HANDBUCH

PXV...-F200-B25-V1D DataMatrix-Positioniersystem

EtherNet/IP^{**}

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

1	Einleitung									
	1.1	Inhalt des Dokuments	4							
	1.2	Zielgruppe, Personal	4							
	1.3	Verwendete Symbole	5							
2	Produktbeschreibung									
	2.1	Einsatz und Anwendung	6							
	2.2	Die USB-Schnittstelle	6							
	2.3	Die EtherNet/IP-Schnittstelle	7							
	2.4	LED-Anzeigen und Bedienelemente	7							
	2.5	Zubehör	9							
3	Installation									
	3.1	Anbringung des Codebands	10							
	3.2	Montage des Lesekopfs	12							
	3.3	Elektrischer Anschluss	14							
	3.4	Anschluss EtherNet/IP	15							
4	Inbe	triebnahme	17							
	4.1	Ausrichtung des Lesekopfs	17							
5	Betrieb und Kommunikation									
	5.1	Kommunikation über EtherNet/IP	18							
	5.1.	1 Allgemeines zur Kommunikation über EtherNet/IP	18							
	5.1.	2 IP-Adresse einstellen								
	5.1.	3 EtherNet/IP-Objekte								
	5.1.	4 Attribute der EtherNet/IP-Objekte des Lesekopfs	22							
6	Anha	ang	28							
	6.1	ASCII-Tabelle								

1 Einleitung

1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung

о П

Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Die Dokumentation besteht aus folgenden Teilen:

- vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- weitere Dokumente

Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.

1.2

1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, kann das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.

2 Produktbeschreibung

2.1 Einsatz und Anwendung

Das **DataMatrix-Positioniersystem** ist das Positioniersystem im Auflichtverfahren von Pepperl+Fuchs. Kernstück des Systems bildet der Lesekopf. Er besteht unter anderem aus einem Kameramodul mit integrierter Beleuchtungseinheit. Damit erfasst der Lesekopf Positionsmarken, welche zweidimensional als **DataMatrix-Codes** auf einem selbstklebenden Codeband aufgedruckt sind.

Das **Codeband** wird an einem festen Teil der Anlage montiert (z.B. Wand eines Fahrstuhlschachts oder die Tragschiene einer Elektrohängebahn). Die Montage des Lesekopfes erfolgt an einem sich parallel zum Codeband beweglichen "Fahrzeug" (z. B an der Fahrstuhlkabine oder am Fahrwerk einer Elektrohängebahn).

Maximale Länge des Codebandes

Auflösung des Lesekopfs [mm]	Maximale Länge Codeband [km]
10	10
1	10
0,1	10

Die Codebandlänge von bis zu 10 km reicht auch für besonders große Anwendungen aus. Sie bietet gleichzeitig komfortable Reserven für Erweiterungen oder Systeme mit vielen Verzweigungen und parallelen Förderstrecken.

Durch seine ebenso umfassende wie einfache Parametrierfähigkeit, sowie frei konfigurierbare Ein- und Ausgänge kann der Lesekopf optimal an die jeweilige Anwendung angepasst werden.

Abbildung 2.1 Schematische Darstellung Orientierung des Codebands und des Lesekopfs

2.2 Die USB-Schnittstelle

Für die umfassende und optimale Konfiguration des Lesekopfes steht Ihnen die komfortable Software **Vision Configurator** zur Verfügung. Sie können diese Konfigurationssoftware für den PC auf www.pepperl-fuchs.com kostenlos herunterladen. Folgen Sie bei der Installation den Anweisungen auf Ihrem Bildschirm.

Die zur Parametrierung notwendige Verbindung zum PC und die Stromversorgung des Lesekopfs stellen Sie dabei mit einem speziellen Parametrierkabel her. Dieses Parametrierkabel ist als Zubehör mit der Bezeichnung "Kabeleinheit für Service-Schnittstelle mit Netzteil" bestellbar. Hierüber wird auch die elektrische Versorgung des Lesekopfes realisiert. Der Anschluss des Parametriekabels am Lesekopf erfolgt dabei am Steckverbinder "Main".

Anschluss des Parametrierkabels

- 1. Verbinden Sie zuerst den Rundsteckverbinder mit dem Lesekopf.
- 2. Verbinden Sie das Steckernetzteil mit dem Parametrierkabel.

3. Stecken Sie das Steckernetzteil in eine Steckdose.

→ Das Ringlicht des Lesekopfes und die LED2 "PWR / ADJ / ERR / NO CODE" leuchtet oder blinkt.

4. Verbinden Sie erst jetzt den USB-Stecker mit Ihrem PC.

2.3 Die EtherNet/IP-Schnittstelle

Die Kommunikation zwischen Steuerung und Lesekopf findet im laufenden Betrieb über die EtherNet/IP-Schnittstelle statt. Die Schnittstelle basiert auf der EtherNet-Technologie und arbeitet nach dem CIP-Protokoll (Common Industrial Protocol).

Der Anschluss des Lesekopfs im laufenden Betrieb erfolgt über die Steckverbinder "EtherNet/IP 1 & 2".

2.4 LED-Anzeigen und Bedienelemente

Der Lesekopf verfügt über 6 Anzeige-LEDs zur optischen Funktionskontrolle und zur schnellen Diagnose.

Über die 2 Bedientasten an der Geräterückseite können Sie die Ausrichthilfe und den Parametriermodus aktivieren.

