MANUAL

Absolute Rotary Encoder with CANopen Interface

CANopen

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

1	1 Introduction		
	1.1	Content of this Document8	
	1.2	Target Group, Personnel	
	1.3	Symbols Used8	
2	Dec	laration of conformity10	
	2.1	CE conformity10	
3	Safe	ety 11	
	3.1	Symbols relevant to safety11	
	3.2	Intended Use11	
	3.3	General safety instructions11	
4	Gen	eral Information on System Integration	
	4.1	Using this Manual12	
	4.2	General CANopen Information12	
5	Inst	allation of Photoelectric Absolute Rotary Encoder 14	
	5.1	Signal Assignment of Terminal Block14	
	5.2	Signal Assignment of Connector and Cable Variants	
	5.3	Activation of the Terminator17	
	5.4	Installation Hints for Cabling17	
	5.5	Setting of Node Number and Baud Rate in the Bus Cover	
	5.6	Status of the Bus Cover LEDs19	
6	Inst	allation of Magnetic Absolute Rotary Encoder	
	6.1	Signal Assignment of Connector and Cable Variants	
	6.2	Activation of Terminator21	
	6.3	Setting of Node Number and Baud Rate21	
	6.4	Status of the LEDs22	

7	7 Quick Start Guide		
	7.1	Configure the Absolute Rotary Encoder for Integration into a CAN Network	23
	7.2	Configure application-specific encoder Parameters	25
8	Conf	iguration	29
	8.1	Operating Modes	
	8.1. 1	General	
	8.1.2	2 Mode: Pre-operational	
	8.1.3	3 Mode: Start - Operational	
	8.1.4	4 Mode: Stopped	
	8.1.5	5 Reinitialization of the Rotary Encoder	
	8.2	Normal Operating	
	8.3	Storing Parameter	31
	8.3.1	List of storable Parameters	31
	8.3.2	2 Storing Procedure	31
	8.4	Restoring Parameters	
	8.5	Usage of Layer Setting Services (LSS)	32
9	Prog	rammable Parameters	34
	9.1	Programming example: Preset Value	
	9.1. 1	I Set Encoder Preset Value	
	9.2	Communication Profile DS301 specific objects from 1000h – 1FFFh	
	9.3	Manufacturer specific objects from 2000h – 5FFFh	
	9.4	Application specific objects from 6000h – 67FEh	

9.5	Object Descriptions	39
9.5.1	Object 1000h: Device Type	39
9.5.2	2 Object 1001h: Error Register	39
9.5.3	B Object 1003h: Pre-Defined Error Field	39
9.5.4	Object 1005h: COB-ID Sync	40
9.5.5	5 Object 1008h: Manufacturer Device Name	40
9.5.6	6 Object 1009h: Manufacturer Hardware Version	40
9.5.7	7 Object 100Ah: Manufacturer Software Version	40
9.5.8	B Object 100Ch: Guard Time	41
9.5.9	Object 100Dh: Life Time Factor	41
9.5.1	0 Object 1010h: Store Parameters	41
9.5.1	11 Object 1011h: Restore Parameters	41
9.5.1	12 Object 1012h: COB-ID Time Stamp Object	42
9.5.1	13 Object 1013h: High Resolution Time Stamp	42
9.5.1	14 Object 1014h: COB-ID Emergency Object	42
9.5.1	15 Object 1016h: Consumer Heartbeat Time	42
9.5.1	16 Object 1017h: Producer Heartbeat Time	43
9.5.1	17 Object 1018h: Identity Object	43
9.5.1	18 Object 1020h: Verify Configuration	43
9.5.1	19 Object 1029h: Error Behavior	43
9.5.2	20 Object 1800h: 1st Transmit PDO Communication Parameter	44
9.5.2	21 Object 1801h: 2nd Transmit PDO Communication Parameter	44
9.5.2	22 Object 1A00h: 1st Transmit PDO Mapping Parameter	45
9.5.2	23 Object 1A01h: 2nd Transmit PDO Mapping Parameter	45
9.5.2	24 Object 1F50h: Download Program Area	46
9.5.2	25 Object 2000h: Position Value	46
9.5.2	26 Object 2100h: Operating Parameters	46
9.5.2	27 Object 2101h: Resolution per Revolution	47
9.5.2	28 Object 2102h: Total Resolution	47
9.5.2	29 Object 2103h: Preset Value	48
9.5.3	30 Object 2104h: Limit Switch, min	48
9.5.3	31 Object 2105h: Limit Switch, max	48
9.5.3	32 Object 2160h: Customer Storage	49
9.5.3	33 Object 2200h: Cyclic Timer PDO	49
9.5.3	34 Object 2300h: Save Parameter with Reset	49
9.5.3	35 Object 2600h: High-Resolution Postion Value	50
9.5.3	36 Object 3000h: Node Number	50
9.5.3	37 Object 3001h: Baud Rate	51

PEPPERL+FUCHS

9.5.38	Object 3002h: Terminator	.51
9.5.39	Object 3003h: Auto Baud Detection	.51
9.5.40	Object 3005h: Auto Boot up	.52
9.5.41	Object 3010h: Speed Control	.53
9.5.42	Object 3011h: Speed Value	.53
9.5.43	Object 3020h: Acceleration Control	.53
9.5.44	Object 3021h: Acceleration Control	.53
9.5.45	Object 3030h: Backward Compatible Mode	.54
9.5.46	Object 3040h: Life Cycle Counter	.55
9.5.47	Object 3050h: Time Stamp Position Value	.55
9.5.48	Object 4000h: Bootloader Control	.55
9.5.49	Object 4010h: PPR Incremental Encoder	.56
9.5.50	Object 4020h: A/B Phase Shift	.56
9.5.51	Object 6000h: Operating Parameters	.56
9.5.52	Object 6001h: Measuring Units per Revolution	.57
9.5.53	Object 6002h: Total Measuring Range in Measuring Units	.57
9.5.54	Object 6003h: Preset Value	. 57
9.5.55	Object 6004h: Position Value	57
9.5.56	Object 6008h: High Resolution Position Value	.58
9.5.57	Object 6030h: Speed Value	. 58
9.5.58	Object 6040h: Acceleration Value	.59
9.5.59	Object 6200h: Cyclic Timer	.59
9.5.60	Object 6300h: Cam State Register	.60
9.5.61	Object 6301h: Cam Enable Register	.60
9.5.62	Object 6302h: Cam Polarity Register	.60
9.5.63	Object 6400h: Area State Register	.63
9.5.64	Object 6401h: Work Area Low Limit	.63
9.5.65	Object 6402h: Work Area High Limit	.64
9.5.66	Object 6500h: Operating Status	.64
9.5.67	Object 6501h: Singleturn Resolution	.64
9.5.68	Object 6502h: Number of Distinguishable Revolutions	.64
9.5.69	Object 6503h: Alarms	65
9.5.70	Object 6504h: Supported Alarms	.65
9.5.71	Object 6505h: Warnings	.65
9.5.72	Object 6506h: Supported warnings	66
9.5.73	Object 6507h: Profile and Software Version	66
9.5.74	Object 6508h: Operating Time	.67
9.5.75	Object 6509h: Offset Value	.67

	9.5.7	76 Object 6509h: Module identification	67
	9.5.7	7 Object 650Bh: Serial Number	67
10	Tuan	blachaating	C 0
10	Irou	plesnooting	68
	10 1	What to Do in Case of a Fault	68

1 Introduction

1.1 Content of this Document

This document contains information that you need in order to use your product throughout the applicable stages of the product life cycle. These can include the following:

- Product identification
- Delivery, transport, and storage
- Mounting and installation
- Commissioning and operation
- Maintenance and repair
- Troubleshooting
- Dismounting
- Disposal

о П

Note!

For full information on the product, refer to the further documentation on the Internet at www.pepperl-fuchs.com.

The documentation consists of the following parts:

- Present document
- Datasheet

Additionally, the following parts may belong to the documentation, if applicable:

- EU-type examination certificate
- EU declaration of conformity
- Attestation of conformity
- Certificates
- Control drawings
- Additional documents

1.2 Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Only appropriately trained and qualified personnel may carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the product. The personnel must have read and understood the instruction manual and the further documentation.

Prior to using the product make yourself familiar with it. Read the document carefully.

1.3 Symbols Used

This document contains symbols for the identification of warning messages and of informative messages.

Warning Messages

You will find warning messages, whenever dangers may arise from your actions. It is mandatory that you observe these warning messages for your personal safety and in order to avoid property damage.

Depending on the risk level, the warning messages are displayed in descending order as follows:

Danger!

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.

Warning!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.

Caution!

This symbol indicates a possible fault.

Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

Informative Symbols

Note!

This symbol brings important information to your attention.

Action

This symbol indicates a paragraph with instructions. You are prompted to perform an action or a sequence of actions.

2 Declaration of conformity

2.1 CE conformity

This product was developed and manufactured under observance of the applicable European standards and guidelines.

Note!

A declaration of conformity can be requested from the manufacturer.

3 Safety

3.1 Symbols relevant to safety

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.

Warning!

Danger!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.

Caution!

This symbol indicates a possible fault.

Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

3.2 Intended Use

Absolute rotary encoders detect the rotation angle -and, in the case of a multiturn absolute rotary encoder, the revolutions of the rotary encoder shaft- with high precision and resolution. The absolute position value derived from this is provided by the rotary encoder via the CANopen interface in accordance with the standard DS406. The rotary encoder is to be integrated into a CANopen network and should be used only in this way. Typical applications include positioning tasks and length measurement, for example for cranes, construction machinery, elevators, and packaging machines.

Read through these instructions thoroughly. Familiarize yourself with the device before installing, mounting, or operating.

Always operate the device as described in these instructions to ensure that the device and connected systems function correctly. The protection of operating personnel and plant is only guaranteed if the device is operated in accordance with its intended use.

3.3 General safety instructions

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Installation and commissioning of all devices may only be performed by trained and qualified personnel.

User modification and or repair are dangerous and will void the warranty and exclude the manufacturer from any liability. If serious faults occur, stop using the device. Secure the device against inadvertent operation. In the event of repairs, return the device to your local Pepperl+Fuchs representative or sales office.

0 ∏

Note!

Disposal

Electronic waste is hazardous waste. When disposing of the equipment, observe the current statutory requirements in the respective country of use, as well as local regulations.

4 General Information on System Integration

4.1 Using this Manual

This manual explains how to install and configure the photoelectric and magnetic absolute rotary encoders with CANopen interface applicable for industrial applications with CANopen interface.

Magnetic absolute rotary encoders are fully compliant with standard DS406.

Photoelectric absolute rotary encoders are fully compliant with following CiA standards:

- DS301V402 CANopen Application Layer
- DR303-1 Cabeling and connector pin assignment
- DR303-3 CANopen indicator specification
- DS305V200 CANopen Layer Setting Service
- DS306V1R3 Electronic datasheet specification
- DS406V32 Device Profile for Encoders

Measuring System for Photoelectric Absolute Rotary Encoders

The measuring system consists of a light source, a code disc pivoted in a precision ball bearing and an opto-electronic scanning device. A LED is used as a light source which shines through the code disc and onto the screen behind. The tracks on the code disk are evaluated by an optoarray behind the reticle.

