# VLX-F231-B17

# VLX PROFINET IO interface module

Manual







Your automation, our passion.

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

### Worldwide

Pepperl+Fuchs Group Lilienthalstr. 200 68307 Mannheim Germany Phone: +49 621 776 - 0 E-mail: info@de.pepperl-fuchs.com **North American Headquarters** Pepperl+Fuchs Inc. 1600 Enterprise Parkway Twinsburg, Ohio 44087 USA Phone: +1 330 425-3555 E-mail: sales@us.pepperl-fuchs.com **Asia Headquarters** Pepperl+Fuchs Pte. Ltd. P+F Building 18 Ayer Rajah Crescent Singapore 139942 Phone: +65 6779-9091 E-mail: sales@sg.pepperl-fuchs.com https://www.pepperl-fuchs.com

| 1 | Introd  | uction                                            | .4  |
|---|---------|---------------------------------------------------|-----|
|   | 1.1     | Content of this Document                          | .4  |
|   | 1.2     | Target Group, Personnel                           | . 4 |
|   | 1.3     | Symbols Used                                      | . 5 |
| 2 | Produ   | ct Description                                    | . 6 |
|   | 2.1     | Use and Application                               | . 6 |
|   | 2.2     | Dimensions                                        | . 6 |
|   | 2.3     | Design of the Device                              | .7  |
| 3 | Install | lation                                            | 10  |
|   | 3.1     | Mounting                                          | 10  |
|   | 3.2     | Electrical Connection                             | 11  |
|   | 3.3     | Dismounting                                       | 14  |
| 4 | Comm    | nissioning                                        | 15  |
|   | 4.1     | Introduction                                      | 15  |
|   | 4.2     | Connecting the Sensor                             | 16  |
|   | 4.3     | Connecting the VLX-F231-B17 to the Network        | 17  |
|   | 4.4     | Integrating the Interface Module into the Network | 18  |
|   | 4.5     | "Utilize Data" Function Block                     | 22  |
|   | 4.6     | Data Format for Modules                           | 23  |

# 1 Introduction

# 1.1 Content of this Document

This document contains information required to use the product in the relevant phases of the product life cycle. This may include information on the following:

- Product identification
- Delivery, transport, and storage
- Mounting and installation
- Commissioning and operation
- Maintenance and repair
- Troubleshooting
- Dismounting
- Disposal



# Note

For full information on the product, refer to the further documentation on the Internet at www.pepperl-fuchs.com.



# Note

For specific device information such as the year of construction, scan the QR code on the device. As an alternative, enter the serial number in the serial number search at www.pepperl-fuchs.com.

The documentation comprises the following parts:

- This document
- Datasheet

In addition, the documentation may comprise the following parts, if applicable:

- EU-type examination certificate
- EU declaration of conformity
- Attestation of conformity
- Certificates
- Control drawings
- Instruction manual
- Functional safety manual
- Other documents

# 1.2 Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Only appropriately trained and qualified personnel may carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the product. The personnel must have read and understood the instruction manual and the further documentation.

Prior to using the product make yourself familiar with it. Read the document carefully.



# 1.3 Symbols Used

This document contains symbols for the identification of warning messages and of informative messages.

# Warning Messages

You will find warning messages, whenever dangers may arise from your actions. It is mandatory that you observe these warning messages for your personal safety and in order to avoid property damage.

Depending on the risk level, the warning messages are displayed in descending order as follows:



# Danger!

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.



# Warning!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.



# Caution!

This symbol indicates a possible fault.

Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

# **Informative Symbols**

# Note

This symbol brings important information to your attention.



# Action

1. This symbol indicates a paragraph with instructions. You are prompted to perform an action or a sequence of actions.

# 2 Product Description

# 2.1 Use and Application

The VLX-F231-B17 interface module—from now on referred to as the interface module or the device—is used as an interface between SmartRunner sensors—from now on referred to as sensors—and the PROFINET input card of the control panel. Data is transferred between the sensor or sensors and the interface module via the RS-485 interface and from the interface module to the control panel via the PROFINET protocol.

You can connect up to four sensors. If you connect several sensors, they must have different addresses.

The interface module has two PROFINET ports. Possible port uses include as an outgoing PROFINET port.

# 2.2 Dimensions

The interface module housing has the following dimensions.

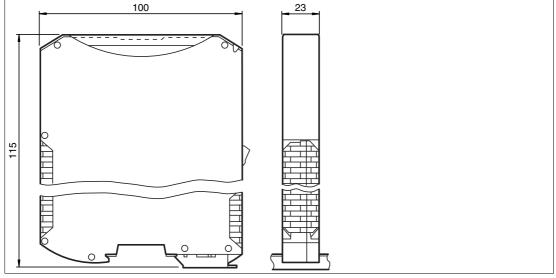



Figure 2.1 Dimensions



# 2.3 Design of the Device

# **Device Components**

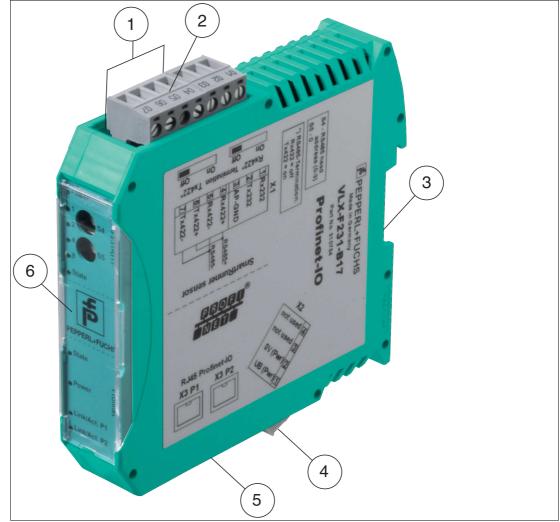



Figure 2.2 Interface module overview

- 1 RS-485 bus connection sliding switch
- 2 X1: RS-485 interface
- 3 Mounting bracket
- 4 X2: Connection for power supply
- 5 X3: PROFINET IO communication interface
- 6 Front panel with rotary coding switches and indicator lights