Taster 1 ist mit "ADJUST" und Taster 2 mit "CONFIG" beschriftet.

Abbildung 2.2 Übersicht LED-Anzeigen und Bedienelemente

LED Farbe	[#1] BUS LINK grün	[#2] BUS TX / RX gelb	[#3] PWR / ADJ SYSERR / NO CODE rot/grün	[#4] OUT 1 / ADJ Y gelb	[#5] OUT 2 / ADJ Z gelb	[#6] INTERNAL DIAGNOSTIC rot/grün/gelb	Beschreibung
	2016	2116	blinkt grün	2016	2016	2116	Ausrichtung
	aus	aus	billikt gruff	aus	aus	aus	Y > Sollwert $f_{blink} = 2 Hz$
	aus	aus	blinkt grün	leuchtet	aus	aus	Ausrichtung Y < Sollwert f _{blink} = 2 Hz
	aus	aus	blinkt grün	blinkt	aus	aus	Ausrichtung Y = Sollwert f_{blink} = 2 Hz
	aus	aus	blinkt grün	aus	aus	aus	Ausrichtung Z > Sollwert f _{blink} = 2 Hz
	aus	aus	blinkt grün	aus	leuchtet	aus	Ausrichtung Z < Sollwert f _{blink} = 2 Hz
ustand	aus	aus	blinkt grün	aus	blinkt	aus	Ausrichtung Z = Sollwert f _{blink} = 2 Hz
Ñ	aus	aus	blinkt rot	aus	aus	aus	Ausrichtung Codeband außerhalb des Lesebereichs $f_{blink} = 2 Hz$
	Х	Х	leuchtet rot	х	х	х	Systemfehler
	x	x	leuchtet grün	х	х	x	Normalbetrieb, Codeband erkannt
	leuchtet	x	x	х	х	x	EtherNet/IP- Verbindung aktiv
	x	blinkt	x	х	х	х	EtherNet/IP TX/RX Datentransfer
	x	x	blinkt rot	x	х	x	Code nicht erkannt f _{blink} = 2 Hz
	x	x	x	x	leuchtet	leuchtet	Interner Fehler Rücksendung an Pepperl+Fuchs

x = LED-Status hat keine Bedeutung

2.5 Zubehör

Passendes Zubehör bietet Ihnen enormes Einsparpotenzial. So sparen Sie nicht nur bei der Erstinbetriebnahme viel Zeit und Arbeit, sondern auch beim Austausch und Service unserer Produkte.

Falls harte äußere Umgebungsbedingungen herrschen, kann entsprechendes Zubehör von Pepperl+Fuchs die Lebensdauer der eingesetzten Produkte verlängern.

Bestellbezeichnung	Beschreibung
V19-G-ABG-PG9	Kabeldose, M12, 8-polig, geschirmt, konfektionierbar
V19-G-ABG-PG9-FE	Erdungsklemme und Stecker (Set)
PCV-SC12 PCV-SC12A	Erdungsclip
V1SD-G-*M-PUR-ABG-V1SD-G	Buskabel Ethernet, M12 auf M12, in verschiedenen Längen verfügbar
VAZ-V1S-B	Blindstopfen für M12-Stecker
V19-G-*M-*	Konfigurierbare Anschlusskabel
PCV-KBL-V19-STR-USB	Kabeleinheit für Service-Schnittstelle mit Netzteil
Software Vision Configurator	Software für kamerabasierte Sensoren zur komfortablen Parametrierung
PCV-MB1	Befestigungswinkel

Weite Informationen zum Zubehör finden Sie im Datenblatt des Lesekopfes unter www.pepperl-fuchs.com.

3 Installation

3.1 Anbringung des Codebands

Das Codeband besteht aus silikonfreier Polyesterfolie. Am unteren Rand des Codebandes finden Sie alle 100 mm eine Positionsmarkierung (siehe "Abmessungen, Codeband"). Diese Positionsmarkierung dient u. a. dem exakten Positionieren des Codebands bei der Anbringung.

Die Rückseite des Codebands trägt einen permanent haftenden modifizierten Klebstoff auf Acrylatbasis. Bringen Sie das selbstklebende Codeband entlang des gewünschten Verfahrwegs an. Gehen Sie dazu wie folgt vor:

Codeband anbringen

- 1. Reinigen Sie den Untergrund von fettigen oder öligen Anhaftungen und von Staub.
- 2. Vergewissern Sie sich, dass der Untergrund trocken, sauber und tragfähig ist.
- 3. Ziehen Sie die Schutzfolie am Anfang des Codebands einige Zentimeter weit ab. Setzen Sie das Codeband exakt an der gewünschten Startposition auf den Untergrund und drücken Sie es an.
- 4. Kleben Sie nun das Codeband entlang des gewünschten Verfahrwegs. Ziehen Sie die Schutzfolie immer nur so weit ab, dass das Codeband nicht unbeabsichtigt verklebt. Achten Sie beim Verkleben des Codebands darauf, dass sich keine Falten oder Blasen bilden.

→ Nach 72 Stunden ist der Kleber des Codebands ausgehärtet.

Hinweis!

Thermische Ausdehnung des Codebands

Der Wärmeausdehnungskoeffizient des verklebten Codebands entspricht dem Wärmeausdehnungskoeffizienten des Untergrunds.

