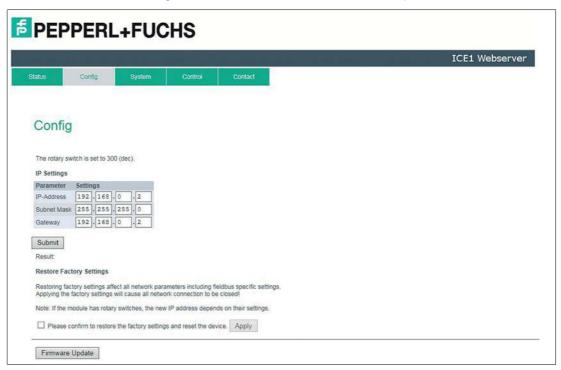
Abbildung 8.3

Der Benutzername lautet "admin". Das Passwort lautet "private".

Wenn der "Force Mode" erfolgreich aktiviert wurde, erscheint in der Anzeige der Text "Forcemode enabled".

Abbildung 8.4

In der Spalte "Forcing" können Sie über die Tasten "0" und "1" die physikalischen Ausgangsdaten der einzelnen Kanäle setzen. Die Taste "X" hebt das Forcing für den entsprechenden Kanal wieder auf.


In gleicher Art und Weise können Sie über die Spalte "Simulation" die Eingangsdaten der einzelnen Kanäle vor dem Mapping in den Prozessdaten simulieren.

Zur Visualisierung der Force Mode-Manipulationen im Webserver wird im Bereich "Module Overview" das LED-Verhalten angezeigt.

Die Konfigurationsseite (Config)

Klicken Sie die Registerkarte "Config" in der Menüzeile des Startfensters an. Auf dieser Registerkarte können Sie Netzwerkparameter wie z. B. die IP-Adresse konfigurieren, das Modul wieder auf Werkseinstellungen zurücksetzten und einen Firmware Update initiieren.

Abbildung 8.5

IP-Settings

- · IP-Adresse, les- und schreibbar
- Subnetzmaske, les- und schreibbar
- Gateway-Adresse, les- und schreibbar

Durch Anklicken der Taste "Submit" werden die neuen Parameter an das Modul übertragen. Die neuen Einstellungen übernimmt das Modul erst nach Aus- und Wiedereinschalten der Spannungsversorgung.

Restore Factory Settings

Im Bereich "Restore Factory Settings" können Sie das Modul auf die Werkseinstellungen zurücksetzen.

Hinweis!

Bitte beachten Sie, dass durch das Rücksetzen auf die Werkseinstellungen auch der PROFINET-Name und die IP-Adresse der Module wieder auf die Grundeinstellungen eingestellt werden. Der Zugriff auf den Webserver der Module und der Datenaustausch im PROFINET Netzwerk funktionieren nach der Rückstellung unter Umständen nicht mehr.

Firmware Update

Durch Anklicken auf die Taste "Firmware Update" können Sie die vorhandene Firmware des Moduls durch eine neuere Version ersetzen.

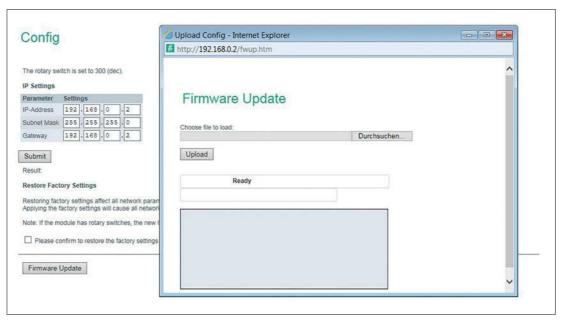


Abbildung 8.6

Hinweis!

Die detaillierte Vorgehensweise zum Firmware Update können Sie dem Kapitel "Firmware Update" entnehmen.

Systemseite (System)

Klicken Sie die Registerkarte "System" in der Menüzeile des Startfensters an. Sie finden auf dieser Registerkarte Informationen zum Verbindungsstatus sowie systembezogene Informationen des Moduls. Zudem können Sie Benutzer berechtigen und Passwörter anlegen und ändern.

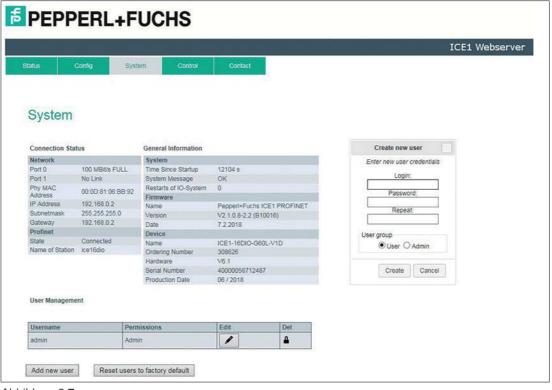


Abbildung 8.7

Connection Status

Im Bereich "Connection Status" werden jeweils der aktuelle Status der beiden Ethernet-Ports hinsichtlich Verbindung, Übertragungsrate und Übertragungsmodus sowie die Netzwerkparameter und der PROFINET-Status des Moduls angezeigt.

- Status der LAN-Ports:
 - Duplex-Modus (Voll-, Halbduplex)
 - Übertragungsrate (10 MBit, 100 Mbit)
- Netzwerkadresse:
 - MAC-Adresse

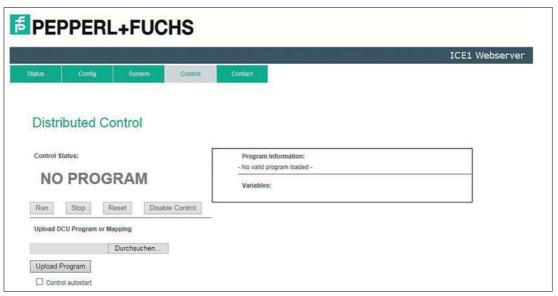
General Information

Im Bereich "General Information" finden Sie systembezogene Informationen zur Laufzeit, die verwendete Firmwareversion und Herstellungsangaben des Moduls.

- Größe und Datenrichtung der Assembly-Instanzen
- Status der EtherNet/IP-Verbindung:
 - Stand-by
 - Wait-for-Connection
 - Operational
- Gerätestatus:
 - Systemlaufzeit
 - Systeminformation
 - Anzahl der Neustarts des E/A-Systems
- Firmware-Version und Datum
- Geräteinformation
- · Revision:
 - Artikelnummer
 - Seriennummer
 - Produktionsjahr und -woche

User Management

Im "User Management" können Sie Passwörter angelegter Benutzer über die Taste "Edit" ändern. Über den Bereich "Create User" können Sie weitere Benutzer mit den Berechtigungen "Write" oder "Admin" hinzufügen. Nur der Zugang mit der Berechtigung "Admin erlaubt" es, neue Benutzer anzulegen oder Passwörter zu ändern.



Hinweis!

Die Statusinformationen dieser Registerkarte werden erst nach erneutem Aufruf bzw. Aktualisieren im Webbrowser aktualisiert.

Control-Seite (Dezentrale Logikfunktion)

Die dezentrale Logikfunktion (DCU-Funktion) ist nur bei den ICE1-*-G60L-C1-V1D- Modulen eine optionale Erweiterung . Mit dieser Funktion können Steuerungs- und Überwachungsaufgaben direkt auf dem Gerät über eine dezentrale Logikfunktion ausgeführt werden. Das betrefende Modul kann dabei Statusinformationen an eine übergeordnete SPS liefern (Online-Betrieb) oder autark ohne Buskommunikation betrieben werden (Offline-Betrieb).

Abbildung 8.8

Modulen ohne dezentrale Logikfunktion (DCU-Funktion) zeigen auf dieser Webseite keine nutzbaren Informationen an.

Hinweis!

Details zur Nutzung der Funktionen der Control-Seite können Sie dem Kapitel "Dezentrale Logikfunktion", Unterkapitel "DCU Web Interface" entnehmen.

Kontaktseite (Contact)

Die Registerkarte "Contact" informiert über die Kontaktdaten der Pepperl+Fuchs GmbH.

8.3 Auslesen der Prozess- und Diagnosedaten (JSON)

JSON-Objekte

Sie haben die Möglichkeit, die Prozess- und Diagnosedaten der Module mit Hilfe des integrierten Webservers auszulesen. Der Webserver stellt die Daten im standardisierten JSON-Format bereit. Der Zugriff auf die Daten erfolgt über einen Webbrowser.

Hinweis!

Der Aufruf der JSON-Objekte ist mit verschiedenen Webbrowsern möglich. Je nach verwendetem Webbrowser unterscheidet sich die Darstellung der JSON-Objekte. Für die Darstellungen in diesem Handbuch wurde Mozilla Firefox in der Version 60.0.2 unter Windows 10 verwendet. Bei Verwendung des Internet Explorers oder Google Chrome, erhält man eine Darstellung der Informationen als Rohdaten (Siehe JSON-Response als Rohdaten S.XY). Inhaltlich unterscheiden sich die JSON-Objekte jedoch nicht.

