Funktionale Sicherheit

Relaisbaustein KFD2-RSH-1.2D.FL2(-Y1), KFD2-RSH-1.2D.FL3(-Y1)

Originalbetriebsanleitung

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Weltweit

Pepperl+Fuchs-Gruppe Lilienthalstr. 200 68307 Mannheim

Deutschland

Telefon: +49 621 776 - 0

E-Mail: info@de.pepperl-fuchs.com https://www.pepperl-fuchs.com

1	Einle	itung					
	1.1	Inhalt des Dokuments5					
	1.2	Sicherheitsinformationen 6					
	1.3	Verwendete Symbole 7					
2	Prod	uktbeschreibung					
	2.1	Funktion					
	2.2	Schnittstellen 8					
	2.3	Kennzeichnung 8					
	2.4	Normen und Richtlinien für Funktionale Sicherheit 9					
3	Planu	ıng10					
	3.1	Systemstruktur 10					
	3.2	Annahmen 11					
	3.3	Sicherheitsfunktion und sicherer Zustand12					
	3.4	Sicherheitskennwerte13					
	3.5	Gebrauchsdauer					
4	Montage und Installation						
	4.1	Montage					
	4.2	Installation					
	4.3	Konfiguration					
5	Betri	Betrieb					
	5.1	Interne Diagnose					
	5.2	Wiederholungsprüfung19					
	5.3	Anwendungsbeispiele					
6	Wartı	ung und Reparatur 23					
7	Abkü	rzungsverzeichnis 24					

1 Einleitung

1.1 Inhalt des Dokuments

Dieses Dokument enthält sicherheitsrelevante Informationen zur Verwendung des Geräts. Diese Informationen benötigen Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung

Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Die Dokumentation besteht aus folgenden Teilen:

- Vorliegendes Dokument
- Betriebsanleitung
- Handbuch
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- FMEDA-Report
- Assessment-Report
- · Weitere Dokumente

Weitere Informationen zu Produkten mit funktionaler Sicherheit von Pepperl+Fuchs finden Sie im Internet unter www.pepperl-fuchs.com/sil.

019-11

1.2 Sicherheitsinformationen

Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Bestimmungsgemäße Verwendung

Das Gerät ist nur für eine sachgerechte und bestimmungsgemäße Verwendung zugelassen. Bei Zuwiderhandlung erlischt jegliche Garantie und Herstellerverantwortung.

Das Gerät wurde nach den einschlägigen Sicherheitsstandards entwickelt, hergestellt und geprüft.

Verwenden Sie das Gerät nur

- für die beschriebene Anwendung
- unter den angegebenen Umgebungsbedingungen
- mit Geräten, die für die Sicherheitsanwendung geeignet sind

Bestimmungswidrige Verwendung

Der Schutz von Personal und Anlage ist nicht gewährleistet, wenn das Gerät nicht entsprechend seiner bestimmungsgemäßen Verwendung eingesetzt wird.

1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.

2 Produktbeschreibung

2.1 Funktion

Allgemein

Dieser Signaltrenner ermöglicht die galvanische Trennung von Feldstromkreisen und Steuerstromkreisen.

Das sicherheitsgerichtete Abschalten (DTS, De-energized to Safe) ist bei Anwendungen bis SIL 3 und PL e zulässig.

Ein interner Fehler oder ein Leitungsfehler wird über die Impedanzänderung des Relaiskontakteingangs sowie eines zusätzlichen Relaiskontaktausgangs gemeldet.

Ein Fehler wird über LEDs angezeigt und über eine separate Sammelfehlermeldung ausgegeben.

Der Ausgang muss mit einer internen Sicherung oder einer externen Strombegrenzung gegen Kontaktverschweißen geschützt werden.

KFD2-RSH-1.2D.FL2(-Y1)

Das Gerät ist für das sicherheitsgerichtete Schalten eines Laststromkreises geeignet. Das Gerät trennt Laststromkreise bis 60 V DC vom 24 V DC-Steuerstromkreis.

KFD2-RSH-1.2D.FL3(-Y1)

Das Gerät ist für das sicherheitsgerichtete Schalten eines Laststromkreises geeignet. Das Gerät trennt Laststromkreise bis 230 V AC vom 24 V DC-Steuerstromkreis.

Y1-Variante

Dieses Gerät ist zu folgender Steuerung kompatibel: Emerson DeltaV CHARM. Kompatibilitätsprüfung zu anderen DCS-/ESD-Systemen auf Nachfrage.

2.2 Schnittstellen

Das Gerät besitzt die folgenden Schnittstellen:

- Sicherheitsrelevante Schnittstellen: Eingang, Ausgang (DTS)
- Nicht sicherheitsrelevante Schnittstellen: Fehlermeldeausgang

Hinweis!

