When the internal/external ground bolt is supplied loose, the components
should be fitted as shown in the figure below. should be fitted as shown in the figure below.

## $\underset{\text { GL }}{\text { Terminal }} \mathbf{T}$ Boxes <br> GL***.T

Pepperl+Fuchs GmbH
Lilienthalstrasse 200
68307 Mannheim, Germa
Tel. $+49621776-0$
Tel. +49621 776-0
Fax $+49621776-1000$
Document No. $\begin{gathered}\text { Edition: } \\ \text { DOT-54888 } \\ 11 / 2017\end{gathered}$
$\overline{\text { Copyright Pepperlt F Fuchs }}$
www.pepperl-fuchs.com

图PEPPERL+FUCHS

## $\square$ Validity

Specific processes and instructions in this instruction manual require special provisions to guarantee the safety of the operating personnel.

## $\square$ Target Group/Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, Responsibility for planning, assembly, comm
and dismounting lies with the plant operator
Mounting, installation, commissioning, operation, maintenance and dismounting of the device may only be carried out by appropriate trained and
qualified personnel. The instruction manual must be read and understood.

## $\square$ Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous areas.
The corresponding datasheets, declarations of conformity, EC-type-
examination certificates, certiticates and control drawings if applicable (see datasheet) are an integral part of this document. You can find this information
$\square$ Mounting/Installation/Maintenance

## Observe IEC/EN 60079-17 for maintenance and inspection.

If you intend to install the device or enclosure in areas that may be exposed to aggressive substances, ensure that the stated surface materials are compatible with these substances. If required, contact Pepperl+Fuchs for further information.
Before opening the enclosure make sure that the built-in components are deenergized.
When energized, the enclosure may only be opened for maintenance, if only intrinsically safe circuits are used inside the enclosure.
Safety-relevant markings are found on the type label supplied. Ensure that the
type label is present and legible. Take the ambient conditions into account.
The permitted ambient temperatures of the built-in components must not be exceeded
If there is a defect, the device must be repaired by Pepperl+Fuch
To ensure the degree of protection:

- The enclosure must not be damaged, distorted or corroded.
- The enclosure must not be damaged, distorted or
- All seals must be undamaged and correctly fitted.
- All seals must be undamaged and correctly fitted.
appropriate torque.
- All cable glands must be suitably sized tor the incoming cabue.
- All unused cable glands must be sealed or plugged with corresponding
sealing plugs, all unused cable entries have to be closed with appropriate stopping plugs.
The enclosure should be mounted via the through-holes that are exposed when the lid is removed.
If mounting the enclosure on concrete use expansion anchors. When mounting enclosure to a steel framework use vibration resistant mounting material. is not damaged or corroded.
In order to prevent condensation in the enclosure, use suitably certified breather drains.


If cable glands are needed for installation, the following points must be considered:

- The cable glands used must be suitably certified for the application.
- The temperature range of the cable glands must be chosen according to the application.
- The cable glands fitted must not reduce the degree of protection
- Metal cable glands shall be earthed.

In order to guarantee the temperature classes, ensure that power dissipation is lower than the figure stated in the certificate and in below tables of max. connection capacity. Most of the power dissipation arises from current flowing Select suitab
Semperature of the conductors in order to ensure that the maximum permitted temperature of the conductors fit
temperature of the terminal box.
Ensure that the terminals are in good condition, and are not damaged or
corroded. corroded
Use only one conductor per termina
Observe the tightening torque of the terminal screws.
Use the shortest possible cable lengths and avoid small core cross-sections.
Observe the minimum bending radius of the conductors.
Insulation must extend to within 1 mm of the metalwork of the terminal.
When using stranded conductors, crimp wire end ferrules on the conductor ends.
Unused cables and connection lines must be either connected to terminals or securely tied down and isolated
Insula
If cross connects are fitted, separation walls or protective barriers may be required to preserve clearance distances.
When installing additional only yif approved in this instruction manual. When installing additional components, make sure that these components are Only use suitably certified terminals.
Do not install fuse terminals, relays, miniature circuit breakers, contactors etc. in the enclosure.
The installer is allowed to add terminals in accordance with the maximum permitted power dissipation shown in the connection capacity tables below. Example:
Enclosure GL8*.T with 20 terminals WDU 2.5 (current load: 6 A) and 5 terminals WDU 10 (current load: 16 A
Assumption:
Average conductor length: 0.5 m
Maximum permissible power loss.
$29 \mathrm{WPv}=(0.242 \mathrm{~W} / \mathrm{m} \times 20 \times 2 \times 0.5 \mathrm{~m})+(0.43 \mathrm{~W} / \mathrm{m} \times 5 \times 2 \times 0.5 \mathrm{~m}$
$=4.84 \mathrm{~W}+2.15 \mathrm{~W}=6.99 \mathrm{WPv}=6.99 \mathrm{~W}$