Aufruf des JSON-Objekts

- 1. Öffnen Sie zum Aufrufen des JSON-Objektes ihren Webbrowser.
- 2. Geben Sie den folgenden Befehl in das Adressfeld ein:
- 3. [IP-Adresse]/info.json, zum Beispiel 192.168.1.123/info.json

Struktur des JSON-Objektes

Die nachfolgende Abbildung zeigt die Struktur des JSON-Objektes am Beispiel des ICE1-16DIO-G60L-C1-V1D Moduls:

name:	"ICE1-16DIO-G60L-C1-V1D"
fw-version:	"V2.1.0.11-2.2 (RCU10017-V1)"
hw-version:	"V6.1"
mac:	"00:0D:81:06:6D:6F"
bus:	1
failsafe:	0
▼ inputs:	
0:	30
1:	105
▼ outputs:	
0:	28
1:	73
▼ consuming:	
0:	28
1:	65
▼ producing:	
0:	30
1:	109
▼ diag:	
0:	68
1:	8
2:	0
3:	0
▼ dcu:	
state:	1
autostart:	0
public:	[]
consuming_bits:	[]
consuming_ints:	[]
producing_bits:	[]
producing_ints:	[-]
producing_ines.	[]

Abbildung 8.9

Hinweis

Bei Modulen ohne dezentrale Logikfunktion (DCU) endet das Objekt nach dem Eintrag zu "diag:".

Beispiel JSON Response als Rohdaten

Neben dieser strukturierten Darstellung des JSON Response können Sie auch auf eine Darstellung der Rohdaten zurückgegriffen werden.

Die folgende Tabelle beschreibt die Inhalte der einzelnen Einträge. [n] = Byteanzahl:

Name	Datentyp	Beschreibung
name	String	Name des Moduls
fw-version	String	Firmwareversion
hw-version	String	Hardwareversion
mac	String	MAC Adresse des Moduls
bus	Number	0 = Keine Verbindung zu Feldbus 1 = Mit Feldbus verbunden
failsafe	Number	0 =Outputs in normalem Betrieb 1 = Outputs in Failsafe-Betrieb
inputs	Number[2]	Byte 0 = Ist-Zustand des Eingangs Port X1 – X4 (Kanal A/B) Byte 1 = Ist-Zustand des Eingangs Port X5 – X8 (Kanal A/B)
outputs	Number[2]	Byte 0 = Ist-Zustand des Ausgangs Port X1 – X4 (Kanal A/B) Byte 1 = Ist-Zustand des Ausgangs Port X5 – X8 (Kanal A/B)
consuming	Number[2]	Byte 0 = Von SPS stammende Daten Port $X1 - X4$ (Kanall A/B) Byte 1 = Von SPS stammende Daten Port $X5 - X8$ (Kanal A/B)
producing	Number[2]	Byte 0 = An SPS gesendete Daten Port X1 – X4 (Kanal A/B) Byte 1 = An SPS gesendete Daten Port X5 – X8 (Kanal A/B)
diag	Number[4]	Enthält Diagnosedaten des Moduls Byte 0: Bit 0 = Spannungsversorgungsfehler an System/Sensor (U _s) Bit 1 = Spannungsversorgungsfehler an Aktuator (U _L) Bit 2 = Sensorüberlast Bit 3 = Aktuatorüberlast Bit 6 = Forcemode aktiv Bit 7 = Interner Modulfehler (IO Daten nicht valide) Byte 1 = Sensorüberlast Port X1 X8 Byte 2 = Aktorüberlast Port X5 X4 (Kanal A, B) Byte 3 = Aktorüberlast Port X5 X8 (Kanal A, B)
dcu	Object	Nur bei DCU-Modulen verfügbar
dcu/state	Number	Aktueller DCU-Status: 0 = Gesperrt 1 = Kein Programm 2 = Deaktiviert 3 = Stopp 4 = Betrieb 5 = Fehler
dcu/auto- start	Number	0 = Lokaler Autostart deaktiviert 1 = Lokaler Autostart aktiviert
dcu/public	Number [32]	, , , , , , , , , , , , , , , , , , , ,
dcu/consu- ming_bits	Number [2]	Durch SPS gesetzte 16 DCU Austausch-Bits

Name	Datentyp	Beschreibung
dcu/produ- cing_bit	Number [2]	Durch DCU-Programm gesetzte 16 DCU Austausch-Bits
dcu/consu- ming_ints	Number [8]	Durch SPS gesetzte 16 DCU Austausch-Wörter
dcu/produ- cing_ints	Number [8]	Durch DCU-Programm gesetzte 16 DCU Austausch-Wörter

Tabelle 8.1

Die Bitzuordnung der Daten folgt dabei grundsätzlich folgender Logik:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	Х7-В	X7-A	X6-B	X6-A	X5-B	X5-A

Tabelle 8.2

Hierbei sind:

- X1-A ... X8-A: Ist-Zustand des Eingangs-/Ausgangskanals A (Kontaktpin 4) der M12-Anschlüsse 1 bis 8.
- X1-B ... X8-B: Ist-Zustand des Eingangs-/Ausgangskanals B (Kontaktpin 2) der M12-Anschlüsse 1 bis 8.

Hinweis!

Die Bitzuordnung der Diagnosedaten von Byte 1 (diag – Byte 1) sind nach einer anderen Logik aufgebaut, da ein Sensorkurzschluss nur aus einer Überlast an Pin 1 resultieren kann. Die nachfolgende Tabelle zeigt die entsprechende Bitzuordnung.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	X8	X7	X6	X5	X4	X3	X2	X1

Tabelle 8.3

Beschreibung der angezeigten Bytewerte innerhalb des JSON-Objekts

Die Prozessdaten des Moduls werden im JSON-Objekt in dezimaler Schreibweise dargestellt. Zur genauen Aufschlüsselung der angezeigten Werte ist die jeweilige Bitwertigkeit heranzuziehen:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bitwer- tigkeit	128	64	32	16	8	4	2	1
Byte 0	X4-B	X4-A	Х3-В	ХЗ-А	X2-B	X2-A	X1-B	X1-A
Byte 1	X8-B	X8-A	X7-B	X7-A	X6-B	X6-A	X5-B	X5-A

Tabelle 8.4

Für diese Prozessdaten wird der Bitzustand (0 oder 1) mit der entsprechenden Bitwertigkeit multipliziert.

Folgende Beispiele veranschaulichen diese Logik:

- aktivierter digitaler Eingang an Port X3-B: Byte 0 der Eingangsdaten zeigt in Bit 5 als Portzustand den Wert 32 an (1 (Bitzustand) x 32 (Wertigkeit))
- aktivierter digitaler Ausgang an Port X8-A: Byte 1 der Ausgangsdaten zeigt in Bit 6 als Portzustand den Wert 64 an (1 (Bitzustand) x 64 (Wertigkeit))

Wenn mehrere Bits gleichzeitig gesetzt sind, werden deren Werte entsprechend ihrer Bytezuordnung summiert. Das nachfolgende Beispiel veranschaulicht diese Logik für die Outputdaten und Inputsdaten.

Outputdaten Byte 0 und Byte 1:

 Port X3-A, Port X2-B und Port X2-A sind aktivierte Ausgänge, d. h. Bit 4, 3, 2 in Byte 0 sind jeweils 1 x Bitwertigkeit.

Der Gesamtwert von Byte 0 = 16 + 8 + 4 = 28

 Port X8-A, Port X6-B und Port X5-A sind aktivierte Ausgänge, d. h. Bit 6, 3, 0 in Byte 1 sind jeweils 1 x Bitwertigkeit.

Der Gesamtwert von Byte 1 = 64 + 8 + 1 = 73

Hinweis!

Die realen Ausgangszustände am Modul werden aus modulinternen Diagnosegründen zusätzlich zu den realen Eingangszuständen auf die Eingangsdaten gespiegelt (Output Mirror). Um die reinen Inputsdaten zu erhalten, müssen daher die Werte der Outputdaten von dem Gesamtwert der Inputdaten im JSON-Objekt subtrahiert werden. ().

Inputdaten Byte 0 und Byte 1:

Inputdaten f
ür Byte 0 = 30

Die reinen Eingangsdaten werden berechnet über Subtraktion der Ausgangsdaten von Byte 0 = 28 von den angezeigten Inputdaten.

Daraus folgt für die reinen Eingangsdaten von Byte 0 = 30 -28 = 2

Aufgrund der Bitwertigkeit für die Ports lässt sich schließen, dass Port X1-B ein aktivierter Eingang ist.

Gesamtwert der Inputs f
ür Byte 1 = 105

Die reinen Eingangsdaten werden berechnet über Subtraktion der Ausgangsdaten von Byte 0 = 73

Daraus folgt für die reinen Eingangsdaten von Byte 1 = 105 - 73 = 32

Aufgrund der Bitwertigkeiten für die Ports lässt sich schließen, dass Port X7-B ein aktivierter Eingang ist.

Die Daten unter den Rubriken "consuming" und "producing" beziehen sich lediglich auf die reine Kommunikation des Moduls mit einer Steuerung. Wenn sich die hierzu angezeigten Werte von den Input- und Outputdaten unterscheiden, so muss auch eine andere Quelle (z.B. Forcen über den Webserver) an der Kommunikation beteiligt sein. Welche Werte dabei aus einer anderen Quelle resultieren ist durch Subtraktion ermittelbar. Hierbei sind die Inputdaten von den Daten der Rubrik "producing" und die Outputdaten von den Daten der Rubrik "consuming" entsprechend ihrer Bytezuordnung zu subtrahieren.