Informationen zu den entsprechenden Anschlüssen finden Sie im Datenblatt.

2.3 Kennzeichnung

Pepperl+Fuchs-Gruppe Lilienthalstraße 200, 68307 Mannheim, Deutschland
Internet: www.pepperl-fuchs.com

KFD2-RSH-1.2D.FL2, KFD2-RSH-1.2D.FL2-Y1,	Bis SIL 3 und PL e
KFD2-RSH-1.2D.FL3, KFD2-RSH-1.2D.FL3-Y1	

2.4 Normen und Richtlinien für Funktionale Sicherheit

Gerätespezifische Normen und Richtlinien

Funktionale Sicherheit	IEC/EN 61508, Teil 1 – 2, Ausgabe 2010: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme (Hersteller)
------------------------	---

Maschii 2006/42	nenrichtlinie P/EG	•	EN/ISO 13849, Teil 1, Ausgabe 2015: Sicherheitsbezogene Teile von Steuerungen (Hersteller) IEC 62061, Ausgabe 2005 + A1:2012 + A2:2015 EN 62061, Ausgabe 2005 + Cor. 2010 + A1:2013 + A2:2015: Sicherheit von Maschinen – Funktionale Sicherheit sicherheitsbezogener elektrischer, elektronischer
			und programmierbarer elektronischer Steuerungssysteme
			und programmerbarer elektromscher Stederungssystem

3 Planung

3.1 Systemstruktur

3.1.1 Low Demand Mode (Betriebsart mit niedriger Anforderungsrate)

Für Anwendungen, bei denen zwei separate Steuer- oder Regelkreise für den normalen Betrieb und für den sicherheitstechnischen Betrieb realisiert werden, wird in der Regel eine Anforderungsrate für den Sicherheitskreis von weniger als einmal im Jahr angenommen.

Prüfen Sie die folgenden relevanten Sicherheitsparameter:

- den PFD_{avg}-Wert (Average Probability of dangerous Failure on Demand (mittlere Wahrscheinlichkeit eines gefahrbringenden Ausfalls bei Anforderung)) und den T₁-Wert (Wiederholungsprüfungs-Intervall, das den PFD_{avg}-Wert direkt beeinflusst)
- den SFF-Wert (Safe Failure Fraction (Anteil sicherer Ausfälle))
- die HFT-Architektur (Hardware Fault Tolerance (Hardware-Fehlertoleranz))

3.1.2 High Demand oder Continuous Mode (Betriebsart mit hoher Anforderungsrate oder kontinuierlicher Anforderung)

Für Anwendungen, bei denen nur ein Sicherheitskreis realisiert wird, der den normalen Betrieb und den sicherheitsbezogenen Betrieb kombiniert, wird in der Regel eine Anforderungsrate für diesen Sicherheitskreis von mehr als einmal im Jahr angenommen.

Prüfen Sie die folgenden relevanten Sicherheitsparameter:

- den PFH-Wert (Probability of dangerous Failure per Hour (Wahrscheinlichkeit eines gefahrbringenden Ausfalls pro Stunde))
- die Fehlerreaktionszeit des Sicherheitssystems
- den SFF-Wert (Safe Failure Fraction (Anteil sicherer Ausfälle))
- die HFT-Architektur (Hardware Fault Tolerance (Hardware-Fehlertoleranz))

3.1.3 Anteil sicherer Ausfälle (SFF, Safe Failure Fraction)

Der Anteil sicherer Ausfälle beschreibt das Verhältnis von sicheren Ausfällen und erkannten gefährlichen Ausfällen zur Gesamtausfallrate.

$$SFF = (\lambda_s + \lambda_{dd}) / (\lambda_s + \lambda_{dd} + \lambda_{du})$$

Der Anteil sicherer Ausfälle ist nach IEC/EN 61508 nur für Elemente oder (Teil-)Systeme in einem vollständigen Sicherheitskreis relevant. Das betrachtete Gerät ist immer Teil eines Sicherheitskreises, gilt aber nicht als vollständiges Element oder Teilsystem.

Für die Berechnung des SIL-Levels eines Sicherheitskreises ist es erforderlich, den Anteil sicherer Ausfälle der Elemente, der Teilsysteme und des gesamten Systems zu bewerten und nicht nur die eines einzelnen Geräts.

Trotzdem wird der SFF-Wert des Geräts in diesem Dokument zur Referenz angegeben.

3.2 Annahmen

Während der FMEDA wurden folgende Annahmen getroffen:

- Die Ausfallraten sind konstant, Verschleiß wird nicht berücksichtigt.
- Die Ausfallrate basiert auf dem Siemens-Standard SN 29500.
- Das sicherheitsbezogene Gerät gilt als Gerät des Typs A mit einer Hardware-Fehlertoleranz von 0.
- Das Gerät wird unter durchschnittlichen industriellen Umgebungsbedingungen eingesetzt, die vergleichbar sind mit der Klassifizierung "Stationär montiert" nach MIL-HDBK-217F.