## Special Conditions for Safe Use

The enclosures that are fitted with the Marechal Type DXN1, DXN3 and DXN sockets (as stated in document 16-1241CML-04) must be protected from mpact greater than 4 Joules.
Potential electrostatic charge hazard. Clean only with a damp cloth

## $\square$ Dissipation of copper cables in W/m

|  | Current (A) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cable CSA | 1 | 2 | 4 | 6 | 10 | 16 | 20 | 25 | 32 | 40 |
| $1 \mathrm{~mm}^{2}$ | 0.0 | 0.0672 | 0.2 | 0.605 | 1.68 | 4.3 | - | - | - |  |
| $2.5 \mathrm{~mm}^{2}$ | 0.00672 | 0.0269 | 0.108 | 0.242 | 0.6 | 1.72 | 2.69 | 4.2 | - |  |
| $4 \mathrm{~mm}^{2}$ | 0.0042 | 0.0168 | 0.067 | 0.151 | 0.42 | 1.08 | 1.68 | 2.63 | 4.3 |  |
| $6 \mathrm{~mm}^{2}$ | 0.0028 | 0.0112 | 0.045 | 0.10 | 0.28 | 0.717 | 1.12 | 1.75 | 2.87 | 48 |
| $10 \mathrm{~mm}^{2}$ | 0.00168 | 0.00672 | 0.027 | 0.061 | 0.168 | 0.43 | 0.67 | 1.05 | 1.72 | 2.69 |


| $\square$ Technical Specifications |  |
| :---: | :---: |
| General |  |
| Types and variants | GL"*.T- see type code table |
| CE number | 0102 |
| Data for application in hazardous areas |  |
| EC-Type Examination Certificate | CML 15ATEX3005X |
| Zones of instalation | 1, 21 (Gas); 2,22 (Dust) |
| Marking |  |
| $\begin{array}{\|l\|l\|} \hline \text { GL**.T.T } \\ \text { Increased safety terminal } \\ \text { enclosure } \end{array}$ | $\langle\varepsilon x\rangle_{\\| 2 G D}$ Exeb IIC T* ${ }^{*}$ bb ExtbIIIC T**D |
| GL**3.T Intrinsic safety terminal enclosure | $\left\langle\sum_{x}\right\rangle_{\\| 2 G D}$ Exiall $\mathrm{T}^{*}$ Gb Extbllic $T^{\text {T* }}$ Db |
| $\begin{aligned} & \text { GL*5.T } \\ & \text { Gncreased safety and intrinsic } \\ & \text { safety terminal enclosure } \end{aligned}$ | Exx $\\| 2$ GD Ex eb IIC T* Gb Exia IIC T* ${ }^{*}$ Gb ExtblllC $T^{* *} D b$ |
| Gas/dust temperature class (T*/T*) | $\mathrm{T} 6 / \mathrm{T} 80^{\circ} \mathrm{C} @ \mathrm{Ta}+40^{\circ} \mathrm{C}$ $\mathrm{T} 5 / \mathrm{T} 95^{\circ} \mathrm{C} @ \mathrm{Ta}+55^{\circ} \mathrm{C}$ T4/T130 ${ }^{\circ} \mathrm{C} @ \mathrm{Ta}+60^{\circ} \mathrm{C}$ |
| Refer to the enclosure certification label for confirmation |  |
| International approvals |  |
| IECEx approval | \|ECEx CML 16.0004x |
| Ambient conditions |  |
| Ambient temperature | -40 ... $40^{\circ} \mathrm{C}$ <br> optional $-50 \ldots 60^{\circ} \mathrm{C}$ <br> below $-40^{\circ} \mathrm{C}$ with appropriate cable glands <br> above $40^{\circ} \mathrm{C}$ with ceramic terminals |
| Degree of protection according to IEC/EN 60529 | IP66/67 |
| Maximum internal power dissipation (MDP) | Dependent on enclosure size - see certification label |
| Mechanical specifications |  |
| Material | Glass fiber reinforced polyester |
| Finish | Moulded, self-color black |
| Cover screw torque | 2 Nm |
| Entry threadform | see datasheets of cable glands |
| Electrical specifications |  |
| Maximum voltage | Dependent on terminals and equipment fitted, but maximum must not exceed 690 V AC (GL1** ... GL4**: 440 V AC max.). See certification label. |
| Maximum current | Dependent on terminals, cables and equipment fitted, but maximum must not exceed 350 A (GL1** ... GL4**: 35 A max.). See certification label. |
| Standards |  |
| Conformity | EN 60079-0:2012 <br> EN 60079-7:2015 <br> EN 60079-31:2014 <br> IEC 60079-0:2011 Ed. 6 <br> IEC 60079-7:2015 Ed. 5 <br> IIC 60079-11:2011 Ed. 6 |