9 Dezentrale Logikfunktion

9.1 Grundlegende Informationen

Überblick

Die Ethernet-IO-Module der Variante ICE1-*-G60L-C1-V1D verfügen über eine dezentrale Logikfunktion (DCU-Funktion). Mit dieser können die Module Benutzerprogramme ausführen, die mit einem kleinen externen Tool mit dem Namen **LDMicro** erstellt wurden. Diese Benutzerprogramme werden in einer Leiterlogik erstellt und heißen "DCU-Programme". Damit kann der Anwender zusätzliche Steuerlogik hinzufügen, die direkt im Modul gespeichert und unabhängig von einer übergeordneten Steuerung sind. Dies reicht von einfachen booleschen Operationen der Ein- und Ausgänge bis hin zu autonomen Programmen. Zu einer SPS erscheint das Modul als normales Slave-Modul mit 8 Bit Ausgangsdaten und 16 Bit Eingangsdaten.

Hinweis!

Ein- oder Ausgänge, die von der DCU-Anwendung verwendet werden, sind nicht mehr direkt von der SPS steuerbar. Die Ein- oder Ausgänge können aber mit der SPS kommunizieren, da die entsprechenden zyklischen Bits vom DCU-Programm gelesen und geschrieben werden.

Zyklische Daten und Parameter

Consuming Data (SPS an Ethernet-IO-Modul)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	3A	2B	2A	1B	1A
Byte n +1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 9.1

Legende

- 1A...8A: Ausgangsstatus Kanal A (Pin 4) der Steckplätze X1 bis X8
- 1B...8B: Ausgangsstatus Kanal B (Pin 4) der Steckplätze X1 bis X8

Producing Data (Ethernet-IO-Modul an SPS)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte n	4B	4A	3B	ЗА	2B	2A	1B	1A
Byte n +1	8B	8A	7B	7A	6B	6A	5B	5A

Tabelle 9.2

Legende

- 1A...8A: Aktueller Status von Kanal A (Pin 4) der Steckplätze X1 bis X8
- 1B...8B: Aktueller Status von Kanal B (Pin 4) der Steckplätze X1 bis X8

Hinweis!

Abhängig vom eingestellten Protokoll kann das Modul weitere zyklische Datenbytes enthalten. Details finden Sie in den jeweiligen Kapiteln zu den Prozessdaten für die einzelnen Protokolle.

Datenaustausch

Hinweis!

Nachfolgende Informationen zum Datenaustausch zwischen Ethernet-IO-Modul und SPS sind nur für die ICE1-16DIO-G60L-C1-V1D-Module gültig.

- Die Module stellen zusätzliche zyklische Daten explizit für den Datenaustausch zwischen SPS und DCU-Programm zur Verfügung. Das DCU-Programm kann Befehle und Daten von der SPS übernehmen und antwortet mit Ausführungsergebnissen.
- Die Breite der Austauschdaten beträgt 16 Bit plus 8 Datenwörter (als 16 Bit Integer mit Vorzeichen) in jede Richtung.
- Die Datenaustauschbits k\u00f6nnen mit der "YEn" Bit-Variablen in LDMircro geschrieben werden
- Die Datenaustauschbits können mit der "XEn" Bit-Variablen in LDMircro gelesen werden.
- Die Symbole für die Integer-Variablen "Eln" und "EOn" erlauben das Lesen und Schreiben der Austauschdatenwörter.

PROFINET

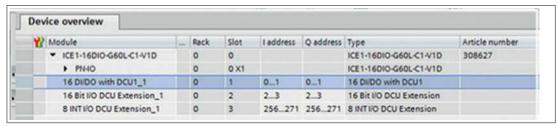


Abbildung 9.1 DCU Austauschdatenbereich im TIA Portal

Im PROFINET-Protokoll besteht der Datenaustauschbereich aus 2 zusätzlichen Slots (2 und 3). Slot 2 enthält die 16 Bit Austauschdaten und Slot 3 die 16 Byte Austauschdatenwörter.

FtherNet/IP

Die Austauschdaten werden innerhalb der zyklischen Ethernet/IP-Daten bereitgestellt. Das Format dieser Daten kann sich mit der aktuell gewählten Baugruppe (16DIO, 16DI, 8DI/8DI etc.) ändern.

Die folgenden zyklischen Daten gelten für die Standard-16DIO-Module mit DCU. Weitere Informationen entnehmen Sie bitte dem Kapitel "Inbetriebnahme bei EtherNet/IP", Unterkapitel "Module mit dezentraler Logikfunktion, Bitbelegung der Prozessdatenerweiterung".

Zyklische Producing Data

Byte	Funktion			
0	Input Data			
1	Input Data			
2	General Diagnosis			
3	Sensor Diagnosis			
4	Reserved			
5	Actuator Diagnosis 1			
6	Actuator Diagnosis 2			
7	DCU Bit exchange Byte 1			
8	DCU Bit exchange Byte 2			
9	DCU Integer exchange 1 MSB			
10	DCU Integer exchange 1 LSB			
11	DCU Integer exchange 2 MSB			
12	DCU Integer exchange 2 LSB			
24	DCU Integer exchange 8 MSB			
25	DCU Integer exchange 8 LSB			

Tabelle 9.3

Zyklische Consuming Data

Byte	Funktion
0	Output Data
1	Output Data
2	DCU Bit exchange Byte 1
3	DCU Bit exchange Byte 2
4	DCU Integer exchange 1 MSB
5	DCU Integer exchange 1 LSB
6	DCU Integer exchange 2 MSB
7	DCU Integer exchange 2 LSB
20	DCU Integer exchange 8 MSB
21	DCU Integer exchange 8 LSB

Tabelle 9.4

EtherCAT

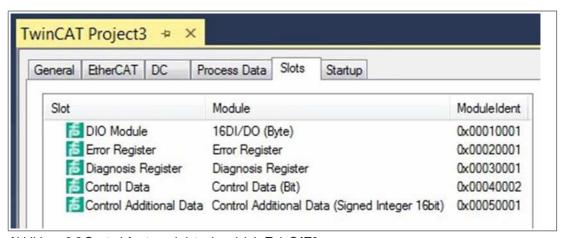


Abbildung 9.2 Control Austauschdatenbereich in TwinCAT3

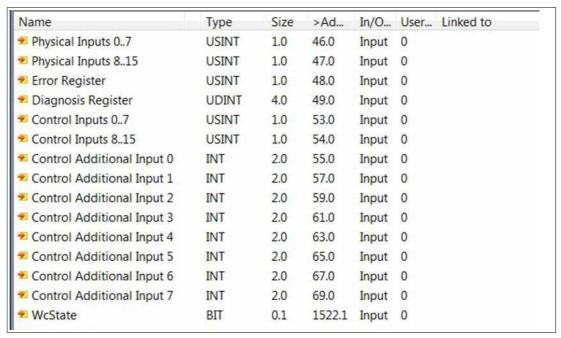


Abbildung 9.3 Control Austauschvariablen in TwinCAT3

Bei EtherCAT sind die 2 Austauschdatenbereiche als zusätzliche Slots organisiert. Die 8 vorzeichenbehafteten Integer-Werte werden direkt als Variablen vom Typ INT mit der Größe 2 angezeigt.

Modulparameter

Die ICE1-*-G60L-C1-V1D-Module verfügen über einen zusätzlichen SPS-Parameter, über den das Startverhalten der dezentralen Logikfunktion gesteuert wird.

DCU-Startparameter

Disabled	Die DCU-Anwendung startet im Status deaktiviert
Locked	Die DCU-Anwendung ist deaktiviert und kann nicht über das Web-Interface gestartet werden.
Run	Die DCU-Anwendung startet im Status RUN und führt ein gültiges geladenes DCU-Programm aus.

DCU-Startparameter im TIA-Portal

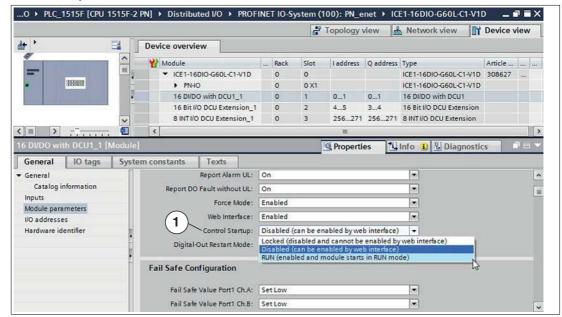


Abbildung 9.4

Die DCU-Startparameter werden bei "Control Startup" (1) aktiviert/deaktiviert.

DCU-Programmierung

DCU/LDMicro Rahmenbedingungen

Max. Rungs	99
Max. Bits	99
Max. Integers	99
Max. Zeilenanzahl (kompiliertes Programm)	4096
Min. μDCU Cycle Time	10 ms

9.2 LDMircro Programmiertool

LDMicro Benutzeroberfläche

Open-Source Ladder-Logik-Programmierwerkzeug:

LDMicro herunterladen unter: https://www.pepperl-fuchs.de oder http://cq.cx/ladder.pl#dl

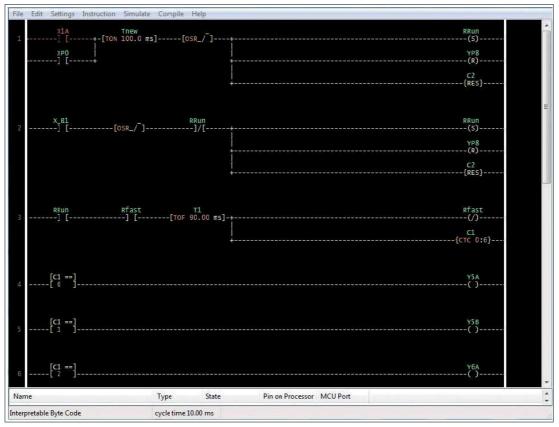


Abbildung 9.5

Mit LDMicro kann der Anwender Programme in einem Ladder-Diagramm-Stil nach EN 61131-3 erstellen. In einem Ladder-Diagramm-Stil sind alle Elemente des Programms auf horizontalen Linien (Rungs) angeordnet. Die Pfade werden immer von links nach rechts ohne eine festgelegte Rung-Ordnung ausgeführt. Dieses Konzept hat seinen Ursprung in festverdrahteten Relaisschaltungen.