Alternativ dürfen im Industriebereich typische Betriebsbedingungen vergleichbar mit IEC/EN 60654-1 Klasse C mit einer Durchschnittstemperatur von 40 °C über einen langen Zeitraum angenommen werden. Für eine Durchschnittstemperatur von 60 °C müssen die Ausfallraten mit dem auf Erfahrungswerten basierenden Faktor 2,5 multipliziert werden. Ein ähnlicher Faktor muss verwendet werden, falls häufige Temperaturschwankungen zu erwarten sind.

- Die Nennspannung am Binäreingang beträgt 24 V. Stellen Sie sicher, dass die Nennspannung unter allen Betriebsbedingungen 26,4 V nicht übersteigt.
- Die DO-Karte muss in der Lage sein, einen Signalstrom von mindestens 36 mA zu liefern.
- Beachten Sie die Einschränkungen der Gebrauchsdauer der Ausgangsrelais.
- Die Relaiskontakte müssen vor Überströmen mit einer geeigneten Strombegrenzung geschützt werden. Dazu muss entweder die interne Sicherung oder eine externe Strombegrenzung mit den gleichen Grenzwerten verwendet werden.

SIL 3-Anwendung

- Um einen SIL-Sicherheitskreis für den definierten SIL aufzubauen, wird beispielhaft angenommen, dass dieses Gerät 10 % des verfügbaren Budgets für PFD_{avo}/PFH nutzt.
- Für eine SIL 3-Anwendung im Low Demand Mode sollte der PFD_{avg}-Gesamtwert der SIF (Safety Instrumented Function) unter 10⁻³ liegen. Der maximal zulässige PFD_{avg}-Wert wäre somit 10⁻⁴.
- Für eine SIL 3-Anwendung im High Demand Mode sollte der PFH-Gesamtwert der SIF unter 10⁻⁷ pro Stunde liegen. Der maximal zulässige PFH-Wert wäre somit 10⁻⁸ pro Stunde.
- Da der Sicherheitskreis über eine Hardware-Fehlertoleranz von 0 verfügt und es sich um ein Gerät des Typs A handelt, muss der SFF-Wert nach Tabelle 2 in IEC/EN 61508-2 für SIL 3-(Teil-)Systeme über 90 % liegen.

SILCL- und PL-Anwendung

 Das Gerät wurde für die Verwendung in Sicherheitsfunktionen nach IEC/EN 62061 und EN/ISO 13849-1 qualifiziert. Das Gerät erfüllt die Anforderungen für einen SILCL von SIL 3 nach IEC/EN 62061 und aufgrund der Äquivalenz der Normen einen PL e nach EN/ISO 13849-1.

3.3 Sicherheitsfunktion und sicherer Zustand

Sicherheitsfunktion

Immer wenn der Eingang des Gerätes spannungsfrei ist, ist der DTS-Ausgang nicht leitend.

Sicherer Zustand

Im sicheren Zustand der Sicherheitsfunktion ist der DTS-Ausgang offen (nicht leitend).

Reaktionszeit

Die Reaktionszeit ist < 2 s.

3.4 Sicherheitskennwerte

Kennwerte		
Vollständige Beurteilung		
A		
Low Demand Mode oder High Demand Mode		
sicherheitsgerichtetes Abschalten (DTS, De-energized to Safe)		
ohne Diagnose	mit Diagnose	
0		
3		
3		
3		
е		
453 FIT	453 FIT	
0 FIT	0,82 FIT	
0,86 FIT	0,04 FIT	
454 FIT	454 FIT	
1735 FIT	1735 FIT	
99,8 %	99,99 %	
66 Jahre	66 Jahre	
1115 Jahre (hoch)	1115 Jahre (hoch)	
0 %	95,3 %	
95,3 %	95,3 %	
8,55 x 10 ⁻¹⁰ 1/h	4,00 x 10 ⁻¹¹ 1/h	
5,36 x 10 ⁻⁶	2,50 x 10 ⁻⁷	
8,95 x 10 ⁻⁶	4,18 x 10 ⁻⁷	
1,25 x 10 ⁻⁵	5,86 x 10 ⁻⁷	
26,5 Jahre	564 Jahre	
<2s	1	
	Vollständige Beurteilung A Low Demand Mode oder High Desicherheitsgerichtetes Abschalten ohne Diagnose 0 3 3 3 e 453 FIT 0 FIT 0,86 FIT 454 FIT 1735 FIT 99,8 % 66 Jahre 1115 Jahre (hoch) 0 % 95,3 % 8,55 x 10 ⁻¹⁰ 1/h 5,36 x 10 ⁻⁶ 8,95 x 10 ⁻⁶ 1,25 x 10 ⁻⁵ 26,5 Jahre	