Abmessungen des Codebands

Orientierung des Codebands und des Lesekopfs

Verlegen Sie das Codeband so, dass sich das Logo **PEPPERL+FUCHS** und die Positionsmarkierungen unterhalb der DataMatrix-Codes befinden. Die Positionswerte nehmen dann in X-Richtung zu. Die Abbildung zeigt die Orientierung eines Lesekopfs in der Standardeinstellung 0°. Für andere Einbaulagen kann der Lesekopf über die Schnittstelle konfiguriert werden.

Codebänder mit Anfangsposition 0 m

Bestellbezeichnung	Beschreibung
PXV00001-CA25-*	Codeband, 1-spurig, Länge: 1 m
PXV100000-CA25-*	Codeband, 1-spurig, Länge: 100 000 m

Hinweis!

Dehnungsfugen und Codebänder

Bei großen Streckenlängen werden in der Anlagenstruktur Dehnungsfugen vorhanden sein. Hier empfehlen wir, das Codeband zu unterbrechen. Die dadurch entstehende Lücke darf 75 mm nicht überschreiten.

Hinweis!

Steigungs- und Gefällstrecken

Wenn Sie das Codeband über Steigungs- oder Gefällstrecken hinweg anbringen, schneiden Sie das Codeband am Übergang zur Horizontalen mehrfach in der dargestellten Art und Weise ein.

- 1. Steigungsstrecke
- 2. Gefällstrecke

Hysterese Y-Achse

Abbildung 3.1 Null-Linie bei Codebändern

Wenn der Lesekopf beim Verfahren entlang der X-Achse die Null-Linie verlässt, kann der Schwellwert eine Abweichung haben. Überschreitet die Abweichung den definierten Schwellwert, dann wird ein Warning-Code ausgegeben.

Schwellwerte Abweichung Y-Achse

Codeband		Schwellwert			
Anzahl Spuren	Breite	Austritt	Eintritt		
1	15 mm	± 29 mm	± 25 mm		

Montage des Lesekopfs

3.2

Lesekopf montieren

Vergewissern Sie sich, dass Sie den Lesekopf stabil montieren können. Stellen Sie vor der Montage sicher, dass die Führung des beweglichen Anlagenteils so beschaffen ist, dass im laufenden Betrieb der Schärfentiefebereich des Lesekopfs nie verlassen wird.

- 1. Montieren Sie den Lesekopf am beweglichen Teil der Anlage mit 4 Schrauben am Befestigungsflansch des Lesekopfs.
- 2. Montieren Sie den Lesekopf **vertikal** so, dass die Optik des Lesekopfs mit Ringlicht und Kameramodul zum Codeband hin ausgerichtet ist.

Abbildung 3.2 Toleranz vertikale Ausrichtung

3. Alternativ montieren Sie den Lesekopf **horizontal** so, dass die Optik des Lesekopfs mit Ringlicht und Kameramodul zum Codeband hin ausgerichtet ist.

Abbildung 3.3 Toleranz horizontale Ausrichtung

- 1 Leseabstand
- 4. Kontrollieren Sie, dass der Abstand des Lesekopfs zum Codeband dem Leseabstand des Lesekopfs entspricht:

Optimaler Leseabstand (Z-Achse)

Bestellbezeichnung	Leseabstand [mm]	Schärfentiefe [mm]
PXV100*	100	± 50

Abmessungen des Lesekopfs

Vorsicht!

Wählen Sie die Länge der Befestigungsschrauben so, dass die Einschraubtiefe in die Gewindeeinsätze am Lesekopf max. 8 mm beträgt.

Der Einsatz längerer Schrauben kann zu einer Beschädigung des Lesekopfs führen.

Vorsicht!

Das maximale Drehmoment der Befestigungsschrauben darf 9 Nm nicht übersteigen.

Ein Anziehen der Schrauben mit größerem Drehmoment kann zu einer Beschädigung des Lesekopfs führen.

3.3 Elektrischer Anschluss

Der Lesekopf wird mit einem 8-poligen Gerätestecker M12 x 1 an der Gehäuseseite mit der Bezeichnung "**Main**" angeschlossen. Dieser Anschluss ermöglicht Spannungsversorgung und Kommunikation mit Peripheriegeräten in einem. Außerdem sind an diesem Anschluss die konfigurierbaren Eingänge und Ausgänge des Lesekopfs verfügbar.

Steckerbelegung

Farbzuordnung

Kabeldosen von Pepperl+Fuchs sind gemäß EN60947-5-2 gefertigt. Bei Verwendung einer Kabeldose mit offenem Leitungsende vom Typ V19-... am Anschluss **Main** gilt folgende Farbzuordnung:

Anschluss-Pin	Adernfarbe	Farbkurzzeichen
1	weiß	WH
2	braun	BN
3	grün	GN
4	gelb	YE
5	grau	GY
6	rosa	РК
7	blau	BU
8	rot	RD

2017-10

Abschirmung von Leitungen

Das Abschirmen ist eine Maßnahme zur Dämpfung elektromagnetischer Störungen. Damit diese Störströme nicht selbst zur Störquelle werden, ist eine niederohmige bzw. impedanzarme Verbindung zum Schutzleiter bzw. Potenzialausgleich besonders wichtig. Verwenden Sie nur Anschlussleitungen mit Schirmgeflecht, vermeiden Sie Anschlussleitungen mit Folienschirm. Die Abschirmung wird beidseitig aufgelegt d. h. im Schaltschrank bzw. an der Steuerung **und** am Lesekopf. Die als Zubehör erhältliche Erdungsklemme ermöglicht das einfache Einbeziehen in den Potenzialausgleich.