LDMicro bietet eine Vielzahl von Anwendungen:

- Bitoperationen z. B. Kontakte, Spulen, Setzen / Rücksetzen
- Flankenerkennung
- Zeitschalter und Aktivieren/Deaktivieren von Verzögerungen
- Vor-/Rückwärtszähler/zirkulierender Zähler
- Arithmetische Operationen (16 Bit, mit Vorzeichen).

DCU-Programme, die mit LDMicro erstellt wurden, können:

- alle Ein- und Ausgänge des Moduls verwenden
- auf Diagnoseereignisse (Kurzschluss, Unterspannung etc.) reagieren
- Kommunikation mit einer angeschlossenen SPS
- Informationen über das Netzwerk freigeben

Dateitypen

Programmdateien für LDMicro sind mit .ld benannt. Diese Dateien können über die LDMicro-Applikation geladen, bearbeitet und gespeichert werden.

Um ein DCU-Programm für die DCU-Anwendung zu kompilieren, wählen Sie zuerst den richtigen Zieltyp unter "Settings -> Mikrocontroller -> Interpretable Bytecode.

Es ist auch möglich, die Zykluszeit einzustellen (Settings -> MCU-Parameter). Eine Zykluszeit von 10 ms oder mehr wird empfohlen.

Dann wählen Sie aus dem Menü **Compile -> Compile as ...** und wählen Sie einen Ort und einen Namen aus, in dem das kompilierte Programm gespeichert werden soll. Das Ergebnis ist eine .int-Datei.

Hinweis!

Diese Datei kann nun über das Webinterface in die DCU-Anwendung hochgeladen werden.

Dateitypen

LDMicro kennt folgende Datentypen:

Bit	0 oder 1
Int	16-Bit-Ganzzahl (-32768 bis +32767)
Т	Timer
С	Counter

Konventionen zur Namensgebung

LDMicro

Es gibt 3 Arten von Bits mit einer obligatorischen Namenskonvention:

Тур	Konvention	Beispiel
Eingangs-Bit	muss mit "X" beginnen	X1A, X5P
Ausgangs-Bit	muss mit "Y" beginnen	Y2B, Y3P
Internes Relais	muss mit "R" beginnen	R1, RRun, RStart

μControl

Тур	Konvention	Beispiel
Physikalische I/O-Eingangsdaten	X gefolgt von Portnummer und Kanal	X1A, X5B
Physikalische I/O-Ausgangsdaten	Y gefolgt von Portnummer und Kanal	Y2B, Y7A
Zyklische Daten zur SPS	Y gefolgt von "P" und Bitzahl	YP5, YP15
Zyklische Daten aus der SPS	X gefolgt von "P" und Bitzahl	XPO, XP6
Sonderbits	"X" oder "Y" gefolgt von _ (Unterstrich) und einem Namen	X_DIA, Y_STOP
Integer-Werte für I/Os	IN oder OUT gefolgt von Byte- Nr.	IN1, IN2, OUT1, OUT2
Integer-Werte für besondere Informationen	_ (Unterstrich) gefolgt von einem Namen	_SCS, _CE1

Verfügbare Daten

Diese Daten sind direkt im LDMicro-Programm verfügbar. Benennen Sie einfach eine Bit- oder Integer-Variable in LDMicro gemäß der folgenden Liste.

Grundlegende Ein-/Ausgangsdaten

Symbol	Richtung	Тур	Beschreibung
Xn[A/B]	Eingang	Bit	Liest digitalen Eingangsstatus von Port n (18). Kanal A oder B
Yn[A/B]	Ausgang	Bit	Schreibt digitale Ausgangsstatus in Port n (18). Kanal A oder B
OUT[0/1]	Ausgang	Int	Schreibt 8 Ausgangsstatus als INT (0 = X1 X4, 1 = X5X8)
IN[0/1]	Eingang	Int	Liest 8 Eingangsstatus als INT (0 = X1X4, 1 = X5X8

Datenaustausch mit SPS

Symbol	Richtung	Тур	Beschreibung
XPn	Eingang	Bit	Liest Consuming Bit von SPS (Verbrauchsdaten) n = 0 15
YPn	Ausgang	Bit	Schreibt Producing Bit für SPS (Datenerzeugung) n = 0 15
XCn[A/B]	Eingang	Bit	Liest Consuming Daten von SPS für Port n (18). Kanal A oder B)
YPn[A/B]	Ausgang	Bit	Schreibt Producing Daten für SPS für Port n (18). Kanal A oder B
XEn*	Eingang	Bit	Liest Datenaustauchbit n (015)
YEn*	Ausgang	Bit	Schreibt Datenaustauchbit n (015)
Eln*	Eingang	Int	Datenaustauschwert von SPS n = 07
EOn*	Eingang	Int	Datenaustauschwert für SPS n = 07

^{*} Nur bei 16DIO-Modul verfügbar.

Diagnose-Informationen

Symbol	Richtung	Тур	Beschreibung
X_DIA	Eingang	Bit	Diagnose Master Bit
X_SCS	Eingang	Bit	Sensor Diagnose Bit
X_SCA	Eingang	Bit	Aktuator Diagnose Bit
X_LVS	Eingang	Bit	Sensor Versorgungsspannungsfehler
X_LVA	Eingang	Bit	Aktuator Versorgungsspannungsfehler
X_COMM	Eingang	Bit	Zyklische Verbindung zur SPS hergestellt
_scs	Eingang	Int	Sensor-Kurzschluss-Informatio- nen pro Port
_CE1	Eingang	Int	Kanalfehler LSB
_CE2	Eingang	Int	Kanalfehler MSB

Control

Symbol	Richtung	Тур	Beschreibung
Y_STOP	Ausgang	Bit	Veranlasst die DCU-Anwendung (DCU) zu stoppen
Y_DIS	Ausgang	Bit	Veranlasst die DCU-Anwendung (DCU), sich selbst zu sperren

Spezial

Symbol	Richtung	Тур	Beschreibung
_Pn	Ausgang	Int	Daten zum Veröffentlichen. n = 031
_MSG	Ausgang	Int	Zeigt Nachricht mit entsprechender Nummer auf Web-Gui
X_Bn	Eingang	Bit	Virtuelle Taste auf Web-Gui gedrückt n = Taste Nummer 1 10
X_First	Eingang	bit	Ist nur beim ersten Programm- durchlauf nach Einschalten oder Reset gesetzt.

Physikalische Eingänge und Ausgänge

Die Symbole x_{nA} und x_{nB} erlauben dem DCU-Programm, direkt den entsprechenden physikalischen Eingang zu lesen. Ein mit diesem Symbol benannter Kontakt wird als geschlossen interpretiert, wenn der entsprechende Eingangspin mit + 24 V_{DC} (z. B. Pin 1) verbunden wird. Mit den Symbolen x_{nA} und x_{nB} können Sie direkt einen physikalischen Digitalausgang steuern. Eine mit diesem Symbol benannte Spule wird den entsprechenden Ausgangspin aktivieren, der dann + 24 V_{DC} liefert.

Physische Ein- und Ausgänge, die in einem DCU-Programm verwendet werden, werden von den entsprechenden zyklischen Daten zu und von der SPS getrennt. Diese zyklischen Daten können jedoch noch vom DCU-Programm gelesen und manipuliert werden, um Informationen mit der SPS zu kommunizieren oder auszutauschen. Physische Ein- und Ausgänge, die NICHT verwendet werden, können noch direkt von einer SPS gesteuert werden

Direkter Zugriff auf zyklische Bits

Das Modul liefert 16 Bit zyklische Eingangsdaten an die SPS (Producing Data), die in dem DCU-Programm durch das Symbol YPn dargestellt sind, wobei n ein Bit im Bereich von 0 bis 15 ist. Eine Spule, die so benannt ist, würde das entsprechende zyklische Bit in den Daten des Moduls steuern. Nur zyklische Bits, die von physikalischen Ein- und Ausgängen getrennt sind, weil sie in einem DCU-Programm verwendet werden, können auf diese Weise manipuliert werden.

Ebenso können die 8-Bit zyklischen Ausgabedaten aus der SPS (Consuming Data) durch ein DCU-Programm mit dem XPn-Symbol gelesen werden. n ist dabei ein Bit im Bereich von 0 bis 7. Damit kann die DCU-Anwendung auf Ereignisse reagieren, die von der SPS ausgelöst werden.

Kanalbezogenes Lesen und Manipulation der Consuming und Producing Data durch den Kanal

Die Symbole XCnA und XCnB lesen das von der SPS empfangene Consuming-Zyklusbit, dass den spezifizierten Ausgangskanal steuert. Selbst wenn der Ausgangskanal durch das DCU-Programm gesteuert wird, und somit nicht direkt von der SPS, ist dieses in der Lage auf den Status des Bits zu reagieren.

Die Symbole YPnA und YPnB manipulieren die Producing Data für den spezifizierten Kanal, die über die zyklischen Daten an die SPS gesendet werden. Damit kann ein DCU-Programm einen Eingangszustand zur SPS unabhängig vom realen Eingangszustand des Kanals simulieren (Eingangssimulation').

Hierbei wird das verwendete Mapping der Prozessdaten betrachtet.