Tabelle 3.1

- nach SN29500. Dieser Wert enthält Ausfälle, die nicht Teil der Sicherheitsfunktion sind/MTTR = 8 h. Dieser Wert ist für eine Sicherheitsfunktion des Geräts berechnet.
- 4 Aktivieren Sie die interne Fehlerüberwachung, um einen Diagnosedeckungsgrad von 95,3 % zu erreichen. Siehe Kapitel 5.1.
- Da der tatsächliche PTC-Wert < 100 % ist und dadurch die Ausfallwahrscheinlichkeit steigt, berechnen Sie den PFD-Wert nach der folgenden Formel: PFD_{avg} = (\(\lambda_{du}\) / 2) x (PTC x T₁ + (1 – PTC) x T_{service}) Für die Berechnung von PFD_{avg} wurde eine Einsatzzeit T_{service} von 10 Jahren angenommen.
- unter Annahme von 10 % des PFD_{avg}-Budgets im Sicherheitskreis, $T_1 = T_{\text{service}}$
- Sprungantwortzeit, gültig auch unter Fehlerbedingungen (inklusive Fehlererkennung und Fehlerreaktion)

^{1 &}quot;Ausfälle ohne Auswirkung" beeinflussen nicht die Sicherheitsfunktion und sind deshalb nicht in SFF und in der Ausfallrate der Sicherheitsfunktion enthalten.

Während die Diagnosefunktion den gefährlichen Ausfall eines Relais meldet, übernehmen die beiden anderen redundanten Relais weiterhin die Sicherheitsfunktion. Ausnahmen sind Ausfälle mit gemeinsamer Ursache, die alle drei Relais zerstören. Während die Diagnosefunktion den Ausfall meldet, steigt die Wahrscheinlichkeit eines gefahrbringenden unerkannten Ausfalls für die verbleibenden zwei Relais auf 2,0 FIT.

Die Sicherheitskennwerte wie PFD, PFH, SFF, HFT und T₁ wurden dem FMEDA-Bericht entnommen. Beachten Sie, dass PFD und T₁ voneinander abhängig sind.

Die Funktion der Geräte muss innerhalb des Wiederholungsprüfungs-Intervalls (T_1) überprüft werden.

3.5 Gebrauchsdauer

Obwohl, basierend auf einer probabilistischen Schätzung, eine konstante Ausfallrate angenommen wird, gilt diese nur unter der Voraussetzung, dass die Gebrauchsdauer der Bauteile nicht überschritten wird. Das Ergebnis dieser probabilistischen Schätzung ist nur bis zum Erreichen der Gebrauchsdauer gültig, da die Wahrscheinlichkeit eines Ausfalls danach signifikant zunimmt. Diese Gebrauchsdauer hängt in hohem Maße vom Bauteil selbst und dessen Betriebsbedingungen ab – insbesondere von der Temperatur. Beispielsweise können Elektrolyt-Kondensatoren sehr empfindlich auf die Betriebstemperatur reagieren.

Diese Annahme einer konstanten Ausfallrate basiert auf dem Verlauf einer Badewannenkurve, welcher für elektronische Bauteile typisch ist.

Daher ist es verständlich, dass diese Ausfallberechnung nur für Bauteile gilt, die diesen konstanten Bereich aufweisen, und dass die Gültigkeit der Berechnung auf die Gebrauchsdauer jedes Bauteils beschränkt ist.

Es wird angenommen, dass frühe Ausfälle zum Großteil während der Installation festgestellt werden und dass daher eine konstante Ausfallrate während der Gebrauchsdauer gilt.

Die Norm EN/ISO 13849-1:2015 nimmt eine Gebrauchsdauer $T_{\rm M}$ von 20 Jahren für Geräte in Industrieumgebungen an. Das Gerät hält diese Lebensdauer ein. Beachten Sie, dass sich die Gebrauchsdauer verringern kann, wenn das Gerät folgenden Bedingungen ausgesetzt ist:

- hohem Umgebungsstress wie konstant hohen Temperaturen
- Temperaturzyklen mit hohen Temperaturdifferenzen
- dauernd wiederholtem mechanischem Stress (Vibrationen)

Nach DIN EN 61508-2:2011 Anmerkung N3 können geeignete Maßnahmen des Herstellers und des Anlagenbetreibers die Gebrauchsdauer verlängern.

Beachten Sie, dass sich die Gebrauchsdauer auf die (konstante) Ausfallrate des Geräts bezieht. Die tatsächliche Lebensdauer kann höher sein.