# **Front Panel**

| VLX-F231-B17                                                                    | SHO     | PROFINET                                                              |  |
|---------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------|--|
| <ul> <li>Power/State</li> <li>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</li></ul> | O State | <ul> <li>Power</li> <li>Link/Act. P1</li> <li>Link/Act. P2</li> </ul> |  |

Figure 2.3

Front panel overview

# Sensor

# **Power:**

The "Power" LED lights up green: power supply is present.

# State:

The "State" LED is green: Data is being exchanged with the sensor(s). The four "Error No/Select ID" LEDs are used to display the number of the currently polled sensor.

| Error No/ | Select ID | Reader address |   |   |
|-----------|-----------|----------------|---|---|
| 8         | 4         | 2              | 1 |   |
| 0         | 0         | 0              | 1 | 0 |
| 0         | 0         | 1              | 0 | 1 |
| 0         | 1         | 0              | 0 | 2 |
| 1         | 0         | 0              | 0 | 3 |

Table 2.1 Display via the four "ErrorNo/Select ID" LEDs when the "State" LED lights up green

The "State" LED is red: The interface module has detected an error or a warning. The interface module displays the binary coded error and/or warning number via the "Error No/Select ID" LEDs.

Error (No. 1...5): Switch the interface module off and back on. If the error occurs again, the module must be replaced.

Warning (No. 6...15): The warning provides information. The interface module displays the warning for one minute and then resets automatically.

| Error N | lo/Selec | t ID LED |      | Error  | Error description                                |
|---------|----------|----------|------|--------|--------------------------------------------------|
| LED8    | LED4     | LED2     | LED1 | number |                                                  |
| 0       | 0        | 0        | 0    | 0      | Reserved                                         |
| 0       | 0        | 0        | 1    | 1      | Hardware error                                   |
| 0       | 0        | 1        | 0    | 2      | EEPROM error                                     |
| 0       | 0        | 1        | 1    | 3      | Internal memory error                            |
| 0       | 1        | 0        | 0    | 4      | Fieldbus hardware error or incorrect fieldbus ID |
| 0       | 1        | 0        | 1    | 5      | Script error                                     |
| 0       | 1        | 1        | 0    | 6      | Reserved                                         |
| 0       | 1        | 1        | 1    | 7      | Sensor communication, RS send buffer overflow    |
| 1       | 0        | 0        | 0    | 8      | Sensor communication, RS receive buffer overflow |
| 1       | 0        | 0        | 1    | 9      | Sensor communication, RS timeout                 |

2022-12



| Error N | lo/Selec | t ID LED |      | Error  | Error description                 |
|---------|----------|----------|------|--------|-----------------------------------|
| LED8    | LED4     | LED2     | LED1 | number |                                   |
| 1       | 0        | 1        | 0    | 10     | General fieldbus error            |
| 1       | 0        | 1        | 1    | 11     | Parity error or frame check error |
| 1       | 1        | 0        | 0    | 12     | Reserved                          |
| 1       | 1        | 0        | 1    | 13     | Fieldbus configuration error      |
| 1       | 1        | 1        | 0    | 14     | Fieldbus data buffer overflow     |
| 1       | 1        | 1        | 1    | 15     | Reserved                          |

Table 2.2Meaning of the error codes (display via the four "Error No/Select ID" LEDs when the<br/>"State" LED lights up red and thus indicates an error or a warning)

# **Rotary Coding Switch S4:**

| Configuration | Switch position S4 |
|---------------|--------------------|
| 1 sensor      | 0                  |
| 2 sensors     | 1                  |
| 3 sensors     | 2                  |
| 4 sensors     | 3                  |

# **Rotary Coding Switch S5:**

Make sure that the switch is in **switch position 0**.

# PROFINET

# State:

| LED "PROFINET State" | PROFINET interface state                                         |
|----------------------|------------------------------------------------------------------|
| Lights up green      | Data exchange in progress                                        |
| Flashes green        | PROFINET is initialized, waiting for connection to IO controller |
| Lights up red        | Error with PROFINET hardware                                     |
| Flashes red          | Error during PROFINET initialization                             |

# **Power:**

The "PROFINET Power" LED is green: The LED is connected directly to the electrically isolated supply voltage of the PROFINET side.

# Link/Activity P1:

The "Link/Activity" LED on port 1 is controlled directly by the PROFINET processing unit and lights up green if Ethernet link pulses are found. When there is data traffic on the network, the LED flashes green at the same speed as the sent/received data.

# Link/Activity P2:

The "Link/Activity" LED on port 2 is controlled directly by the PROFINET processing unit and lights up green if Ethernet link pulses are found. When there is data traffic on the network, the LED flashes green at the same speed as the sent/received data.

# 3 Installation

# 3.1 Mounting



# **Mounting the Modules**

The module is fastened to a DIN mounting rail with a width of 35 mm using a snap-on fixing method.



Figure 3.1 Mounting

1. Hook the module (1) onto the DIN mounting rail (2) from above and press it down until it snaps into place.

 $\rightarrow$  The module is mounted.

| Heat | Dissipatio | n |
|------|------------|---|

Note

You may place other modules to the left and right of the module. Above and below the modules, there must be at least 5 cm of free space for heat dissipation.

2. You must connect the DIN mounting rail to the switch cabinet's equipotential busbar. The connection wire must have a cross section of at least 10 mm<sup>2</sup>.

# Note

# **Vertical Installation**

You can also install the DIN mounting rail vertically, so that the modules can be rotated by 90° for mounting.





# 3.2

# **Electrical Connection**

# Danger!

Device damage due to incorrect installation

Incorrect installation of cables and connection lines can endanger the function and the electrical safety of the device.

- Note the permissible core cross section of the conductor.
- If you are using stranded conductors, crimp the stranded conductors with wire end ferrules.
- Make sure that the insulation on the conductors extends all the way to the terminal.
- Observe the tightening torque for the screws on the terminal. The tightening torque is 0.5 Nm.
- Using an inappropriate tool may damage the screw heads. Use a slot-head screwdriver of size 3.5 x 0.5.
- Connecting an alternating current can damage the device or cause the device to malfunction. Connect the device to direct current (DC).

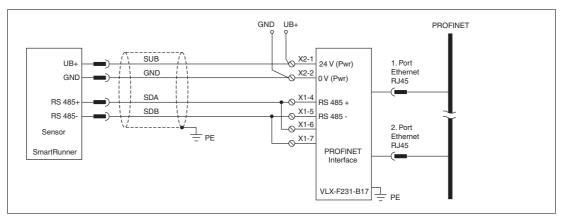



Figure 3.2 Electrical Connection

Plug X1 is located on the top side of the interface module, and plug X2 is located on the underside.

# **Connection Technology**

You must/may use the following connection technology when wiring the assembly:

- Standard screw/plug connection (supply + RS)
- 8 pin RJ45 connector (PROFINET IO connection)

When using standard screw terminals, one cable per connection point can be clamped. To tighten the screws, use a screwdriver with a blade width of 3.5 mm. Permissible cable cross section:

- Flexible cable with wire end ferrule: 1 x 0.25 ... 1.5 mm<sup>2</sup>
- Solid cable: 1 x 0.25 ... 1.5 mm<sup>2</sup>

The plug-in terminal strip combines a standard screw connection and a plug connector. The plug connector is coded and therefore cannot be plugged in incorrectly.



# Connecting the power supply

1. Connect the operating voltage (10 VDC...30 VDC) to terminals 1 and 2 of the 4 pin plug X2 on the interface module. In addition, note the label on the module.

| Terminal |                                       | Description                                                     |
|----------|---------------------------------------|-----------------------------------------------------------------|
| 1        | UB (Pwr)                              | Operating voltage interface module/<br>operating voltage sensor |
| 2        | 0 V (Pwr)                             | Ground interface module/ground sensor                           |
| 3        | not used                              | not used                                                        |
| 4        | not used                              | not used                                                        |
|          | · · · · · · · · · · · · · · · · · · · | -                                                               |

 $\mapsto$  The "Power" LED lights up green.

Table 3.1 Terminal X2

# **Equipotential bonding connection**

The connection to equipotential bonding occurs automatically when attaching to the DIN mounting rail.



# **PROFINET IO communication interface**

This interface can be found on the module in the form of two 8 pin RJ45 sockets on the bottom of the housing.

1. Insert the PROFINET connector into the RJ45 socket(s) with the label "RJ45 PROFINET IO."



Note

Ensure that the cable length to the neighboring Ethernet devices is at least 0.6  $\,\rm m.$ 



# Preparing for Operation on the RS-485 Interface

For operation on an RS-485 interface, the terminals on connector X1 must be connected as follows:

- 1. Connect terminal 4 "Rx 422+" to terminal 6 "Tx 422+."
- 2. Connect terminal 5 "Rx 422-" to terminal 7 "Tx 422-."

| Terminal         |                 | Description                                          |
|------------------|-----------------|------------------------------------------------------|
| 4                | Rx 422+         | Data line RS-485+ to sensor                          |
| 5                | Rx 422-         | Data line RS-485- to sensor                          |
| 6                | Tx 422+         | Connect terminal 6 "Tx 422+" to terminal 4 "Rx 422+" |
| 7                | Tx 422-         | Connect terminal 7 "Tx 422-" to terminal 5 "Rx 422-" |
| <b>T</b> 1 1 0 0 | <b>T</b> : 1344 |                                                      |

Table 3.2 T



Terminal X1



# **RS-485 Bus Termination**

If the interface module is operated as the first or last physical device in an RS-485 bus or if you operate one read head on the interface module, a bus termination must be performed on this interface module.