Kanäle 1..4

Physikalischer	Port/ Kanal							
Port/Kanal	1/A	1/B	2/A	2/B	3/A	3/B	4/A	4/B
Consuming Bit lesen	XC1A	XC1B	XC2A	XC2B	XC3A	XC3B	XC4A	XC4B
Producing Bit mani- pulieren	YP1A	YP1B	YP2A	YP2B	YP3B	YP3B	YP4A	YP4B

Kanäle 5 .. 8

Physikalischer-	Port/ Kanal							
Port/Kanal	5/A	5/B	6/A	6/B	7/A	7/B	8/A	8/B
Consuming Bit lesen	XC5A	XC5B	XC6A	XC6B	XC7A	XC7B	XC8A	XC8B
Producing Bit mani- pulieren	YP5A	YP5B	YP6A	YP6B	YP7B	YP7B	YP8A	YP8B

Datenaustausch

Hinweis!

Nachfolgende Informationen zum Datenaustausch zwischen Ethernet-IO-Modul und SPS sind nur für die ICE1-16DIO-G60L-C1-V1D-Module gültig.

- Die Module stellen zusätzliche zyklische Daten explizit für den Datenaustausch zwischen SPS und DCU-Programm zur Verfügung. Das DCU-Programm kann Befehle und Daten von der SPS übernehmen und antwortet mit Ausführungsergebnissen.
- Die Breite der Austauschdaten beträgt 16 Bit plus 8 Datenwörter (als 16 Bit Integer mit Vorzeichen) in jede Richtung.
- Die Datenaustauschbits k\u00f6nnen mit der "YEn" Bit Variablen nach LDMircro geschrieben werden.
- Die Datenaustauschbits können mit der "XEn" Bit Variablen in LDMircro gelesen werden.
- Die Datenaustauschbits sind unabhängig vom verwendeten Mapping der Prozessdaten
- Die Symbole für die Integer-Variablen "Eln" und "EOn" erlauben das Lesen und Schreiben der Austauschdatenwörter.

9.3 DCU Web Interface

Distributed Control-Webschnittstelle

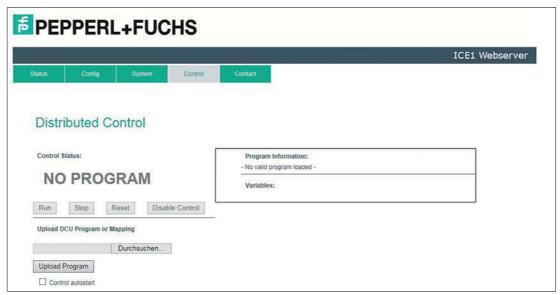


Abbildung 9.6 Control-Webschnittstelle ohne geladenes Programm

Die Control-Webschnittstelle ermöglicht es dem Benutzer, Programme auf die DCU-Anwendung hochzuladen und den Control-Status zu steuern.

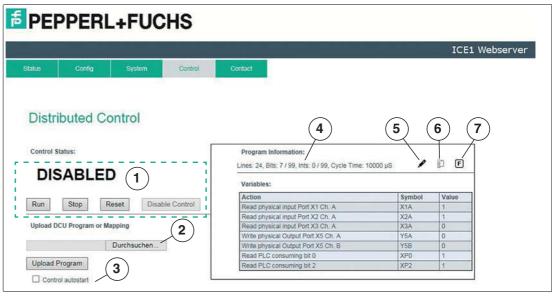


Abbildung 9.7 Control-Webschnittstelle mit geladenem Programm

- 1 Zeigt aktuellen DCU-Status an und Tasten zur Steuerung der dezentralen Logikfunktion
- 2 Hochladen eines Programms oder einer Mapping-Datei
- 3 Autostart Box für automatische Ausführung eines bereits geladenen Programms direkt nach Einschalten der Spannungsversorgung
- 4 Bereich "Programm "Information" zeigt Basisinformationen zum Programm, eine Liste aller von der dezentralen Logikfunktion genutzten Modulfunktionen und Variablen an

- 5 Ändert das Zahlenformat der Spalte "Value" für Integervariablen.
- 6 Öffnet den Mapping-Dialog zur Erzeugung eines spezifischen Variablen-Mappings.
- 7 Aktiviert/Deaktiviert ein Variablen Forcing

Benutzername und Passwort

Um den Control-Status zu ändern oder Programme hochzuladen, können Sie die Benutzernamen "WRITE" oder "ADMIN" verwenden.

Hinweis!

Das Standardpasswort für den Benutzer "ADMIN" ist "private".

Control-Status

Es gibt die folgenden Control-Status:

Status	Beschreibung
NO PROGRAM	Es ist kein Programm geladen oder die hochgeladene Datei ist kein gültiges Programm.
LOCKED	Die DCU-Anwendung wird durch die Master-Konfiguration (SPS) gesperrt.
DISABLED	Die DCU-Anwendung ist deaktiviert. Es läuft kein Programm und die DCU-Anwendung hat keine Kontrolle über die Ein- und Ausgänge.
STOP	Die DCU-Anwendung steuert die Eingänge und Ausgänge, die im geladenen Programm verwendet werden, aber das Programm wird gestoppt. Alle anderen Ein- und Ausgänge können noch vom Master gesteuert werden.
RUN	Die DCU-Anwendung steuert die Eingänge und Ausgänge, die im geladenen Programm verwendet werden, und das Programm wird ausgeführt. Alle anderen Ein- und Ausgänge können noch vom Master gesteuert werden.

Hochladen eines Programms in die DCU-Anwendung

Programme, die mit LDMicro erstellt und kompiliert werden, können direkt in die DCU-Anwendung hochgeladen werden. Wählen Sie die Programmdatei (.int) und betätigen Sie die Taste "Upload".

Der Programm-Upload ist NICHT erlaubt, wenn sich die DCU-Anwendung im RUN-Modus befindet. WRITE- oder ADMIN-Benutzerrechte sind erforderlich, um ein DCU-Programm hochzuladen.

Sie können auch eine Variablen-Mapping-Datei (.map) hochladen.

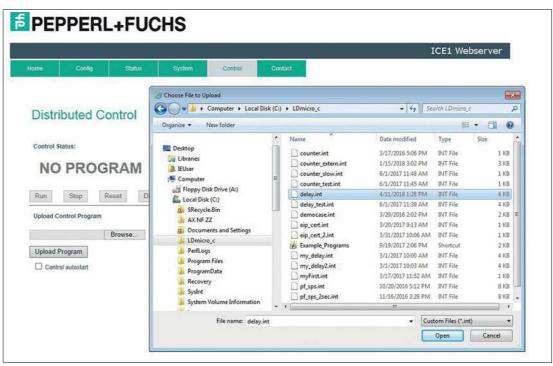


Abbildung 9.8

Programm Informationen

Die Box auf der rechten Seite zeigt einige Informationen über das aktuell geladene Programm. Die I/O-Tabelle zeigt alle physikalischen Ein- und Ausgänge, die vom SPS-Programm verwendet werden. Nur diese I/Os werden vom DCU-Programm gesteuert. Alle anderen I/Os können von einem Feldbus-Master gesteuert werden (falls vorhanden).

Auto-Start

Wenn das Kontrollkästchen Autostart aktiviert ist, startet die DCU-Anwendung automatisch im RUN-Modus, wenn das Modul eingeschaltet ist und wenn ein gültiges Programm geladen ist.

Hinweis!

"Control Autostart" nur verwenden, wenn keine Verbindung zu einer SPS besteht. Anderenfalls wird die SPS das Modul nicht erkennen. Wenn man sicherstellen will, dass die Control-Funktion in Verbindung mit einer SPS ausgeführt wird, muss der entsprechende Geräte-Parameter aktiviert werden. Bei PROFINET heißt der z.B. "Control-Startup"

Spezifisches Mapping

Typischerweise wird das Mapping zwischen einer Variablen und der entsprechenden Modulfunktion implizit durch den Variablennamen angenommen (gemäß Kapitel "LDMircro Programmiertool" siehe Tabelle "Grundlegende Ein-/Ausgangsdaten") im Beispiel wird eine Variable mit dem Namen Y5B automatisch verbunden auf die Modulfunktion "Setze physikalischen Ausgang Port 5 Kanal B". Wenn dieser Ansatz verwendet wird, ist kein weiteres Mapping erforderlich.

Zur besseren Lesbarkeit des DCU-Programms kann es sinnvoll sein, Variablen entsprechend ihrer Funktion in der Anwendung zu benennen. Soll beispielsweise ein Ausgang eine gelbe LED ansteuern, kann die Variable Y_LEDyellow sein.

Ein solcher Variablenname ist dem Modul nicht bekannt und daher mit keiner Funktion verbunden. Diese Variable wird deshalb nicht in der Variablenliste angezeigt, aber die Zuordnung zwischen dieser Variable und einer physikalischen Ausgabe kann manuell über das Variablen-Mapping vorgenommen werden.

Erzeugen des Mapping mit dem Mapping Dialog

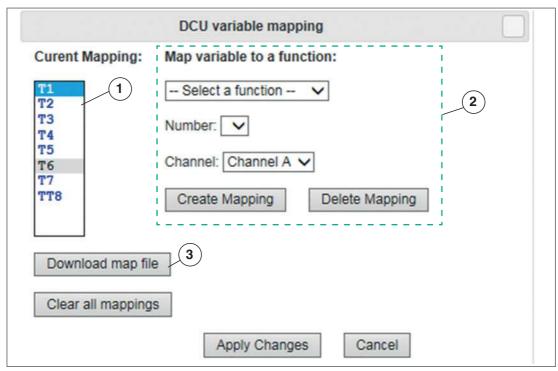


Abbildung 9.9

Der Mapping-Dialog zeigt im aktuellen Programm eine Liste aller Variablen an (1), die nicht automatisch durch ihre Namen gemappt werden.