Die geschätzte Gebrauchsdauer liegt über der vom Gesetzgeber vorgeschriebenen Zeitdauer für Gewährleistung oder über der Zeitdauer für Garantieleistungen des Herstellers. Daraus leitet sich aber keine Verlängerung der Gewährleistung oder von Garantieleistungen ab. Das Nichterreichen der geschätzten Gebrauchsdauer ist kein Sachmangel.

Reduktion

Reduzieren Sie für die Sicherheitsanwendung die Anzahl der Schaltspiele oder den Maximalstrom. Eine Reduktion auf bis zu 2/3 des Maximalwertes ist ausreichend.

Maximale Schaltleistung der Ausgangskontakte

Die Gebrauchsdauer ist durch die Anzahl der maximalen Schaltspiele der Relais unter Last begrenzt.

Für Anforderungen bezüglich einer angeschlossenen Ausgangslast beachten Sie die Dokumentation der angeschlossenen Peripheriegeräte.

Hinweis!

Weitere Informationen finden Sie in den entsprechenden Datenblättern.

4 Montage und Installation

Gerät montieren und installieren

- 1. Beachten Sie die Sicherheitshinweise in der Betriebsanleitung.
- 2. Beachten Sie die Informationen im Handbuch.
- 3. Beachten Sie die Anforderungen an den Sicherheitskreis.
- **4.** Schließen Sie das Gerät ausschließlich an Geräte an, die für die Sicherheitsanwendung geeignet sind.
- 5. Prüfen Sie die Sicherheitsfunktion, um das erwartete Verhalten des Ausgangs sicherzustellen.

4.1 Montage

Ziehen Sie die Schrauben der Anschlussklemmen mit einem Drehmoment von 0,5 ... 0,6 Nm an.

4.2 Installation

Um zu vermeiden, dass die Kontakte verschweißen, empfehlen wir, eine serielle Sicherung im Laststromkreis zu verwenden.

Das Gerät wird mit austauschbarer Sicherung geliefert. Ersetzen Sie diese Sicherung nur durch eine Sicherung bis 5 AT. Verwenden Sie optional eine nicht abgesicherte Anschlussklemme mit einer externen Strombegrenzung.

4.3 Konfiguration

Hinweis!

Die Konfiguration des Geräts über die DIP-Schalter ist nicht sicherheitsrelevant.

Gerät konfigurieren

Das Gerät wird über DIP-Schalter konfiguriert. Die DIP-Schalter befinden sich an der Seite des Geräts.

- 1. Schalten Sie das Gerät spannungsfrei, bevor Sie das Gerät konfigurieren.
- 2. Entnehmen Sie das Gerät.
- 3. Konfigurieren Sie das Gerät über die DIP-Schalter.
- 4. Sichern Sie die DIP-Schalter gegen unbeabsichtigtes Verstellen.
- 5. Montieren Sie das Gerät.
- Schließen Sie das Gerät wieder an.

Hinweis!

Weitere Informationen finden Sie in den entsprechenden Datenblättern.

4.3.1 Konfiguration des Ausgangs

Schalter		Leitungsfehlerüberwachung	Interne Fehlerüberwachung	
S1	S2			
Aus	Aus	deaktiviert	deaktiviert	
An	Aus	aktiviert deaktiviert		
Aus	An	nicht verwendet		
An	An	aktiviert	aktiviert	

Tabelle 4.1

5

Betrieb

Gefahr!

Lebensgefahr durch fehlende Sicherheitsfunktion

Wenn der Sicherheitskreis außer Betrieb genommen wird, ist die Sicherheitsfunktion nicht mehr gewährleistet.

- · Deaktivieren Sie nicht das Gerät.
- Umgehen Sie nicht die Sicherheitsfunktion.
- Reparieren, verändern oder manipulieren Sie nicht das Gerät.

Gefahr!

Lebensgefahr durch defekte oder fehlende Absicherung der Relaiskontakte

Eine defekte oder fehlende Absicherung der Relaiskontakte kann die Sicherheitsfunktion und die elektrische Sicherheit des Geräts gefährden.

- Schützen Sie die Relaiskontakte vor Überströmen mit einer geeigneten Strombegrenzung.
- Verwenden Sie zur Absicherung die interne Sicherung.
- Falls Sie die interne Sicherung nicht verwenden, verwenden Sie eine externe Strombegrenzung mit den gleichen Grenzwerten.

Warnung!

Verbrennungsgefahr durch heiße Oberfläche

Das Berühren der heißen Geräteoberfläche kann zu Verbrennungen führen.

- Berühren Sie nicht die heiße Geräteoberfläche.
- Lassen Sie die Geräteoberfläche abkühlen, bevor Sie das Gerät berühren.
- Decken Sie die Warnkennzeichnung auf dem Gerät nicht ab. Entfernen Sie nicht die Warnkennzeichnung vom Gerät.