## $\square$ Max. Connection Capacity

## Max. Connection Capacity for GL* Enclosures

Max. number of cont continuous current.
terminal type AKZ.
Enclosure GL1*.T ( $\mathrm{P}_{\max } 7.5 \mathrm{~W}$ ):
GL1*:T maximum permitted power dissipation to be builitin: 7.5 W


 \begin{tabular}{c|c|ccccccc|c|c|c|c|c|c|c|c|}
\hline 6 \& 16 \& 16 \& 16 \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& N/A <br>
\hline 10 \& N/A \& NA \& 16 \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& N/A <br>
\hline

 

\hline NA \& NA \& 16 \& 16 \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/ \& N/A <br>
N/ $A$ \& NA \& NA \& 16 \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& N/A
\end{tabular} NA NA N/A NAA 16 0 N/A N/A N/A N/A N/ 00

 N/A N/A N/A N/A N/A NA NA NA $0 \begin{array}{lllllll} & 0 & 0 & 0 & 0 & 0 & \text { NA }\end{array}$ N/A N/A NA NA N/A NA NA NA N/ 0 N/A N/A N/A N/A N/A N/A N/A NA N/A N/A 0 125 N/A N/A NA N/A NA NA NA NA NA NAA NA 0 0 0



 N/A N/A N/A N/A N/A NA N/A NA NA N/ 0




Enclosure GL3**T( $\mathrm{P}_{\max } 8 \mathrm{~W}$ )
QLL3:T maximum permitted power dis sipation to be buitit in: 8 W

| Current $[A]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 3 | 46 | 46 | 46 | 46 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/A N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 6 | 46 | 46 | 46 | 46 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/ | N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 10 | NA | N/ | 46 | 46 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/ | N/ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | NA | NA | NA | 31 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA |

 $25 \quad$ N/A NA NA NA NA
 NA NA NA NA NA NA N/ 0 63 N/ NA NA N/ NA NA NA NA NA






Enclosure GL6*T ( $\mathrm{P}_{\max } 9.4 \mathrm{~W}$ )
GL66:T maximum permitited power dissipation to be built in: 9.4 W


 \begin{tabular}{cccccccccccccccccccc}
6 \& 54 \& 68 \& 68 \& 68 \& 68 \& 56 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A \& NA <br>
\hline 10 \& N/A \& NA \& 39 \& 59 \& 68 \& 56 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A NA

 

NAA \& N/A \& 39 \& 59 \& 68 \& 56 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& NA <br>
\hline NA N/A NA \& 23 \& 38 \& 56 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& NA

 

16 \& NA \& NA NA \& 23 \& 38 \& 56 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& NA <br>
\hline 20 \& NA NA \& NA NA \& 24 \& 39 \& 44 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& NA \& N/A
\end{tabular}


 50 N/A NA N/A NA N/A N/A 0 N/A NA NA N/A NA NA N/A NA NAA 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A NA 0 125 NA NA NA NA NAA NA NA NA NA NA NA 160 N/ NA NA NA N/A NA NA NA NA NA NA NA 200 N/ N/A NA NA N/A NA N/A N/A NA N/A N/A NA NA 250 N/A NA NA NA NA N/A NA