In Ausnahmefällen kann eine einseitige Anbindung günstiger sein, wenn

- keine Potenzialausgleichsleitung verlegt ist bzw. keine Potenzialausgleichsleitung verlegt werden kann.
- ein Folienschirm verwendet wird.

Bei der Abschirmung müssen ferner folgende Punkte beachtet werden:

- Verwenden Sie Kabelschellen aus Metall, die die Abschirmung großflächig umschließen.
- Legen Sie den Kabelschirm direkt nach Eintritt in den Schaltschrank auf die Potenzialausgleichsschiene.
- Führen Sie Schutzerdungsanschlüsse sternförmig zu einem gemeinsamen Punkt.
- Verwenden Sie für die Erdung möglichst große Leitungsquerschnitte.

Zusätzlicher Erdungsanschluss

Bestellbezeichnung	Beschreibung
PCV-SC12	Clip zur Befestigung eines zusätzlichen
PCV-SC12A	Erdungsanschlusses.

Vorsicht!

Beschädigung des Geräts

Anschließen von Wechselspannung oder zu hoher Versorgungsspannung kann das Gerät beschädigen oder die Gerätefunktion stören.

Falscher elektrischer Anschluss durch Verpolung kann das Gerät beschädigen oder die Gerätefunktion stören.

Gerät an Gleichspannung (DC) anschließen. Stellen Sie sicher, dass die Höhe der Versorgungsspannung im spezifizierten Bereich des Geräts liegt. Stellen Sie sicher, dass die Anschlussdrähte der verwendeten Kabeldose richtig angeschlossen sind.

3.4 Anschluss EtherNet/IP

Der Anschluss des Lesekopfes an EtherNet/IP erfolgt über 2 4-polige D-kodierte Gerätebuchsen M12 x 1 EtherNet/IP 1 und EtherNet/IP 2 an der Gehäuseseite.

Abbildung 3.4

Steckerbelegung

Abbildung 3.5

Geeignete Ethernet-Kabel finden Sie im Zubehör auf dem Datenblatt des Lesekopfes unter www.pepperl-fuchs.com.

4 Inbetriebnahme

4.1 Ausrichtung des Lesekopfs

Zur einfachen optimalen Ausrichtung des Lesekopfs relativ zum Codeband in der Y-Koordinate und der Z-Koordinate bietet der Lesekopf eine integrierte Ausrichthilfe.

Hinweis!

Die Ausrichthilfe können Sie nur innerhalb von 10 Minuten nach dem Einschalten des Lesekopfs aktivieren.

Bei Bedarf können Sie den Lesekopf aus dem Normalbetrieb in den Parametrierbetrieb umschalten. Drücken Sie dazu Taste 1 an der Rückseite des Lesekopfs mindestens 2 Sekunden.

Ausrichthilfe aktivieren

1. Drücken Sie die Taste 1 länger als 2 Sekunden.

 \mapsto Wenn der Lesekopf das Codeband erkannt hat, blinkt die LED2 grün. Wenn der Lesekopf das Codeband nicht erkannt hat, blinkt die LED2 rot. .

2. Richten Sie den Lesekopf in den Koordinaten Z und Y aus. Die LEDs am Lesekopf unterstützen Sie dabei.

Z-Koordinate: Wenn der Abstand der Kamera zum Codeband zu klein ist, leuchtet die gelbe LED5. Wenn der der Abstand zu groß ist, erlischt die gelbe LED5. Innerhalb des Sollbereichs blinkt die gelbe LED5 im Gleichtakt zur grünen LED2.

Stellen Sie den optimalen Abstand des Lesekopfs zum Codeband her, so dass die gelbe LED5 im Gleichtakt mit der grünen LED2 blinkt.

Y-Koordinate: Wenn die optische Achse des Lesekopfs relativ zur Codebandmitte zu tief liegt, leuchtet die gelbe LED4.

Wenn die optische Achse zu hoch liegt, erlischt die gelbe LED4. Im Sollbereich blinkt die gelbe LED4 im Gleichtakt zur grünen LED2.

Stellen Sie die optimale Höhe des Lesekopfs relativ zum Codeband her, so dass die gelbe LED4 im Gleichtakt mit der grünen LED2 blinkt.

Um die Ausrichthilfe zu beenden, drücken Sle kurz auf Taste 1. Der Lesekopf wechselt in den Normalbetrieb.

5 Betrieb und Kommunikation

5.1 Kommunikation über EtherNet/IP

5.1.1 Allgemeines zur Kommunikation über EtherNet/IP

Der Lesekopf kommuniziert mit der Steuerung (z. B. SPS) über EtherNet/IP. Einem objektorientierten Feldbussystem zum Austausch von Daten zwischen den Busteilnehmern basierend auf der Ethernet-Technologie.

Die Verwaltung und Entwicklung des Ethernet/IP Standards unterliegen der Open DeviceNet Vendor Association (ODVA). Weitere Informationen zum EtherNet/IP erhalten Sie auf Anfrage von der Open DeviceNet Vendor Association (ODVA) unter nachstehender Internet-Adresse:

ODVA, Inc

4220 Varsity Drive, Suite A

Ann Arbor, MI 48108-5006 USA

http://www.odva.org e-mail: mailto:odva@odva.org

Basiseigenschaften der Schnittstelle sind:

- Ubertragungsgeschwindigkeit 10 Mbit/s oder 100 Mbit/s, halb- oder vollduplex Betrieb
- Automatische Verhandlung der Übertragungsrate und des Duplex-Verfahrens (Autonegotiation)
- Automatische Einstellung bei gekreuzten Leitungen (Auto-crossover)

EtherNet/IP arbeitet nach dem CIP-Protokoll (Common Industrial Protocol) und dient der Steuerung, der Konfiguration, dem Beobachten und Sammeln von Daten. Zeitkritischer Datenaustausch (implicit Messaging) erfolgt hierbei über das UDP/IP-Protokoll und nicht zeitkritischer Datenaustausch (explicit Messaging) über das TCP/IP-Protokoll.

Der Lesekopf unterstützt nachfolgende Merkmale:

- Verbindungstypen "listen only", "input only" und "exclusive owner"
- Nachrichtenübertragung als "Mehrpunkt-Datentransfer" (Multicast) und "Punkt-zu-Punkt-Datentransfer" (Unicast)
- Zykluszeit (Request Packet Intervall) ≥ 2 ms
- Dynamische Adresszuweisung DHCP (Dynamic Host Configuration Protocol)
- Ringtopologie DLR (Device Level Ring)
- Adresskonflikt-Erkennung ADC (Address Conflict Detection)

Die Einbindung des Lesekopfs in das Netzwerk erfolgt über eine EDS-Datei (elektronisches Datenblatt) mit einem Projektierungstool wie z. B. RSLOGIX5000. Die EDS-Datei enthält alle Informationen zu gerätespezifischen Parametern und Betriebsarten.

EDS-Datei herunterladen

Sie finden die passende EDS-Datei auf der Produktdetailseite des Geräts im Bereich **Software**.

Um auf die Produktdetailseite des Geräts zu gelangen, rufen Sie http://www.pepperlfuchs.com auf und geben Sie z. B. die Produktbezeichnung oder Artikelnummer in die Suchfunktion ein.

5.1.2 IP-Adresse einstellen

Der Lesekopf wird im DHCP-Modus ausgeliefert und wartet auf eine Adresszuweisung von der Steuerung.

Der nachfolgende Abschnitt beschreibt beispielhaft die Adresszuweisung über die Software **BOOT/DHCP Server** von Rockwell Automation.

2017-10

- 1. Verbinden Sie den Lesekopf mit dem DHCP-Server.
- 2. Starten Sie die Software BOOT/DHCP Server.
- 3. Tragen Sie in das Menü Network Settings folgende Daten ein:

 - Subnet Mask "255.255.255.0"
 Gateway "192.168.1.1"
 Die restlichen Felder werden nicht ausgefüllt.

h	Network Settings								×
-	Defaults								
	Subnet Mask:	255	•	255		255	•	0	
	Gateway:	192	÷	168	4	1	ł,	1	
	Primary DNS:	0	•	0		0	•	0	
	Secondary DNS:	0	÷	0		0	÷	0	
	Domain Name:						_		
				ОК		1	C	ancel	
					_	·			

4. Schalten Sie die Versorgungsspannung des Lesekopfs ein.

5	BOOTP/DHCI	P Server	2.3					
File	Tools Help							
FF	equest History-	1	a contract					
	Clear History	Add to	Helation List		·			
	(hr:min:sec)	Туре	Ethernet Addres	s (MAC)	IP Address	Hostname		
15:33:51 DHCP 00:0D:81:02:29:A1 15:33:43 DHCP 00:0D:81:02:29:A1								
FR	elation List		1997					
	New Delete	e Enabl	e BOOTP Enab	le DHCP Dis	able BOOTP/DHCP			
	Ethernet Addre	ess (MAC)	Туре	IP Address	Hostname	Description		
	tatuo							- Entrino
	nable to service	DHCP rec	quest from 00:0D:8	31:02:29:A1.				0 of 256

→ Der Lesekopf führt zyklisch DHCP-Anfragen durch. Dabei wird die MAC-Adresse des Lesekopfs im Bereich Request History in die Liste eingetragen.

- Tragen Sie die gewünschte IP-Adresse in das Menü New Entry ein.
 Die Software übernimmt automatisch die MAC-Adresse des Lesekopfs.
 - Die Funktion "Hostname" wird nicht unterstützt.
 - Unter "Descpriciton" können Sie optional einen Text eintragen.

2017-10

New Entry		
Ethernet Address (MAC):	00:0D:81:02:29:A1	
IP Address:	192.168.1.2	
Hostname:		
Description:		
	OK Cancel	

6. Bestätigen Sie die Eingaben der Adressdaten mit OK.

→ Bei der nächsten DHCP-Anfrage wird die IP-Adresse dem Lesekopf zugewiesen. Die neuen Adressdaten werden im Bereich **Relation List** angezeigt.

BOOTP/DHCP Server 2.3				
File Tools Help				
Request History				
Clear History Add to Relation List				
(hr:min:sec) Type Ethernet Address (MAC)	IP Address	Hostname	<u>^</u>	
15:35:15 DHCP 00:0D:81:02:29:A1	192.168.1.2			
15:34:59 DHCP 00:0D:81:02:29:A1			≣	
15:34:51 DHCP 00:0D:81:02:29:A1				
15:34:39 DHCP 00:0D:81:02:29:A1				
15:34:07 DHCP 00:0D:81:02:29:A1				
Relation List				
New Delete Enable BOOTP Enable DHCP [Disable BOOTP/DHCP			
Ethernet Address (MAC) Type IP Address	Hostname	Description		
00:0D:81:02:29:A1 DHCP 192:168.1.2				
<u> </u>				
Status				
Sent 192.168.1.2 to Ethernet address 00:0D:81:02:29:A1 1 of 256				

7. Drücken Sie im Bereich Relation List die Taste Disable BOOTP/DHCP.

→ Dadurch speichern Sie die zugewiese IP-Adresse permanent im Lesekopf.

BOOTP/DHCP Server 2.3	
File Tools Help	
Request History	
Clear History Add to Relation List	
(hr:min:sec) Type Ethernet Address (MAC) IP Address Hostname	<u>^</u>
15:35:15 DHCP 00:0D:81:02:29:A1 192:168.1.2	
15:34:59 DHCP 00:0D:81:02:23:A1	
15:34:51 DHCP 00:0D:81:02:29:A1	
15:34:39 DHCP 00:00:81:02:23:A1	
15:34:07 DHCP 00:0D:81:02:29:A1	~
- Belation List	
New Delete Enable BOOTE Enable DHCP Disable BOOTE/DHCP	
Ethernet Address (MAC) Type IP Address Hostname Description	
00.00.01.02.23.A1 DHCF 132.100.1.2	
Status [Disable DHCP] Command successful	Entries
Forsame outer Leoningung andeszann	101236

5.1.3 EtherNet/IP-Objekte

Alle Daten und Funktionen des Lesekopfs werden gemäß des EtherNet/IP-Standards über Objekte definiert. Der Lesekopf entspricht dem Geräteprofil "Encoder Device Type 0x22".

Der Lesekopf unterstützt hierbei nachfolgend aufgeführte Standard- und produktspezifische Klassen.

Standardklassen

Klassen-ID	Klassenbezeichung
0x01	Identity Object
0x02	Message Router Object
0x04	Assembly Object
0x06	Connection Manger Object
0xF5	TCP/IP Interface Object
0xF6	Ethernet Link Object
0x47	DLR Object
0x48	Quality of Service

Produktspezifische Klasse

Klassen-ID	Klassenbezeichung
0x23	Position Sensor Object

Die Parameter sind nicht direkt aus dem Netzwerk adressierbar mit den "Set" oder "Get" Attribut Services. Der Zugriff erfolgt über Assembly-Objekte (Class Code 0x04)

Zyklischer Datenverkehr mit Assembly-Objekten (Class Code 0x04)

Assemblies sind spezielle CIP-Objekte, die für den zyklischen Datenverkehr (Implicit Messaging) verwendet werden. Diese setzen sich aus einem oder mehreren Attributen verschiedener Objekte zusammen. Diese Objekte erlauben das Senden oder Empfangen von Daten mehrerer Objekte mittels einer Verbindung. Die Zusammensetzung der Assemblies ist bei dem Lesekopf fest definiert und kann nicht durch den Anwender geändert werden.

Input Assemblies

Instanz- Nr.	Beschreibung	Größe [Byte]	Attribut	Attribut-ID	Datentyp
1	Position	4	Position Value Signed (X-Position)	10	DINT
100	Position + Geschwindigkeit	8	Position Value Signed (X-Position)	10	DINT
			Velocity Value	24	DINT
101	Status, X-Position, Y- Position, Geschwindigkeit, Warnung, Ereignis	18	Status Word	100	UINT
			Position Value Signed (X-Position)	10	DINT
			Y-Position	101	DINT
			Velocity Value	24	DINT
			Warning Flags	102	UINT
			Event Number	103	UINT

Benötigte Adressen für die verschiedenen Verbindungstypen

Der Verbindungstyp definiert die Verbindung zwischen Kontrollsystem (Originator), hier der Steuerung, und dem Zielgerät (Target), hier der Lesekopf. Für den Datenverkehr gibt es die nachfolgenden Optionen.

Daten vom Kontrollsystem zum Zielgerät

Instanz-Nr (Dez.)	Größe [Byte]	Verbindungstyp
192	0	Listen only
193	0	Input only

Daten vom Zielgerät zum Kontrollsystem

Instanz-Nr (Dez.)	Größe [Byte]	Assemblies
1	4	Position
100	8	Position + Geschwindigkeit
101	18	Status, X-Position, Y-Position, Geschwindigkeit, Warnung, Ereignis (Listen only)

5.1.4 Attribute der EtherNet/IP-Objekte des Lesekopfs

Attribute des Position Sensor Objects (Klassen-ID 0x23)

Klassenattribute

ID	Name	Access	Datentyp	Größe [Byte]	Beschreibung
1	Revision	-	UINT	2	Revision des Objektes

2017-10

Standard Instanz-Attribute für Objekt 0x23

ID	Attribut	Access	Datentyp	Größe [Byte]	Beschreibung
10	Position Value Signed (X- Position)	-	DINT	4	X-Position im Zweierkomplement
24	Velocity Value	-	DINT	4	Geschwindigkeit

Lesekopf spezifische Attribute

	ID	Attribut	Access	Datentyp	Größe [Byte]	Beschreibung
	100	Status Word	-	UINT	2	Status-Informationen
	101	Y-Position	-	UINT	4	Y-Position im Zweierkomplement
Ī	102	Warning Flags	-	UINT	2	Warnungen
Ī	103	Event Number	-	UINT	2	Eventmarker Nummer

Grundlegender Aufbau der Daten

1 Byte = 8 Bit-Wert

Byte 4	Byte 3	Byte 2	Byte 1
Beispiel: XP31 XP24 MSB (most significant byte) = höchstwertigstes Byte	Beispiel: XP23 XP16	Beispiel: XP15 XP08	Beispiel: XP07 XP00 LSB (least significant byte) = niederwertigstes Byte

Positionsdaten X: Position Value Signed (ID 10)

Größe	Тур	Inhalt
4 Byte konsistent	Eingangsdaten	32 Bit X-Daten LSB first LSB = least s ignificant b yte Auflösung: 0,1 mm, 1 mm, 10 mm, binär codiert bei Auflösung 1 mm und 10 mm: L _{max} = 10,00 km = 10000000 mm

Es gelten folgende Standardeinstellungen:

- Die X Position wird im Zweierkomplement ausgegeben.
- Der Wert wird in der eingestellten Auflösung des Gerätes ausgegeben.
- Standard ist mm.
- Wenn das ERR-Bit im Attribut "Status word (ID 100)" gesetzt ist, wird die Fehlernummer hier in diesem Attribut übertragen.

Daten des Attributs 10

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2	Bit 0
Byte 1	XP07	XP06	XP05	XP04	XP03	XP02	XP01	XP00
Byte 2	XP15	XP14	XP13	XP12	XP11	XP10	XP09	XP08
Byte 3	XP23	XP22	XP21	XP20	XP19	XP18	XP17	XP16
Byte 4	XP31	XP30	XP29	XP28	XP27	XP26	XP25	XP24

Positionsdaten Y: Y-Position (ID 101)

Größe	Тур	Inhalt
4 Byte konsistent	Eingangsdaten	32 Bit Y-Daten LSB first Auflösung: 0,1 mm, 1 mm, 10 mm, binär codiert im Zweierkomplement

Es gelten folgende Standardeinstellungen:

- Die Y Position wird im Zweierkomplement ausgegeben.
- Der Wert wird in der eingestellten Auflösung des Gerätes ausgegeben.
- Standard ist mm.

Daten des Attributs 101

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2	Bit 0
Byte 1	YP07	YP06	YP05	YP04	YP03	YP02	YP01	YP00
Byte 2	YP15	YP14	YP13	YP12	YP11	YP10	YP09	YP08
Byte 3	YP23	YP22	YP21	YP20	YP19	YP18	YP17	YP16
Byte 4	YP31	YP30	YP29	YP28	YP27	YP26	YP25	YP24

Geschwindigkeitsdaten: Velocity Value (ID 24)

Größe	Тур	Inhalt
4 Byte konsistent	Eingangsdaten	32 Bit Geschwindigkeitsdaten Auflösung: 0,1 m/s, 0,01 m/s, 0,001 m/s, binär codiert Geschwindigkeit von 0 12,5 m/s Beispiel: Geschwindigkeit = 4,7 m/s> Geschwindigkeitsausgabe = 47 bei Auflösung 0,1 m/s 65535 bei unbekannter Geschwindigkeit

Es gelten folgende Standardeinstellungen:

- Der Wert wird in der eingestellten Auflösung des Gerätes ausgegeben.
- Standard ist dm/s.

Daten des Attributs 24

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2	Bit 0
Byte 1	SP07	SP06	SP05	SP04	SP03	SP02	SP01	SP00
Byte 2	SP15	SP14	SP13	SP12	SP11	SP10	SP09	SP08
Byte 3	SP23	SP22	SP21	SP20	SP19	SP18	SP17	SP16
Byte 4	SP31	SP30	SP29	SP28	SP27	SP26	SP25	SP24

Status: Status word (ID 100)

Größe	Тур	Inhalt
2 Byte	Eingangsdaten	16 Bit Status

Ein Fehler besteht, wenn ERR-Bit gesetzt ist. Die Fehlernummer wird im Attribut "Value Signed (ID 10) übertragen.

Daten des Attributs 100

	Inhalt	
Bit Nr.	Byte 1, 2 Status	Funktion
1	ERR	Fehlermeldung (Fehlercode in XP00 – XP15); restliche Bits = 0, siehe Fehlercodes
2	NP	Keine Positionsinformationen/ OUT (XP=0; YP=0; SP=0)
3	WRN	Warnungen vorhanden, siehe Attribut Warnung
4	EV	Ereignis vorhanden, siehe Attribut Ereignis
5	Posdetected	Gültige Positioninformationen verfügbar
		-
16	0	-

Fehlercodes

Fehlercode	Beschreibung	Priorität
1	Lesekopf um 180° gekippt	2
2	Keine eindeutige Position ermittelbar (zu große Codeunterschiede, falscher Codeabstand,)	3
> 1000	Interner Fehler	1

Ereignis: Eventmarker-Nr. (ID 103)

Größe	Тур	Inhalt
2 Byte konsistent	Eingangsdaten	letzter Eventmarker letzte Event-Nr.