Jede dieser Variablen kann mit einer Gerätefunktion verbunden werden, indem die Variable ausgewählt wird. Danach füllt sich die Funktionsdropdown-Liste mit möglichen Funktionen für diesen Variablentyp.

Nach der Auswahl einer Funktion kann es notwendig sein, diese zu spezifizieren. Wählen Sie zum Beispiel eine Nummer oder einen Port und Kanal (2).

Durch einen Klick auf "Create Mapping" wird die Variable mit dieser Funktion verbunden.

Die Taste "Delete Mapping" hebt ein existierendes Mapping auf.

Wenn alle benötigten Variablen gemappt sind, klicken Sie auf Taste "Apply Changes", um die Änderungen an das Modul zu schicken.

Die Variablenliste auf der DCU-Seite zeigt nun auch die neu zugeordneten Variablen mit dem ursprünglichen Funktionsnamen in Klammern an.

Für ein Backup, eine Wiederverwendung oder externes Editieren können Sie die das aktuelle Mapping als Datei herunterladen (3).

Die Taste "Clear all mappings" löscht alle existierenden Mappings im Modul.

Manuelles erzeugen einer Mapping Datei

Ein Variablen-Mapping kann auch durch einfaches Hochladen einer Mapping-Datei erstellt werden.

Die Datei ist wie folgt aufgebaut:

[CustomName];[Symbol]\r\n

Beispiel:

XStart;X1A

YLED;Y5B

Diese Datei muss die Endung ".map" besitzen.

Variablen Forcing

Alle Variablen eines DCU-Programms, die auf eine Modulfunktion abgebildet sind, können manipuliert werden (Forcing). Das bedeutet, dass der Wert direkt vom Webinterface aus manuell geändert werden kann.

Eingangsvariablen, d. h. Variablen, die mit Daten aus dem Modul gefüllt werden, können auf einen bestimmten Wert manipuliert werden, der dann vom DCU-Programm gelesen wird. So können Eingabedaten zu einem DCU-Programm z.B. zu Testzwecken manipuliert werden.

Ausgangsvariablen, d. h. Variablen, die von einem DCU-Programm zur Änderung des Modulzustandes geschrieben werden, können auf einen bestimmten Wert gesetzt werden. Dieser wird direkt an die Modulfunktion übergeben mit der die Variable gemappt wird. So kann diese Funktion direkt manipuliert werden. Ausgangsvariablen werden nur verarbeitet, wenn sich die dezentrale Logikfunktion (DCU) im Zustand "RUN" befindet.

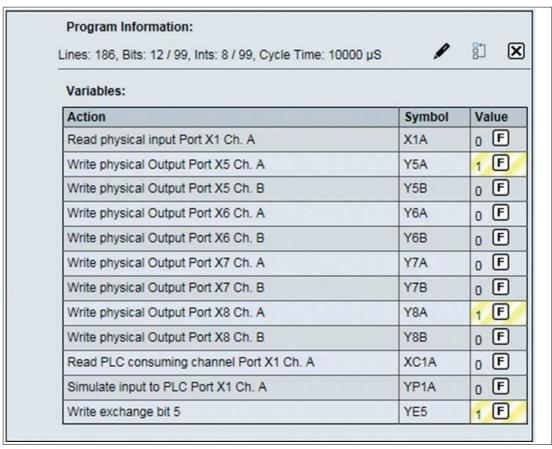


Abbildung 9.10Variablenliste mit aktivem Forcing

Forcing starten/beenden und bedienen

Um das Variablen Forcing zu starten, klickt der Benutzer auf die Taste "F" in der Programminformation. Die Tasten drehen sich auf "X". Ein erneuter Klick auf die Taste beendet das Forcing der Variablen.

Alle Variablen in der Liste erhalten eine zusätzliche Taste "F" in der Spalte "Value". Ein Klick auf diese Schaltfläche öffnet einen kleinen Dialog, in dem der Benutzer einen Forcing-Wert für diese Variable eingeben kann. Bitvariablen bieten nur eine Taste "0" und "1", da Bit Variablen nur auf 0 oder 1 gesetzt werden können.

Bei Integer Variablen kann eine Zahl eingegeben werden.

Die mit "X" gekennzeichnete Schaltfläche beendet das Forcing für diese Variable sofort. Eine erzwungene Variable in der Liste ist gelb hinterlegt.

DCU-Programm und Mapping-Batch Hochladen

Das DCU-Programm und die Mapping-Dateien können auch direkt über einen http-POST-Request hochgeladen werden. Ein Beispiel-Perl-Skript, das direkt für das Batch-Hochladen verwendet werden kann, ist nachfolgend beschrieben.

POST-Request zum Hochladen von Dateien

URI	/upload?cmd=store&fullpage=false				
Method	POST				
MIME Type	multipart/form-data				
Form fields	path	dcu			
	submit	upload			
	file	[file to upload] (as application/octet-stream)			
Filename	dc.int für Programmdatei dc.map für Mapping-Datei				

Verwendung des Perl Skripts

Die nachfolgende Beispiel-Batch-Datei veranschaulicht ein Perl-Skript (transfer.pl) zum Batch-Hochladen von Dateien auf die dezentrale Logikfunktion (DCU).

Diese Zeile lädt eine DCU-Programmdatei (dc.int) auf das Modul mit der IP-Adresse 192.168.1.20:

perl -w .\transfer.pl -s dc.int -t dcu 192.168.1.20 -a IO-Device:admin:private

Die Vorgehensweise für eine Mapping-Datei ist gleich:

perl -w .\transfer.pl -s dc.map -t dcu 192.168.1.20 -a IO-Device:admin:private

Hinweis!

Die Bezeichnung "IO-Device" muss hier unverändert bleiben.

Eventuell müssen Benutzername und / oder Passwort an die reale Modulkonfiguration angepasst werden. Jeder Benutzer mit mindestens "WRITE"-Berechtigungen kann verwendet werden.

10 Firmware Update

Übersicht

Wenn für die Module ein Firmware Update erforderlich ist, können Sie die von Pepperl+Fuchs bereitgestellte Software im Internet, über **www.pepperl-fuchs.com**, von der Produktseite für das betreffende Modul ICE1-*-G60L-V1D herunterladen.

Sie können ein Firmware Update bei den Modulen mithilfe des integrierten Webservers durchführen. Dazu müssen Sie zuerst die Startseite des Webservers aufrufen.

Abhängig vom eingestellten Protokoll müssen Sie unterschiedliche URLs für den Aufruf der Startseite eingeben.

Falls sich die Startseite der Module nicht öffnet, überprüfen Sie Ihre Browser- und Firewall-Einstellungen.

Hinweis!

Die Nutzung des Webservers ist mit unterschiedlichen Webbrowsern möglich. Die Webbrowser "Mozilla Firefox" und "Google Chrome" sind ohne weitere Einstellungen verwendbar. Bei Verwendung des "Microsoft® Internet Explorer" kann es unter Umständen erforderlich sein, bei den LAN-Einstellungen die automatische Konfiguration zu deaktivieren.

Ablauf des Firmware Update

Hinweis!

Unterbrechen Sie den Update-Vorgang nicht. Ist das Firmware Update abgeschlossen, werden Sie zum Neustart des Moduls aufgefordert.

Die Firmware-Datei muss heruntergeladen und auf dem PC mit dem installierten Webserver gespeichert sein.

- 1. Rufen Sie die Startseite des Webservers auf:
 - Bei EtherNet/IP und Profinet:

Geben Sie in der Adresszeile Ihres Webbrowsers http://, gefolgt von der IP-Adresse ein, z. B. http://192.168.1.1.

Bei EtherCAT:

Geben Sie in der Adresszeile Ihres Webbrowsers http://[IP-Adresse]/status.htm, z. B. http://192.168.1.1/status.htm.

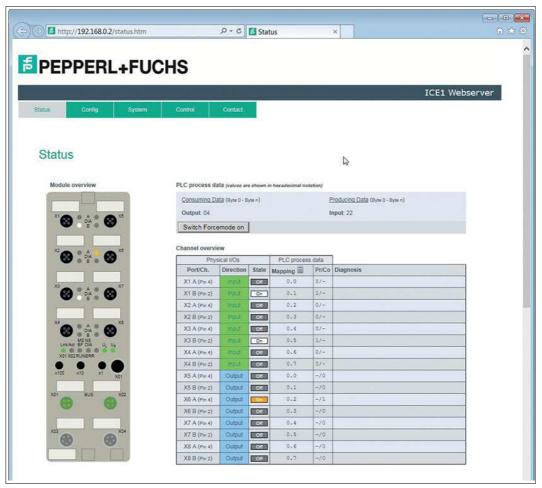


Abbildung 10.1

- 2. Klicken Sie auf die Registerkarte "Config".
- 3. Klicken Sie auf die Taste "Firmware Update".