Enclosure $\mathrm{GL} 7^{*} . \mathrm{T}\left(\mathrm{P}_{\max } 10.4 \mathrm{~W}\right)$

## GL77:T T maximum permitted power dissipation to be built in: 10.4 W

| Curent [A] |  |  | 1 | 1.5 |  |  | 4 | 6 |  | 10 | 16 | 25 | 35 |  |  |  | 95 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 44 | 44 | 44 | 44 |  | 4 | 38 | 28 | 2 | 22 | 18 | 14 | 0 | 0 | 0 |  | 0 | N/ | N/A |
| 6 | 44 | 44 | 44 | 44 |  | 4 | 38 | 28 |  | 22 | 18 | 14 | 0 | 0 |  | 0 | 0 | NA | N/A |
| 10 | N/ | NA | 44 | 44 |  | 44 | 38 | 28 |  | 22 | 18 | 14 | 0 | 0 |  | 0 | 0 | NA | N/A |
| 16 | NA | NA | N/ | 27 |  | 4 | 38 | 28 |  | 22 | 18 | 14 | 0 | 0 |  | 0 | 0 | N/ | N/A |
| 20 | NA | NA | N/ | N/ |  | 29 | 38 | 28 |  | 22 | 18 | 14 | 0 | 0 |  | 0 | 0 | N/ | N/A |
| 25 | NA | NA | N/ | N/ |  | NA | 30 | 28 |  | 22 | 18 | 14 | 0 | 0 |  | 0 | 0 | N/ | N |
| 35 | N/ | NA | N/ | N/ |  | NA | N/A | 23 |  |  | 18 | 14 | 0 | 0 |  | 0 | 0 | N/ | N/A |
| 50 | N/ | NA | N/ | N/ |  | N/ | N/A | N/ |  |  | 18 | 14 | 0 | 0 |  | 0 | 0 | N/ | N/A |
| ${ }^{63}$ | NA | NA | N/ | N |  | NA | N/A | N/ |  | N/A | 18 | 14 | 0 | 0 |  | 0 | 0 | NA | N/A |
| 80 | NA | NA | N/ | N |  | N/ | N/A | N/ |  | N/A | N/A | 14 | 0 | 0 |  | 0 | 0 | N/ | N/A |
| 100 | NA | NA | N/ | N |  | N/ | N/ | N/A |  | N/ | N/A | N/ | 0 | 0 |  | 0 | 0 | N/ | N/A |
| 125 | NA | NA | N/ | N/ |  | VA | N/A | N/A |  |  | N/A | NA | N/ | 0 |  | 0 | 0 | NA | N |
| 160 | NA | NA | N/ | N/ |  | V/ | N/A | N/A |  |  | N/A | NA | N/ | N/ | A | 0 | 0 | N/ | N |
| 200 | NA | NA | N/ | N |  | N/ | N/A | N/A |  |  | N/A | NA | N/ | N/ |  | N/A | 0 | NA | N/A |
| 250 | NA | NA | N/ | N |  | N/ | N/A | N/ |  |  |  |  | N/ |  |  |  |  |  |  |

Enclosure GL8*.T(P max 12 W )
GLL8*T T maximum permited power dissipation to be built in: 12 W
Gl.5":T maximum peemited power dissipation to be built in: 9.4 W


Enclosure GL4*T( $\mathrm{P}_{\max } 9 \mathrm{~W}$ )