With every position another combination of slashes in the reticle is covered by the dark spots on the code disk and the light beam on the photo transistor is interrupted. That way the code on the disc is transformed into electronic signals. Fluctuations in the intensity of the light source are measured by an additional photo transistor and another electronic circuit compensates for these. After amplification and conversion the electronic signals are available for evaluation.

Measuring System for Magnetic Absolute Rotary Encoders

Magnetic rotary encoder determine positions using the Hall effect sensor technology developed for the automotive mass market. A permanent magnet fixed to the shaft generates a magnetic field that is sampled by the Hall sensor, which translates the measured value into a unique absolute position value.

To register revolutions even when no voltage is applied, energy from the turning of the shaft must suffice for proper operation. An innovative, patented technology makes this feasible even at low rotational speeds and through long standstill periods – a Wiegand wire ensures that the magnetic field can only follow the turning of the shaft in discrete steps. A coil wound on the Wiegand wire receives only brief, strong voltage spikes, which prompt the reliable recognition of each revolution.

Note!

Further information on technical data, mechanical data, connection layouts, and available connection lines for the relevant absolute rotary encoder types can be found in the corresponding datasheet.

4.2 General CANopen Information

CANopen system is used in industrial applications. It is a multiple access system (maximum: 127 participants), which means that all devices can access the bus. In simple terms, each device checks whether the bus is free, and if it is the device is able to send messages. If two devices try to access the bus at the same time, the device with the higher priority level (lowest ID number) has permission to send its message.

Devices with the lowest priority level must delay their data transfer and wait before retrying to send their message. Data communication is carried out via messages. These messages consist of 1 COB-ID followed by a maximum of 8 bytes of data. The COB-ID, which determines the priority of the message, consists of a function code and a node number. The node number corresponds to the network address of the device. It is unique on a bus. The function code varies according to the type of message being sent:

- Management messages (LMT, NMT)
- Messaging and service (SDOs)
- Data exchange (PDOs)
- Layer Setting Services (LSS)
- Predefined messages (synchronization, emergency messages)

The absolute rotary encoder supports the following operating modes:

- Polled mode: The position value is only sent on request.
- Cyclic mode: The position value is sent cyclically (regular, adjustable interval) on the bus.
- SYNC mode: The position value is sent after a synchronization message (SYNC) is received. The position value is sent every n SYNCs (n . 1).

Other functions (offset values, resolution, etc) can be configured. The absolute rotary encoder corresponds to the class 2 encoder profile (DS 406 in which the characteristics of encoder with CANopen interface are defined). The node number and speed in bauds are determined by their corresponding object dictionary entries.

The transmission speed can range from 20 kBaud up to 1Mbaud (30 m cable for a maximum speed of 1Mbaud, 1000 m cable for a maximum speed of 20 kbaud). Various software tools for configuration and parameter-setting are available from different suppliers. It is easy to align and program the rotary encoders using the EDS (electronic data sheet) configuration file provided on the Pepperp+Fuchs internet page www.pepperl-fuchs.com

Further Information is available at:

CAN in Automation (CiA) International Users and Manufacturers Group e.V.

Kontumazgarten 3

DE-90429 Nurenberg

(*) Reference: CAN Application Layer for Industrial Applications

CAL-based Communication Profile for Industrial Systems

- CiA Draft Standard 301
- CiA Draft Standard 305 Layer Setting Services
- CiA Draft Standard 406 Device Profile for Encoders

Note!

All datasheets and manuals can be downloaded for free from our website **www.pepperl**fuchs.com

We do not assume responsibility for technical inaccuracies or omissions. Specifications are subject Note to change without notice.

Installation of Photoelectric Absolute Rotary Encoder

The following chapter describes all aspects helpful for installation of photoelectric absolute rotary encoders with bus cover. Depending on the rotary encoder model there are the following connection variants:

- Rotary encoder with bus cover equipped with cable glands
- Rotary encoder with bus cover equipped with a cable exit
- Rotary encoder with bus cover equipped with one or two M12x1 connectors, 5-pin

Bus cover features like node number adressing, baud rate setting and activation of termination resistor are identical for all these variants.

5.1 Signal Assignment of Terminal Block

The rotary encoder is connected with two or three cables depending on whether the power supply is integrated into the bus cable or connected separately. If the power supply is integrated into the bus cable, one of the cable glands can be fitted with a plug. The cable glands are suitable for cable diameters from 6.5 up to 9 mm.

Figure 5.1

Terminal	Description
	Ground
+	24 V Supply Voltage
-	0 V Supply Voltage
G	CAN Ground
L	CAN Low (Bus In)
Н	CAN High (Bus In)
G*	CAN Ground
L*	CAN Low (Bus Out)
H*	CAN High (Bus Out)

Table 5.1* are not connected, if terminator is ON

5

Bus Connection

The bus cover fulfills the function of a T-coupler. From there the wiring must be done according to figure you find before. Please note the assignment of incoming and outgoing bus signals.

Caution!

Activated bus termination separates "Bus in" and "Bus out"

Non-observance of separation of "Bus in" and "Bus out" causes interferences on the CANopen bus.

If you activate the bus termination on the rotary encoder ensure that the rotary encoder is the last CANopen bus participant in the bus line.

5.2 Signal Assignment of Connector and Cable Variants

The rotary encoders with cable- and connector-exit were designed in accordance to CiA normative DR303-1 cabeling and connector pin assignment. They also have a removable bus cover with all possibilities to set node number, baud rate and acitvate terminator.

Figure 5.2

The following table shows an assignment of the different connecting types (cable, connectors) to the terminals of the bus cover.

Terminal	Description	Cable	M12 plug, 5-pin	M12 socket, 5-pin
(-)	- Power supply	1	3	3
(+)	+ Power supply	2	2	2
L	CAN Low (Bus In)	3	5	
Н	CAN High (Bus In)	4	4	
G	CAN Ground	5	1	
L*	CAN Low (Bus Out)	6		5
H*	CAN High (Bus Out)	7		4
G*	CAN Ground	8		1
	Ground connection of encoder housing	green/ yellow		
			2 0 4	

Table 5.2* are not connected, if terminator is ON

Caution!

Activated bus termination separates "Bus in" and "Bus out".

Non-observance of separation of "Bus in" and "Bus out" causes interferences on the CANopen bus.

If you activate the bus termination on the rotary encoder ensure that the rotary encoder is the last CANopen bus participant in the bus line.

5.3 Activation of the Terminator

There is a terminator provided in the bus cover, which must be used as a line termination on the last device. The terminator is switched on when the switch is in the "ON position" (see figure before).

5.4 Installation Hints for Cabling

Cable Connection with Cable Gland

1. Remove screw, sealing and cone from the cable gland.

Figure 5.3

- 2. Remove 55 mm of the sheath and 50 mm of the shielding. About 5 mm of the wires should be de-isolated.
- 3. Put screw and sealing on the cable.
- 4. The cone should be mounted under the shielding according to the figure before. Put the whole cable into the cable gland and tighten the screw.

Minimization of Signal Interferences

Both the cable shielding and the metal housings of rotary encoders and subsequent electronics have a shielding function. The housing must have the same potential and be connected to the main signal ground over the machine chassis or by means of a separate potential compensating line. Potential compensating lines should have a minimum cross section of 6 mm².

Do not lay signal cable in the direct vicinity of interference sources (air clearance > 100 mm (4 in.))

A minimum spacing of 200 mm (8 in.) to inductors is usually required, for example in switchmode power supplies.

Configure the signal lines for minimum length and avoid the use of intermediate terminals. Shielded fieldbus cables shall be used! The shield must be grounded according to EMI rules! In metal cable ducts, sufficient decoupling of signal lines from interference signal transmitting cable can usually be achieved with a grounded partition.

5.5 Setting of Node Number and Baud Rate in the Bus Cover

Note!

2017-04

Setting of node number and baud rate has to be done via software if **Bd** rotary switch is set to 9. SDO objects and Layer Setting Services (LSS) are provided for this purpose.

Setting Node Number

The setting of the node number is done by turning the BCD coded rotary switches **x10** and **x1** in the bus cover. Possible (valid) addresses lie between 0 and 89 whereby every address can only be used once.

Figure 5.4

Possible device address 0 ... 89.

Addresses 90 ... 99 are reserved.

BCD coded rotary switch	Description
x1	single digits of address
X10	tens of address

0 11

Note!

Internally the CANopen rotary encoder adds 1 to the adjusted device address.

Setting Baud Rate

The setting of the baud rate is done by turning the **Bd** rotary switch in the bus cover. The following baud rates are possible:

BCD coded rotary switch	Baudrate in kBit/s
0	20
1	50
2	100
3	125
4	250
5	500
6	800
7	1000
8	reserved
9	Sets SDO and LSS mode

5.6 Status of the Bus Cover LEDs

The LED behaviour was designed in accordance to the CiA normative DR 303-3 CANopen indicator specification.

Figure 5.5

CAN Run LED	State	Description
Flickering	AutoBitrate / LSS	Auto-bitrate detection is in progress or LSS services are in progress
Blinking	PRE-OPERATIONAL	The encoder is in state PRE-OPERATIONAL
Single flash	STOPPED	The encoder is in state STOPPED
Double flash		reserved
Triple flash	Program / Firmware download	A software download is running on the encoder
On	OPERATIONAL	The encoder is in state OPERATIONAL

Err LED	State	Description
Off	No error	The encoder is in working condition
Flickering	AutoBitrate / LSS	Auto-bitrate detection is in progress or LSS services are in progress
Blinking	Invalid configuration	General configuration error
Single flash	Warning limit reached	At least one of the error counters of the CAN controller has reached or exceeded the warning level (too many error frames)
Double flash	Error control event	A guard event (NMT-slave or NMT-master) or a heartbeat event (heartbeat consumer) has occured

Err LED	State	Description
Triple flash	Sync. error	The sync. message has not been received within the configured communication cycle period time out (see objekt 1006h)
Quadruple flash	Error, event-timer	An expected PDO has not been received before the even-timer elapsed
On	Bus off	The CAN controller is bus off

PEPPERL+FUCHS

Installation of Magnetic Absolute Rotary Encoder

The following chapter describes all aspects helpful for installation of magnetic absolute rotary encoders. Depending on the rotary encoder model there are the following connection variants:

- Rotary encoder with a cable exit
- Rotary encoder with two M12x1 connectors, 5-pin

6.1 Signal Assignment of Connector and Cable Variants

Signal	Wire end	5-pin, M12 x 1 connector
CAN GND	green	1
+U _b	red	2
GND	yellow	3
CAN-High	white	4
CAN-Low	brown	5
Shielding	Shielding	Housing
Pinout		$2 \underbrace{\left(\begin{array}{c} 1 \\ 0 \\ 3 \end{array}\right)}_{3}^{5} 4$

6.2

6

Note!

The magnetic absolute rotary encoder is equipped with an internal terminator, which can be used as a line termination. Be aware, that the terminator is only activated, when the encoder is powered, because the microcontroller is internally needed to switch on the terminator.

If the rotary encoder is connected at the end or beginning of the bus using of the internal terminator is possible by parameterization of SDO object "3002 h" The internal terminator is acitvated by writing "01 h" into this object.

6.3 Setting of Node Number and Baud Rate

Activation of Terminator

Setting of the node number and baud rate has to be done by parameterization of the relevant SDO objects or via LSS. Some absolute rotary encoders are provided with auto baud detection (see relevant datasheet).

Default values are:

- Baud rate 125 kBaud
- Node number 32 decimal (20 h)

Setting Node Number via SDO Objects

The node number has to be adjusted via SDO objects. To set the node number, object 3000h has to be written. For further information regard chapter "Object Descriptions".

Setting Baud Rate via SDO Objects

The baud rate has to be adjusted via SDO objects, if auto baud feature is not activated or is not possible to use because of network start-up behavior. To set baud rate object 3001h has to be written. For further information regard chapter "Object Descriptions".

Setting Node Number via LSS

The node number can also be adjusted via Layer Setting Services (LSS). For further information regard chapter "Usage of Layer Setting Services (LSS)"

Setting Baud Rate via LSS

The baud rate can also be adjusted via Layer Setting Services (LSS). For further information regard chapter "Usage of Layer Setting Services (LSS)"

6.4 Status of the LEDs

The magnetic absolute rotary encoders are equipped with a dual color LED.

CAN Run (green)	State	Description
Blinking	PRE-OPERATIONAL	Boot up message is sent, device configuration is possible, encoder is in CAN state PRE-OPERATIONAL.
Single flash	STOPPED	The encoder is in CAN state STOPPED.
On	OPERATIONAL	The encoder is in CAN state OPERATIONAL.
Off		No power supply

Err (red)	State	Description
Off	No error	The encoder is in operatring mode.
Flickering	AutoBitrate	Auto baud mode is active and the encoder tries to find within the time-out period a valid CAN message for baud rate measurement.
Single flash	Warning limit reached	At least one of the error counters of the CAN controller has reached or exceeded the warning level (too many error frames).
Double flash	Error control event	A guard event (NTM slave or NTM master) or a heartbeat event has occurred.
On	Bus off	The CAN controller is in sate bus off. No communication possible anymore. Too many error frames in the network.

7 Quick Start Guide

Intention of this chapter is to help the user getting a magnetic or photoelectric absolute rotary encoder very easy and fast to operate. The user is still responsible to configure the absolute rotary encoder in the right way and reading the whole manual carefully.

With the following sequence a normal procedure is described to configure a device for standard applications. It shall guide you roughly through this process.

7.1 Configure the Absolute Rotary Encoder for Integration into a CAN Network

For this purpose you need to set up the node number and the baud rate first.

Depending on your absolute rotary encoder model there are different ways to do so.

- Photoelectric absolute rotary encoder with bus cover: Setting is possible via BCD coded rotary switches or if rotary switch Bd = 9 via SDO objects or Layer Setting Services (LSS).
- Magnetic absolute rotary encoder: Default setting for node number is 32 decimal and baud rate is 125 kBaud. If other settings are required setting is only possible via SDO objects or Layer Setting Services (LSS). Some models have auto baud rate detection (see relevant datasheet) which has to be checked if activated. If this feature is activated so only node number has to be set.

Caution!

Check requirements of baud rate and node number of your network before configuration!

If your running network uses a different baud rate or the node number is already in use, then you shall make a point-to-point connection to the encoder with a configuration tool to prevent a crash of the different configured running network. If auto baud feature is used in the encoder it simplifies installation.

First Steps of Configuration of a Magnetic Absolute Rotary Encoder

- 1. If the encoder has no active auto baud detection connect the encoder with a configuration tool and set the baud rate to 125 kBd.
- 2. Power on the encoder.

→ You will see a boot up message in case of a trace tool is used. For devices equipped with status LEDs a green colored LED is blinking to indicate the CAN state PRE-OPERATIONAL.

- 3. If necessary activate the terminator of the encoder by writing "01h" into object "3002 h".
- 4. Continue by reading and writing data into the relevant following objects in this chapter.

First Steps of Configuration of a Photoelectric Absolute Rotary Encoder

Note!

In case you want to set baud rate and node number via SDO objects rotary switch **Bd** has to be in position 9.

- Set the baud rate desired with rotary switch Bd (20 kBd factory default) and the node address you need with rotary switches x10 and x1 (32 factory default). If Bd = 9 connect the encoder with a configuration tool and set the baud rate desired.
- 2. Power on the encoder.

→ You will see a boot up message in case of a trace tool is used. For devices equipped with status LEDs a green colored LED is blinking to indicate the CAN state PRE-OPERATIONAL.

- 3. If necessary activate the terminator of the encoder by setting the relevant switch in the bus cover.
- 4. If "Bd = 9" continue by reading and writing data into the relevant following objects.

Message received from Encoder on Boot up

Identifier	Service/Process data										
NN = 20h	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7			
700h + NN = 720h	00										

Table 7.1

NN = node number of encoder

Configuration of Node Number

Object 3000h

Example:

Resulting node number = Value in object 3000h + 1h = Ah + 1h = Bh

The encoder itself adds the value 1 to the configured node number. This method is used to prevent an identifier value of 0.

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	Process data		
NN = 20h		Download	3000h		00h	Byte 4	yte 4 Byte 5 Byte 6 Byte		Byte 7	
600h + NN = 620h	8h	22h	00h	30h	00h	0Ah	00h	00h	00h	

Table 7.2

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	e/Proces	Process data		
NN		Download	3000h		00h	Byte 4	Byte 4 Byte 5 Byte 6 Byte			
580h + NN = 5A0h	8h	60h	00h	30h	00h	00h	00h	00h	00h	

Table 7.3

Configuration of Baud Rate (only if auto baud feature is not used)

Object 3001h

Example: 500 kBd >> 05

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	Service/Process data		
NN = 20h		Download	3001h		00h	Byte 4 Byte 5 Byte 6 By		Byte 7	
600h + NN = 620h	8h	22h	01h	30h	00h	05h	00h	00h	00h

Table 7.4

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN		Download	3001h		00h	Byte 4	Byte 4 Byte 5 Byte 6 Byte		Byte 7
580h + NN = 5A0h	8h	60h	01h	30h	00h	00h	00h	00h	00h

Table 7.5

Store Configuration

Object 1010h, Subindex 01

Signature "save" >> "73617665"

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = 20h		Download	1010h		00h	Byte 4	byte 4 Byte 5 Byte 6 Byte		Byte 7
600h + NN = 620h	8h	22h	10h	10h	01h	73h	61h	76h	65h

Table 7.6

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	Process data	
NN		Download	1010h		01h	Byte 4	Byte 4 Byte 5 Byte 6 Byte		Byte 7
580h + NN = 5A0h	8h	60h	10h	10h	01h	00h	00h	00h	00h

Table 7.7

The new network configuration of the encoder will be activated with a power cycle or NMT reset.

End of Configuration or further Configurations

Add the encoder to the network or go ahead with the configuration.

Configure application-specific encoder Parameters

For adaption of the encoder in your application you may use objects to configure the resolution per revolution and the total resolution. Especially the preset value is relevant to adjust the position value of the encoder to a desired value in the machine after mechanical installation. It is useful to store the configuration in the device and not to re-configure the different parameters after each power cycle or NMT reset. In the following tables the new configured node number is assumed.

Configuration of Measuring Units per Revolution

Object 6001h

Example: 3600 dec >> 00000E10h

Explanation: The encoder will output 3600 steps per revolution that means 0.1° resolution.

7.2

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = Bh		Download	6001h		00h	Byte 4	Byte 4 Byte 5 Byte 6 Byte		Byte 7
600h + NN = 60Bh	8h	22h	01h	60h	00h	10h	0Eh	00h	00h

Table 7.8

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	Process data		
NN		Download	6001h		00h	Byte 4	Byte 4 Byte 5 Byte 6 Byte		Byte 7	
580h + NN = 58Bh	8h	60h	01h	60h	00h	00h	00h	00h	00h	

Table 7.9

Configuration of total Measuring Range

Object 6002h

Example: 7200 dec >> 00001C20h

Explanation: The encoder will output 7200 steps within 2 revolution and starts again with 0. There is no mechanical limitation, if the encoder is driven continuously in one direction. Value must be lower or equal than given on the nameplate.

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	s data	
NN = Bh		Download	6002h		00h	Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 60Bh	8h	22h	02h	60h	00h	20h	1Ch	00h	00h

Table 7.10

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	s data	
NN		Download	6002h		00h	Byte 4	Byte 5	Byte 6	Byte 7
580h + NN = 58Bh	8h	60h	02h	60h	00h	00h	00h	00h	00h

Table 7.11

Configuration of Preset Value

Object 6003h

Example: 10 dec >> 000000Ah

Explanation: You set the encoder output position value to a desired position value in your machine. The value is set in the encoder, when the telegram is sent and confirmed. Do this operation during standstill of the encoder shaft to increase the accuracy, because the device is calculating itself an offset value. If you set the preset dynamically, which is not recommended, then you have also to take bus latency time into consideration and encoder internal cycle time.

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = Bh		Download	6003h		00h	Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 60Bh	8h	22h	03h	60h	00h	20h	1Ch	00h	00h

Table 7.12

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN		Download	6003h		00h	Byte 4	Byte 5	Byte 6	Byte 7
580h + NN = 58Bh	8h	60h	03h	60h	00h	00h	00h	00h	00h

Table 7.13

If preset value is used, then please execute the store configuration, otherwise you will see a position jump after power cycle. It is in general recommended to store after a changed configuration.

Transmission of Position Value: cyclic

If you want, that the encoder transmits its position value cyclically without request from the PLC/CAN master, then configure the following object used for TPDO1. Remark: By default the value is set to 0, that means the value is not transmitted.

Object 1800h, Subindex 5h

Example: 100 dec >> 0064h

Explanation: The encoder will end each 100 ms its position value after receiving a NMT start command in status operational.

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	s data	
NN = Bh		Download	1800h		05h	Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 60Bh	8h	22h	00h	18h	05h	64h	00h	00h	00h

Table 7.14

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	e/Proces	s data	
NN		Download	1800h		05h	Byte 4	Byte 5	Byte 6	Byte 7
580h + NN = 58Bh	8h	60h	00h	18h	05h	00h	00h	00h	00h

Table 7.15

Store Configuration

Object 1010h, Subindex 01

Signature "save" >> "73617665"

Message sent to Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = 20h		Download	1010h		00h	Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 620h	8h	22h	10h	10h	01h	73h	61h	76h	65h

Table 7.16

Message received from Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN		Download	1010h		01h	Byte 4	Byte 5	Byte 6	Byte 7
580h + NN = 5A0h	8h	60h	10h	10h	01h	00h	00h	00h	00h
T-1-1- 7 47									

Table 7.17

The new network configuration of the encoder will be activated with a power cycle or NMT reset.

End of basic Configurations

Add the encoder to the network.

 \mapsto The encoder is now configured for standard applications. Further and more specific configuration is possible. Regard for this chapter "Configuration".

8 Configuration

The following chapter describes the configuration of photoelectric and magnetic absolute rotary encoders with CANopen interface.

8.1 Operating Modes

8.1.1 General

The rotary encoder accesses the CAN network after power-up in preoperational mode: Bootup message: 700 hex + node number

It is recommended that the parameters can be changed by the user when the rotary encoder is in pre-operational mode. Pre-operational mode entails reduced activity on the network, which simplifies the checking of the accuracy of the sent/received SDOs. It is not possible to send or receive PDOs in pre-operational mode.

8.1.2 Mode: Pre-operational

To set a node to pre-operational mode, the master has to send the following message:

Identifier	Byte 0	Byte 1	Description
0h	80h	00h	NMT-PreOp, all nodes
0h	80h	NN	NMT-PreOp, NN

Table 8.1

NN: node number

It is possible to set all nodes (Index 0) or a single node (Index NN) to pre-operational mode.

8.1.3 Mode: Start - Operational

To put one or all nodes in the operational state, the master has to send the following message:

Identifier	Byte 0	Byte 1	Description
0h	01h	00h	NMT-PreOp, all nodes
0h	01h	NN	NMT-PreOp, NN

Table 8.2

NN: node number

It is possible to set all nodes (Index 0) or a single node (Index NN) to pre-operational mode.

8.1.4 Mode: Stopped

To put one or all nodes in the stopped state, the master has to send the following message:

Identifier	Byte 0	Byte 1	Description
Oh	02h	00h	NMT-PreOp, all nodes
0h	02h	NN	NMT-PreOp, NN

Table 8.3

NN: node number

It is possible to set all nodes (Index 0) or a single node (Index NN) to pre-operational mode.

8.1.5 Reinitialization of the Rotary Encoder

If a node is not operating correctly, it is advisable to carry out a reinitialization:

Identifier	Byte 0	Byte 1	Description
0h	82h	00h	Reset communication
0h	81h	NN	Reset node
Table 8.4			

NN: node number

It is possible to set all nodes (Index 0) or a single node (Index NN) to pre-operational mode.

Note!

о П

8.2

After reinitialization, the encoder accesses the bus in pre-operational mode.

Normal Operating

CAN Transmission Mode Description

Modes	Description
Polled Modes	By a remote-transmission-request telegram the connected host calls for the current process value. The encoder reads the current position value, calculates eventually set-parameters and sends back the obtained process value by the same identifier.
Cyclic Mode	The encoder transmits cyclically – without being called by the host – the current process value. The cycle time can be programmed in milliseconds for values between 1 ms and 65536 ms.
Sync Mode	After receiving a sync telegram by the host, the encoder answers with the current process value. If more than one node number (encoder) shall answer after receiving a sync telegram, the answer telegrams of the nodes will be received by the host in order of their node numbers. The programming of an offset-time is not necessary. If a node should not answer after each sync telegram on the CAN network, the parameter sync counter can be programmed to skip a certain number of sync telegrams before answering again.

Table 8.5

8.3 Storing Parameter

8.3.1 List of storable Parameters

Object Index	Object Description	Magnetic Absolute Rotary Encoder	Photoelectric Absolute Rotary Encoder
1005h	COB-ID Sync	х	х
100Ch	Guard Time	Х	Х
100Dh	Life Time Factor	х	Х
1016h	Consumer Heartbeat Time	х	Х
1017h	Producer Heartbeat Time	х	х
1020h	Verify configuration	х	Х
1800h	Communication parameter PDO 1	x	x
1801h	Communication parameter PDO 2	x	x
1A00h	Transmit PDO1 Mapping Parameter	x	x
1A01h	Transmit PDO2 Mapping Parameter	x	x
2100h	Operating Parameters	Х	Х
2101h	Resolution per Revolution	Х	Х
2102h	Total Resolution	х	х
2103h	Preset Value	Х	Х
2104h	Limit Switch, min.	Х	Х
2105h	Limit Switch, max.	х	Х
2160h	Customer Storage	Х	Х
2200h	Cyclic Timer	Х	Х
3000h	Node Number	Х	Х
3001h	Baud rate	х	Х
3002h	Termination Resistor	х	Х
3003h	Auto Baud Detection	Х	
3005h	Auto Boot Up	х	
3030h	Backward Compatibility Mode	х	
4010h	PPR Incremental Encoder	х	
4020h	A/B Phase Shift	х	
6000h	Operating Parameter	х	х
6001h	Steps per Revolution	х	Х
6002h	Total Resolution	х	Х
6003h	Preset Value	х	Х
6200h	Cyclic Timer	х	Х

8.3.2 Storing Procedure

The parameter settings can be stored in a non-volatile E^2 PROM. The parameter settings are stored in RAM when being programmed. When all the parameters are set and proved, they can be transferred in one burn cycle to the E^2 PROM by the parameter memory transfer.

Note!

The stored parameters are copied after a RESET (Power on, NMT-Reset) from the E²PROM to the RAM (volatile memory).

Storing without Reset

By using the object 1010h from the communication profile-related object dictionary you can store the parameters into the non-volatile memory without a reset.

Storing with Reset

By using the object 2300h from the manufacturer-specific object dictionary you can store the parameters into the non-volatile memory. After storing the parameters a reset of the device is performed.

8.4 Restoring Parameters

The default parameters can be restored by using the object 1011h from communication profilerelated object dictionary. The already in the non-volatile memory programmed parameters are not overwritten. Only after a new store command the default parameters are stored in the nonvolatile memory. To restore the default parameter the following telegram is used. The restored parameters are equal for every type of CANopen encoder and might not fit with the status after delivery. Please check the restored parameters before you store them to the non-volatile memory.

8.5 Usage of Layer Setting Services (LSS)

LSS with photoelectric rotary encoders

The integrated Layer Setting Service functionality is designed according to the CiA normative DS305V200 CANopen Layer Setting Service: General Description: These services and protocols can be used to inquire or to change settings of several parameters of the physical, data link layer, and application layer on a CANopen device with LSS slave capability by a CANopen device with LSS master capability via the CAN network. In case of the OCD-II-series, the encoder will be the LSS slave device and the PLC (control) has to support LSS master device functionality. The LSS-functionality of the OCD-II-series is limited to the following parameters of the application layer, namely node number and baud rate.

Subindex	Description	Data Type	Default Value	Access	Restore after Bootup
0	Number of entries	Unsigned 8	4h	ro	no
1	Vendor ID	Unsigned 32	42h	ro	no
2	Product Code	Unsigned 32	43h 41h	ro	no
3	Revision Number	Unsigned 32	10000h	ro	no
4	Serial Number	Unsigned 32		ro	no

Object 1018h: Indentify Object (LSS-adress)

Table 8.6

The LSS master device requests services that are performed by the encoder (LSS slave devices). The LSS master device requests the LSS address from the LSS slave device. The LSS address is defined in object 1018h Identity Object - it consists of vendor-id, product-code, revision-number and serial-number as shown in Table 10. After receiving this information the control can unequivocally identify the encoder and the node number and baud rate can be set. The exact procedure varies in detail, coursed by the different PLC tools.

LSS with magnetic rotary encoders

To configure the encoder via LSS the encoder will be the LSS slave device and the control has to support LSS master device functionality. The LSS master device requests services, that are performed by the LSS slave devices (encoder). The LSS master device requests the LSS address (vendor-id, product-code, revisionnumber, serial-number) from the LSS slave device. After receiving this information the control can unequivocally identify the encoder and the node number and baud rate can be set.

9 Programmable Parameters

Objects are based on the CiA 406 DS V3.2: CANopen profile for encoders (www.can-cia.org)

General Command Byte Description

Command	Function	Telegram	Description
22h	Domain Download	Request	Parameter to Encoder Recommended Method
23h, 27h, 2Bh, 2Fh (*)	Domain Download	Request	Parameter to Encoder (Bytes indicated)
60h	Domain Download	Confirmation	Parameter received
40h	Domain Upload	Request	Parameter request Recommended Method
43h, 47h, 4Bh, 4Fh (*)	Domain Upload	Reply	Parameter to Master (Bytes indicated)
80 h	Warning	Reply	Transmission error

Table 9.1

(*)The value of the command byte depends on the data length of the called parameter:

Comman d	Data length	Data type	Comman d	Data length	Data type
43h	4 Byte	Unsigned 32	23h	4 Byte	Unsigned 32
47h	3 Byte	Unsigned 24	27h	3 Byte	Unsigned 24
4Bh	2 Byte	Unsigned 16	2Bh	2 Byte	Unsigned 16
4Fh	1 Byte	Unsigned 8	2Fh	1 Byte	Unsigned 8

Detailed Command Byte Description

Table 9.2

Object Dictionary

The data transmission according to CAL is realized exclusively by object oriented data messages. The objects are classified in groups by an index record. Each index entry can be subdivided by sub-indices. The overall layout of the standard object dictionary is shown below:

Overview Object Dictionary

Index (hex)	Object
0000	not used
0001-001F	Static Data Types
0020-003F	Complex Data Types
0040-005F	Manufacturer Specific Data Types
0060-0FFF	Reserved for further use
1000-1FFF	Communication Profile Area
2000-5FFF	Manufacturer Specific Profile Area
6000-9FFF	Standardized Device Profile Area
A000-FFFF	Reserved for further use
Table 0.3	-

Table 9.3

Programming example: Preset Value 9.1

If a CANopen device is connected and configured with the right baud rate and also configured to an unused node number, it will start up into the pre-operational mode and send a bootup massage to the master.

9.1.1 Set Encoder Preset Value

Master to Encoder with Node Number 1.

Setting Preset Value (Value 1000h)

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = 1h		Download	6003h			Byte 4	Byte 5	Byte 6	Byte 7
601h	8h	22h	03h	60h	00h	00h	10h	00h	00h
Table 0.4									

Table 9.4

Answer of the Encoder

Identifier	DLC	Command	Index		Subindex	Service	e/Proces	s data	
NN = 1h		Download	6003h		00h	Byte 4	Byte 5	Byte 6	Byte 7
581h	8h	43h	03h	60h	00h	00h	00h	00h	00h
Table 0 F					-				

Table 9.5

Read Preset Value from Encoder

Identifier	DLC	Command	Index		Subindex	Service	Proces	s data	
NN = 1h		Download	6003h			Byte 4	Byte 5	Byte 6	Byte 7
601h	8h	40h	03h	60h	00h	00h	00h	00h	00h

Table 9.6

Answer of the Encoder

Identifier	DLC	Command	Index		Subindex	Service	/Proces	s data	
NN = 1h		Download	6003h		00h	Byte 4	Byte 5	Byte 6	Byte 7
581h	8h	43h	03h	60h	00h	00h	10h	00h	00h
Table 9.7									

Table 9.7

Save Preset Values

Identifier	DLC	Command	Index		Subindex	Service	e/Proces	s data	
NN = 1h		Download	6003h		00h	Byte 4	Byte 5	Byte 6	Byte 7
601h	8h	22h	10h	10h	01h	73h	61h	76h	65h

9.2 Communication Profile DS301 specific objects from 1000h – 1FFFh

In this manual we refer to the communication profile DS301 V4.02.

Object Dictionary 1000h - 1FFFh

Object	Object Description	Magnetic Absolute Rotary Encoder	Photoelectric Absolute Rotary Encoder
1000h	Device Type	x	x
1001h	Error Register	x	x
1003h	Pre-Defined Error Field	x	х
1005h	COB-ID SYNC	x	х
1006h	ComCyclePeriode	x	х
1008h	Device Name	x	х
1009h	Hardware Version	x	х
100Ah	Software Version	x	х
100Ch	Guard Time	x	х
100Dh	Life Time Factor	x	х
1010h	Store parameters	x	х
1011h	Restore default parameters	x	х
1012h	COB-ID Time Stamp	x	x
1013h	High Resolution Time Stamp	x	х
1014h	COB-ID Emergency	x	х
1016h	Consumer Heartbeat Time	x	х
1017h	Producer Heartbeat Time	x	х
1018h	Identy Object	x	х
1020h	Verify Configuration	x	х
1029h	Error Behavior	x	х
1800h	Communication Parameter PDO 1	x	x
1801h	Communication Parameter PDO 2	x	x
1A00h	Transmit PDO1 Mapping Parameter	x	x
1A01h	Transmit PDO2 Mapping Parameter	x	x
1F50h	Download Program Area	x	х
1F51h	Program Control	x	х

9.3 Manufacturer specific objects from 2000h – 5FFFh

Object Dictionary 2000h - 5FFFh

Object	Object Description	Magnetic Absolute Rotary Encoder	Photoelectric Absolute Rotary Encoder				
2000h	Position Value	x	х				
2100h	Operating Parameters	x	х				
2101h	Resolution per Revolution	x	х				
2102h	Total Resolution	x	x				
2103h	Preset Value	x	x				
2104h	Limit Switch, min.	x	x				
2105h	Limit Switch, max.	x	х				
2160h	Customer Storage	x	х				
2200h	Cyclic Timer PDO1	x	х				
2300h	Save Parameter with reset	x	х				
2600h	Raw Position Value (identical with 6008h)	x					
3000h	Node Number	x	х				
3001h	Baudrate	x	х				
3002h	Terminator	x	х				
3003h	Auto Baud Detection	x					
3005h	Auto Boot Up	x					
3010h	Speed Control	x	х				
3011h	Speed Value	x	х				
3020h	Acceleration Control	x	х				
3021h	Acceleration Value (not supported)	x	x				
3030h	Backward Compatible Mode	x					
3040h	Life Cycle Counter	x					
3050h	Time Stamp Position Value	x					
4000h	Bootloader Control	x	х				
Table 9.1	Table 9.10						

9.4 Application specific objects from 6000h – 67FEh

Object Dictionary 6000h - 6FFFh

-			
Object	Object Description	Magnetic Absolute Rotary Encoder	Photoelectric Absolute Rotary Encoder
6000h	Operating Parameters	x	х
6001h	Measuring Units per Revolution	x	x
6002h	Total Measuring Range in Measuring Units	x	x
6003h	Preset Value	x	х
6004h	Position Value	x	х
6008h	High Precision Positon Value	x	
6030h	Speed Value	x	х
6040h	Acceleration Value	x	х
6200h	Cyclic Timer	x	х
6300h	Cam State Register	x	х
6301h	Cam Enable Register	x	х
6302h	Cam Polarity Register	x	х
6310h - 6317h	Cam 1-7 Low Limit	x	x
6320h - 6327h	Cam 1-7 High Limit	x	x
6330h - 6337h	Cam 1-7 hysteresis	x	x
6400h	Area State Register	x	Х
6401h	Work Area Low Limit	x	х
6402h	Work Area High Limit	x	х
6500h	Operating Status	x	х
6501h	Singleturn Resolution	x	х
6502h	Number of Distinguishable Revolutions	x	x
6503h	Alarms	x	х
6504h	Supported Alarms	x	х
6505h	Warnings	x	х
6506h	Supported Warnings	x	х
6507h	Profile and Software Version	x	х
6508h	Operating Time	x	х
6509h	Offset Value	x	х
650Ah	Module Identification	x	х
650Bh	Serial Number	x	X

9.5 Object Descriptions

In the following chapter you will find detailed information of the object dictionary related to the encoder device.

To provide a brief and clear presentation the objects are discribed in object tables containing the following abbreviations:

Abbreviation	Description
ro	read only: Parameter that is only accessible in read mode.
romap	read only mapable: Parameter that can be polled by the PDO.
rw	read/write: Parameter that can be accessed in read or write mode.
WO	write only: Parameter that is only accessible in write mode.

9.5.1 Object 1000h: Device Type

The object at index 1000h describes the type of device and its functionality. It is composed of a 16-bit field which describes the device profile that is used and a second 16-bit field which gives additional information about optional functionality of the device. The additional information parameter is device profile specific.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 32	N/A	ro	no
Table 0.10					•

Table 9.12

Absolute rotary encoder single turn: 10196h

Absolute rotary encoder multi turn: 20196h

9.5.2 Object 1001h: Error Register

This object is used by the device to display internal faults. When a fault is detected, the corresponding bit is therefore activated.

Bit	Description	Comments
0	Generic Error	The generic error is signaled at any error situation.
Table 0.10		·

Table 9.13

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 8	N/A	ro	no
T 1 1 0 4 4					

Table 9.14

9.5.3 Object 1003h: Pre-Defined Error Field

The object holds the errors that have occurred on the device and have been signaled via the Emergency Object.

- The error code is located in the least significant word.
- Additional information is located in the most significant word.
- Subindex 0 contains the number of recorded errors.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of recorded errors	Unsigned 8	0	rw	no
1h	Most recent errors	Unsigned 32	-	ro	no
2h	Second to last error	Unsigned 32	-	ro	no
10h					

Table 9.15

Clearing Error Log

The error log can be cleared by writing 0 to subindex 0 of object 1003h.

9.5.4 Object 1005h: COB-ID Sync

This object contains the synchronization message identifier.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 32	80000080h	rw	no
Table 0.16	•	•	•		•

Table 9.16

9.5.5 Object 1008h: Manufacturer Device Name

This object contains the device name.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	String	-	ro	no
Table 0.17	•				-

Table 9.17

9.5.6 Object 1009h: Manufacturer Hardware Version

This object contains the article name of the circuit board.

	Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
	0h	-	String	-	ro	no
1	Table 0.10		•		-	

Table 9.18

9.5.7 **Object 100Ah: Manufacturer Software Version**

This object contains the manufacturer software version. Currently the version is as data type string "1.xx", whereby x stands as place holder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	String		ro	no
Table 9 19	•		•	•	•

9.5.8 Object 100Ch: Guard Time

This object contains the guard time in milliseconds.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 16	0	rw	yes
Table 0.00	·	•	•		•

Table 9.20

9.5.9 Object 100Dh: Life Time Factor

This object contains the life time factor parameters. The life time factor multiplied with the guard time gives the life time for the node guarding protocol.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 8	0	rw	yes
T 1 1 0 01					

Table 9.21

9.5.10 Object 1010h: Store Parameters

This object is used to store device and CANopen related parameters to non volatile memory.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of sub indices	Unsigned 8	2	ro	no
1h	Store all parameters	Unsigned 32	"save"	rw	no
T I I A AA					

Table 9.22

Storing procedure

To save the parameters to non volatile memory the access signature "save" has to be sent to the corresponding subindex of the device.

	Most significant word		Least significant word	
ASCII	е	v	а	S
Hex Value	65h	76h	61h	73h

Note!

The restoration of parameters will only be taken into account after a power up or reset command. Please check all parameters before you store them to the non volatile memory.

9.5.11 Object 1011h: Restore Parameters

This object is used to restore device and CANopen related parameters to factory settings.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of sub indices	Unsigned 8	2	ro	no
1h	Store all parameters	Unsigned 32	"load"	rw	no
Table 9.23	•		•	•	•

Storing procedure

To save the parameters to non volatile memory the access signature "load" has to be sent to the corresponding subindex of the device.

	Most significant word		Least significant word	
ASCII	d	а	0	1
Hex Value	64h	61h	6Fh	6Ch

Note!

The restoration of parameters will only be taken into account after a power up or reset command. Please check all parameters before you store them to the non volatile memory.

9.5.12 Object 1012h: COB-ID Time Stamp Object

This object contains the COB-ID of the Time Stamp object.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 32	100h	rw	no
Table 0.04	•	•			

Table 9.24

9.5.13 Object 1013h: High Resolution Time Stamp

This object contains a time stamp with a resolution of 1µs.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 32	0	rw	no
Table 0.25					

Table 9.25

9.5.14 Object 1014h: COB-ID Emergency Object

This object contains the EMCY emergency message identifier.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 32	80h + Node ID	rw	no
Table 9.26					•

Table 9.20

9.5.15 Object 1016h: Consumer Heartbeat Time

The consumer heartbeat time defines the expected heartbeat cycle time in ms. The device can only monitor one corresponding device. If the time is set to 0 the monitoring is not active. The value of this object must be higher than the corresponding time (object 1017) of the monitored device.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of indices	Unsigned 8	1	ro	no
1h	Consumer heartbeat time	Unsigned 32	0	rw	yes

The context of subindex 1 is as follows:

Bit	31 to 24	23 to 16	15 to 0
Value	0h (reserved)	Address of monitored device	Monitoring time (ms)
Table 0.00			

Table 9.28

9.5.16 Object 1017h: Producer Heartbeat Time

The object contains the time intervall in milliseconds in which the device has to produce the a heartbeat message.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	-	Unsigned 16	0	rw	yes
Table 9.29					

9.5.17 Object 1018h: Identity Object

This object contains the device information.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of entries	Unsigned 8	4	ro	no
1h	Vendor ID	Unsigned 32	42h	ro	no
2h	Product Code	Unsigned 32		ro	no
3h	Revison Number	Unsigned 32		ro	no
4h	Serial Number	Unsigned 32		ro	no

Table 9.30

9.5.18 Object 1020h: Verify Configuration

This object indicates the downloaded configuration date and time.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of entries	Unsigned 8	4h	ro	no
1h	Configuration date	Unsigned 32		rw	no
2h	Configuration time	Unsigned 32		rw	no
T-1-1-0.01	•	•	•		•

Table 9.31

9.5.19 Object 1029h: Error Behavior

This object indicates the error behavior.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of entries	Unsigned 8	1h	ro	no
1h	Communication error	Unsigned 8		rw	no

9.5.20 Object 1800h: 1st Transmit PDO Communication Parameter

Restore after Subindex Description Data Type **Default Value** Access Boot up Number of sub Unsigned 8 0h 5 ro yes indices COB-ID Unsigned 32 180h + Node 1h rw yes ID 2h Transmission Mode Unsigned 8 FEh rw yes Unsigned 32 Зh Inhibit Time 0 rw yes 4h Not available **Event Timer** Unsigned 32 5h 0 rw yes Table 9.33

This object contains the communication parameter of the 1st transmit PDO.

9.5.21 Object 1801h: 2nd Transmit PDO Communication Parameter

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of sub indices	Unsigned 8	5	ro	yes
1h	COB-ID	Unsigned 32	280h + Node ID	rw	yes
2h	Transmission Mode	Unsigned 8	1	rw	yes
3h	Inhibit Time	Unsigned 32	0	rw	yes
4h	Not available				
5h	Event Timer	Unsigned 32	0	rw	yes

This object contains the communication parameter of the 2nd transmit PDO

Table 9.34

Transmission Mode

The transmission mode can be configured as described below:

	Transmi	ssion Mod	de			
Transfer Value (decimal)	Cyclic	Acyclic	Synchr.	Asynchr.	RTR only	Notes
0		x	x			Send PDO on first Sync message following an event
1-240	x		x			Send PDO every x Sync messages
241-251	reserved	ł				
252			x		x	Receive SYNC message and send PDO on remote request
253					x	Update data and send PDO on Remote Request
254				х		Send PDO on event
255				х		Send PDO on event

Inhibit Time

For "Transmit PDOs", the "inhibit time" for PDO transmission can be entered in this 16-bit field. If data is changed, the PDO sender checks wether an "inhibit time" has expired since the last transmission. A new PDO transmission can only take place if the "inhibit time" has expired. The "inhibit time" is useful for asynchronous transmission (transmission mode 254 and 255) to avoid overloads on the CAN bus.

Event Timer

The "event timer" only works in asynchronous transmission mode (transmission mode 254 and 255). If the data changes before the "event timer" expires, a temporary telegram is sent. If a value > 0 is written in this 16-bit field, the transmit PDO is always sent after the "event timer" expires. The value is written in subindex 5 of a transmit PDO. The data transfer also takes place with no change to data. The range is between 1 - 65536 ms.

9.5.22 Object 1A00h: 1st Transmit PDO Mapping Parameter

This object contains the mapping parameter of the 1st transmit PDO.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of sub indices	Unsigned 8	2	ro	yes
1h	1st mapped object	Unsigned 32	60040020h	rw	yes

Table 9.35

9.5.23 Object 1A01h: 2nd Transmit PDO Mapping Parameter

This object contains the mapping parameter of the 2nd transmit PDO.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of sub indices	Unsigned 8	2	ro	yes
1h	2nd mapped object	Unsigned 32	60040020h	rw	yes

Table 9.36

9.5.24 Object 1F50h: Download Program Area

This is a special object that has functionality for the bootloader feature (see Bootloader chapter).

Use this entry to download your Intel hex file with the programming data. Detailed information about Domain download and Block transfer in CiA Draft Standard 301 Application Layer and communication Profile.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of entries	Unsigned 8	2h	ro	yes
1h		DOMAIN		wo	yes

Table 9.37

9.5.25 Object 2000h: Position Value

This object contains the position value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Position Value	Unsigned 32		ro	n. a.
Table 0.20					

Table 9.38

9.5.26 Object 2100h: Operating Parameters

As operating parameters the code sequence (complement) can be selected and the limit switches can be turned on or off.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Operating Parameters	Unsigned 8	0h	rw	yes

Table 9.39

The parameter code sequence (complement) determines the counting direction, in which the output process value increases or decreases (CW = clockwise, CCW = counterclockwise). The code sequence is determined by Bit 0 in Index 2100h. Additionally, the two limit switches, Min. and Max. can be turned on or off in Index 2100h.

Bit 0	Code sequence	Code	Bit 1	Limit switch, min.	Bit 2	Limit switch, max.
0	CW	increasing	0	off	0	off
1	CCW	increasing	1	on	1	on

Calculation Example: Target: Absolute rotary encoder with direction CCW increasing, limit switch min enabled and limit switch max disabled.

Bitmatrix:

- Bit 0 = 1 Direction increasing CCW
- Bit 1 = 1 Limit switch min. enabled
- Bit 2 = 0 Limit swtich max. disabled

Result = 011b = 3h

9.5.27 Object 2101h: Resolution per Revolution

This object contains the desired steps per revolution of the encoder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Resolution per Revolution	Unsigned 32	see type lable	rw	yes

Table 9.40

If the desired value exceeds the hardware resolution of the encoder, it will be out of range and the error code is used "06090030h: Value range of parameter exceeded" will appear.

9.5.28 Object 2102h: Total Resolution

This object contains the desired total resolution of the encoder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Total Resolution	Unsigned 32	see type lable	rw	yes

Table 9.41

This parameter is used to program the desired number of measuring units over the total measuring range. This value must not exceed the total resolution of the absolute rotary encoder, which is printed on the type sign of the encoder.

Attention

Following formula letters will be used:

- PGA Physical total resolution of the encoder >> (see type sign)
- PAU Physical resolution per revolution >> (see type sign)
- GA Total resolution (customer parameter)
- AU Resolution per revolution (customer parameter)

Please use the following formula to calculate the total resolution of the encoder:

 $GA = (PGA * AU) / PAU \quad AU \le PAU$

k = PGA/Ga k = positive integer

If the desired resolution per revolution is less than the really physical resolution per revolution of the encoder, then the total resolution must be entered as follows:

Total resolution

Calculation example:

- Customer handicap: AU = 2048
- Encoder type sign: PGA = 24 bit, PAU = 12 bit

GA = (167772216 * 2048) / 4096 >> GA = 8388608

If the total resolution of the encoder is less than the physical total resolution, the parameter total resolution must be a multiple of the physical total resolution.

9.5.29 Object 2103h: Preset Value

The preset value is the desired position value, which should be reached at a certain physical position of the axis. The position value is set to the desired process value by the parameter preset. The preset value must not exceed the parameter total resolution to avoid run-time errors. If the parameter value exceeds the total resolution of the encoder a SDO "Out of range" message is generated.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Preset Value	Unsigned 32	0h	rw	yes

Table 9.42

9.5.30 Object 2104h: Limit Switch, min.

Two position values can be programmed as limit switches. By reaching this value, one bit of the 32 bit process value is set to high. Both programmed values must not exceed the parameter total resolution to avoid run-time errors. If the parameter value exceeds the total resolution of the encoder a SDO "Out of range" message is generated.

Bit 30 = 1 Limit Switch, minimum reached or passed under

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Limit Switch, min.	Unsigned 32	0h	rw	yes

Table 9.43

The limit switch, Min sets Bit 30=1 with the next message telegram, if the process value reaches or passes under the value of the limit switch:

Function	Status bits		Process value	
Bit	31	30	29 0	
	0	1	x x	

9.5.31 Object 2105h: Limit Switch, max.

Two position values can be programmed as limit switches. By reaching this value, one bit of the 32 bit process value is set to high. Both programmed values must not exceed the parameter total resolution to avoid run-time errors. If the parameter value exceeds the total resolution of the encoder a SDO "Out of range" message is generated.

Bit 31 = 1 Limit Switch, maximum reached or passed under

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Limit Switch, max.	Unsigned 32	0h	rw	yes

Table 9.44

The limit switch, max sets Bit 31=1 with the next message telegram, if the process value reaches or passes under the value of the limit switch:

Function	Status bits		Process value	
Bit	31	30	29 0	
	1	0	x x	

9.5.32 Object 2160h: Customer Storage

This object provides for the customer the possibility to store any value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
Oh	Number of sub indices	Unsigned 8	4h	ro	
1h	Customer Storage 1	Unsigned 32		rw	
2h	Customer Storage 2	Unsigned 32		rw	
3h	Customer Storage 3	Unsigned 32		rw	
4h	Customer Storage 4	Unsigned 32		rw	
T-1-1-04E					

Table 9.45

9.5.33 Object 2200h: Cyclic Timer PDO

This object contains cyclic time of the event timer in ms (of PDO 1).

	Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
	0h	Event Time in ms	Unsigned 16	0h	ro	yes
1	T 0 40					

Table 9.46

The object 2200h is hard-wired to the objects 1800h subindex 5h and 6200h and provide the cycle time for the cyclic mode. (See chapter Cycle Timer and Event Timer)

9.5.34 Object 2300h: Save Parameter with Reset

With this object all parameters can be stored in the non volatile memory. After storing the parameters a reset is executed.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Acess code	Unsigned 32	55AAAA55h	wo	no

9.5.35 Object 2600h: High-Resolution Postion Value

This object contains a high-resolution position value up to 16 bit for single-turn and 31 bit for multi-turn measurement. See type label to get the information about the maximum resolution of your device.

Mutliturn encoder with resolution 32 Bits is available upon request at Pepperl+Fuchs GmbH but there are the following functional restrictions: Preset function and scaling function are not possible.

Note!

The object 2600h is not influenced by the object 2102h total resolution or object 6002h Total measuring range, because of their limited data type of unsigned 32 bit.

But object 2101h resolution per revolution and object 6001h measuring units per revolution will affect the high-resolution position value

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	High Resolution Postion Value	Unsigned 64		romap	

Table 9.48

9.5.36 Object 3000h: Node Number

This object contains the node number of the device. The Pepperl+Fuchs standard node number is 32 decimal.

Note!

Ensure, that the node number exist unique in the network, otherwise unexpected behavior of the devices will occur. This conflict can't be detected in a CAN network by protocol. This is valid for all CANopen devices!

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Node Number	Unsigned 8	1Fh	rw	no

Table 9.49

Note!

To avoid the node number 0, one will be added to the value of this object!. For example: 1Fh +1h = 20 h = 32 dec

9.5.37 Object 3001h: Baud Rate

This object contains the baud rate of the device.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Baud rate	Unsigned 8	1Fh	rw	no
Table 0 E0					

Table 9.50

Eight different baud rates are provided. To adjust the baud rate only one byte is used.

Baud rate kBit/s	Byte
20	00h
50	01h
100	02h
125	03h
250	04h
500	05h
800	06h
1000	07h

9.5.38

Object 3002h: Terminator

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Terminator	Unsigned 8		rw	no

Table 9.51

By writing 01h to this object the internal galvanic isolated terminator is activated.

Note!

Note that the terminator is only activated when the device is powered. If you have more CAN nodes on the bus be sure to power them approx. 700ms after the device with the programmed terminator. Otherwise reflections could occur and network quality is probably reduced.

9.5.39 Object 3003h: Auto Baud Detection

This object controls the baud rate measurement of the device after power-up or NMT reset. With this feature the user can add the encoder to a network without knowing the baud rate. Just the specified baud rates in CANopen are supported and also 100 kBbd as listed in object 3001h baud rate.

If the auto baud detection is enabled, then after power-up the encoder is just listening to the network and tries to identify within the Time Out (3003h, 2h) a valid CAN message. When this is done successfully, then the device is sending the boot up message and enters the pre-operational state.

For devices with LED in the M12 connector the active auto baud mode is indicated by flickering alternative a red and green LED.

Reason for non successful baud rate detection

Time out: Within the time-out period no valid CAN message is sent.

Corrective action: increase the time-out value to a value that for minimum 1 message is sent or better more. Check, if power-up time of the other devices is synchronously switched on like for the encoder. Perhaps you have to take this different power-up time also into consideration.

EMC effects: If a non valid CAN frame is detected, then the encoder retries to measure a valid CAN frame within the time-out period.

Corrective action: check the shielding of the cables, connections, termination in the CAN network. If no improvement is realized, then deactivate temporary the auto baud detection and set the baud rate by use of object 3001h. Then further investigations are possible to find the root cause in combination with a trace tool.

Errorframes: Disturbances in the CAN network communication.

Corrective action: Find the communication problem in the network by selective use of nodes and consecutive adding further one.

Reaction in case of non-successful baud rate detection

When the baud rate can't be measured within the time-out period, then the encoder is using the last "known" baud rate:

- If the encoder is used out of the box, then the value is 125 kBbd.
- If the encoder was already in use, then the last successful baud rate is stored automatically in object 3001h and taken in this case.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
Oh	Number of sub indices	Unsigned 8	2h	ro	
1h	Enable	Unsigned 8	1h	rw	yes
2h	Enable	Unsigned 8	2BF20	rw	yes

Table 9.52

Subindex 1: Enable

- Value 0h: Auto Baud Mode is disabled.
- Value 1h: Auto Baud Mode is enabled

Subindex 2: Time Out:

Value in ms defines the time period after power-up or NMT reset for finding a valid CAN message to measure the baud rate. If the value 0 is used, then an infinite time period is used.

9.5.40 Object 3005h: Auto Boot up

With this flag the start-up behavior of the encoder is defined.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Auto Boot Up	Boolean	0h	rw	yes

Table 9.53

True: Encoder enters after power-up autonomously the state operational without receiving an NMT start command.

False: Encoder enters after power-up the state Pre-Operational. This is the standard behavior of CANopen devices.

9.5.41 Object 3010h: Speed Control

This object contains the speed control. The speed measurement is disabled by default.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	2h	ro	
1h	Speed Unit	Unsigned 8	0h	rw	yes
2h	Speed Filter	Unsigned 8	0h	rw	yes

Table 9.54

Subindex 1: Speed Unit

- Value 0h: Disabled, no measurement
- Value 1h: Speed measurement enabled and unit in steps per second
- Value 2h: Speed measurement enabled and unit in RPM
- Value 3h, 4h: reserved.

Subindex 2: Speed Filter

- Value 0h: Filter mode is moving average filter with length of 10 values
- Value 1h: Filter mode is moving average filter with length of 100 values
- Value 2h: Filter mode is moving average filter with length of 1000 values

9.5.42 Object 3011h: Speed Value

This object contains the speed value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Speed Value	Integer 32		romap	no

Table 9.55

9.5.43 Object 3020h: Acceleration Control

This object contains the acceleration control. Acceleration output is not supported by this device. This object is present only for compatibility reasons.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	2h	ro	
1h	Enable Acceleration	Unsigned 8	0h	rw	yes
2h	Acceleration modus	Unsigned 8	0h	rw	yes
T-1-1-0 FO					

Table 9.56

9.5.44 Object 3021h: Acceleration Control

Acceleration output is **not** supported by this device. This object is present only for compatibility reasons.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Acceleration Value	Integer 32	0h	romap	
Table 0.57	•	•	•		•

9.5.45 Object 3030h: Backward Compatible Mode

This object contains the acceleration control. Acceleration output is not supported by this device. This object is present only for compatibility reasons.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	2h	ro	
1h	Security Code	Unsigned 32	0h	rw	yes
2h	MCD Mode	Unsigned 32	0h	rw	yes

Table 9.58

0 ∏

Note!

Security Code

A specific signature has to be written first to this subindex to access 2nd subindex MCD Mode. Sequence is used to prevent misusage by unintended access.

Signature = "MBYT" (high >> low byte)

MCD Mode

In the MCD mode new objects implemented in UCD can't be accessed and will be responded withabort code "object does not exist".

Signature = "BCM" (high >> low byte)

Singature +"0": UCD mode with all features accessible

Singature +"1": MCD mode with old features available.

Example: BCD + "1" >> 0x42434D01, MCD mode is active

Example for accessing object 3030h

Setting Security Code (Value "MBYT" -> 4D425954h)

Telegram master to Encoder

Identifier	DLC	Command	Index		Subindex	Service/Process data			
NN =1h		Download	3030h			Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 601h	8h	22h	30h	30h	01h	54h	59h	42h	4Dh

Table 9.59

Setting MCD Mode (Value "BCM"+1 -> 42434D01h)

Telegram master to Encoder

Identifier	DLC	Command	Index		Subindex	Service/Process data			
NN =1h		Download	3030h			Byte 4	Byte 5	Byte 6	Byte 7
600h + NN = 601h	8h	22h	30h	30h	02h	01h	4Dh	43h	42h

9.5.46 Object 3040h: Life Cycle Counter

Diagnostic value to monitor, if the position value is updated compared to last transmission. This feature is interesting for safety applications to detect for example, if the value in the CAN controller is frozen. The value starts at power up with 0 and is continuously incremented. When overflow is reached, then it starts again with 0. It is not expected, that the transmitted value is incremented, because the life cycle counter is handled in the function when the position value is measured and this process is asynchronous to the CAN communication.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Life Cycle Counter	Unsigned 32		romap	0

Table 9.61

9.5.47 Object 3050h: Time Stamp Position Value

This time stamp is generated when the position value is measured. Like the life cycle counter this value can be used for safety purposes to detect stuck at effects. Another feature is to calculate the velocity on PLC side with accurate time stamp values to achieve high accuracy for individual requirements. It offers more flexibility than the encoder internal pre-defined velocity measurement.

Time resolution is 1 µs.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Time Stamp Postion Value	Unsigned 32		romap	

Table 9.62

9.5.48 Object 4000h: Bootloader Control

This object controls the Bootloader functionality (see Bootloader chapter). Writing the security code to this object causes erasing the EEPROM and application information in the flash memory and resets the device. After a power-up, the Bootloader checks the user application and detects no more information. The Bootloader starts up with a pre-defined CANopen node ID of 1 (0x1) and a fixed CAN baud rate of 125 kbits.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Bootloader Control	Unsigned 32		wo	

Table 9.63

Note!

Activating the Bootloader courses a deep reset of the device. After this only a few objects are still available, the device does not behave like an encoder and waits for new programming. That is the reason why the security code is not published in this document. Please contact Peppel+Fuchs to obtain the code.

9.5.49 Object 4010h: PPR Incremental Encoder

This object controls the incremental resolution per revolution as pulses per channel for A and B.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	PPR Incremental Encoder	Unsigned 16	400h	rw	yes

Table 9.64

If a value of 400h is configured, then you will see 1024 decimal pulses on each channel A and B per revolution. Maximum possible value is 14 bit, which means 16384 pulses per revolution PPR. The type key specifies different physical level of the incremental interface.

Note!

The configuration of this object is overtaken regarding output signals only after NMT reset or power cycle.

9.5.50 Object 4020h: A/B Phase Shift

This object controls the incremental resolution per revolution as pulses per channel for A and B.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	A/B Phase Shift	Unsigned 8	400h	rw	yes
Table 0.65	•				

Table 9.65

Value 0: Channel A before B

Value 1: Channel B before A

9.5.51 Object 6000h: Operating Parameters

This object shall indicate the functions for code sequence, commissioning diagnostic control and scaling function control.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Operating Parameter	Unsigned 16	0h	rw	yes
Table 0.66					

Table 9.66

Code sequence: The code sequence defines, whether increasing or decreasing position values are output, in case the encoder shaft rotates clockwise or counter clockwise as seen from the point of view of the shaft.

Scaling function control: With the scaling function the encoder numerical value is converted in software to change the physical resolution of the encoder. The measuring units per revolution (object 6001h) and total measuring range in measuring units (object 6002h) are the scaling parameters. The scaling function bit is set in the operating parameters. If the scaling function bit is set to zero, the scaling function is disabled.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Use	MS	MS	MS	MS	R	R	R	R	R	R	R	R	MD	SFC	CD	CS

MS Manufacturer Specific Function (not available)

- R Reserved for future use
- MD Measuring direction (not available)
- **SFC** Scaling function (0 = disable, 1 = enable)
- CD Commissioning diagnostic control (not available)
- CS Code sequence (0 = CW Up, 1 = CCW Up)

Code Sequence (CS Bit 0) is hardwired to Code Sequence (CS Bit 0) in object 2100h.

9.5.52 Object 6001h: Measuring Units per Revolution

This object shall indicate the number of distinguishable steps per revolution.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Measuring Units per Revolution	Unsigned 32	See nameplate	rw	yes
Table 0.67					

Table 9.67

9.5.53 Object 6002h: Total Measuring Range in Measuring Units

This object shall indicate the number of distinguishable steps over the total measuring range.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Total measuring steps	Unsigned 32	See nameplate	rw	yes
Table 9.68			•		

Table 9.68

9.5.54 Object 6003h: Preset Value

This object indicates the preset value for the output position value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Preset Value	Unsigned 32	0h	rw	yes

Table 9.69

Object 6004h: Position Value 9.5.55

This object contains the process value of the encoder.

This object is hardwired with Object 2000h.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Process Value	Unsigned 32		romap	yes

Table 9.70

9.5.56 Object 6008h: High Resolution Position Value

This object contains a high-resolution position value up to 16 bit for single-turn and 31 bit for multi-turn measurement. See nameplate to get the information about the maximum resolution of your device.

Mutliturn encoder with resolution 32 bits is available upon request at Pepperl+Fuchs GmbH but there are the following functional restrictions: Preset function and scaling function are not possible.

о П

Note!

The object 6008h is not influenced by the object 2102h total resolution or object 6002h Total measuring range, because of their limited data type of unsigned 32 bit.

But object 2101h resolution per revolution and object 6001h measuring units per revolution will affect the high-resolution position value. With object 2103h / 6003h Preset value a desired position can be also set for the high-resolution position value, but only within the value range of unsigned 32 bit. With this method the user has a downward compatible device, but also in parallel a device with higher capability of resolution and the existing software in the PLC can be kept.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
Oh	High Resolution Position Value	Unsigned 64		romap	

Table 9.71

9.5.57 Object 6030h: Speed Value

This object contains the speed value of the encoder.

How to map speed into TPDO2

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Speed value channel 1	Integer 16		romap	yes

Table 9.72

If the velocity exceeds the data type, the speed value is frozen to the maximal possible value. The customer can use the 3010h (32 bit) object.

Tip

SDO: 0x600 + node number. The following values are all in hex and the node number is "1" DLC (Data length) = 8, 22 means "write", This example is written in intel-format (LSB ... MSB). Depending on your tool, it could be, that the Motorola-format (MSB ... LSB) is used and the direction of the bytes has to be changed.

- 1. Enable the TPDO2 by setting the transmission type (1801Sub2) to FE: 601 8 22 01 18 02 FE 00 00 00
- 2. Change the Event Timer from 0x00 to the desired value (e.g.: 100 ms -> 0x64) 601 8 22 01 18 05 64 00 00 00
- 3. Disable the TPDO mapping parameter 0 (1A01) by setting the number of entries (1A01Sub0) to 0: 601 8 22 01 1A 00 00 00 00 00
- 4. Then write the disabled TPDO mapping parameter 0 subindex 1, namely mappedObj1. The speed value is object 6030Sub1 and the data length is 16Bit -> 10: 601 8 22 01 1A 01 10 01 30 60
- 5. Enable the TPDO mapping parameter 0 (1A01) by setting the Number of entries (1A01Sub0) to 1, again: 601 8 22 01 1A 00 01 00 00 00
- 6. Finally enable the speed setting "Enable Speed" (3010Sub1): 601 8 22 10 30 01 01 00 00 00
- 7. To save this configuration write 73 61 76 65 to 1010: 601 8 22 10 10 01 73 61 76 65
- 8. Send the NMT-message, to get into "Operational Mode": 00 2 01 00

Summarization

601 8 22 01 18 02 FE 00 00 00

601 8 22 01 18 05 64 00 00 00

601 8 22 01 1A 00 00 00 00 00

601 8 22 01 1A 01 10 01 30 60

601 8 22 01 1A 00 01 00 00 00

601 8 22 10 30 01 01 00 00 00

601 8 22 10 10 01 73 61 76 65

00 2 01 00

9.5.58 Object 6040h: Acceleration Value

This object contains the acceleration value of the encoder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Acceleration value channel 1	Integer 16		romap	yes
T-1-1-0 70					

Table 9.73

9.5.59 Object 6200h: Cyclic Timer

This object contains the value of the event timer of the corresponding TPDOs. The value can be changed between 1-65538 ms.

The object 6200h is hardwired to the objects 1800h subindex 5h and 2200h and provide the cycle time for the cyclic mode. (See chapter Cycle Time and Event Timer)

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Cyclic Timer	Unsigned 16	64h	rw	yes

9.5.60 Object 6300h: Cam State Register

This object contains the cam state register. The subindices 1h to FEh contain the cam state of channel 1 to 254.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Cam state channel 1	Unsigned 8	4h	romap	yes

Table 9.75

9.5.61 Object 6301h: Cam Enable Register

This object contains the cam enable register.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Cam enable channel 1	Unsigned 8		rw	yes

Table 9.76

9.5.62 Object 6302h: Cam Polarity Register

This object contains the cam polarity register.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Cam polarity channel 1	Unsigned 8	0h	rw	yes

Table 9.77

List of Cam Objects

Index	Subindex	Туре	Description	Data Type	Access	Value
6310h			Cam1 low limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 32	ro	1h
	1h	VAR	Cam1 low limit channel 1		rw	
6311h			Cam2 low limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 32	ro	1h
	1h	VAR	Cam2 low limit channel 1		rw	
6312h			Cam3 low limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam3 low limit channel 1		rw	
6313h			Cam4 low limit		rw	

Index	Subindex	Туре	Description	Data Type	Access	Value
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam4 low limit channel 1		rw	
6314h			Cam5 low limit		rw	
	0h VAR Highest subindex supported		Unsigned 8	ro	1h	
	1h VAR Cam5 low limit channel 1			rw		
6315h			Cam6 low limit		rw	
	0h	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h		Cam6 low limit channel 1		rw	
6316h			Cam7 low limit		rw	
	0h	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam7 low limit channel 1		rw	
6317h			Cam8 low limit		rw	
	0h	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam8 low limit channel 1		rw	
6320h			Cam1 high limit		rw	
	Oh		Highest subindex supported	Unsigned 8	ro	1h
	1h		Cam1 high limit channel 1		rw	
6321h			Cam2 high limit		rw	
	0h	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam2 high limit channel 1		rw	
6322h			Cam3 high limit		rw	
	0h	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h		Cam3 high limit channel 1		rw	
6323h			Cam4 high limit		rw	1
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam4 high limit channel 1		rw	
6324h			Cam5 high limit		rw	1
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam5 high limit channel 1			

Index	Subindex	Туре	Description	Data Type	Access	Value
6325h			Cam6 high limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h		Cam6 high limit channel 1		rw	
6326h			Cam7 high limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam7 high limit channel 1		rw	
6327h			Cam8 high limit		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam8 high limit channel 1		rw	
6330h			Cam1 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam1 hysteresis channel 1		rw	
6331h			Cam2 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam2 hysteresis channel 1		rw	
6332h			Cam3 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam3 hysteresis channel 1		rw	
6333h			Cam4 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam4 hysteresis channel 1		rw	
6334h			Cam5 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam5 hysteresis channel 1		rw	
6335h			Cam6 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam6 hysteresis channel 1		rw	
6336h			Cam7 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h

Index	Subindex	Туре	Description	Data Type	Access	Value
	1h	VAR	Cam7 hysteresis channel 1		rw	
6337h			Cam8 hysteresis		rw	
	Oh	VAR	Highest subindex supported	Unsigned 8	ro	1h
	1h	VAR	Cam8 hysteresis channel 1		rw	

Table 9.78

9.5.63 Object 6400h: Area State Register

This object contains the area state register. The object provides the actual area status of the encoder position.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Unsigned 8	1h	ro	
1h	Cam state channel 1	Unsigned 8	4h	romap	yes

Table 9.79

The following 2 tables specify the object structure and the value definition.

7	6	5	4	3	2	1	0
res	res	res	res	res	Range underflow	Range overflow	Out of range
MSB							LSB

Signal	Value	Definition
Out of range	Oh 1h	Position between low and high limit Position out of range (refer to module identification object, 650Ah) is reached
Range overflow	Oh 1h	No range overflow Position is lower than the position value set in object 6402h "work area low limit"
Out of range	Oh 1h	No range underflow Position is higher than the position value set in object 6401h "work area high limit"
res	Oh	reserved

9.5.64 Object 6401h: Work Area Low Limit

This object indicates the position value, at which bit 2 of the according work area state channel in object 6400h shall flag the underflow of the related work area.

This object is hardwired with 2104h (Limit Switch Min).

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Integer 32	1h	ro	
1h	Work area low limit channel 1	Integer 32	0h	rw	yes

Table 9.80

9.5.65 Object 6402h: Work Area High Limit

This object indicates the position value, at which bit 1 of the according work area state channel in object 6400h shall flag the overflow of the related work area.

This object is hardwired with 2105h (Limit Switch Max).

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of subindices	Integer 32	1h	ro	
1h	Work area high limit channel 1	Integer 32	0h	rw	yes

Table 9.81

9.5.66 Object 6500h: Operating Status

This object shall provide the operating status of the encoder. It gives information on encoder internal programmed parameters.

The operating status object corresponds to the value of the object 6000h and 2100h.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Operating status	Unsigned 16		ro	no

Table 9.82

9.5.67 **Object 6501h: Singleturn Resolution**

The object contains the physical measuring steps per revolution of the absolute rotary encoder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Singleturn Resolution	Unsigned 32	See nameplate	ro	no
Table 0.92					

Table 9.83

9.5.68 Object 6502h: Number of Distinguishable Revolutions

This object contains number of revolutions of the absolute rotary encoder.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Number of Revolutions	Unsigned 16	See nameplate	ro	no
Table 0.94					

9.5.69 Object 6503h: Alarms

Additionally to the emergency messages in CiA301, this object shall provide further alarm messages. An alarm shall be set if a malfunction in the encoder could lead to incorrect position value. If an alarm occurs, the according bit shall indicate the alarm til the alarm is cleared and the encoder is able to provide an accurate position value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Alarms	Unsigned 16		romap	no
T-1-1- 0.05					

Table 9.85

Bit structure of the alarms

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Use	MS	MS	MS	MS	R	R	R	R	R	R	R	R	R	R	CD	PE

- MS Manufacturer Specific Function (not available)
- R Reserved for future use
- CD Commissioning diagnostic control (not supported)
- PE Position Error (not supported)
- CD Commissioning diagnostic control (not available)
- **CS** Code sequence (0 = CW Up, 1 = CCW Up)

Code Sequence (CS Bit 0) is hardwired to Code Sequence (CS Bit 0) in object 2100h.

9.5.70 Object 6504h: Supported Alarms

The object shall provide the supported alarms of the device. Please refer to the bit structure table to find more details about the supported alarms.

The CA-encoder supports the position error alarm.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Supported alarms	Unsigned 16	1000h	ro	no

Table 9.86

9.5.71 Object 6505h: Warnings

This object shall provide the warnings. Warnings indicate that tolerance for certain internal parameters of the encoder have been exceeded. In contrast to alarm and emergency messages warnings do not imply incorrect position values. All warnings shall be cleared if the tolerances are again within normal parameters.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Warnings	Unsigned 16		rw	yes
T-1-1-0.07					

Bit structure of the warnings

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Use	MS	MS	MS	MS	R	R	R	R	R	R	RP	BC	OT	CP	LC	FE

MS Manufacturer Specific Function (not available)

- R Reserved for future use
- **RP** Reference point reached/not reached (not supported)
- BC Battery charge (not supported)
- **OT** Operating Time limit (not supported)
- **CP** CPU watchdog status (not supported)
- LC Light control reserve (not supported)
- **FE** Frequency warning (not supported)

9.5.72 Object 6506h: Supported warnings

The object provides the supported warnings of the device. Please refer to the bit structure table to find more details about the supported warnings.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Supported warnings	Unsigned 16	1000h	ro	no

Table 9.88

Currently there are not supported warnings available for an optocode absolute rotary encoder.

The CA-encoder supports the manufacture specific warning (Bit 12).

9.5.73 Object 6507h: Profile and Software Version

This object provides the implemented encoder device profile version and the manufacturerspecific software version.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Profile and Software Version	Unsigned 32	04040302h	ro	no

Table 9.89

The value is divided into the profile version part and the Software version part. Each part is divided in upper version and lower version.

MSB		LSB				
Software Version 4.4		Profile Version 3.2				
Upper Software Version	Lower Software Version	Upper Profile Version	Lower Profile Version			
04	04	03	02			

Object 6508h: Operating Time 9.5.74

This object indicates the operating time of the device. Currently the operating time is not supported and the value of this object will always be FFFFFFFh.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Operating time	Unsigned 32	FFFFFFFh	ro	no
Table 0.00		-			

Table 9.90

9.5.75 Object 6509h: Offset Value

This object contains the offset value. It is been calculated by the preset function and shifts the physical position value with the desired value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Offset value	Integer 32		ro	no
Table 0.01	-		•		•

Table 9.91

9.5.76 Object 6509h: Module identification

This object shall provide the manufacturer-specific offset value, the manufacturer-specific minimum and maximum position value.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Highest supported subindex	Integer 32	3	ro	no
1h	Manufacturer offset value	Integer 32		ro	no
2h	Man. min. position value	Integer 32		ro	no
3h	Man. max. position value	Integer 32		ro	no

Table 9.92

9.5.77 **Object 650Bh: Serial Number**

This object contains the serial number of the device. The serial number is also supported in object 1018h subindex 4h.

Subindex	Description	Data Type	Default Value	Access	Restore after Boot up
0h	Serial number	Unsigned 32	see nameplate	ro	no
Table 0.02		•	•		•

10 Troubleshooting

10.1 What to Do in Case of a Fault

In case of a fault, check whether a encoder fault can be remedied according to the following checklist.

Checklist

Problem	Description	Possible Solution
Power on –encoder doesn't respond	The bus is active but the installed encoder transmitted no boot up message.	 The encoders have the default baud rate 125 kBaud. Adapt your PLC setting accordingly.
		 Reprogram the encoders baud rate
		 Restart encoder so the new baud rate setting will be valid.
Malfunction of the position value during transmission	During the transmission of the position value occasional malfunction occurs. The CAN bus can be temporary in the bus off state also.	Check, if the last bus node has switched on the terminator.
Too much ERROR-Frames	The bus load is too high in case of too much error frames.	Check if all bus node has the same baud rate. If one node has another baud rate error frames are produced automatically.
Limit switches without function	The encoder didn't transmit the bits for the limit switches.	The limit switch functionality has to be activated once. Please follow the description you can find at capter "Usage of Layer Setting Services (LSS)".

0 ∏

Note!

Baud rate and node number changes

The changing of baud rate and node number are only valid after a new power-up, NMT Reset or the store parameters command.

FACTORY AUTOMATION – SENSING YOUR NEEDS

Γ

Worldwide Headquarters

Pepperl+Fuchs GmbH 68307 Mannheim · Germany Tel. +49 621 776-0 E-mail: info@de.pepperl-fuchs.com

USA Headquarters

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1 330 4253555 E-mail: sales@us.pepperl-fuchs.com

Asia Pacific Headquarters

Pepperl+Fuchs Pte Ltd. Company Registration No. 199003130E Singapore 139942 Tel. +65 67799091 E-mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

/ DOCT-5694 07/2018