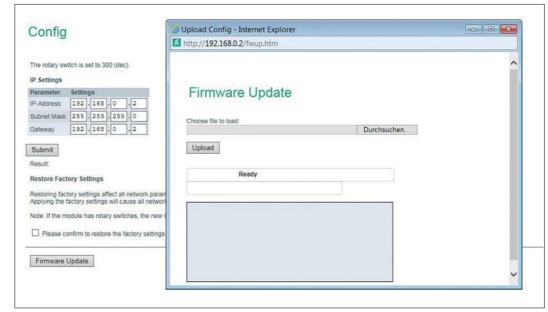


Abbildung 10.2

- **4.** Klicken Sie auf die Taste "Durchsuchen" und wählen Sie die entsprechende ZIP-Datei auf ihrem lokalen Verzeichnis aus und bestätigen Sie den Vorgang mit der Taste "Upload".
 - → Die Übertragung der Firmware dauert ungefähr 30 s. Der Ablauf wird visualisiert.

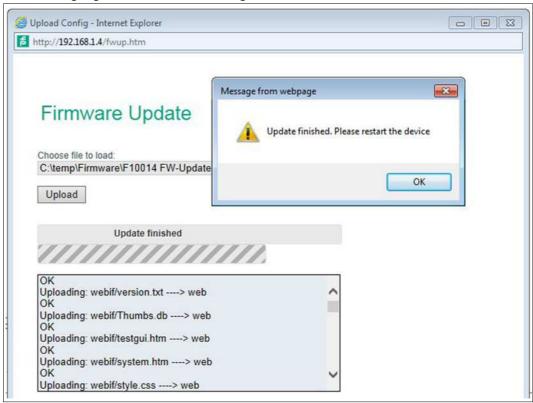


Abbildung 10.3

- 5. Führen Sie einen Neustart des Moduls durch. Schalten Sie dazu Spannungsversorgung des Moduls aus und wieder ein.
 - → Das Modul hat die neue Firmwareversion geladen.
- **6.** Sie können den neuen Firmware-Versionsstand über den Webserver kontrollieren. Rufen Sie die erneut Startseite des Webservers auf.
- 7. Klicken Sie die Registerkarte "System" in der Menüzeile des Startfensters an. Hier können Sie den aktuellen Firmware-Versionsstand kontrollieren.

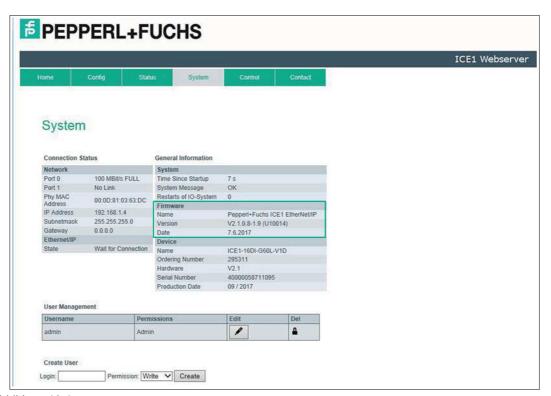


Abbildung 10.4

11 Störungsbeseitigung

11.1 Allgemeine Diagnosebearbeitung

Die Module bieten ein erweitertes Diagnoseverhalten vor allem für die Ausgangskanäle, um Fehler in der Übertragung zu ermitteln. Die Firmware der Module unterscheidet zwischen 5 verschiedenen Arten von Fehlern.

Kanalfehler

Die Ermittlung eines Kanalfehlers erfolgt durch einen Vergleich zwischen dem von einer Steuerung gesetzten Sollwert und dem Istwert eines Ausgangskanals.

Sollwert	Istwert	Bemerkung
Aktiv	Aktiv	OK, keine Diagnose
Aus	Aus	OK, keine
Aktiv	Aus	 Kurzschluss Kanalanzeige ist rot. Kanalfehlerbit in der Diagnose wird gesetzt Kanal ist gesperrt nach Fehlerbehebung
Aus	Aktiv	Rückeinspeisung einer Spannung Kanalanzeigen rot und gelb/weiß sind einge- schaltet Kanalfehlerbit in der Diagnose wird gesetzt Kanal ist nicht gesperrt nach Fehlerbehebung

Hinweis!

Sind beide Ausgangskanäle eines M12-Steckplatzes beim Auftreten eines Kanalfehlers aktiviert, sperrt die Steuerung beide Kanäle, auch wenn lediglich ein Kanal vom Fehler betroffen ist. Ist nur ein Kanal aktiviert, sperrt die Steuerung ausschließlich diesen. Gesperrte Kanäle sind deaktiviert und verbleiben im Zustand "Aus", sofern Sie diese nicht durch die Steuerung zurücksetzen.

Bei der Aktivierung eines Ausgangskanals (steigende Flanke des Kanalzustands) oder Deaktivierung (fallende Flanke) erfolgt die Filterung der Kanalfehler für die Dauer, die Sie über den Parameter "Surveillance-Timeout" bei der Konfiguration des Moduls festgelegt haben. Der Wert dieses Parameters umfasst einen Bereich von 0 bis 255 ms, die Werkseinstellung ist 80 ms.

Der Filter dient zur Vermeidung von vorzeitigen Fehlermeldungen bei Einschalten einer kapazitiven Last oder Ausschalten einer induktiven Last sowie anderer Spannungsspitzen während einer Statusänderung.

Im statischen Zustand eines Kanals, während dieser also dauerhaft ein- oder ausgeschaltet ist, verwendet die Steuerung eine fest eingestellte Dauer von 5 ms für das Filtern der Fehlermeldung.

Spannungsfehler an den M12-Steckplätzen

Auf jeder M12-Eingangsbuchse der Module liefert der Pin 1 eine überwachte Sensorspannung U_S . Im Falle eines Sensorkurzschlusses wird ein Spannungsfehler gemeldet. Beide Kanalanzeigen der M12-Eingangsbuchse leuchten rot und das entsprechende Fehler-Bit "Sensorkurzschluss" in den Diagnose-Bytes wird gesetzt.

Die Fehlermeldung wird durch den Parameter "Surveillance-Timeout" gefiltert.

Überlast der Ausgangstreiber

Die Ausgangstreiber der Module mit Ausgangsfunktionalität (Variante 16DIO, 8DI8DO) melden einen Fehler, wenn sie eine Überlast feststellen. Dieser Fehler wird durch das Setzen der entsprechenden Kanalfehler-Bits in den Diagnose-Bytes gemeldet.

Bei einer Überlast leuchtet die Statusanzeige des aktiven Ausgangskanals rot auf. Sind beide Ausgangskanäle eines M12-Steckplatzes während einer Überlast aktiv, leuchten beide Statusanzeigen rot auf.

Die Fehlermeldung wird durch den Parameter "Surveillance-Timeout" gefiltert.

Hinweis!

Sind beide Ausgangskanäle eines M12-Steckplatzes beim Auftreten eines Kanalfehlers aktiviert, sperrt die Steuerung beide Kanäle, auch wenn lediglich ein Kanal vom Fehler betroffen ist. Ist nur ein Kanal aktiviert, sperrt die Steuerung ausschließlich diesen. Gesperrte Kanäle sind deaktiviert und verbleiben im Zustand "Aus", sofern Sie diese nicht durch die Steuerung zurücksetzen.

Reaktivierung eines gesperrten Ausgangskanals nach Beseitigung eines Fehlers

- Setzen Sie die gesperrten Ausgänge über die Steuerung auf Null.
- 2. Aktivieren Sie die auf Null gesetzten Ausgänge
 - → Die Ausgänge sind wieder aktiviert.

Fehler der Aktorversorgung

An den Anschlüssen für die Spannungsversorgung der Aktorik wird die Höhe des Spannungswertes global und modulbezogen überwacht. Falls die Aktorikversorgung U_L den Spannungswertebereich von 18 bis 30 V verlässt, wird ein Fehler gemeldet.

Die Anzeige U_L leuchtet rot auf und im Modulinformationsbyte wird das Bit Aktorunterspannung gesetzt. Wenn Ausgangskanäle aktiviert sind, wird der Spannungsfehler zusätzlich durch Setzen der entsprechenden Fehler-Bits der M12-Steckplätze angezeigt.

Hinweis!

Jeder Ausgangskanal wird gesperrt, sofern dieser bei gleichzeitigem Vorhandensein des Fehlers der Versorgungsspannung U_L aktiviert ist. Das heißt, der Ausgangskanal muss für den korrekten Betrieb durch die Steuerung zurückgesetzt werden, wenn der Status der Versorgungsspannung U_L sich wieder normalisiert. Wir empfehlen, alle Ausgangskanäle durch die Steuerung zu deaktivieren, sobald die Unterspannung erkannt wird. Andernfalls wird jeder aktive Ausgangskanal wegen seiner Verriegelung eine Diagnose melden, wenn der Spannungswert sich wieder normalisiert.

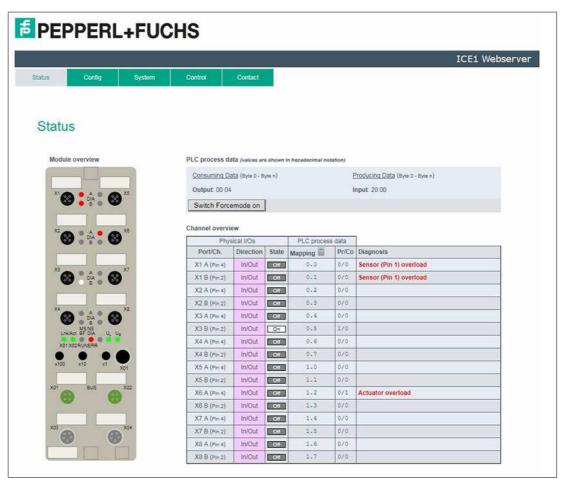
Fehler in der System-/Sensorversorgung

Die Höhe des Spannungswertes der System-/Sensorversorgung wird ebenfalls global überwacht. Ein Unter- bzw. Überschreiten des Spannungsbereiches von 18 bis 30 V erzeugt eine Fehlermeldung.