| ent $[$ A $]$ |  | 0.7 |  |  | 1.5 |  |  |  |  |  |  |  |  |  |  | 95 | 150 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 58 | 58 |  | 58 | 58 | 58 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | N/A | N/A |
| 6 | 58 | 58 |  | 58 | 58 | 58 | 0 | 0 |  |  |  |  |  |  |  | 0 | N/A | N/A |
| 10 | N/ | N/A |  | 47 | 58 | 58 | 0 | 0 |  |  |  |  |  |  |  | 0 | N/A | N/A |
| 16 | N/ | A NA |  | NA | 27 | 46 | 0 | 0 | 0 |  |  |  |  |  |  | 0 | NA | N/A |
| 20 | VA | A $\mathrm{N} /$ |  | NA | NA | 29 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  | 0 | N/ |  |
| 25 | N/ | A NA |  | NA | NA | NA | 0 | 0 |  |  |  |  |  |  |  | 0 | N/A |  |
| ${ }^{35}$ | N/ | A $/$ |  | N/A | NA | NA | NA | 0 | 0 |  | 0 | - |  |  |  | 0 | N/A |  |
| 50 | NA | N/ |  | NA | N/A | N/ | NA | VA | 0 | 0 | 0 | 0 |  |  |  | 0 | N/ |  |
| 63 | / | N/A |  | NA | NA | NA | NA | N/ | N/ | ${ }^{\circ}$ | 0 | 0 | 0 |  |  | 0 | N/A |  |
| 80 | N/ | N/A |  | N/ | NA | NA | NA | N/ | N/ | A N/ | NA |  |  |  |  | 0 | N/ |  |
| 100 | / | A NA |  | NA | NA | NA | NA | NA | N/ | A N/ | N $\mathrm{N} / \mathrm{A}$ | A |  |  |  | 0 | N/A |  |
| 125 | N/ | A |  | N/ | NA | NA | NA | N/ | N/ | A N/ | NA N/ | (A N/ | A | 0 |  | 0 | N/A |  |
| 160 | V/ | A N/ |  | NA | NA | NA | NA | N/ | N/ | A N/ | NA N/ | (A N/ | A N/A | A |  | 0 | N/A |  |
| 200 |  | N/ |  |  | N/ | NA | NA | NA | N/ |  |  |  |  | A N/ |  | 0 | NA |  |
| 250 |  |  |  |  | N/ |  |  | N/ |  |  |  |  |  |  |  |  |  |  |

Enclosure GL5*.T ( $\mathrm{P}_{\max } 9.4 \mathrm{~W}$ )


## Enclosure GL9*T ( $\mathrm{P}_{\max } 13.8 \mathrm{~W}$ )

## GLl.:T T maximum permited power dissipation to be built in: 13.8 W <br> CSA [mm²





 | 16 | NAA | NA | NA | 22 | 37 | 59 | 80 | 62 | 52 | 38 | 0 | 0 | 0 | 0 | NA | NA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | N/A | NA | NA | NA | 23 | 38 | 57 | 62 | 52 | 38 | 0 | 0 | 0 | 0 | NA | NA |



 63 N/A NA NA NA NA NA NA NA 15 15 24.0 O NA NA NA NA NA NA NA NA NA 14 14 000 100 N/A NA N/A N/A NA N/A N/A NA N/A N/A 0





Enclosure GL10*T ( $\left.\mathrm{P}_{\text {max }} 13.8 \mathrm{~W}\right)$
GL10:T T maximum permited power dissipation to be built in: 13.8 W

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current $[$ A $]$ | 0.5 | 0.75 |  |  | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 |  | 50 |
| 3 | 145 | 202 |  | 202 | 202 | 202 | 168 | 130 | 104 | 86 | 64 | 0 | 0 | 0 | 0 | N/A | ${ }^{\text {A }}$ |
| 6 | 36 | 54 |  | 72 | 109 | 182 | 168 | 130 | 104 | 86 | 64 | 0 | 0 | 0 | 0 | N/A | A |
| 10 | NA | NA |  | 26 | 39 | 65 | 104 | 130 | 104 | 86 | 64 | 0 | 0 | - | 0 | NA | A |
| 16 | N/ | NA |  | NA | 15 | 25 | 40 | 61 | 102 | 86 | 64 | 0 | 0 | 0 | 0 | N/A | A |
| 20 | NA | N/ |  | NA | NA | 16 | 26 | 39 | 65 | 86 | 64 | 0 | 0 | 0 | 0 | NA | IA |
| 25 | NA | N/ |  | NA | N/A | NA | 16 | 25 | 41 | 67 | 64 | 0 | 0 | 0 | 0 | N/A | ${ }^{\prime}$ A |
| ${ }^{35}$ | NA | N/ |  | ${ }^{\text {a }}$ | N/A | , | N/ | 12 | 21 | 34 | 53 | 0 | 0 | 0 | 0 | N/A | ${ }^{\text {A }}$ |
| 50 | NA | N/ |  | NA | N/A | N/ | N/A | N/A | 10 | 16 | 26 |  |  |  | 0 | N/A | ${ }^{\text {A }}$ |
| ${ }^{63}$ | N/ | N/ |  | N/ N | N/ | N/ | N/ | N/ | NA | 10 | 16 |  |  |  | 0 | N/ | A |
| ${ }^{80}$ | N/ | N/ |  | NA N | N/A | N/A | NA | N/ | N/ | NA | 10 | 0 | 0 | - | 0 | NA | A |
| 100 | N/ | N/ |  | NA N | N/A | N/A | N/A | N/A | N/ | N/A | N/A | 0 | 0 | 0 | 0 | NA | A |
| 125 | N/ | N/ |  |  | N/A | N/A | N/A | N/A | N/ | N/A | N/A | N/A | 0 | 0 | 0 | N/ | ${ }^{\text {A }}$ |
| 160 | N/ | N/ |  | NA N | NA | N/ | N/ | N/ | NA | N/ | N/ | N/ | N/ | 0 | 0 | N/A | ${ }^{\text {A }}$ |
| 200 | N/ | N/ |  |  | N/ | N/A | N/ | N/A | NA | N/A | N/A | NA | N/ | N/ | 0 | N/A | ${ }^{\text {A }}$ |
| 250 | N/A | NA |  | NA | N/A | NA | NA | N/A | NA | N/A | N/A | N/ | N/ | N/A |  |  |  |