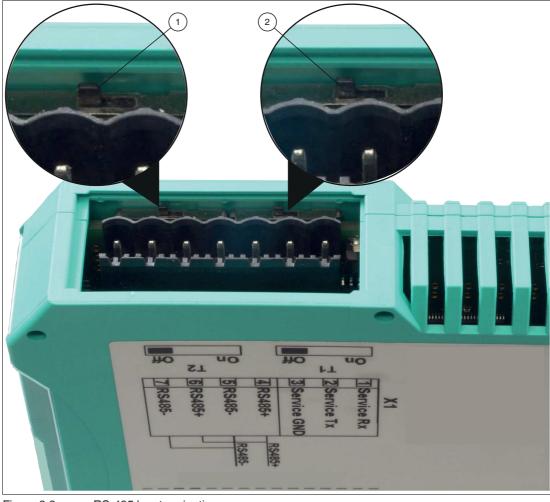



Figure 3.3 RS-485 bus termination

- **1.** Set the T2 slide switch (1) to "On" to activate the bus termination (150  $\Omega$ ) or to "Off" to deactivate the bus termination.
- 2. Set the T1 slide switch (2) permanently to "Off."

# 3.3 Dismounting



# **Dismounting the modules**

Use a suitable slot-head screwdriver for dismounting the module.

**1.** Disconnect all the supply and signal lines.

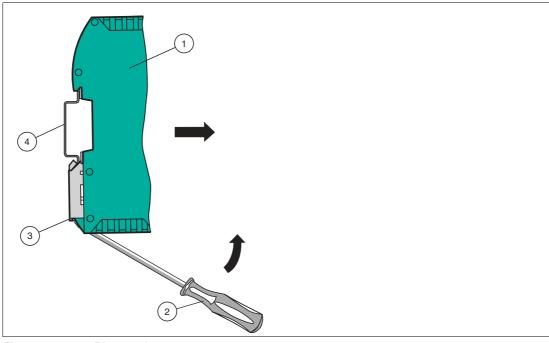



Figure 3.4 Dismounting

- 2. Insert the screwdriver (2) into the groove of the mounting bracket (3).
- **3.** Press the screwdriver (2) in the specified direction until the lock on the DIN mounting rail (4) opens, see figure.
- 4. Then press the module (1) upwards and lift it out of the DIN mounting rail.





# 4 Commissioning

# 4.1 Introduction



### Warning! Danger to life due to defective work

Errors during installation and commissioning can cause life-threatening injuries and significant property damage.

 Installation and commissioning must only be carried out by trained personnel in accordance with safety regulations.

# **Components**

To commission the module, you will require the following components:

- VLX-F231-B17 interface module
- · Cordset from the interface module to the sensor
- Connector for the PROFINET connection to the interface module
- Ethernet cable
- 10 ... 30 VDC power supply
- GSDML file (the GSDML file can be downloaded free of charge from our website www.pepperl-fuchs.com).



# Connecting the interface module

To ensure that the assembly functions correctly, you must carry out the following steps during commissioning:

1. Assign a PROFINET device name.



### Note

For the interface module to be addressed as a PROFINET device, this interface module requires a unique PROFINET device name.

On delivery, the interface module does not yet have a device name. The device name is assigned to the interface module via the configuration software.

2. There is the option to assign a PROFINET address.



### Note

On delivery, the module does not yet have an IP address. In normal operation, the IP address is usually assigned to the module by the PROFINET controller (PLC).

- 3. Connect the module to PROFINET using the interface labeled "RJ45 PROFINET IO."
- 4. For information on commissioning the process device, (the sensor) please refer to its manual.
- 5. Ground the DIN mounting rail onto which the assembly is clipped.
- 6. Connect the direct current to the terminals provided.
- 7. Use any programming tool for configuration. The GSDML file can be downloaded from our website: www.pepperl-fuchs.com. Simply enter the product name or item number in the product/keyword field and click the "Search" icon.



Note

A more detailed description of the individual steps is provided on the following pages.

# 4.2 Connecting the Sensor

If you connect several sensors to one interface module, the sensors must have different addresses. The different addresses will allow the programmable logic controller to allocate the data to the right sensors. If you connect only one sensor to an interface module, this sensor always receives the address 0. You can connect up to four sensors to an interface module via an RS-485 cable. Each sensor is supplied with the default address of 0. Details of how to change the address of the sensor can be found in the instruction manual for the sensor.

| Sensor connection pin | Interface module terminal |
|-----------------------|---------------------------|
| 1                     | X2-1                      |
| 2                     | X1-4                      |
| 4                     | X1-5                      |
| 3                     | X2-2                      |

Table 4.1 Connecting the sensor/sensors

# **Setting the Number of Connected Sensors**

Set the number of connected sensors with the rotary switch S4 in accordance with the table "Rotary switch S4".

| Rotary | switch | <b>S</b> 4 |
|--------|--------|------------|
|--------|--------|------------|

| Switch position<br>S4 | Number of sensors | Sensor address |
|-----------------------|-------------------|----------------|
| 0                     | 1 sensor          | 0              |
| 1                     | 2 sensors         | 0.1            |
| 2                     | 3 sensors         | 0, 1, 2        |
| 3                     | 4 sensors         | 0, 1, 2, 3     |

Table 4.2 Position of rotary switch S4 for setting the number of sensors

# Setting the baud rate of the SmartRunner sensor

Make sure you have set the correct baud rate on the SmartRunner sensor to be able to connect the interface module. The baud rate must be set to the value **115,200**.

A detailed description how to set the build rate in the sensor can be found in the respective manual of the SmartRunner sensor.