Die Anzeige U_S leuchtet rot auf und das Bit "Sensorunterspannung" im Modulinformations-Byte wird gesetzt.

Die Fehlermeldung hat keine Auswirkungen auf die Ausgänge und wird nicht gefiltert, sondern sofort gemeldet.

Vorsicht!


Funktionsausfall, wenn Systemspannungsversorgung zu niedrig ist.

Stellen Sie in jedem Fall sicher, dass die Versorgungsspannung gemessen an dem am weitesten entfernten Teilnehmer (Sensor/Aktor) aus Sicht der Systemversorgungsspannung 18 V DC nicht unterschreitet.

11.2 Diagnoseanzeige im integrierten Webserver

Die Module zeigen den Kanal- und Modulstatus sowie die Fehlerdiagnose auf der Statusseite des integrierten Webservers in Klartext an.

Für den Aufruf der Statusseite .

Abbildung 11.1

Im Prozessdatenbereich der Statusseite werden abhängig vom Modul bis zu 5 Bytes Diagnosedaten dargestellt. Die Diagnosebytes in der Reihenfolge von links nach rechts sind dabei folgendermaßen aufgebaut:

11.3 Diagnose-Informationen der Module über EtherNet/IP

Hinweis!

Wenn beim Modul "EtherNet/IP" als Protokoll eingestellt ist, erfolgt die Diagnose-Information über die Prozessdaten, wenn die entsprechenden Assembly-Objekte verwendet werden (siehe Kapitel "Inbetriebnahme bei EtherNet/IP", Unterkapitel "Bitbelegung der Prozessdaten").

11.4 Alarm- und Fehlermeldungen der Module über PROFINET

Hinweis!

Die Übermittlung der Alarm- und Fehlermeldungen über PROFINET wird nur ausgeführt, wenn bei der Konfiguration der Module in der Steuerung der Parameter für die Diagnose aktiviert wird

Erkennen die Module einen Fehlerzustand, so lösen sie eine Alarmmeldung aus. Die Module unterstützen Diagnosealarme. Diagnosealarme werden ausgelöst bei Peripheriefehlern, wie zum Beispiel Überlast, Kurzschluss, Unterspannung.

Ein Alarm wird sowohl bei einem kommenden Ereignis (z. B. Sensorkurzschluss), als auch bei einem gehenden Ereignis ausgelöst.

Die Auswertung der Alarme erfolgt in Abhängigkeit des eingesetzten PROFINET-IO-Controllers.

Alarmauswertung im TIA Portal

Im TIA Portal wird die Bearbeitung des Anwenderprogramms durch das Auslösen eines Diagnosealarms unterbrochen und ein Diagnosebaustein aufgerufen. Folgende Bausteine werden verwendet:

Ursache	OB-Aufruf
Peripheriefehler (Kurzschluss, Überlast, Drahtbruch, Unterspannung eines I/O-Moduls)	OB B2
Komplettausfall des Systems	OB B6

Anhand des aufgerufenen OBs und seiner Startinformation werden bereits erste Informationen über die Fehlerursache und Fehlerart geliefert. Detailliertere Informationen über das Fehlerereignis erhalten Sie im Fehler-OB durch den Aufruf des SFB 54 RALRM (Alarmzusatzinfo lesen). Der SFB 54 muss hierzu im jedem Fehler-OB aufgerufen werden.

Ist der aufgerufene Fehler-OB in der CPU nicht vorhanden, so geht diese in den Betriebszustand STOP.

Es ist auch möglich, einen Diagnosedatensatz über seine Datensatznummer mit Hilfe des Systemfunktionsbausteins SFB 52"RDREC" im OB 1 aufzurufen.

Struktur der Diagnosedatensätze

Für die Darstellung der Diagnosedatensätze wird die Blockversion 0x0101 und die Formatkennung (USI, User Structure Identifier) 0x8000 genutzt.

Die Datenwerte "ChannelNumber" und "ChannelError" enthalten in Abhängigkeit des aufgetretenen Fehlers die folgenden Werte:

Fehlerart	Bezug	ChannelNumber	ChannelErrorType
Unterspannung der Sensor- oder Aktorversorgung	Modul	0x8000	0x0002
Sensorkurzschluss	M12-Steckplatz	0x0001 bis 0x0008 Nummer des M12- Steckplatzes	0x0102
Aktorkurzschluss	Kanal A eines M12- Steckplatzes	0x0001 bis 0x0008 Nummer des M12- Steckplatzes	0x0100
Aktorkurzschluss	Kanal B eines M12- Steckplatzes	0x0001 bis 0x0008 Nummer des M12- Steckplatzes	0x0101

Bei einer Anhäufung von Fehlern wird der Abschnitt "Kanaldiagnose" mit den Datenwerten "ChannelNumber", "ChannelProperties" und "ChannelErrorType" für jeden Fehler im Diagnosedatensatz wiederholt.

Für die Anzeige von Diagnosen wählen Sie im TIA Portal online über die Projektnavigation in der Dezentralen Peripherie das gestörte Modul aus. Öffnen Sie durch Klicken des Wartungssymbols die Online-Diagnose von Steckplatz 1.

Wechseln Sie in den Dialog "Channel diagnostics", um die anstehenden Moduldiagnosen anzuzeigen

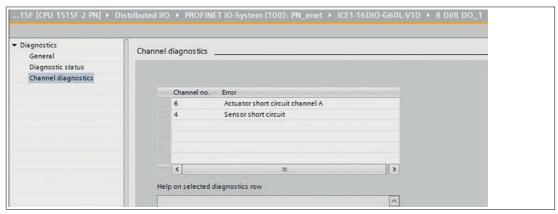


Abbildung 11.2

11.5 Alarm- und Fehlermeldungen der Module über EtherCAT

Bei der Parametrierung sendet das Modul im Falle einer erkannten Störung Fehlermeldungen an den Master. Die Codierung des ersten und des zweiten Teils der Fehlermeldungen ist an die Spezifikationen CiA 301 und CiA 401 angelehnt. Der dritte Teil der Fehlermeldung ist das bekannte (herstellerdefinierte) Diagnoseregister.

Die Fehlermeldung hat ein Format von 8 Bytes und wird wie folgt kodiert:

Inhalt einer Fehlermeldung

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Fehlercod	е	Fehlerregister CoE 0x1001	Diagnose	register			

Tabelle 11.1

Inhalt des Fehlerregisters (CoE-Register 0x1001):

	Fehlerregister (CoE 0x1001), Byte 3								
Fehlercode Byte 1, Byte 2	В7	B6	B5	B4	В3	B1	В0	Fehlerbe- schreibung (Bit 7 - Bit 0)	
0x0000	0	0	0	0	0	0	0	Kein Fehler	
0x2300	0	0	0	0	0	1	1	Ausgang Über- last, MI-SCS oder MI-SCA	
0x3100	0	0	0	0	1	0	1	Spannungsfeh- ler, MI-LVS	
0x3300	0	0	0	0	1	0	1	Spannungsfehler Ausgänge, MI-LVA	

	Fehlerregister (CoE 0x1001), Byte 3									
Fehlercode Byte 1, Byte 2	В7	B6	B5	B4	В3	B1	В0	Fehlerbe- schreibung (Bit 7 - Bit 0)		
0xF000	1	0	0	0	0	0	1	Zusatzfunktion "Erzwingen", MI- FC		
0xFF00	1	0	0	0	0	0	1	Zusatzfunktion "Gerätedia- gnose", MI-IME		

Inhalt des Diagnoseregisters

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 4	MI-IME	MI-FC	0	0	MI-SCA	MI-SCS	MI-LVA	MI-LVS
Byte 5	SCS-X8	SCS-X7	SCS-X6	SCS-X5	SCS-X4	SCS-X3	SCS-X2	SCS-X1
Byte 6	CE-X4B	CE-X4A	CE-X2B	CE-X2A	CE-X2A	CE-X2A	CE-X1B	CE-X1A
Byte 7	CE-X8B	CE-X8A	CE-X7B	CE-X7A	CE-X6A	CE-X6A	CE-X5B	CE-X5A
Byte 8	0	0	0	0	0	0	0	0

Legende:

- MI-LVS: Modulinformation Byte Spannung für Netz-/Sensorversorgung niedrig
- MI-LVA: Modulinformation Byte Spannung für Stellantrieb niedrig
- MI-SCS: Modulinformation Byte Sensor-Kurzschluss an einem M12-Steckplatz
- MI-SCA: Modulinformation Byte Aktuator-Kurzschluss
- MI-FC: Modulinformation Byte Erzwingen aktiv
- MI-IME: Modulinformation Byte interner Modulfehler
- CE-X1A ... CE-X8A: Kanalfehler, Kanal A (Pin 4) der Steckplätze X1 bis X8
- CE-X1B ... CE-X8B: Kanalfehler, Kanal B (Pin 2) der Steckplätze X1 bis X8

Das folgende Beispiel zeigt die vom TwinCAT-Master empfangene Fehlermeldung für einen Aktuatorspannung-Versorgungsfehler:

3 21.11.2016 16:16:41 390 ms | 'Box 1 (0980 ESL 393-121 8D' (1001): CoE - Emergency (Hex: 3300, 05, '02 00 00 00 00').

Abbildung 11.3

Your automation, our passion.

Explosionsschutz

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet

