\section*{Terminal Boxes}
 FXL*.T / XL*.T / SL*.T

Pepperl+Fuchs GmbH
Lilienthalstrasse 200
68307 Mannheim, Germa
68307 Mannheim, Germ
Tel. $+49621776-0$
Fax +49 621 776-1000
Document No. $\begin{gathered}\text { Edition: } 01 / 54892 \\ 017\end{gathered}$

Copyright Pepperl+Fuchs

| RePEPPERL+FUCHS 2

\square Validity

Specific processes and instructions in this instruction manual require specia provisions to guarantee the safety of the operating personnel

\square Target Group/Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, Responsibility for planning, assembly, crator
and dismounting lies with the plant operator
Mounting, installation, commissioning, operation, maintenance and dismounting of the device may only be carried out by appropriate trained and

\square Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous areas
The corresponding datasheets, declarations of conformity, EC-typeexamination certiticates, certificates and control drawings if applicable (see datasheet) are an integral part of this documen You can find this informatio

\square Mounting/Installation/Maintenance

Observe IEC/EN 60079-17 for maintenance and inspection,
If you intend to install the device or enclosure in areas that may be exposed to aggressive substances, ensure that the stated surface materials are compatible with these sub
information.
Before open
When energized, the enclosure may only be opened for maintenance, if only intrinsically safe circuits are used inside the enclosure.
Safety-relevant markings are found on the type label supplied. Ensure that the
type label is present and legible. Take the ambient conditions into account.
The permitted ambient temperatures of the built-in components must not be
exceeded.
If there is a defect, the device must be repaired by Pepperl+Fuchs.
To ensure the degree of protection:

- The enclosure must not be damaged, distorted or corroded.

All seals must be undamaged and correctly fitted.
All screws of the enclosure/enclosure cover must be tightened with the
All cable glands must be suitably sized for the incoming cable diameters.

- All cable glands must be tightened with the appropriate torque.
- All unused cable glands must be sealed or plugged with corresponding
sealing plugs, all unused cable entries have to be closed with appropriate sealing plugs, al
stopping plugs.
If mounting the enclosure on concrete use expansion anchors. When mounting the enclosure to a steel framework use vibration resistant mounting material. Ensure that external ground connections exist, are in good condition, and are not damaged or corroded.
In order to prevent condensation in the enclosure, use suitably certified breather drains.
When the internal/external ground bolt is supplied loose, the components
should be fitted as shown in the figure below.

If cable glands are needed for installation, the following points must be considered:

- The cable glands used must be suitably certified for the application. - The temperature range of the cable glands must be chosen according to the application.
- The cable glands fitted must not reduce the degree of protection In order to guarantee the temperature classes, ensure that power dissipation
lower than the figure stated in the certificate and in lower than the figure stated in the certificate and in below tables of max.
connection capacity. Most of the power dissipation arises from current flowing in the cables. Select suitable conduccuctors fit to the maximum permitted ambien temperature of the conductors fil
temperature of the terminal box.
Ensure that the terminals are in good condition, and are not damaged or corroded.
Use only one conductor per termina.
Observe the tightening torque of the terminal screws.
Use the shortest possible cable lengths and avoid small core cross-sections. Observe the minimum bending radius of the conductors.
Insulation must extend to within 1 mm of the metalwork of the terminal. When using stranded conductors, crimp wire end ferrules on the conductor ends.
Unused cables and connection lines must be either connected to terminals or la
If cross connects are fitted, separation walls or protective barriers may be required to preserve clearance distances.
Modifications are permitted only if approved in this instruction manual. When installing additional components, make sure that these components are listed in the EC-type-examination certificate of the terminal box.
Only use suitably certified terminals.
Do not install fuse terminals, relays, miniature circuit breakers, contactors etc. in the enclosure.
The installer is allowed to add terminals in accordance with the maximum ower dissipation shown in the connection capacity tables below. Example:
Enclosure FXLS5 ${ }^{*}$ with 20 terminals WDU 2.5 (current load: 6 A) and 5 terminals WDU 10 (current load: 16 A).
Assumption
Average conductor length: 0.5 m
Maximum permissible power loss:
$29 \mathrm{~W} \mathrm{Pv}=(0.242 \mathrm{~W} / \mathrm{m} \times 20 \times 2 \times 0.5 \mathrm{~m})+(0.43 \mathrm{~W} / \mathrm{m} \times 5 \times 2 \times 0.5 \mathrm{~m})$
$=4.84 \mathrm{~W}+2.15 \mathrm{~W}=6.99 \mathrm{~W} \mathrm{Pv}=6.99 \mathrm{~W}$

\square Special Conditions for Safe Use

The enclosure that are fitted with the Marechal Type DXN1, DXN3 and DXN6 sockets (as stated in document 16 -1241CML-04) must be protected from impact greater than 4 Joules.
Potential electrostatic charge hazard. Clean only with a damp cloth.

\square Dissipation of copper cables in W/m

\square Max. Connection Capacity

Max. Connection Capacity for (F)XL** Enclosure
Max. number of conductors in relation to the cross-section and the permissible ontinuous current, based on terminal type WDU.
Enclosure (F)XL*1 ($\mathrm{P}_{\mathrm{max}} 15 \mathrm{~W}$):
(F)XL'¹ maximum permited power dissipation to be built in: 15 W

	CSA [mm ${ }^{\text {a }}$																	
[rent $[\mathrm{A}]$	0.5	0.75				2.5	4		10					50	70	95		
3	56	56	56	5	56	56	46	36	28	0	0		0	0	0	0	N/	N
6	56	56	56	5	56	56	46	36	28	0	0		0	0	0	0	A	N
10	N/	N/A	54		56	56	46	36	28	0	0		0	0	0	0	N/A	N
16	N/A	N/	N/	A 3	31	52	46	36	28	0	0		0	0	0	0	NA	N/A
20	N/A	N/A	N/	A N	N/	33	46	36	28	0	0		0	0	0	0	N/	N/A
25	N/	N/	N/	A N	N	N/	34	36	28	0	0		0	0	0	0	N/	N/A
35	N/	N/	N/		N/	NA	N/	26	28	0			0	0	0	0	NA	N/
50	N/	N/	N/		NA	NA	NA	NA	21	0	0		0	0	0	0	NA	N/
63	N/	N/	N/			NA	NA	N/A	N/A	0				0	0	0	N/	N/
${ }^{80}$	N/	N/	N/			NA	N/	N/	N/A	N/A	0		0	0	0	0	N/	
100	N/A	N/A	N/			NA	NA	N/A	N/A	N/A	N/		0	0	0	0	N/	
125	N/	N/	N/			NA	NA	N/A	N/A	N/A	N/A		VA	0	0	0	N/	
160	N/	N/	N/			NA	NA	N/A	N/A	N/A	N/A		N/ N	N/	0	0	NA	
200	N/A	N/A	N/		NA	NA	NA	N/A	N/A	N/A	N/	A N/	VA	N/A	N/A	0	N/	
250	N/A	NA	N/		VA	NA	NA	NA	NA	VA	NA	A	NA	NA	N/	N/		

Enclosure (F)XL*2 ($\mathrm{P}_{\text {max }} 15 \mathrm{~W}$)

FFXXL+2 maximum permited power dissipation to be built in: 15 W																			
	CSA [mm ${ }^{\text {a }}$																		
Current $[$ A $]$		0.7		1	1.5	2.5	4		6	10	16					70			240
3	13	132		132	132	132	108		84	34	28	20	0	0	0	0	0	NA	A NA
6	54	82		109	132	132	108		84	34	28	20	0			0	0	N/A	A NA
10	N/	N/	A	39	59	98	108		84	34	28	20	0		0	0	0	N/A	A NA
16	N/	N/	N	NA	23	38	61		84	34	28	20	0		0	0	0	N/	N/A
20	N/	N/		NA	N/	24	39		59	34	28	20	0		0	0	0	N/	A NA
25	N/	N/		NA	NA	N/	25		37	34	28	20	0		0	0	0	N/A	N/A
35	N/	N/		NA	NA	N/	N/		19	32	28	20	0		0	0	0	N/	N/
50	N/A	N/		NA	N/	N/	N/		NA	15	25	20	0		0	0	0	N/A	N/A
${ }^{63}$	N/	N/		NA	N/	N/	N/		NA	NA	15	20	0		0	0	0	N/	N/A
80	N/	N/		NA	N/	N/	N/		NA	N/A	N/	15	0		0	0	0	N/	N/A
100	NA	N/		NA	NA	N/	N/		NA	NA	N/	N/	0		0	0	0	NA	N/
125	A	N/		N	NA	N/	N/		NA	NA	N/	N/	N/		0	0	0	NA	NA
160	N/	N/		NA	N/	N/	N/		NA	NA	NA	NA	N/		N/	0	0	N/	NA
200	N/	N/		N/	N/	N/A	N/A		N/	N/	NA	NA	NA		N/ N	N/A	0	N/	N/A
250	N/A	N/		N/	N/	N/	NA		NA	NA	N/	NA	N/	A N/	NA		NA		N/A

Enclosure (F) $\mathrm{XL}{ }^{*} 3$ ($\mathrm{P}_{\text {max }} 21 \mathrm{~W}$)

F\|XL`3 maximum permitted power dissipation to be builit in: 21 W																
	CSA [mm]															
Current $[$ A]	0.5	0.75		1.5	2.5	4	6	10	16	25	35	50		95	150	
3	172	172	172	172	172	14	108	88	72	52	0	0	0	0	NA	NA
6	67	101	135	172	172	14	108	88	72	52	0	0	0	0	NA	NA
10	NA	N/A	48	72	121	144	108	88	72	52	0	0	0	0	NA	NA
16	NA	N/A	N/A	28	47	76	108	88	72	52	0	0	0	0	NA	NA
20	NA	N/A	N/	N/A	30	48	72	88	72	52	0	0	0	0	N/	NA
25	N/	N/	N/A	N/	N/A	31	46	77	72	52	0	0	0	0	NA	NA
35	N/	N/	N/A	NA	N/	N/	23	39	${ }^{63}$	52	0	0	0	0	N/	N/
50	NA	N/A	N/A	N/	N/A	N/A	N/	19	31	48	0	0	0	0	NA	N/
${ }^{63}$	N/	N/A	N/A	N/	N/A	N/	NA	N/	19	30	0	0	0	0	NA	N/
80	N/	N/A	N/A	N/	N/A	N/A	NA	N/	NA	19	0	0	0	0	NA	N/
100	NA	N/A	N/A	N/	N/	N/	NA	N/	NA	NA	0	0	0	0	NA	NA
125	NA	N/	N/	N/A	NA	NA	NA	N/A	NA	NA	NA	0	0	0	NA	
160	NA	N/A	N/A	N/	NA	N/	NA	N/A	NA	NA	N/	N/	0	0	NA	NA
200	NA	N/	N/A	NA	N/	N/	NA	N/	NA	N/A	NA	N/	NA	0	NA	NA
250	N/	N/A	N/A	N/A	NA	N/	NA	N/A	NA	NA	N/	NA	NA	NA		

Enclosure (F)XL*4 ($\mathrm{P}_{\text {max }} 15 \mathrm{~W}$)

(FXXLL 4 maximum permitted power dissipation to be buititin: 15 W
$\operatorname{CSA}\left[\mathrm{~m}^{2}\right]$

Current A$]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	120	150																			
				2	2														3	183	228	228	228	228	192	148	58	48	36	0	0	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---												

 | 10 | NA | NA | 33 | 49 | 82 | 132 | 148 | 58 | 48 | 36 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 NA NA NA NA NA NA N/A $132133 \cdot 0$ N/A NA N/A NA NA N/A N/A N/A 13 20 20

Enclosure (F)XL*5 ($\mathrm{P}_{\text {max }} 29 \mathrm{~W}$)

(F)XL•5 maximum permitted power dis sipation to be buitt in: 29 W

| Current $[A]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 284 | 288 | 288 | 288 | 288 | 240 | 184 | 148 | 124 | 92 | 0 | 0 | 0 | 0 | N/A | N/A |
| :--- |

 | N/A | NA | 51 | 76 | 128 | 204 | 184 | 148 | 124 | 92 | 0 | 0 | 0 | 0 | N/A | NA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N/A | NA | NA | 30 | 50 | 50 | 80 | 120 | 148 | 124 | 92 | 0 | 0 | 0 | 0 | N/A | NA | $\begin{array}{llllllllllllllll}\text { NA } & \text { NA } & \text { N/ } & 30 & 50 & 80 & 120 & 148 & 124 & 92 & 0 & 0 & 0 & 0 & \text { N/A } & \text { N/A } \\ \text { NA }\end{array}$

 NA NA NA NA NA NA NA 20 In 3251 NA NA NA NA NA NA NA 20
 NA NA
 NA NA NA NA NA NA NA NA NA NA NA NA

Enclosure (F)XL** (P 30 W)

"6 maximum permited power dissipatio																	
	CSA [mm ${ }^{\text {a }}$																
Current $[$ A $]$	0.5	0.75	75		1.5	2.5	4	6	10	16	25	35	50	70	95	150	240
3	262	393	346	462	462	462	384	300	234	198	144	0	0	0	0	N/	N/A
6	65	98	${ }^{13}$	13119	196	327	384	300	234	198	144	0	0	0	0	N/	N/A
10	N/	N/	A 47	47	70	117	188	283	234	198	144	0	0	0	0	N/	N/
16	N/	N/A	A N/	NA 2	27	46	73	110	184	198	144	0	0	0	0	N/A	N/A
20	N/	N/A	A N/		NA	29	47	70	117	188	144	0	0	0	0	NA	N/A
25	N/A	N/A	A N/		NA	N/	30	45	75	120	144	0	0	0	0	N/A	N/A
35	N/A	N/A	A N/		NA	N/	N/A	23	38	61	96	0	0	0	0	N/A	N/A
50	N/A	N/A	A N/		N/ N	N/	N/A	NA	18	30	47	0	0	0	0	N/	N/A
${ }^{63}$	N/A	N/A	A N/		NA	N/	N/A	NA	N/A	19	29	0	0	0	0	N/	N/A
80	N/A	N/A	A N/		NA	N/	N/A	NA	N/	N/	18	0	0	0	0	NA	N/
100	N/A	N/	A N/		NA	N/	N/A	NA	N/	NA	NA	0	0	0	0	N/	N/A
125	N/A	N/A	A N/		N/	N/	N/A	NA	N/	N/	NA	N/A	0	0	0	N/	N/
160	N/A	N/A	A N/		N/	N/	N/A	N/	N/A	N/A	NA	N/A	N/	0	0	N/	N/
200	N/A	N/A	A N/		N/	N/	N/A	N/	N/A	N/	NA	N/A	N/	N/	0	N/	
250																	

Enclosure (F)XL*7 ($P_{\text {max }} 21$ W)
(FXXL'7 7 maximum permitted power dissipation to be built in: 21 W

SA [mm²

 \begin{tabular}{lllll|l|lllllllll}
201 \& 302 \& 403 \& 492 \& 492 \& 408 \& 212 \& 168 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0 \& NA

50 \& 75 \& 100 \& 151 \& 252 \& 403 \& 212 \& 168 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0 \& NA \& NA

\hline

\hline 10 \& $\mathrm{~N} / \mathrm{A}$ \& NA \& 36 \& 54 \& 90 \& 145 \& 212 \& 168 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0 \& $\mathrm{~N} / \mathrm{A}$ \& NA

\hline
\end{tabular}

 \begin{tabular}{|lllllllllllllll}
\hline 20 \& $\mathrm{~N} / \mathrm{A}$ \& N / A \& NA \& N/A \& 22 \& 36 \& 54 \& 90 \& 140 \& 104 \& 0 \& 0 \& 0 \& 0

\hline

 25 NA NA NA NA NAA 23 34 588

35 \& N/A \& NA \& NA \& N/A \& N/A \& NA \& 17 \& 29 \& 47 \& 74 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

 N/A NA NA NA NA NA NA N/A N/A NA 00

 200 N/A NA N/A N/A 0

Enclosure (F)XL*8 (P $\mathrm{P}_{\text {max }} 30 \mathrm{~W}$)
(F)XL'8 maximum pernitted power dissipation to be built in: 30 W

Current $[A]$	0.5	0.75	1	1.5	2.5			

 | NA | N/ | 42 | 63 | 105 | 168 | 253 | 330 | 180 | 136 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- |
| NA | N/ | NA | 24 | 41 | 65 | 98 | 164 | 180 | 136 | 0 | 0 | 0 | 0 | 0 | 0 |