Enclosure GL11** ${ }^{*}\left(P_{\max } 15.5 \mathrm{~W}\right)$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Current $[$ A $]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 |  |
| 3 | 160 | 160 | 160 | 160 | 160 | 136 | 104 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | NA |  |
| 6 | 61 | 91 | 122 | 160 | 160 | 160 | 104 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | NA |  |
| 10 | NA | N/A | 44 | 66 | 110 | 136 | 104 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | N/ |  |
| 16 | N/ | N/ | N/A | 25 | 43 | 68 | 103 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | N/A | N/A |
| 20 | NA | N/ | N/ | NA | 27 | 44 | 66 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | N/ |  |
| 25 | N/ | N/A | N/ | NA | NA | 28 | 42 | 42 | 34 | 26 | 26 | 22 | 20 | 14 | N/A |  |
| 35 | NA | N/A | N/ | N/ | NA | NA | 21 | 36 | 34 | 26 | 26 | 22 | 20 | 14 | N/A | N/A |
| 50 | NA | N/ | N/ | N/ | NA | NA | NA | 17 | 28 | 26 | 26 | 22 | 20 | 14 | N/ | N/ |
| ${ }^{63}$ | NA | N/A | N/ | NA | NA | NA | N/A | NA | 17 | 26 | 26 | 22 | 20 | 14 | N/ | N/ |
| 80 | N/ | N/A | N/A | N/ | NA | NA | N/A | NA | N/A | 17 | 24 | 22 | 20 | 14 | N/A | N/A |
| 100 | NA | N/A | N/ | NA | NA | NA | N/A | NA | N/ | N/A | 15 | 22 | 20 | 14 | N/ | NA |
| 125 | NA | N/A | N/ | NA | NA | NA | NA | NA | N/A | N/A | NA | 14 | 19 | 14 | N/ | N/ |
| 160 | N/ | N/ | N/ | N/ | NA | NA | NA | NA | N/ | N/ | N/ | NA | 12 | 14 | N/A | NA |
| 200 | NA | N/ | N/ | N/ | NA | VA | NA | NA | N/ | N/ | N/ | NA | N/ | 10 | NA |  |
| 250 |  | N/ | N/ | NA | NA | NA | NA | NA | NA | N/ | N/ | N/ | N/ |  |  |  |