# 4.3 Connecting the VLX-F231-B17 to the Network

The connection to the PROFINET IO is made via the two "RJ45 PROFINET IO" sockets on the underside of the interface module. The front socket is labeled "X3 P1," and the rear socket is labeled "X3 P2."

# Pinout X3 P1 & X3 P2

| Terminal |      | Description         |
|----------|------|---------------------|
| 1        | TD+  | Transmission line + |
| 2        | TD-  | Transmission line - |
| 3        | RD+  | Receive line +      |
| 4        | n.c. | Not connected       |
| 5        | n.c. | Not connected       |
| 6        | RD-  | Receive line -      |
| 7        | n.c. | Not connected       |
| 8        | n.c. | Not connected       |

Table 4.3 Terminals of the 8 pin "RJ45 PROFINET IO" sockets



# Note

The cable to the surrounding Ethernet devices must be at least 0.6 m long.



# **Connecting the Device to the Controller**

1. Plug the PROFINET connector into the RJ45 socket. Use a Cat. 5 data cable.



# Setting data exchange mode

1. Set rotary switch "S5" to position 0. The rotary switch "S4" is set in accordance with the connected readers.

# 4.4

# Integrating the Interface Module into the Network

# Warning!

Risk of injury due to incorrect configuration

An error during the configuration of the device can override the fail-safe function, causing a danger to people and machinery.

- Ensure that the device is programmed exclusively by qualified personnel.
- Only put devices into operation after they have been configured correctly.

# **PROFINET Device Name**

For the interface module to be addressed as a PROFINET device, this interface module requires a unique PROFINET device name.

On delivery, the module does not yet have a device name. The device name is assigned to the module via the configuration software.

# **PROFINET Address**

In normal operation (data exchange mode), the IP address is usually assigned to the module by the PROFINET controller (PLC). For this purpose, the module has a device name that is used to address it.

Note

Various configuration tools are available to allow you to configure the interface module. By way of example, this manual describes the configuration of a Siemens control panel with the VLX-F231-B17 interface module using the TIA Portal V14. If you are using a programmable logic controller (PLC) from a different manufacturer, the process will be similar to the one described here.



# Installing the GSDML File

A **GSDML file** is required to operate the device. The GSDML file can be downloaded from our website: www.pepperl-fuchs.com. Simply enter the product name or item number in the product/keyword field and click the "Search" icon. Select your product from the list of search results. Click on the information you require in the product information list, e.g., Software. A list of all available downloads is displayed.

1. Start "TIA Portal V14."

| Project Edit View Insert Onlin | Optio <u>ns</u> <u>T</u> ools <u>W</u> indow <u>H</u> elp |
|--------------------------------|-----------------------------------------------------------|
|                                | Support <u>p</u> ackages                                  |
| (2)                            | Manage general station description files (GSD)            |
|                                | Start Automation License Manager                          |
|                                | Show reference text                                       |
|                                | 🛄 <u>G</u> lobal libraries 🕨 🕨                            |

Figure 4.1 GSDML File

2. Under "Options" (1) in the menu bar, select the command "Manage general station description files (GSD)" (2).

→ The "Manage general station description files" window opens.



| Installed GSDs GSDs in the project                                                                   | 1)     |
|------------------------------------------------------------------------------------------------------|--------|
| Source path: C:\ Ordner suchen X                                                                     |        |
| Content of imported pa<br>File  Dieser PC                                                            | Info   |
| > ■ Bilder > ■ Desktop > ■ Dokumente > ↓ Downloads > ↓ Musik > ■ Videos > ■ Lokaler Datenträger (C:) |        |
| CK Abbrechen                                                                                         | Cancel |

Figure 4.2 Searching for the GSDML file

- 3. Click the "button with the three dots" (1), which allows you to search for your GSDML file on the storage medium.
- 4. Select your GSDML file (2) and click "OK" (3) to confirm your selection.

| Manage general station descripti   | on files    | _                | _                 |           |
|------------------------------------|-------------|------------------|-------------------|-----------|
| Source path: C:\Siemens-S7-Tia-Por | tallSmartRu | nner-VLX-F231-B1 | 7\GSD             |           |
| Content of imported path           |             |                  |                   |           |
| File                               | Version     | Language         | Status            | Info      |
| GSDML-V2.33-Pepperl+Fuchs-Sma      | V2.33       | English, Ger     | Already installed | SmartRunn |
|                                    |             |                  |                   |           |
|                                    |             |                  |                   |           |
|                                    |             |                  |                   |           |
|                                    |             |                  |                   |           |
|                                    |             |                  |                   |           |
| <                                  |             |                  |                   |           |
| *1                                 |             |                  |                   | 2         |
|                                    |             |                  | Delete Insta      | II Cancel |
|                                    |             |                  |                   |           |

Figure 4.3 Installing the GSDML file

- 5. Select the GSDML file to install by checking the box (1) to the left of the filename.
- 6. Click the "Install" button (2). The installation process may take a few minutes.
  - → Once the file is installed successfully, the system issues a notification that the installation was successful. Close this window. The device data is added to the hardware catalog. Without a selection being made, the project view opens in the work area.