 $\begin{array}{llllllllllllllll}\text { NA } & \text { NA } & \text { NA NA NA }\end{array}$ NA NA NA N/A NA NA NAA $1627 \mid 42$ 80 NA NA NA NA NA NA NA NA 17 NA 26

Enclosure (F)XL*9 ($\mathrm{P}_{\text {max }} 41.7 \mathrm{~W}$)

(F)XL.9 maximum permitted power dissipation to be buitit in: 41.7 W

Current A$]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95

 | 50 | N/A NA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 N/A NA NA NA N/A NA NA N/A NA NA N/A NA 1318 NA NA

Enclosure (F)XL*10 ($\mathrm{P}_{\text {max }} 93.4 \mathrm{~W}$)

Curent $[$ A $]$		75	1	1.5	2.5		4	6	10	16	25	35	50			95	150	
3	508	762	1016	6152	24165	50138	38010	106	680	426	312	312	180	80 16	64	124	NA	N
6	127	190	254	381	635	3510	01610	1060	680	426	312	312	180	16	164	124	NA	NA
10	NA	IA	91	${ }^{37}$	22		365	548	680	426	312	312	180	80 16	164	124	NA	
16	NA	NA	NA	53	89		42	214	357	426	312	312	180	80 16	164	124	NA	
20	NA	N/	N/A	N/	57		91	137	228	365	312	312	180	80 16		124	NA	
25	NA	N/	N/A	NA	N/		58	87	146	234	312	312	180	80 16		124	NA	
35	NA	N/	N/A	N/	N/		V/A	44	74	${ }^{119}$	186	261	180	80 16		124	NA	
50	NA	N/A	N/A	N/	N/		V/A	N/	36	58	91	128	180	16		124	N/	
63	NA	N/	N/	NA	N/		VA N	NA	N/	36	57	80	115	16		124	NA	N/
${ }^{80}$	N/	N/	N/A	N/	N/		V/A	N/	N/	NA	35	50	71			124	NA	
100	NA	NA	N/A	NA	NA		NA N	NA	N/	NA	NA	32	45	45		86	NA	N/
125	NA	N/	N/A	N/	N/		V/A	NA	N/	NA	NA	N/A	29	940		55	NA	N/
160	NA	N/	N/A	N/	N/			N/	N/	NA	NA	N/A	N/	A 25		33	N/	
200	NA	N/A	N/A	N/	N/			N/	N/	N/	NA	N/A	N/	N			NA	
250	NA	N/	A	N/	N/		NA ${ }^{\text {N }}$	NA	N/	A	NA	N/						

Enclosure (F)XL*11 ($\mathrm{P}_{\text {max }} 100 \mathrm{~W}$)

(F)XLL"11 maximum permited pooer dissipation to be builtin: 100 W

Max. Connection Capacity for SL* Enclosure

Max. number of conductors in relation to the cross-section and the permissible
Max. number of conductors in relation to the cross-section and the permissible
continuous current, based on terminal type WDU (SL1 based on terminal type AKZ).
Enclosure $\mathrm{SL}^{\star} 1\left(\mathrm{P}_{\max } 9 \mathrm{~W}\right.$)

SL^ 1 maximum permitted power dissipation to be built in: 9 W

Enclosure SL*2 $\left.\mathrm{P}_{\max } 9 \mathrm{~W}\right)$

CSA $\left[m m^{2}\right]$

rent A		0.75			1.5	2.5	4		10	16	25	$5 \mid 35$		50	95		
3	26	26		26	26	26	22	16	0	0	0	0			0	Na	A N/
6	26	26		26	26	26	22	16	0						0	N/A	A N/
10	N/A	N/		26	26	26	22	16								N/	
16	N/A	N/	N/	NA	26	26	22	16								NA	
20	N/	N/	N/	N/A	NA	26	22	16								NA	
25	N/	NA		N/A	NA	NA	22	16								N/	
35	N/A	NA		N/A	N/A	NA	N/	16								N/	
50	V/	NA		N/A	N/A	N/	N/	NA	0							N/	
${ }^{63}$	N/	N/		N/A	N/A	N/	N/A	NA	N/	A 0	0	0					
80	N/A	N/		N/A	NA	N/A	N/	NA	N/	A NA	A 0					NA	
100	N/	N/		N/	N/A	NA	N/	NA	N/	A NA	A NA	0				NA	
${ }^{125}$	N/A	NA		N/A	N/A	NA	N/	NA	N/	A NA	A N	N/			0	NA	
160	NA	N/		N/A	N/A	NA	N/A	N/A	N/A	A NA	${ }^{\text {A }}$ N	N/	NA	${ }^{\text {A }} 0$	0	NA	
200		NA		NA	N/A	NA	N/A	N/	N/	A NA	A N/A	N/A	A $/$	($\mathrm{N} /$	0	N/	
								NA						NA			