## Enclosure GL12*.T ( $\mathrm{P}_{\max } 15.5 \mathrm{~W}$

## GL12:T T maximum permited power dissipation to be built in: 15.5 W

|  | CSA [mm] |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Curent $[$ A $]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 |  |
| 3 | 198 | 276 | 276 | 276 | 276 | 225 | 176 | 70 | 58 | 44 | 0 | 0 | 0 |  | N/A | N/A |
| 6 | 49 | 74 | 99 | 148 | 247 | 228 | 176 | 70 | 58 | 44 | 0 | 0 | 0 | 0 | N/ | N/A |
| 10 | N/ | NA | 35 | 53 | 89 | 142 | 176 | 70 | 58 | 44 |  |  |  |  | NA | N/A |
| 16 | N/ | N/ | N/ | 20 | 34 | 55 | 83 | 70 | 58 | 44 | 0 |  |  | - | NA | N/ |
| 20 | N/A | NA | NA | NA | 22 | 35 | 53 | 70 | 58 | 44 | 0 | 0 | 0 | 0 | N/A | N/A |
| 25 | N/ | NA | NA | NA | NA | 22 | 34 | 57 | 58 | 44 | 0 | 0 | 0 | 0 | N/A | N/A |
| 35 | N/A | NA | NA | NA | N/A | N/ | 17 | 29 | 46 | 44 | 0 | 0 | 0 |  | N/A | N/A |
| 50 | N/A | NA | NA | NA | N/A | NA | N/ | 14 | 22 | 35 | 0 | 0 | 0 | 0 | N/A |  |
| 63 | A | NA | NA | NA | NA | NA | NA | N/ | 14 | 22 | 0 | 0 | 0 | 0 | N/A |  |
| 80 | NA | N/ | NA | NA | NA | NA | NA | N/ | NA | 13 | 0 | 0 | 0 | 0 | N/A |  |
| 100 | NA | N/ | N/ | NA | N/A | N/ | N/ | N/ | N/A | N/A | 0 | 0 | 0 | 0 | N/A | N/A |
| 125 | NA | N/ | N/ | N/ | NA | 0 | 0 | 0 | N/A | N/ |
| 160 | N/A | NA | N/ | NA | NA | NA | N/ | N/A | N/A | N/A | N/ | N/A | 0 | 0 | N/A | N/ |
| 200 | NA | NA | A | NA | NA | N/ | NA | NA | N/ | N/ | NA | NA | NA | 0 | N/A | N/A |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Closure GL13*T( $\left.\mathrm{P}_{\max } 31.4 \mathrm{~W}\right)$

| GLLL13:T T |
| ---: | :--- |


| Curent A$]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 | 240 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

 | 6 | 83 | 125 | 167 | 251 | 414 | 342 | 264 | 210 | 58 | 44 | 44 | 0 | 0 | 0 | N/A N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | 20 | N/A | N/A | N/A | N/A | 37 | 60 | 90 | 151 | 58 | 44 | 44 | 0 | 0 | 0 | N/A N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $35 \quad$ N/A N/A NA N/A NA




 250 NA NA

## Enclosure GL14*T $\mathrm{P}_{\text {max }} 31.4 \mathrm{~W}$

GL14:T T maximum permited power dissipation to be builit in: 3.4 W


 $\begin{array}{llllllllllllllllll}0 & \text { N/A } & \text { NA } & 58 & 87 & 145 & 233 & 264 & 210 & 58 & 44 & 0 & 0 & 0 & 0 & \text { NA } & \text { N/A }\end{array}$

 | 20 |
| :--- |
| 25 |

N/A NA NA NA ${ }^{35}$

NA NA NA NA NA 10
 . NA N/A NA NA NA NA N/A 23 23 360 N/A NA NA NA N/A NA NA NA NA 22 N 20 125 N/A 0 160 N/ N/A NA NA N/A N/A NA NA NA N/A NA NA 0 200 N/A NA N/A NA NA NA NA NA NA N/A NA NA NA 0 250 N/A N/A NA NA N/A N/A N/A NA NA N/A N/A NA N/A NA N/A N/A
$\square$ Type Code

```
G1 Glass fiber reinforced polyester GRP
```

Enclosure Size
nn |Enclosure size from standard range
Grounding Plate

|  |  | 0 | none |
| :--- | :--- | :--- | :--- |
|  |  | 1 | galvanized steel |
|  |  | 2 | brass |
|  |  |  |  |

            stainless steel
            Type of Explosion Protect
        - non-Ex application
            Exe, Extb
        Exia \(\mathrm{Ex}^{2}\) th
        5 Exia/Exe, Extb
            Exia/Exe, Extb
        an enclosure depth from standard range
        Type of Solution
            Terminal box
            Variant Number
                Cxxxxxx \({ }^{\text {Configured variants }}\)
    Example:

Terminal box GRP, size 11, grounding plate brass, certified Ex e and Ex tb, enclosure
depth D, configured variant