# Integrating a Device into the Project

1. On the left-hand side of the project navigation, double click on the "Device and networks" using the left mouse button. Network view is displayed in the work area.

| Hardware catalog          | 70     |
|---------------------------|--------|
| Options                   |        |
|                           |        |
| ✓ Catalog                 |        |
| <search></search>         | init i |
| 🗹 Filter                  |        |
| PC systems                |        |
| Garage Drives & starters  |        |
| Im Network components     |        |
| Detecting & Monitoring    |        |
| Distributed I/O           |        |
| Image: Power Supplies     |        |
| Field devices             |        |
|                           |        |
| ✓ Im PROFINET IO          |        |
| Controllers               |        |
| Drives                    |        |
| Encoders                  |        |
| 🕶 🛅 Gateway               |        |
| - The Pepperl+Fuchs GmbH  |        |
| Pepperl+Fuchs SmartRunner |        |
| Pepperl+Fuchs WCS         |        |
|                           |        |
| SmartRunner               |        |
| SIEMENS AG                |        |
| • 🫅 I/O                   |        |
| Ident Systems             |        |
| Network Components        |        |
| Sensors                   |        |

Figure 4.4 Hardware catalog

2. Open the hardware catalog and browse through the tree structure until you see your device (1).

Note The f

The figures are provided to aid basic understanding and may deviate from the actual design.

| SmartRunner-VLX-F231-B17 > Devices & networks |                      |                    |                          | . # = × | Hardware catalog                 |
|-----------------------------------------------|----------------------|--------------------|--------------------------|---------|----------------------------------|
| 2                                             |                      | Topology view 🛔 🖡  | Network view             | e view  | Options                          |
| Network 🖸 Connections HMI connection          |                      | ections VO comm    | unicati VPN              |         |                                  |
| r                                             | T A Pevice           | Туре               | Address in subnet Subnet | 100     | ✓ Catalog                        |
|                                               | ET 2005-Station_1    | ET 2005-Station    |                          |         | <search></search>                |
| PLC 1 Smartfunner                             | ► PLC_1              | IM 151-8 PN/DP CPU |                          |         | Filter                           |
| IM151-8 PN/ III SmartRunner                   | GSD-Geraet_2         | GSD-Geraet         |                          |         | PC systems                       |
| PLC_1                                         | smartrunner-1        | VLX-F231-B17       |                          | *       | Drives & starters                |
|                                               |                      |                    |                          |         | Network components               |
|                                               | 1                    |                    |                          |         | Detecting & Monitoring           |
|                                               |                      |                    |                          |         | Distributed I/O                  |
|                                               | 1                    |                    |                          |         | Power Supplies     Field devices |
| L                                             |                      |                    |                          |         | Other field devices              |
|                                               |                      |                    |                          |         | PROFINET IO                      |
|                                               |                      |                    |                          |         | Controllers                      |
|                                               |                      |                    |                          |         | Drives                           |
| Head Address_1 [Module]                       |                      |                    | ×                        |         | Encoders                         |
|                                               |                      |                    |                          |         | 🕶 🛅 Gateway                      |
| General IO tags System constants Texts        |                      |                    |                          |         | Pepperl+Fuchs GmbH               |
| General     General                           |                      |                    | ^                        |         | Pepperl+Fuchs SmartRunner        |
| Catalog Information                           |                      |                    | 1                        |         | Pepperl+Fuchs WCS                |
| Inputs<br>I/O addresses                       | 1                    |                    |                          |         | SmartRunner     SmartRunner      |
| ino addresses                                 | Name: Head Address_1 |                    |                          |         | SIEMENS AG                       |
|                                               | Author: freigabe     |                    |                          |         | > III IO                         |
| Co                                            | mment:               |                    | <u>^</u>                 |         | Ident Systems                    |
|                                               |                      |                    |                          |         | Network Components               |
|                                               |                      |                    |                          |         | Sensors                          |

Figure 4.5 Integrating the device

3. Select your device (1) from the hardware catalog and drag it into the network view (2).

 $\mapsto$  The device is displayed in the network view window (2).





Figure 4.6 Connecting the device to the control panel

4. Connect the device to the control panel. To do this, move the mouse cursor over the PROFINET interface that is highlighted in green on the control panel (1). Click the left mouse button and drag the line shown to the PROFINET interface on the device (2). Once there, release the left mouse button again.

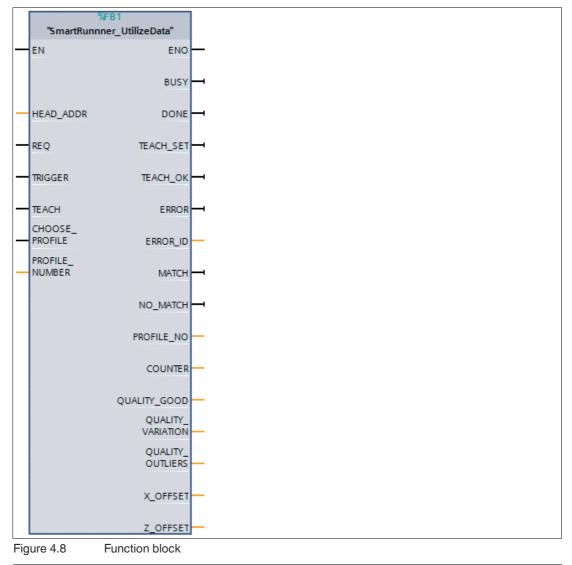
→ The device is now connected to the control panel. A PROFINET subsystem is created.



# **Integrating Modules into the Project**

You have the option to connect up to four sensors to the interface module. To do this, you must specify the number of modules and their properties in the control panel. The modules are available in the hardware catalog.

| n. Module        | Rack | Slot | I address | Q address | Type           | Artí | ✓ Catalog             |
|------------------|------|------|-----------|-----------|----------------|------|-----------------------|
| ▼ smartrunner-1  | 0    | 0    | 2040*     | 2         | SmartRunner    | 310  | Search>               |
| PN Schnittstelle | 0    | 0 X3 | 2039*     |           | smart-runner   | _    | Filter                |
| Head Address_1   | 0    | 1    | 25627     | 256261    | Head Address 1 | 1    | ✓ The Head module     |
| Head Address_2   | 0    | 2    | 28030     | 262267    | Head Address 1 |      | SmartRunner           |
|                  | 0    | 3    |           |           |                |      | ✓ Module              |
|                  | 0    | 4    |           |           |                |      | ✓ Im Smart Runner (2) |


Figure 4.7 Integrating modules

- 1. Switch to the "Device view" tab (1) in the "Device and networks" window.
- 2. Open the hardware catalog. Select your module (2) from the hardware catalog and drag it into the device view (3).

 $\mapsto$  The modules will be automatically assigned an I and Q address range.

# 4.5 "Utilize Data" Function Block

A function block is available to allow you to configure the interface module. The function block can be downloaded from our website: www.pepperl-fuchs.com. Simply enter the product name or item number in the product/keyword field and click the "Search" icon. Select your product from the list of search results. Click on the information you require in the product information list, e.g., Software. A list of all available downloads is displayed.



# i

# Note

Further information about the function block can be found in the configuration instructions on our website by using the product/keyword search function.

2022-12



# 4.6 Data Format for Modules

# **Output Parameters**

| Byte                                 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Byte 0 - Reserved                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Byte 1 - Trigger                     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     |
| Byte 2 - Reserved                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Byte 3 - Teach                       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     |
| Byte 4 - Reserved                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Byte 5 - Choose profile <sup>1</sup> | 0     | 0     | х     | х     | х     | х     | х     | х     |

1. for all VLM variants except VLM350-F280-2E2-1000

# Legend

|   | 1 32 | Profile number |
|---|------|----------------|
| х | 0    | Not defined    |
|   | > 32 | Not defined    |

### Trigger

After changing *Bit 0* from **0 to 1**, a **"Trigger"** is activated. This means that the sensor triggers an image capture process. In order to run an additional **"Trigger,"Bit 0** must be reset.

### Teach

After changing *Bit 0* from **0 to 1**, a "**Teach-In**" is triggered. This means that the sensor initiates the teach-in process. A trigger must then be transmitted. In order to run the "**Teach**" process again, **Bit 0** must be reset.

# **Input Parameters**

# Note

The two protocols "Result Protocol" and "Teach Result Protocol" are connected. The two protocols cannot be run at the same time. Only one of the two protocols can be run at a time.

# **Result Protocol**

Result data provides the measurement status and result as a response.

| Byte               | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1       | Bit 0  |
|--------------------|-------|--------|--------|--------|--------|--------|-------------|--------|
| Byte 1 - Status    | 0     | -      | Addr 1 | Addr 0 | Event  | WRN    | No<br>Match | ERR    |
| Byte 2 - Result    | 0     | R6     | R5     | R4     | R3     | R2     | R1          | R0     |
| Byte 3 - Counter   | 0     | C06    | C05    | C04    | C03    | C02    | C01         | C00    |
| Byte 4 - Quality   | 0     | Q06    | Q05    | Q04    | Q03    | Q02    | Q01         | Q00    |
| Byte 5 - Quality   | 0     | Q16    | Q15    | Q14    | Q13    | Q12    | Q11         | Q10    |
| Byte 6 - Quality   | 0     | Q26    | Q25    | Q24    | Q23    | Q22    | Q21         | Q20    |
| Byte 7 - PosX      | 0     | PosX13 | PosX12 | PosX11 | PosX10 | PosX09 | PosX08      | PosX07 |
| Byte 8 - PosX      | 0     | PosX06 | PosX05 | PosX04 | PosX03 | PosX02 | PosX01      | PosX00 |
| Byte 9 - PosZ      | 0     | PosZ13 | PosZ12 | PosZ11 | PosZ10 | PosZ09 | PosZ08      | PosZ07 |
| Byte 10 - PosZ     | 0     | PosZ06 | PosZ05 | PosZ04 | PosZ03 | PosZ02 | PosZ01      | PosZ00 |
| Byte 11 - Checksum | 0     | xor    | xor    | xor    | xor    | xor    | xor         | xor    |
| Byte 12            | 0     | 0      | 0      | 0      | 0      | 0      | 0           | 0      |

| Byte                       | Bit 7                                  | Bit 6                                          | Bit 5                                                                                                                                                            | Bit 4      | Bit 3       | Bit 2       | Bit 1      | Bit 0     |  |
|----------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|------------|-----------|--|
| Byte 13                    | 0                                      | 0                                              | 0                                                                                                                                                                | 0          | 0           | 0           | 0          | 0         |  |
| Byte 14                    | 0                                      | 0                                              | 0                                                                                                                                                                | 0          | 0           | 0           | 0          | 0         |  |
| Byte 15                    | 0                                      | 0                                              | 0                                                                                                                                                                | 0          | 0           | 0           | 0          | 0         |  |
| Byte 16                    | 0                                      | 0                                              | 0                                                                                                                                                                | 0          | 0           | H2          | H1         | HO        |  |
| Legend                     |                                        |                                                |                                                                                                                                                                  |            |             |             |            |           |  |
| Status                     | Addr                                   |                                                | Device address                                                                                                                                                   |            |             |             |            |           |  |
| Event                      |                                        | Event occurred (future)<br>Currently read as 0 |                                                                                                                                                                  |            |             |             |            |           |  |
|                            | WRN                                    |                                                | Unused                                                                                                                                                           |            |             |             |            |           |  |
|                            | No Match                               | ı                                              | Profile does not match the saved profile                                                                                                                         |            |             |             |            |           |  |
|                            | ERR                                    |                                                | System error or evaluation error                                                                                                                                 |            |             |             |            |           |  |
| Result                     | R0 R6                                  |                                                | Profile number 1 32<br>0x00 = no object found                                                                                                                    |            |             |             |            |           |  |
| Quality                    | Q00 Q26                                |                                                | Quality of the current profile (0 = no profile found, 100 = perfect match)<br>Quality: Quality Good<br>Quality2: Quality Variation<br>Quality3: Quality Outliers |            |             |             |            |           |  |
| Counter                    |                                        |                                                | Increme                                                                                                                                                          | nts for ea | ch evalua   | tion, is re | started a  | t 0x3F    |  |
| Position Data <sup>1</sup> | ion Data <sup>1</sup> PosX13<br>PosX00 |                                                | X-deviation of current profile from saved profile                                                                                                                |            |             |             |            |           |  |
|                            | PosZ13 .<br>PosZ00                     |                                                | Z-deviat                                                                                                                                                         | ion of cur | rent profil | e from sa   | ved profil | е         |  |
| Handshake H0               |                                        |                                                | 1: Software trigger is implemented by the interface mod-<br>ule                                                                                                  |            |             |             |            |           |  |
|                            | H1                                     |                                                | 1: Profile<br>module                                                                                                                                             | switching  | g is imple  | mented b    | y the inte | erface    |  |
|                            | H2                                     |                                                | 1: Softwa<br>ule                                                                                                                                                 | are teach  | is implerr  | nented by   | the inter  | face mod- |  |

1. for all VLM variants except VLM350-F280-2E2-1000

# Handshake between interface module and PLC (Byte 16)

The bits are set by the interface module when the interface module has implemented the commands from the PLC. The respective handshake bit is reset when the bit of the output parameter is zeroed.

Please note that in case of profile switching, byte 5 must be zeroed before a profile change.



# **Teach Result Protocol**

Teach Result Data returns the status and result of the teach-in process as a response.

| Byte                | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------------|-------|-------|--------|--------|-------|-------|-------|-------|
| Byte 17 - Status    | 0     | -     | Addr 1 | Addr 0 | Event | WRN   | 0     | ERR   |
| Byte 18 - Result    | 0     | 0     | 0      | 0      | 0     | 0     | 0     | 0     |
| Byte 19 - Counter   | 0     | C06   | C05    | C04    | C03   | C02   | C01   | C00   |
| Byte 20 - Quality A | 0     | QA6   | QA5    | QA4    | QA3   | QA2   | QA1   | QA0   |
| Byte 21 - Quality B | 0     | QB6   | QB5    | QB4    | QB3   | QB2   | QB1   | QB0   |
| Byte 22 - Quality C | 0     | QC6   | QC5    | QC4    | QC3   | QC2   | QC1   | QC0   |
| Byte 23 - Quality D | 0     | QD6   | QD5    | QD4    | QD3   | QD2   | QD1   | QD0   |
| Byte 24 - Checksum  | 0     | xor   | xor    | xor    | xor   | xor   | xor   | xor   |

# Legend

| Status      | Addr    | Device address                                                                             |
|-------------|---------|--------------------------------------------------------------------------------------------|
|             | Event   | Event has occurred - for future use, currently read as 0                                   |
|             | WRN     | Unused                                                                                     |
|             | ERR     | System error or evaluation error                                                           |
| Result      | R0      | For extended protocol<br>Always 0                                                          |
| Counter     | C00 C06 | Increments with each teach-in                                                              |
| Quality A   |         | The quality of the current teach-in<br>0 = teach-in not possible<br>100 = perfect teach-in |
| Quality B-D |         | Unused                                                                                     |

# Your automation, our passion.

# **Explosion Protection**

- Intrinsic Safety Barriers
- Signal Conditioners
- FieldConnex<sup>®</sup> Fieldbus
- Remote I/O Systems
- Electrical Ex Equipment
- Purge and Pressurization
- Industrial HMI
- Mobile Computing and Communications
- HART Interface Solutions
- Surge Protection
- Wireless Solutions
- Level Measurement

# **Industrial Sensors**

- Proximity Sensors
- Photoelectric Sensors
- Industrial Vision
- Ultrasonic Sensors
- Rotary Encoders
- Positioning Systems
- Inclination and Acceleration Sensors
- Fieldbus Modules
- AS-Interface
- Identification Systems
- Displays and Signal Processing
- Connectivity

Pepperl+Fuchs Quality Download our latest policy here:



www.pepperl-fuchs.com/quality



www.pepperl-fuchs.com © Pepperl+Fuchs · Subject to modifications / DOCT-6070A