Enclosure SL*3($\left.\mathrm{P}_{\max } 9 \mathrm{~W}\right)$
SL"3 maximum permited power dissipation to be builtin: 9 W

 \begin{tabular}{lllllllllllllllll}
36 \& 36 \& 36 \& 36 \& 36 \& 30 \& 24 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline N/A \& N/A \& 36 \& 36 \& 36 \& 30 \& 24 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline

\hline N/A \& NA \& 36 \& 36 \& 36 \& 30 \& 24 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline N/A \& N/A \& N/A \& 28 \& 36 \& 30 \& 24 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& N/A N/A

\hline
\end{tabular}

 NA NA NA NA NA NA
 160 N/A NA N/A N/A N/A N/A NA N/A N/A N/A N/A NA 200 N/A 0

Enclosure $\mathrm{SL}^{*} 4\left(\mathrm{P}_{\text {max }} 11 \mathrm{~W}\right.$)

SL"4 maximum permitted power disisipation to be built in: 11 W
CSA[m²]

Current $[A]$	0.5	0.75	1	1.5	2.5	4	6	10	16	25	35	50	70	95	150	240																		
		36	36	36	36	36		0	24	18	14	10	0	0					36	36	36	36	36	30	24	18	14	10	0	0	0	0	NA	N/A
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---															
	36	36	36	36	36	30	24	18	14	10	0	0	0	0	N/A	NA		36	36	36	36	36	30	24	18	14	10	0	0	0	0	N/A N/A		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		N/A	NA	36	36	36	30	24	18	14	10	0	0	0	0	N/A N/A		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---																
N/A	NA	NA	31	36	30	24	18	14	10	0	0	0	0	N/A	N/A																			

\qquad

\qquad
 N/A N/A N/A NA NA NA N/A NA 14 10 100 N/A N/A NA NA N/A NA N/A NA NA 10 0 0

 250 N/A NA

| Current $[A]$ | 0.5 | 0.75 | 1 | 1.5 | 2.5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 70 | 95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $\mathbf{1 5 0} 240$

 $25 \quad$ N/A N/A N/A N/A N/A 30 30 30
 50
 80 N/A N/A NA NA N/A N/A NA NA N/A 0

 -160 NA 200 NA NA

Enclosure SL*6 ($\mathrm{P}_{\text {max }}{ }^{13} \mathrm{~W}$)

SL6 maximum permited power dissipation to be builtin: 13 W

 | 3 | 46 | 46 | 46 | 46 | 46 | 38 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/A N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 N/A N/A 46 46 46 | 16 | N/A | NA | NA | 29 | 46 | 38 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | N/A N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $5_{50} 5^{2}$ Na NA NA NA NA
 30 NA 300 NA NA NA NA NA NA NA NA NA 0 O 100 N/ NA
 200 NA 0 NA NA 250 NA NA NA N/A NA NA NA NA N/A NA NA NA NA NA NA N/A

\square Type Code

Enclosure type
FXL | metal enclosure with hinges and return flange
XL metal enclosure with hinges
SL metal enclosure
${ }^{4}$
nn enclosure size from standard range
Type of explosion protection
0 non-Ex application
1 Exe, Extic

Exia/Exe, Extb
Gland plate
0
0
face B
faces A, B

SL versions: no gland plates available

Type of solution
terminal box
umber
${ }^{2}$ [xxxxxx \mid configured variants

Example:

Terminal box stainless steel with return flange, size 2, certified Exe and Ex to gland plate on face B (bottom), enclosure depth D, configured variant