Die Eventmarker-Nr. ist binär kodiert und vorzeichenlos.

Daten des Attributs 103

	Inhalt
Bit Nr.	Byte 1, 2 Letzte Eventmarker-Data
1	EV01
2	EV02
3	EV03
4	EV04
5	EV05
6	EV06
7	EV07
8	EV08
9	EV09
10	0

	Inhalt
Bit Nr.	Byte 1, 2 Letzte Eventmarker-Data
16	0

Warnung: Warning Flags (ID 102)

Größe	Тур	Inhalt
2 Byte konsistent	Eingangsdaten	letzte Warnungen letzte Warning-Nr.

Ein gesetztes Bit bedeutet, dass die entsprechende Warnung aktiv ist.

Daten des Attributs 102

	Inhalt
Bit Nr.	Byte 1, 2 Letzte Warning-Data
1	WRN01
2	WRN02
3	WRN03
4	WRN04
5	WRN05
6	WRN06
7	WRN07
8	WRN08
9	WRN09
10	WRN10
11	WRN11
12	WRN12
13	WRN13
14	WRN14
15	WRN15
16	WRN16

Warnungsdatensatz

	Inhalt	
Bit Nr.	Byte 1, 2	Beschreibung
1	WRN01	Es wurde ein Code mit einem nicht Lesekopf (PXV) Inhalt gefunden.
2	WRN02	Lesekopf zu nah am Codeband
3	WRN03	Lesekopf zu weit vom Codeband entfernt
4	WRN04	Y-Position zu groß. Der Sensor steht kurz vor OUT
5	WRN05	Y-Position zu klein Der Sensor steht kurz vor OUT
6	WRN06	Lesekopf relativ zum Codeband verdreht/gekippt
7	WRN07	Niedriger Kontrast des Codes
8	WRN08	Reparaturband detektiert

	Inhalt	
Bit Nr.	Byte 1, 2	Beschreibung
9	WRN09	Temperatur zu hoch
10	WRN10	reserviert
11	WRN11	reserviert
12	WRN12	reserviert
13	WRN13	reserviert
14	WRN14	reserviert
15	WRN15	reserviert
16	WRN16	reserviert

Hinweis!

Wenn keine Warnungen vorliegen, sind alle Bits im Warnungsdatensatz auf 0 gesetzt.

6 Anhang

6.1

ASCII-Tabelle

hex	dez	ASCII	hex	dez	ASCII	hex	dez	ASCII	hex	dez	ASCII
00	0	NUL	20	32	Space	40	64	@	60	96	I
01	1	SOH	21	33	!	41	65	А	61	97	а
02	2	STX	22	34		42	66	В	62	98	b
03	3	ETX	23	35	#	43	67	С	63	99	С
04	4	EOT	24	36	\$	44	68	D	64	100	d
05	5	ENQ	25	37	%	45	69	Е	65	101	е
06	6	ACK	26	38	&	46	70	F	66	102	f
07	7	BEL	27	39	I	47	71	G	67	103	g
08	8	BS	28	40	(48	72	Н	68	104	h
09	9	HT	29	41)	49	73	I	69	105	i
0A	10	LF	2A	42	*	4A	74	J	6A	106	j
0B	11	VT	2B	43	+	4B	75	K	6B	107	k
0C	12	FF	2C	44	,	4C	76	L	6C	108	I
0D	13	CR	2D	45	-	4D	77	М	6D	109	m
0E	14	SO	2E	46	•	4E	78	Ν	6E	110	n
0F	15	SI	2F	47	/	4F	79	0	6F	111	0
10	16	DLE	30	48	0	50	80	Р	70	112	р
11	17	DC1	31	49	1	51	81	Q	71	113	q
12	18	DC2	32	50	2	52	82	R	72	114	r
13	19	DC3	33	51	3	53	83	S	73	115	S
14	20	DC4	34	52	4	54	84	Т	74	116	t
15	21	NAK	35	53	5	55	85	U	75	117	u
16	22	SYN	36	54	6	56	86	V	76	118	v
17	23	ETB	37	55	7	57	87	W	77	119	w
18	24	CAN	38	56	8	58	88	Х	78	120	X
19	25	EM	39	57	9	59	89	Y	79	121	У
1A	26	SUB	3A	58	:	5A	90	Z	7 A	122	z
1B	27	ESC	3B	59	;	5B	91	[7B	123	{
1C	28	FS	3C	60	<	5C	92	١	7C	124	I
1D	29	GS	3D	61	=	5D	93]	7D	125	}
1E	30	RS	3E	62	>	5E	94	٨	7E	126	2
1F	31	US	3F	63	?	5F	95	_	7F	127	DEL

FABRIKAUTOMATION – SENSING YOUR NEEDS

Γ

Zentrale weltweit

Pepperl+Fuchs GmbH 68307 Mannheim · Deutschland Tel. +49 621 776-0 E-Mail: info@de.pepperl-fuchs.com

Zentrale USA

Pepperl+Fuchs Inc. Twinsburg, Ohio 44087 · USA Tel. +1330 4253555 E-Mail: sales@us.pepperl-fuchs.com

Zentrale Asien

Pepperl+Fuchs Pte Ltd. Singapur 139942 Tel. +65 67799091 E-Mail: sales@sg.pepperl-fuchs.com

www.pepperl-fuchs.com

/ DOCT-5912 10/2017