Gerät betreiben

- 1. Beachten Sie die Sicherheitshinweise in der Betriebsanleitung.
- Beachten Sie die Informationen im Handbuch.
- Verwenden Sie das Gerät ausschließlich mit Geräten, die für die Sicherheitsanwendung geeignet sind.
- 4. Beheben Sie alle auftretenden sicheren Ausfälle innerhalb von 8 Stunden. Treffen Sie Maßnahmen, um die Sicherheitsfunktion zu erhalten, während das Gerät repariert wird.

5.1 Interne Diagnose

Mit aktivierter interner Fehlerüberwachung wird ein Diagnosedeckungsgrad von 95,3 % erreicht. Überwachen Sie einen der 4 möglichen Wege der Fehlererkennung:

- die Änderung der Eingangsimpedanz ¹
- · den Fehlermeldeausgang
- den Ausgang f
 ür die Sammelfehlermeldung
- die LED-Anzeige

Das Gerät besitzt drei Ausgangsrelais. Um eine vollständige Diagnose sicherzustellen, sind drei Schaltvorgänge notwendig. Sie haben 2 Möglichkeiten, um den Diagnosedeckungsgrad zu erreichen, siehe Schritt 2 des folgenden Abschnitts.

Ablauf der internen Diagnose

- 1. Aktivieren Sie die interne Fehlerüberwachung. Siehe Kapitel 4.3.1.
- 2. Sie haben 2 Möglichkeiten, um den Diagnosedeckungsgrad zu erreichen
 - Schalten Sie den Ausgang manuell dreimal ein. oder
 Beobachten Sie, ob der Ausgang w\u00e4hrend des Regelbetriebs dreimal einschaltet.

Hinweis!

Halten Sie mindestens 2 s Abstand zwischen den Schaltvorgängen ein.

oder

• Prüfen Sie die Funktion des Ausgangs in periodischen Zeitabständen. Schalten Sie den Ausgang mindestens dreimal jährlich ein, wie in den Schritten 1 und 2 beschrieben.

Verwenden Sie in diesem Fall ausschließlich eine Sicherheits-SPS mit Binärausgang und Leitungsfehlerüberwachung.

5.2 Wiederholungsprüfung

Dieser Abschnitt beschreibt einen möglichen Ablauf einer Wiederholungsprüfung. Der Anwender ist nicht an diesen Vorschlag gebunden. Der Anwender darf auch andere Konzepte mit einer individuellen Ermittlung der jeweiligen Wirksamkeit wählen, z. B. Konzepte nach NA106:2018.

Führen Sie eine Wiederholungsprüfung nach IEC/EN 61508-2 durch, um potenziell gefährliche Ausfälle zu entdecken, die sonst nicht erkannt werden.

Prüfen Sie die Funktion des Teilsystems in periodischen Zeitabständen in Abhängigkeit von der angewendeten PFD_{avg} in Übereinstimmung mit den Sicherheitskennwerten. Siehe Kapitel 3.4.

Der Anlagenbetreiber ist verantwortlich, die Art der Wiederholungsprüfung und den Zeitabstand zwischen den Wiederholungsprüfungen zu definieren.

Bedingungen

	KFD2-RSH-1.2D.FL2(-Y1)	KFD2-RSH-1.2D.FL3(-Y1)
Spannungsversorgung Last	> 5 V DC	> 35,5 V AC
Spannungsversorgung Gerät (LED PWR leuchtet)	24 V DC	24 V DC
Ausgangslast	13,2 Ω < R < 7,3 kΩ	39,2 Ω < R < 45 kΩ
Strom durch Last	14 mA < I < 1,9 A	13,5 mA AC < I < 4,9 A AC
Eingangsstrom	≥ 36 mA	≥ 36 mA

Tabelle 5.1

Wenn die Bedingungen erfüllt sind, können Sie das Gerät auch in der Anwendung prüfen.

Ablauf der Wiederholungsprüfung

- 1. Aktivieren Sie die interne Fehlerüberwachung und die Leitungsfehlerüberwachung. Siehe Kapitel 4.3.1.
- 2. Prüfen Sie das Gerät wie in der folgenden Tabelle dargestellt.
- 3. Setzen Sie das Gerät nach der Prüfung auf die notwendigen Einstellungen zurück.
- 4. Prüfen Sie das korrekte Verhalten des Sicherheitskreises. Ist die Konfiguration korrekt?

Prüfung Nummer	Eingang	Ausgang
1	V = 0 V DC zwischen den Anschlussklemmen 7+ und 8-	
2	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet nicht. LED FLT leuchtet nicht ¹.
3	V = 24 V DC zwischen den Anschlussklemmen 7+ und 8-	
4	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet. LED FLT leuchtet nicht ¹.
5	V = 0 V DC zwischen den Anschlussklemmen 7+ und 8-	
6	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet nicht. LED FLT leuchtet nicht ¹.
7	V = 24 V DC zwischen den Anschlussklemmen 7+ und 8-	
8	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet. LED FLT leuchtet nicht ¹.
9	V = 0 V DC zwischen den Anschlussklemmen 7+ und 8-	
10	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet nicht. LED FLT leuchtet nicht ¹.
11	V = 24 V DC zwischen den Anschlussklemmen 7+ und 8-	
12	Warten Sie mindestens 2 Sekunden.	 LED OUT leuchtet. LED FLT leuchtet nicht ¹.

Tabelle 5.2 Erwartete Prüfergebnisse der Wiederholungsprüfung

Nur wenn alle Prüfungen erfolgreich abgeschlossen werden, ist die Wiederholungsprüfung erfolgreich.

Wenn die LED FLT blinkt, liegt ein Leitungsfehler vor. Prüfen Sie, ob die Versorgungsspannung sowie die angeschlossene Last im OK-Bereich der Leitungsfehlerüberwachung liegen.

Wenn die LED FLT dauerhaft leuchtet, liegt ein interner Fehler vor. Setzen Sie den internen Fehler zurück, indem Sie die Stromversorgung unterbrechen (Anschlussklemmen 14+/15-).

5.3 Anwendungsbeispiele

5.3.1 Standardanwendung für 2-polige Schaltung

Für eine Schaltanwendung muss das Gerät wie folgt an das Prozessleitsystem und die Last angeschlossen werden.

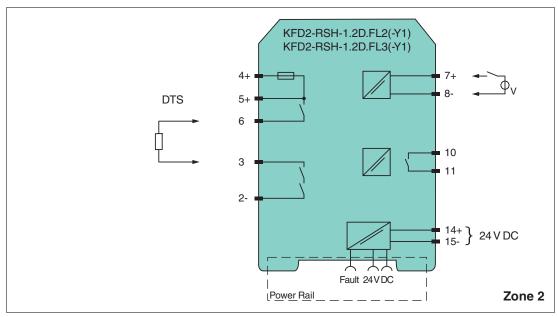


Abbildung 5.1 Standardanwendung für 2-polige Schaltung

In der Standardanwendung wird das Prozessleitsystem an die Klemmen 7+ und 8angeschlossen. Dabei muss die Leitungsfehlertransparenz (LFT) des Sicherheitsrelais mit der Leitungsfehlererkennung des Ausgangs des Prozessleitsystems kompatibel sein. Die Klemmen 10 und 11 können als Fehlermeldeausgang zum Prozessleitsystem verwendet werden.

Die für die Standardanwendung gültigen Sicherheitskennwerte finden Sie in Tabelle 3.1.

5.3.2 Anwendung mit Fehlermeldeausgang im Signalkreis der 2-poligen Schaltung

Einige Prozessleitsysteme arbeiten nicht mit Prüfimpulsen oder mit spezifischen Prüfimpulsen, die die Impedanzänderung des Geräteausgangs nicht erkennen und keinen Leitungsfehler melden. Wenn der Ausgang des Prozessleitsystems einen offenen Stromkreis im Signalkreis erkennen kann, kann der Fehlermeldeausgang in Reihe zum Eingang geschaltet werden. Siehe Abbildung.

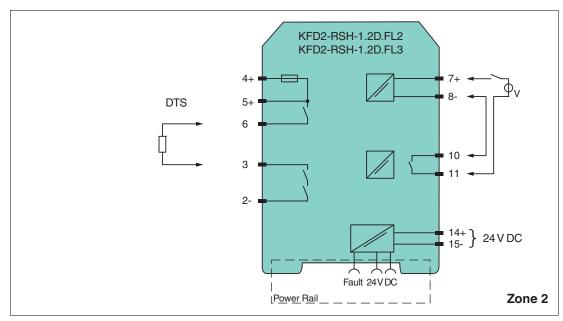


Abbildung 5.2 Anwendung mit Fehlermeldeausgang im Signalkreis der 2-poligen Schaltung

Bei geöffnetem Fehlermeldeausgang können die Ausgangsrelaiskontakte nicht aktiviert werden. Da der Fehler aber vom Prozessleitsystem erkannt wird, kann eine geeignete Reaktion geplant werden. Der Anwender muss sicherstellen, dass auf diesen festgestellten Fehler angemessen reagiert wird.

Für diese Anwendung bleiben die Sicherheitskennwerte gleich. Sie finden die Sicherheitskennwerte in Tabelle 3.1

6

Wartung und Reparatur

Gefahr!

Lebensgefahr durch fehlende Sicherheitsfunktion

Wenn der Sicherheitskreis außer Betrieb genommen wird, ist die Sicherheitsfunktion nicht mehr gewährleistet.

- Deaktivieren Sie nicht das Gerät.
- Umgehen Sie nicht die Sicherheitsfunktion.
- Reparieren, verändern oder manipulieren Sie nicht das Gerät.

Warnung!

Verbrennungsgefahr durch heiße Oberfläche

Das Berühren der heißen Geräteoberfläche kann zu Verbrennungen führen.

- Berühren Sie nicht die heiße Geräteoberfläche.
- Lassen Sie die Geräteoberfläche abkühlen, bevor Sie das Gerät berühren.
- Decken Sie die Warnkennzeichnung auf dem Gerät nicht ab. Entfernen Sie nicht die Warnkennzeichnung vom Gerät.

Gerät warten, reparieren oder austauschen

Im Fall einer Wartung, Reparatur oder eines Austausches des Geräts gehen Sie wie folgt vor:

- 1. Erstellen Sie geeignete Wartungspläne für die regelmäßige Wartung des Sicherheitskreises.
- 2. Während das Gerät gewartet, repariert oder ausgetauscht wird, funktioniert die Sicherheitsfunktion nicht.
 - Treffen Sie geeignete Maßnahmen, um Personal und Betriebsmittel zu schützen, während die Sicherheitsfunktion nicht verfügbar ist. Sichern Sie die Anwendung gegen versehentliches Wiedereinschalten.
- 3. Reparieren Sie kein defektes Gerät. Lassen Sie das Gerät immer durch den Hersteller reparieren.
- 4. Ersetzen Sie das Gerät im Fall eines Defekts immer durch ein Originalgerät.

7 Abkürzungsverzeichnis

ESD Emergency Shutdown (Notabschaltung)

FIT Failure In Time (Ausfälle pro Zeit) in 10⁻⁹ 1/h

FMEDA Failure Mode, Effects, and Diagnostics Analysis (Ausfallarten-,

Ausfalleinfluss- und Ausfallaufdeckungsanalyse)

 λ_{s} Wahrscheinlichkeit eines sicheren Ausfalls

 $\begin{array}{lll} \lambda_{dd} & \text{Wahrscheinlichkeit eines gefahrbringenden erkannten Ausfalls} \\ \lambda_{du} & \text{Wahrscheinlichkeit eines gefahrbringenden unerkannten Ausfalls} \\ \lambda_{no~effect} & \text{Wahrscheinlichkeit von Ausfällen von Bauteilen im Sicherheitskreis,} \\ \end{array}$

die keine Auswirkung auf die Sicherheitsfunktion haben.

 $\lambda_{not \, part}$ Wahrscheinlichkeit von Ausfällen von Bauteilen,

die nicht zum Sicherheitskreis gehören

λtotal (safety function) Wahrscheinlichkeit von Ausfällen von Bauteilen,

die zum Sicherheitskreis gehören

HFT Hardware Fault Tolerance (Hardware-Fehlertoleranz)

MTBF Mean Time Between Failures (mittlere Betriebsdauer zwischen

Ausfällen)

MTTR Mean Time To Restoration (mittlere Dauer bis zur Wiederherstellung)

PFD_{avq} Average Probability of dangerous Failure on Demand

(mittlere Wahrscheinlichkeit eines gefahrbringenden Ausfalls

bei Anforderung)

PFH Average frequency of dangerous failure per hour

(mittlere Häufigkeit eines gefahrbringenden Ausfalls pro Stunde)

PLS Prozessleitsystem

Proof Test Coverage (relativer Anteil der aufgedeckten Fehler)

SC Systematic Capability (systematische Eignung)
SFF Safe Failure Fraction (Anteil sicherer Ausfälle)

SIF Safety Instrumented Function (sicherheitstechnische Funktion)

SIL Safety Integrity Level (Sicherheits-Integritätslevel)

SIS Safety Instrumented System (sicherheitstechnisches System)

SPS speicherprogrammierbare Steuerung

T₁ Proof Test Interval (Wiederholungsprüfungs-Intervall)

T_{service} Zeit von der Inbetriebnahme bis zur Außerbetriebnahme des Gerätes

DTS De-energized To Safe (sicherheitsgerichtetes Abschalten)
ETS Energized To Safe (sicherheitsgerichtetes Anschalten)

B_{10d} Anzahl der Schaltzyklen, bis 10 % der Bauteile gefährlich ausfallen.
 DC Diagnostic Coverage of dangerous faults (Diagnosedeckungsgrad)
 MTTF_d Mean Time To dangerous Failure (mittlere Zeit bis zum Auftreten

eines gefahrbringenden Ausfalls)

PL Performance Level

SILCL SIL Claim Limit (for a subsystem) (SIL-Anspruchgrenze (für ein

Teilsystem))

Your automation, our passion.

Explosionsschutz

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet

