WCS-EIG410

WCS-Interface-Modul EtherNet/IP

Handbuch

EtherNet/IP*

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Weltweit

Pepperl+Fuchs-Gruppe Lilienthalstr. 200 68307 Mannheim Deutschland

Telefon: +49 621 776 - 0

E-Mail: info@de.pepperl-fuchs.com https://www.pepperl-fuchs.com

1	Einle	eitung	4
	1.1	Inhalt des Dokuments	4
	1.2	Zielgruppe, Personal	4
	1.3	Verwendete Symbole	5
2	Prod	uktbeschreibung	6
	2.1	Einsatz und Anwendung	6
	2.2	Abmessungen	6
	2.3	Aufbau des Geräts	7
3	Insta	ıllation	11
	3.1	Montage	11
	3.2	Elektrischer Anschluss	12
	3.3	Demontage	15
4	Inbet	triebnahme	16
	4.1	Einführung	16
	4.2	WCS-Lesekopf anschließen	17
	4.3	Anschluss an das Netzwerk	19
	4.4	Einstellen der IP-Adresse und Subnet Maske	20
	4.5	Netzwerkeinstellungen	22
	4.6	Datenformat für Module	24
5	Kom	munikation mit WCS-Leseköpfen	26
	5.1	Datenprotokolle	26
	5.2	Option-E - Extended, Typ WCS3B-LS*E*, RS-485	30
6	Anha	ang	33
	6.1	Software-Tool für RSLogix 5000, V15 und V17	33
	6.2	Leitungsführung im RS–485-Bus	34
	6.3	Datenkahel	37

1 Einleitung

1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung

Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Die Dokumentation besteht aus folgenden Teilen:

- vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- weitere Dokumente

1.2 Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.

1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.

2 Produktbeschreibung

2.1 Einsatz und Anwendung

Das Interface-Modul **WCS-EIG410** dient als Schnittstelle zwischen WCS-Lesekopf und Ether-Net/IP-Steuerung. Die Daten zwischen WCS-Lesekopf und Interface-Modul werden über eine RS-485-Schnittstelle übertragen, die Daten vom Interface-Modul zur Steuerung werden über das EtherNet/IP-Protokoll übertragen.

Sie können maximal 4 WCS-Leseköpfe vom Typ LS221 (bzw. LS121) an einem WCS-EIG410 Interface-Modul anschließen. Wenn Sie mehrere WCS-Leseköpfe anschließen, müssen diese unterschiedliche Adressen haben. Die Anzahl der angeschlossenen WCS-Leseköpfe konfigurieren Sie bei der Hardware-Projektierung.

Das Interface-Modul unterstützt den Betrieb von Leseköpfen mit der Option Extended (WCS3B-LS*E*), Streckenlängen bis 629 Meter.

2.2 Abmessungen

Das Interface-Modul hat die folgenden Gehäusemaße.

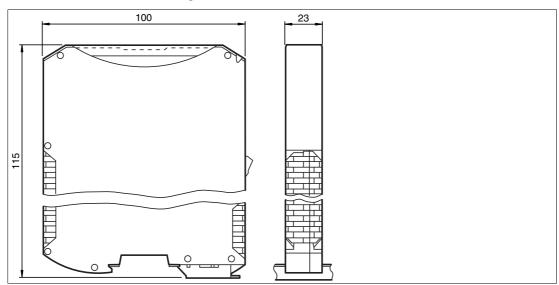


Abbildung 2.1 Abmessung

2.3 Aufbau des Geräts

Gerätekomponenten

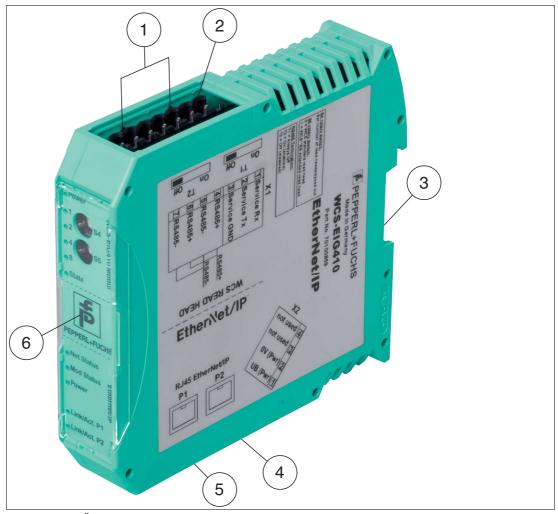


Abbildung 2.2 Übersicht Interface-Modul

- 1 Schiebeschalter RS-485-Busabschluss
- 2 X1: RS-485-Schnittstelle
- 3 Montagelasche
- 4 X2: Anschluss Stromversorgung
- 5 X3: Kommunikationsschnittstelle EtherNet/IP
- 6 Frontblende mit Drehcodierschalter und LED-Statusanzeige

Frontblende

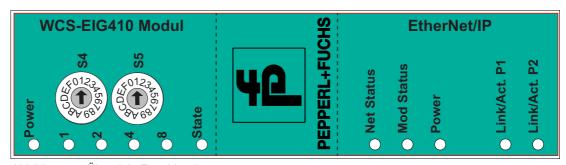


Abbildung 2.3 Übersicht Frontblende

WCS-Lesekopf: LED-Statusanzeige und Drehcodierschalter

Power:

Die LED "Power" leuchtet grün: Spannungsversorgung liegt an.

State:

Die LED "State" leuchtet grün: Datenaustausch mit den WCS-Leseköpfen findet statt. Über die 4 LEDs "Error No/Select ID" wird die Nummer des aktuell angepollten WCS-Lesekopfs angezeigt.

ErrorNo/S	Select ID	Lesekopf- adresse					
8	4	2	1	adresse			
0	0	0	1	0			
0	0	1	0	1			
0	1	0	0	2			
1	0	0	0	3			

Tabelle 2.1 Anzeige der 4 LEDs "Error No/Select ID", wenn die LED "State" grün leuchtet

Die LED "State" leuchtet rot: Das Interface-Modul hat einen Fehler oder eine Warnung erkannt. Das Interface-Modul zeigt die binär codierte Fehler- bzw. Warnnummer über die LEDs "Error No/Select ID" an.

Fehler (Nr. 1...5): Schalten Sie das Interface-Modul aus und wieder ein. Tritt der

Fehler erneut auf, müssen Sie das Modul austauschen.

Warnung (Nr. 6...15): Die Warnung dient zur Information. Das Interface-Modul zeigt die

Warnung eine Minute lang an und setzt sich dann automatisch

zurück.

LED ErrorNo/Select ID				Fehlernummer	Fehlerbeschreibung		
LED8	LED4	LED2	LED1				
0	0	0	0	0	Reserviert		
0	0	0	1	1	Hardwarefehler		
0	0	1	0	2	EEPROM-Fehler		
0	0	1	1	3	Interner Speicherfehler		
0	1	0	0	4	Feldbus-Hardwarefehler oder falsche Feldbus ID		
0	1	0	1	5	Script-Fehler		
0	1	1	0	6	Reserviert		
0	1	1	1	7	Kommunikation WCS-Lesekopf, RS Sende-Puffer-Überlauf		
1	0	0	0	8	Kommunikation WCS-Lesekopf, RS Empfangs-Puffer-Überlauf		
1	0	0	1	9	Kommunikation WCS-Lesekopf, RS Timeout		
1	0	1	0	10	Allgemeiner Feldbusfehler		
1	0	1	1	11	Parity- oder Frame-Check-Fehler		
1	1	0	0	12	Reserviert		
1	1	0	1	13	Feldbus Konfigurationsfehler		
1	1	1	0	14	Feldbus Datenpuffer-Überlauf		
1	1	1	1	15	Reserviert		

Tabelle 2.2 Bedeutung der Fehlercodes (Anzeige der 4 LEDs "Error No/Select ID", wenn die LED "State" rot leuchtet und somit einen Fehler oder eine Warnung anzeigt)

Drehcodierschalter S4 und S5

Die Drehkodierschalter S4 und S5 werden zur Festsetzung der Lesekopfanzahl und des verwendeten Protokolls (WCS oder WCS-Extended) verwendet, siehe Kapitel 4.2.

EtherNet/IP: LED-Statusanzeige

Net Status:

LED "Net Status"	Schnittstellenzustand
blinkt grün/rot	Selbsttest
leuchtet grün	Verbindung vorhanden, Datenaustausch aktiv
blinkt grün	Warten auf Verbindungsaufbau
blinkt rot	Timeout bei Verbindung
leuchtet rot	IP-Adresse doppelt vergeben

Tabelle 2.3 Anzeige der LED "Net Status"

Mod Status:

LED "Mod Status"	Schnittstellenzustand
blinkt grün/rot	Selbsttest
leuchtet grün	Datenaustausch aktiv
blinkt grün	Standby / Modul wartet auf Verbindung
blinkt rot	Modul-Fehler
leuchtet rot	Schwerer Modul-Fehler

Tabelle 2.4 Anzeige der LED "Mod Status"

Power:

Die LED "Power" leuchtet grün: Diese LED ist direkt mit der Versorgungsspannung der seriellen Schnittstelle (RS232/422/485) verbunden.

Link/Activity P1:

Die LED "Link/Activity Port 1" wird direkt vom Ethernet-Controller angesteuert und leuchtet grün, wenn sich das Interfacemodul an Port 1 an einem arbeitsfähigen Netz befindet. Bei Netzwerkdatenverkehr blinkt die LED grün im Rhythmus der gesendeten/empfangenen Daten.

Link/Activity P2:

Die LED "Link/Activity Port 2" wird direkt vom Ethernet-Controller angesteuert und leuchtet grün, wenn sich das Interfacemodul an Port 2 an einem arbeitsfähigen Netz befindet. Bei Netzwerkdatenverkehr blinkt die LED grün im Rhythmus der gesendeten/empfangenen Daten.

3 Installation

3.1 Montage

Module montieren

Das Modul wird mit Schnappbefestigung auf einer Hutschiene von 35 mm Breite befestigt.

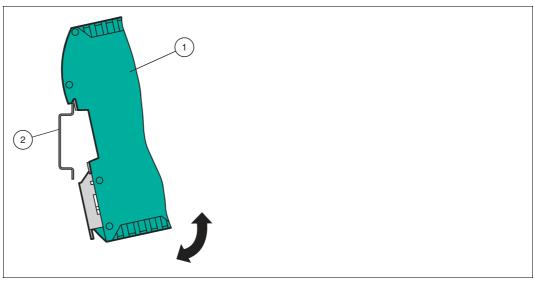


Abbildung 3.1 Montage

- 1. Hängen Sie das Modul (1) von oben in die Hutschiene (2) ein und drücken Sie es nach unten bis es einrastet.
 - → Das Modul ist montiert.

Hinweis!

Wärmeabfuhr

Links und rechts neben dem Modul dürfen Sie andere Module aufreihen. Oberhalb und unterhalb der Module müssen Sie mindestens 5 cm Freiraum für die Wärmeabfuhr einplanen.

2. Sie müssen die Hutschiene mit der Potentialausgleichschiene des Schaltschranks verbinden. Der Verbindungsdraht muss einen Querschnitt von mindestens 10 mm² haben.

Hinweis!

Senkrechter Einbau

Sie können die Hutschiene auch senkrecht montieren, so dass die Module um 90° gedreht montiert werden.

3.2 Elektrischer Anschluss

Gefahr!

Geräteschaden durch fehlerhafte Installation

Eine fehlerhafte Installation von Kabeln und Anschlussleitungen kann die Funktion und die elektrische Sicherheit des Geräts gefährden.

- Beachten Sie den zulässigen Aderquerschnitt des Leiters.
- Falls Sie mehrdrähtige Leiter verwenden, crimpen Sie die mehrdrähtigen Leiter mit Aderendhülsen.
- Stellen Sie sicher, dass die Isolation der Leiter bis an die Anschlussklemme reicht.
- Beachten Sie das Anzugsdrehmoment für die Schrauben der Anschlussklemme. Das Anzugsdrehmoment ist 0,5 Nm.
- Der Einsatz von ungeeignetem Werkzeug kann zu Schäden an den Schraubenköpfen führen. Verwenden Sie einen Schlitzschraubendreher der Größe 3,5 x 0,5.
- Anschließen von Wechselspannung kann das Gerät beschädigen oder die Gerätefunktion stören. Das Gerät an Gleichspannung (DC) anschließen.

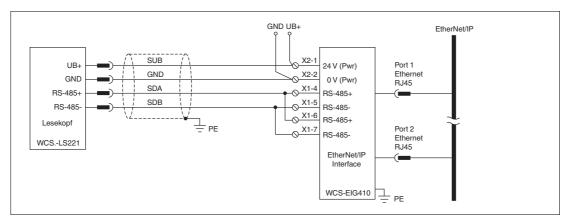


Abbildung 3.2 Elektrischer Anschluss

Der Stecker X1 befindet sich an der Oberseite des Interface-Moduls, der Stecker X2 befindet sich an der Unterseite.

Anschlusstechnik

Folgende Anschlusstechniken müssen bzw. können Sie bei der Verdrahtung der Baugruppe verwenden:

- Standard Schraub-/Steckanschluss (Versorgung + RS)
- 8-polige RJ45-Steckverbindung (EtherNet/IP-Anschluss)

Bei den Standard-Schraubklemmen ist eine Leitung je Anschlusspunkt klemmbar. Zum Festschrauben benutzen Sie einen Schraubendreher mit Klingenbreite 3,5 mm. Zulässige Querschnitte der Leitung:

- Flexible Leitung mit Aderendhülse: 1 x 0,25 ... 1,5 mm²
- Massive Leitung: 1 x 0,25 ... 1,5 mm²

Die steckbare Anschlussklemmleiste stellt eine Kombination aus Standard-Schraubanschluss und Steckverbinder dar. Der Steckverbindungsteil ist kodiert und kann deshalb nicht falsch aufgesteckt werden.

Stromversorgung anschließen

Schließen Sie die Betriebsspannung (10 ... 30 V DC) an die Anschlussklemmen 1 und 2 des 4-poligen Steckers X2 am Interface-Modul an. Beachten Sie zusätzlich die Beschriftung auf dem Modul.

→ Die LED "Power" leuchtet grün.

Anschlussklemme X2

Anschlussklemme		Beschreibung
1 UB+ (Pwr)		Betriebsspannung Interface-Modul/ Betriebsspannung WCS-Lesekopf
2	0 V (Pwr)	Masse Interface-Modul/Masse Sensor
3	not used	wird nicht benutzt
4	not used	wird nicht benutzt

Anschluss des Potentialausgleichs

Die Verbindung zum Potentialausgleich erfolgt automatisch beim Aufsetzen auf die Hutschiene.

Kommunikationsschnittstelle EtherNet/IP

Diese Schnittstelle finden Sie am Interface-Modul in Form zweier 8-poliger RJ45-Buchse an der Unterseite des Gehäuses.

Stecken Sie den EtherNet/IP-Verbindungsstecker in eine der RJ45-Buchse(n) mit der Beschriftung "In" (Kabel vom Master) bzw. "Out" (weiterführendes Kabel zum nächsten EtherNet/IP-Slave).

Hinweis!

Beachten Sie, dass die Leitungslänge zu den benachbarten EtherNet/IP-Teilnehmern 0,6 m nicht unterschreitet.

Betrieb an RS-485-Schnittstelle vorbereiten

Für den Betrieb an einer RS-485-Schnittstelle müssen am Stecker X1 die Anschlussklemme verbunden werden:

Verbinden Sie den Lesekopf mit der Anschlussklemme. Nutzen Sie die beigelegte Drahtbrücke um die Anschlussklemmen miteinander zu verbinden

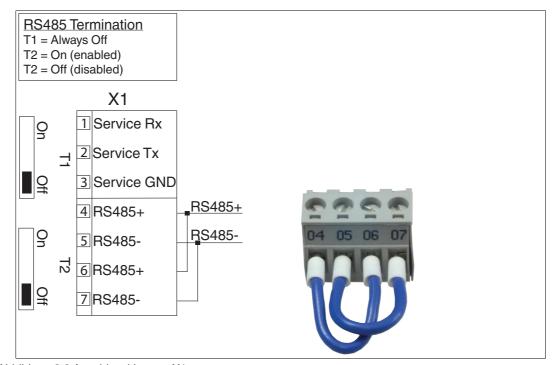


Abbildung 3.3 Anschlussklemme X1

3.3 Demontage

Module demontieren

Benutzen Sie für die Demontage des Moduls einen geeigneten Schlitzschraubendreher.

1. Trennen Sie alle Versorgungs- und Signalleitungen.

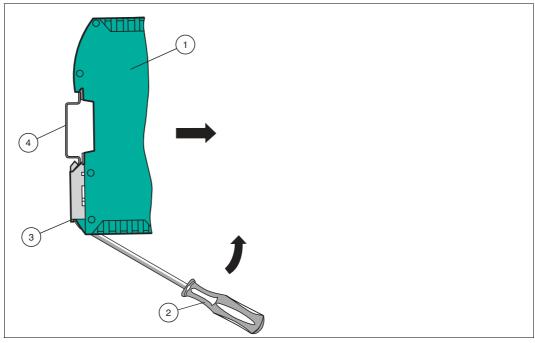


Abbildung 3.4 Demontage

- 2. Stecken Sie den Schraubendreher (2) in die Nut der Montagelasche (3).
- 3. Drücken Sie den Schraubendreher (2) in die angegebene Richtung bis sich die Verriegelung an der Hutschiene (4) öffnet, siehe Abbildung.
- 4. Anschließend drücken Sie das Modul (1) nach oben und heben Sie es aus der Hutschiene heraus.

4 Inbetriebnahme

4.1 Einführung

Warnung!

Lebensgefahr durch fehlerhafte Arbeiten

Fehler bei Installation und Inbetriebnahme können zu lebensgefährlichen Verletzungen und erheblichen Sachschäden führen.

• Installation und Inbetriebnahme darf ausschließlich von geschultem Personal unter Beachtung der Sicherheitsvorschriften durchgeführt werden.

Komponenten

Zur Inbetriebnahme des Moduls benötigen Sie folgende Komponenten:

- Interface-Modul WCS-EIG410
- EDS-Datei (die EDS-Datei kann kostenfrei von unserer Internetseite www.pepperlfuchs.com bezogen werden).
- Verbindungskabel vom Interface-Modul zum Lesekopf
- Verbindungsstecker f
 ür den EtherNet/IP-Anschluss an das Interface-Modul
- Ethernet-Kabel
- 10..30 VDC-Spannungsversorgung

EDS-Datei herunterladen

Für den Betrieb des in diesem Handbuch beschriebenen Moduls benötigen Sie eine EDS-Datei. Die EDS-Datei muss vor der Inbetriebnahme des Moduls im entsprechenden Konfigurationstool importiert werden. Die EDS-Datei finden Sie als Download auf unserer Internetseite unter http://www.pepperl-fuchs.com. Geben Sie dazu die Produktbezeichnung oder Artikelnummer in das Feld Produkt-/Schlagwortsuche ein und klicken Sie auf Suche.

- 1. Um auf die Produktdetailseite für das Gerät zuzugreifen, gehen Sie zu http://www.pepperlfuchs.com und geben Sie Informationen über das Gerät (z.B. die Produktbeschreibung oder die Artikelnummer) in die Suchfunktion ein.
- **2.** Wählen Sie aus der Liste der Suchergebnisse Ihr Produkt aus. Klicken Sie in der Liste der Produktinformationen auf Ihre benötigte Information, z. B. **Software**.

→ Hier finden Sie in einer Listendarstellung alle verfügbaren Downloads.

4.2 WCS-Lesekopf anschließen

Falls Sie mehrere WCS-Leseköpfe an einem Interface-Modul anschließen, müssen die WCS-Leseköpfe unterschiedliche Adressen haben. Damit kann die speicherprogrammierbare Steuerung die Daten der WCS-Leseköpfe eindeutig zuordnen. Falls Sie nur einen WCS-Lesekopf am Interface-Modul anschließen, erhält dieser Lesekopf immer die Adresse 0. Sie können bis zu vier WCS-Leseköpfe über eine RS-485-Leitung am Interface-Modul anschließen. Jeder WCS-Lesekopf hat im Lieferzustand die voreingestellte Adressee 0. Wie Sie die Adresse des WCS-Lesekopfs ändern entnehmen Sie bitte der Konfigurationsanleitung des WCS-Lesekopfs.

Anschlusspin WCS	S-Lesekopf	Klemme Interfacemodul
WCS2B	WCS3B	
2	1	X2-1
4	2	X1-4
1	4	X1-5
3	3	X2-2

Tabelle 4.1 Anschluss WCS-Leseköpfe

Anzahl angeschlossener WCS-Leseköpfe einstellen

Stellen Sie die Anzahl der angeschlossenen WCS-Leseköpfe mit dem Drehschalter S4 gemäß der Tabelle "Drehschalter S4" ein.

Drehschalter S4

Schalterstel- lung S4	Anzahl WCS-Leseköpfe	Lesekopf- adresse
1	1 WCS-Lesekopf	0
2	2 WCS-Leseköpfe	0,1
3	3 WCS-Leseköpfe	0, 1, 2
4	4 WCS-Leseköpfe	0, 1, 2, 3
5	1 WCS-Lesekopf mit Geschwindigkeitsausgabe	0
6	2 WCS-Leseköpfe mit Geschwindigkeitsausgabe	0, 1
7	3 WCS-Leseköpfe mit Geschwindigkeitsausgabe	0, 1, 2
8	4 WCS-Leseköpfe mit Geschwindigkeitsausgabe	0, 1, 2, 3

Tabelle 4.2 Schalterstellung des Drehschalters S4 zur Einstellung der Anzahl der WCS-Leseköpfe

Beispiel

Sie haben am Interfacemodul drei Leseköpfe angeschlossen und möchten die Geschwindigkeitsausgabe nutzen. Bringen Sie den Drehschalter S4 in die Schalterstellung 7 und stellen Sie an den 3 Leseköpfen die Adressen 0,1,2 ein.

Drehcodierschalter S5

Das Extended Protokoll (Verfahrweg 629,146 Meter) wird am Interface-Modul über den Drehschalter S5 eingestellt. Die WCS-Leseköpfe werden hierbei über ein geändertes Aufforderungsbit adressiert. Im Antworttelegramm des WCS-Extended Protokolls wird insgesamt ein Byte mehr übertragen. Mehr Informationen zum Datenformat finden Sie im WCS-Elektrik-Handbuch (DOCT-5959).

Drehschalter S5 = Schalterstellung 0 für WCS-Standard (Lesekopf WCSxB-LS221*)

Drehschalter S5 = Schalterstellung 1 für WCS-Extended 629,146 Meter (Lesekopf WCS3B-LS*E*)

Andere Zustände/ Schalterstellungen sind nicht zulässig.

Es können auch bei WCS-Extended bis zu 4 RS-485-Leseköpfe an ein Interface-Modul angeschlossen werden.

WCS-Lesekopf anschließen

- 1. Schließen Sie die Spannungsversorgung für den WCS-Lesekopf an den Anschlussklemmen 1 und 2 des 4-poligen Steckers X2 am Interface-Modul an.
- 2. Schließen Sie die RS-485-Datenleitung zum WCS-Lesekopf an den Anschlussklemmen 4 und 5 des Steckers X1 an.

RS-485-Busabschluss aktivieren

Wird das Interface-Modul als physikalisch erstes oder letztes Gerät in einem RS-485-Bus betrieben bzw. wenn Sie nur einen Lesekopf am Interface-Modul betreiben, muss an diesem Interface-Modul ein Busabschluss erfolgen.

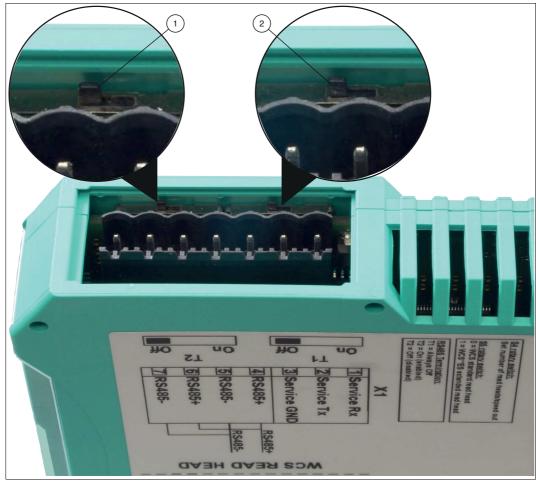


Abbildung 4.1 RS-485-Busabschluss

Stellen Sie den Schiebeschalter T2 (1) auf "On", um den Busabschluss (150 Ω) zu aktivieren.

Hinweis!

Der Schiebeschalter T1 (2) ist ohne Funktion und bleibt auf Schalterstellung "Off"

4.3 Anschluss an das Netzwerk

Der Anschluss an EtherNet/IP erfolgt über die beiden Buchsen RJ 45 EtherNet/IP P1 und P2 an der Unterseite des Interface-Moduls. Die vordere Buchse ist mit P1 bezeichnet, die hintere Buchse ist mit P2 bezeichnet. Verbinden Sie das Gerät mit dem EtherNet/IP-Netzwerk an der Schnittstelle mit der Bezeichnung "P1" (Kabel vom Master) bzw. "P2" (weiterführendes Kabel zum nächsten Slave).

Hinweis!

Die Leitung zu den benachbarten Ethernet-Teilnehmern muss mindestens 0,6 m lang sein.

Pinbelegung P1 & P2

Klemme		Bezeichnung
1	TD+	Sendeleitung +
2	TD-	Sendeleitung -
3	RD+	Empfangsleitung +
4	n.c.	Nicht verbunden
5	n.c.	Nicht verbunden
6	RD-	Empfangsleitung -
7	n.c.	Nicht verbunden
8	n.c.	Nicht verbunden

Tabelle 4.3 Klemmenanschluss der 8-poligen Buchsen "RJ45 EtherNet/IP"

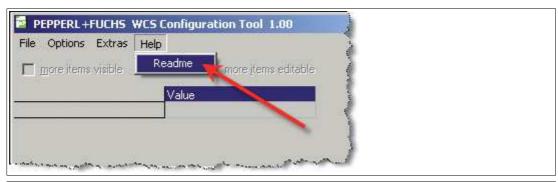
Gerät an Steuerung anschließen

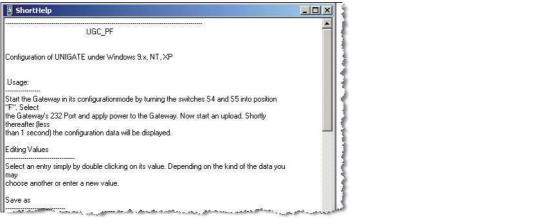
Stecken Sie den Ethernet-Verbindungsstecker auf die RJ45-Buchse. Verwenden Sie einen Datenkabel, das mindestens der Kategorie Cat. 5 entspricht.

4.4 Einstellen der IP-Adresse und Subnet Maske

Für die Einstellung der Geräte-IP Adresse, der Subnet Maske und der Gateway-IP Adresse benötigen Sie das WCS-Konfigurations-Tool UGC_PF.

Software-Tool aus dem Internet laden


Das Software-Tool finden Sie als Download auf unserer Internetseite unter www.pepperlfuchs.com.


- Geben Sie die Produktbezeichnung oder Artikelnummer in das Feld Produkt-/Schlagwortsuche ein und klicken Sie auf "Suche".
- 2. Wählen Sie aus der Liste der Suchergebnisse Ihr Produkt aus.
- 3. Klicken Sie in der Liste der Produktinformationen auf Ihre benötigte Information, z. B. Software.

→ Hier finden Sie in einer Listendarstellung alle verfügbaren Downloads.

WCS-Konfigurations-Tool UGC_PF

Entpacken Sie die in der Zip-Datei enthaltenen Dateien in ein Verzeichnis Ihrer Wahl auf Ihrem Computer. Starten Sie UGC_PF.exe und wählen Sie "Help" in der Menüleiste. Wählen Sie "Readme" im Drop-down Menü. Hier finden Sie eine kurze Funktionsbeschreibung des WCS-Konfigurations-Tools UGC_PF.

- Stellen Sie die beiden Drehschalter S4 und S5 an der Frontseite des Interface-Moduls in Position F.
- 2. Stellen Sie eine Verbindung zwischen der RS 232-Schnittstelle des Interface-Moduls und Ihres PCs her.
- Laden Sie mittels "Upload" die Konfiguration des Interface-Moduls in die Softwareoberfläche.
- 4. Wählen Sie durch Doppelklick den zu bearbeitenden Eintrag und editieren Sie diesen. Verfahren Sie auf die gleiche Weise mit allen zu ändernden Einträgen bis die Konfiguration Ihren Vorgaben entspricht.
- 5. Speichern Sie die Konfiguration mittels "Safe" bzw. "Safe as".

PEPPERL+FUCHS WC5 Configuration Tool 1.00 _ O X File Options Extras Help more items editable more items visible Value Parameter Software revision V 3.1 Ethernet/IP (Script) Device type Script revision 36 Serial Number 36891218 Script memory 16320 Data memory 8192 IP Address UNIGATE 192.168.2.210 255.255.255.0 Subnet-Mask IP Address Gateway 0.0.0.0 DHCP disabled COM1 upload finished 64 bytes V 1.00 (385)

6. Schreiben Sie die geänderte Konfiguration in das Interface-Modul mittels "Download".

Die Konfiguration ist nun gemäß Ihrer Vorgaben geändert und nichtflüchtig im Interface-Modul gespeichert.

Einstellen der Drehschalter S4 und S5

- 1. Schalten Sie das Interface-Modul aus
- 2. Schließen Sie das WCS-Konfigurations-Tool UGC_PF
- 3. Lösen Sie die RS 232 Verbindung zwischen Interface-Modul und PC
- 4. Stellen Sie den Drehschalter S4 in die Position gemäß Ihrer Hardware-Konfiguration.
- 5. Stellen Sie den Drehschalter S5 in Position gemäß Ihrer Hardware-Konfiguration.
 - → Das Interface-Modul ist nun bereit.

4.5 Netzwerkeinstellungen

Das Interface-Modul nutzt impliziertes Messaging. Daher werden alle Positions- und Geschwindigkeitsdaten direkt in der Steuerung abgebildet. Die folgende Abbildung zeigt die richtige Einstellung zur Einbindung des Interface-Moduls in das Netzwerk.

Parameter	Wert
Input assembly	101
Output assembly	100
Configuration assembly	4
Minimum RPI	20 ms

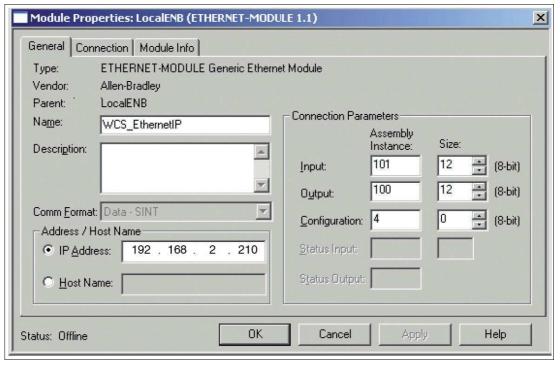


Abbildung 4.2 Netzwerkeinstellungen

Tragen Sie alle Werte mit Ausnahme der Werte für "Input Size" und "Output Size" in die Eingabemaske Ihres Projektierungs-Tools ein. Die Werte für "Input Size" und "Output Size" hängen von der Anzahl der WCS-Leseköpfe und der benötigten Datenausgabe ab. Diese müssen Sie entsprechend Ihrer Hardware-Konfiguration anpassen.

Werte für "Input Size" und "Output Size"

Hardware-Konfiguration	"Input Size" und "Output Size"
1 WCS-Lesekopf	4 Bytes
2 WCS-Leseköpfe	8 Bytes
3 WCS-Leseköpfe	12 Bytes
4 WCS-Leseköpfe	16 Bytes
1 WCS-Lesekopf mit Geschwindigkeitsausgabe	6 Bytes
2 WCS-Leseköpfe mit Geschwindigkeitsausgabe	12 Bytes
3 WCS-Leseköpfe mit Geschwindigkeitsausgabe	18 Bytes
4 WCS-Leseköpfe mit Geschwindigkeitsausgabe	24 Bytes

Beispiel:

Sie haben am Interface-Modul 3 WCS-Leseköpfe angeschlossen und möchten die Geschwindigkeitsausgabe nutzen. Tragen Sie in die beiden Felder "Input Size" und "Output Size" jeweils den Wert 18 ein.

4.6 Datenformat für Module

In der Betriebsart "only Position" sind pro WCS-Lesekopf 4 Bytes reserviert.

Bit	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	0	P18	P17	P16
Byte 1	P15	P14	P13	P12	P11	P10	P09	P08
Byte 2	P07	P06	P05	P04	P03	P02	P01	P00
Byte 3	0	0	0	DB	ERR	OUT	A1	A0

Tabelle 4.4 Datenformat für jeden angeschlossenen WCS-Lesekopf in der Betriebsart "only Position", Lesekopfadresse = 0...3

In der Betriebsart "Position and Speed" sind pro WCS-Lesekopf 6 Bytes reserviert.

Bit	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	0	P18	P17	P16
Byte 1	P15	P14	P13	P12	P11	P10	P09	P08
Byte 2	P07	P06	P05	P04	P03	P02	P01	P00
Byte 3	0	0	0	DB	ERR	OUT	A1	A0
Byte 4	0	0	0	0	0	0	0	0
Byte 5	0	S06	S05	S04	S03	S02	S01	S00

Tabelle 4.5 Datenformat für jeden angeschlossenen WCS-Lesekopf in der Betriebsart "Position and Speed", Lesekopfadresse = 0...3

Pxx: Positionsdaten, P00 = LSB

Sxx: Geschwindigkeit (in Vielfachen von 0.1 0,1 m/s), S00 = LSB

Beispiel: Byte 5 = 00011011 = 27, entspricht 2.7 2,7 m/s A1, A0: Lesekopfadresse, 00 = WCS-Lesekopf #1 DB: Verschmutzungsanzeige, 1 = Reinigung erforderlich OUT: Codeschienenverlust, 0 = Codeschiene erkannt

ERR: Fehleranzeige, Fehlercode (LEDs)

Adress-Bits A1 und A0

A1	A0	Lesekopfadresse
0	0	Lesekopfadresse 0
0	1	Lesekopfadresse 1
1	0	Lesekopfadresse 2
1	1	Lesekopfadresse 3

Status Bits

DB	ERR	OUT	Beschreibung	Zustand Optik WCS-Lesekopf	
0	0	0	Aktueller Positionswert in P00P18 binär codiert	Gut	
0	0	1	WCS-Lesekopf außerhalb der Codeschiene, kein Positionswert	Gut	
			P0P18=0: WCS-Lesekopf teilweise außerhalb der Codeschiene		
			P0=1, P2P18=0: WCS-Lesekopf vollständig außerhalb der Codeschiene		
1	0	0	Aktueller Positionswert in P00P18 binär codiert	Schlecht	
1	0	1	Kein Positionswert, WCS-Lesekopf außerhalb der Codeschiene	Schlecht	
X	1	Х	Kein Positionswert, Fehlermeldung vom WCS-Lese- kopf, Fehlernummer in P00P18 binär codiert	-	

5 Kommunikation mit WCS-Leseköpfen

5.1 Datenprotokolle

Datenprotokoll 1

Aufforderungsbyte zum Lesekopf									
Byte	Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
	1 0 0 0 F0 0 A1 A0								

Antwor	Antworttelegramm vom Lesekopf										
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Byte 1	0	OUT	ERR	A1	A0	DB	P18	P17	P16		
Byte 2	0	P15	P14	P13	P12	P11	P10	P09	P08		
Byte 3	0	P07	P06	P05	P04	P03	P02	P01	P00		
Byte 4	0	OUT	ERR	A1	A0	DB	P18	P17	P16		
Byte 5	0	P15	P14	P13	P12	P11	P10	P09	P08		
Byte 6	0	P07	P06	P05	P04	P03	P02	P01	P00		

Datenprotokoll 1 mit Positions- und Geschwindigkeitsausgabe

Aufforderungsbyte zum Lesekopf										
Byte	Byte Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
	1 1 0 0 0 0 0 A1 A0									

Antwor	Antworttelegramm vom Lesekopf									
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Byte 1	0	OUT	ERR	A1	A0	DB	P18	P17	P16	
Byte 2	0	P15	P14	P13	P12	P11	P10	P09	P08	
Byte 3	0	P07	P06	P05	P04	P03	P02	P01	P00	
Byte 4	0	SST	SP6	SP5	SP4	SP3	SP2	SP1	SP0	
Byte 5	0	OUT	ERR	A1	A0	DB	P18	P17	P16	
Byte 6	0	P15	P14	P13	P12	P11	P10	P09	P08	
Byte 7	0	P07	P06	P05	P04	P03	P02	P01	P00	
Byte 8	0	SST	SP6	SP5	SP4	SP3	SP2	SP1	SP0	

Beschreibung der Protokolldaten

Ansprechen des Lesekopfes

F0	A1	A0	Lesekopfadresse
Х	0	0	Lesekopf Adresse 0
Х	0	1	Lesekopf Adresse 1
Х	1	0	Lesekopf Adresse 2
Х	1	1	Lesekopf Adresse 3
0	Х	х	Sende Positionswert
1	Х	х	Sende Diagnoseergebnis

Daten vom Lesekopf

Funk	Funktionsnummer für Lesekopf F0 = 0 (Sende Positionswert)							
ERR	DB	ОИТ	SST	Beschreibung	Zustand Optik Lesekopf			
0	0	0	Х	Aktueller Positionswert in P00 P18, binär codiert	gut			
0	0	1	Х	Lesekopf außerhalb der Codeschiene, kein Positionswert (siehe OUT-Meldung)	gut			
0	1	0	Х	Aktueller Positionswert in P00 P18, binär codiert	schlecht			
0	1	1	Х	Kein Positionswert, Lesekopf außerhalb der Codeschiene (siehe OUT-Meldung)	schlecht			
1	х	Х	Х	Kein Positionswert, Fehlermeldung von Lesekopf, Fehlernummer in P00 P04 binär codiert	-			
Х	x	Х	1	aktuelle Geschwindigkeit unbekannt, letzte Geschwindigkeit in SP0 SP6 *)	-			
Х	Х	Х	0	aktuelle Geschwindigkeit in SP0 SP6 *)	-			

*) Geschwindigkeitsinformation

Die Geschwindigkeit wird in den Bits SP0 bis SP6 binär codiert.

SP0SP6	SP6 Geschwindigkeit in 0,1 m/s, binär codi		
	0:	Geschwindigkeit kleiner 0,1 m/s	
	126:	Geschwindigkeit größer 12,5 m/s	
	127:	Geschwindigkeit unbekannt	
Beispiel:			
SP0SP6	1:	Geschwindigkeit 0,1 m/s	
	37:	Geschwindigkeit 3,7 m/s	
	112:	Geschwindigkeit 11,2 m/s	

Diagnosefunktion F0=1

Über das Aufforderungsbyte zum Lesekopf kann dieser zur Diagnose der Optoelektronik aufgefordert werden. Dazu muss sich der Lesekopf außerhalb der Codeschiene befinden. Bei den Lesekopftypen WCS2B und WCS3B wird der Verschmutzungsgrad der optischen Einheit automatisch während des Betriebes ermittelt und bei zu hoher Verschmutzung das Diagnosebit (DB) gesetzt. Damit ist die spezielle Anforderung der Diagnose über F0 im Aufforderungsbyte an den Lesekopf nicht mehr notwendig. Die Funktion wird jedoch aus Gründen der Abwärtskompatibilität auch von den neuen Leseköpfen unterstützt.

Diagnosebit DB

Das Diagnosebit DB zeigt das Ergebnis der Selbstdiagnose des Lesekopfes an.

Funk	Funktionsnummer für Lesekopf F0 = 1 (Sende Diagnoseergebnis)							
ERR	DB	OUT	Beschreibung	Zustand Optik Lesekopf				
0	1	0	Diagnose ungültig, Lesekopf nicht außerhalb der Codes- chiene	-				
0	1	1	Diagnoseergebnis in P16 P18	-				
			P16 P18 = 0	gut				
			P16 P18 > 0	schlecht				
1	Х	Х	Fehlermeldung von Lesekopf, Fehlermeldung in P00 P04 binär codiert	-				

Verschmutzungserkennung

Die Leseköpfe, WCS2B und WCS3B, überprüfen permanent den Zustand der Optik. Wird ein Abfall der Lichtleistung der Infrarotsender, z. B. aufgrund von Verschmutzung der durchsichtigen Schutzschalen, erkannt, erhöht der Lesekopf automatisch die Lichtstärke. Bei zu hoher Verschmutzung wird eine Warnmeldung an die übergeordnete Steuerung gesendet (Diagnosebit DB=1). Durch die automatische Lichtanpassung im Lesekopf bleibt Ihnen genügend Zeit den Lesekopf im Rahmen der nächsten Wartung zu reinigen. Der Zustand "Verschmutzung erkannt" wird beim WCS3B-Lesekopf zusätzlich optisch signalisiert - die gelbe und die rote LED an der Stirnseite des Lesekopfes blinken im Wechseltakt. Zum Reinigen der Optik muss der Lesekopf von der Codeschiene genommen werden (Abziehen von der Montageplatte). Nach Reinigung der transparenten Schutzschalen wird die Verschmutzungsmeldung vom Lesekopf automatisch gelöscht. Sollte die Meldung trotz sorgfältiger Reinigung bzw. Austausch der Kunststoffschutzschalen nicht zurückgesetzt werden, liegt möglicherweise ein Fehler vor. In diesem Fall muss der Lesekopf zur Überprüfung eingeschickt werden.

OUT-Meldung

Funktio	Funktionsnummer für Lesekopf F0 = 0 (Sende Positionswert)							
ERR	DB	OUT	SST	Beschreibung	Zustand			
0	х	1	х	P00P18 = 0 -> Lesekopf befindet sich teilweise außerhalb der Codeschiene	OUT			
				P00 = 1, P02P18 = 0 -> Lesekopf befindet sich komplett außerhalb der Codeschiene	OUT A			

OUT bedeutet, dass der Positionswert nicht ermittelt werden kann, da die Lage der Codeschiene im Lesekopfspalt nicht korrekt ist.

OUT A (A=All) bedeutet, dass sich keine Codeschiene im Lesekopfspalt befindet, alle Lichtschranken des Lesekopfes melden Signal.

Die Meldung "OUT" kann erwünscht und richtig sein, z. B. wenn die Codeschiene unterbrochen ist und der Lesekopf diese Information zwischen den einzelnen Schienenstücken an die Steuerung sendet. Falls die "OUT"-Meldung nicht auftreten darf, sind folgende Prüfschritte durchzuführen:

Resultat der Überprüfung	Abhilfe
Oberkante der Codeschiene liegt außerhalb des Toleranzbereichs des Lesekopfs	Codeschiene genau ausrichtenLesekopf ausrichtenFührungssystem für Lesekopf einsetzen
Die Kunststoffschutzschalen von der opti- schen Einheit sind verschmutzt oder verkratzt	Optische Einheit reinigenFür Reinigung des Lesekopfs sorgenSchutzschalen wechseln
Fremdlichteinfall	Lesekopf vor Fremdlichteinfall schützen

Führen diese Maßnahmen nicht zur Lösung des Problems, ist der Lesekopf zur Überprüfung einzusenden.

5.2 Option-E - Extended, Typ WCS3B-LS*E*, RS-485

Für Fahrstrecken größer 314,573 m wird der Lesekopf **WCS3-Extended: WCS3B-LS*E*** mit RS-485-Schnittstelle eingesetzt. Hierbei kennzeichnet der Zusatz "E" im Typenschlüssel die Exended-Version für die verlängerbare Codeschiene. Es werden zwei Standard-Codeschienensegmente der Länge 0 ... 314,573 m mit dem Codeschienenverbinder WCS3-CS70-E miteinander verbunden, um eine maximale Codeschienenlänge von bis zu 629,146 m zu erreichen. Das erste Codeschienensegment muss immmer vollständig sein, bzw. mit der Position bei 314,573 m enden. Das zweite Codeschienensegment kann eine kürzere Länge von 314,573 bis X m betragen, muss jedoch in absteigender Position eingesetzt werden, beginnend mit 314,573 m.

Datenprotokoll Extended mit Positionsausgabe

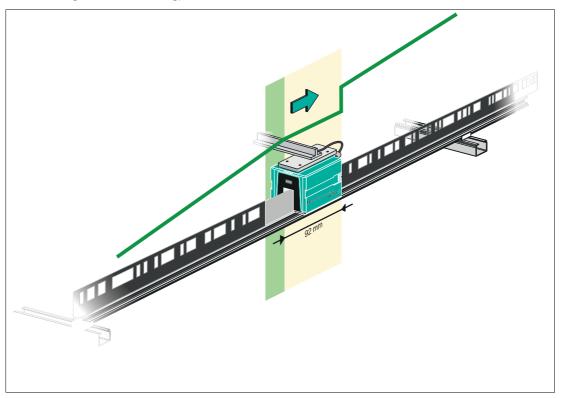
Aufforderungsbyte zum Lesekopf									
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1	0	1	1	0	0	1	A1	A0

Antwor	Antworttelegramm vom Lesekopf								
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	0	A1	A0	OVL	/VAL	DB	OUT ALL	OUT	ERR
Byte 2	0	0	0	0	0	XP19	XP18	XP17	XP16
Byte 3	0	XP15	XP14	XP13	XP12	XP11	XP10	XP09	XP08
Byte 4	0	XP07	XP06	XP05	XP04	XP03	XP02	XP01	XP00
Byte 5	0	xor B1.7B4 .7	xor B1.6B4 .6	xor B1.5B4 .5	xor B1.4B4 .4	xor B1.3B4 .3	xor B1.2B4 .2	xor B1.1B4 .1	xor B1.0B4 .0

Datenprotokoll mit Positions- und Geschwindigkeitsausgabe

Aufforderungsbyte zum Lesekopf									
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1	1	1	1	0	0	1	A1	A0

Antwort	Antworttelegramm vom Lesekopf								
Byte	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 1	0	A1	A0	OVL	/VAL	DB	OUT ALL	OUT	ERR
Byte 2	0	0	0	0	0	XP19	XP18	XP17	XP16
Byte 3	0	XP15	XP14	XP13	XP12	XP11	XP10	XP09	XP08
Byte 4	0	XP07	XP06	XP05	XP04	XP03	XP02	XP01	XP00
Byte 5	0	SST	SP6	SP5	SP4	SP3	SP2	SP1	SP0
Byte 6	0	B1.7B5 .7	B1.6B5 .6	1.5B5.5	B1.4B5 .4	B1.3B5 .3	B1.2B5 .2	B1.1B5 .1	B1.0B5 .0


Beschreibung der Protokolldaten

Byte 1		
A1, A0		Adressbits des Lesekopfs. Adressen 0 3, binäre Codierung
OVL	0	Lesekopf befindet sich in lesbarem Bereich der Codeschiene
	1	Lesekopf befindet sich auf WCS3-Codeschienenverbinder (Überla- gerungsbereich der Codeschienensegmente)
VAL	0:	Position gültig
	1	Position ungültig; Codeschienen Bereich ist nach Zuschalten der Versorgungsspannung nicht eindeutig
DB	0	Standardmäßig ist das Diagnosebit nicht gesetzt
	1	Diagnosebit, Lesekopf verschmutzt
OUT ALL	0	Lesekopf in Codeschiene
	1	Lesekopf vollständig außerhalb der Codeschiene
OUT	0	Lesekopf in Codeschiene
	1	Lesekopf teilweise außerhalb der Codeschiene. Keine gültige Position vorhanden
ERR	0	Kein Fehler
	1	Fehlermeldung (Mögliche Fehler in XP00 XP01 binäre Codierung)
Byte 2 4 XP00 XP19		Aktueller Positionswert, binäre Codierung
Byte 5 ¹		
SP0 SP6		Aktuelle Geschwindigkeit in 0,1 m/s, binäre Codierung Beispiel: 1: Geschwindigkeit = 0,1 m/s 37: Geschwindigkeit = 3,7 m/s 112: Geschwindigkeit = 11,2 m/s
SST	0	Geschwindigkeit gültig
	1	Aktuelle Geschwindigkeit unbekannt. Letzte gültige Geschwindigkeit in SP0 SP6 hinterlegt
Byte 5/6		Exklusiv oder Verknüpfung Byte 1 Byte 4/5

^{1.} bei Datenprotokoll mit Geschwindigkeitsausgabe

Verhalten des Lesekopfes im Bereich des WCS3-Codeschienenverbinders (WCS3-CS70-E)

Der Lesekopf behält beim Durchfahren des WCS3-Codeschienenverbinders die zuletzt gemessene Endposition des ersten Codeschienensegments (Position = 393203) bei. Gleichzeitig wird das Bit OVL gesetzt. Sobald die erste gültige Position des zweiten Codeschienensegments gelesen wird, wechselt der Lesekopf auf die erste gültige Position des zweiten Codeschienensegments (Position = 393318). Die erste gültige Position des zweiten Codeschienensegments ist mit einem Offset von ca. + 92 mm bemaßt (vgl. gelb markierter Bereich in der nachfolgenden Abbildung).

Vorsicht!

Unerlaubter Zustand

Falls Sie den WCS3-Codeschienenverbinder an die falsche Position montieren, z.B. an einer Zwischenposition der Codeschiene, wird beim Überfahren dieses Codeschienensegments das Bit OUT gesetzt.

Hinweis!

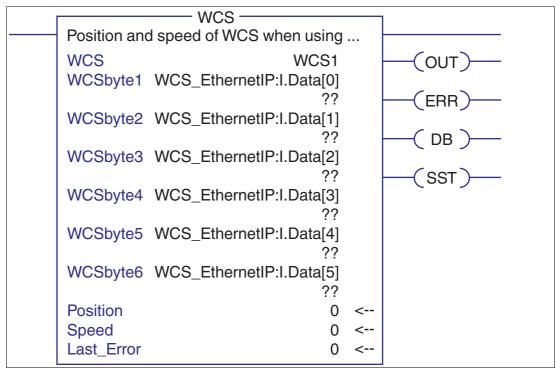
Zykluszeit

Beachten Sie, dass die Zykluszeit bei der Extended-Variante um t = 10 ms zu der Standard-Variante abweicht.

Anlaufverhalten des Lesekopfes

Nach dem Zuschalten der Versorgungsspannung wird die X-Position auf die letzte gültige X-Position und das Bit VAL ist auf 1 gesetzt.

Der Geschwindigkeitswert ist 127 und das SST Bit ist auf 1 gesetzt.


Nachdem der Lesekopf um ca. 5 mm verfährt, wird das Bit VAL auf 0 gesetzt und die X-Position erhält eine neue berechnete X-Position. Die letzte gültige X-Position wird nichtflüchtig gespeichert, wenn erkannt wird, dass die Spannung abgeschaltet wird (\pm Ub < 9,9 V DC).

6 Anhang

6.1 Software-Tool für RSLogix 5000, V15 und V17

Dieses kleine Hilfsprogramm teilt die 4 bzw. 6 Byte langen Telegramme jedes einzelnen WCS-Lesekopfs in die Positionswerte, die Geschwindigkeitswerte und Diagnose-Informationen auf.

- Position: Positionsdaten des Lesekopfs
- Speed: Geschwindigkeit des Lesekopfes = Speed-Wert x 0,1 m/s
- Last Error: Falls ein Fehlerbit aktiv ist, so wird dies hier angezeigt. Es kann vom Benutzer zurückgesetzt werden.
- SST: Statusbit Geschwindigkeit, normalerweise "0". "1" bei ungültigem Geschwindigkeitswert
- Out: Codeschiene außerhalb des Lesekopfes
- ERR: Ein Fehler ist aufgetreten. Prüfen Sie "Last Error" für Details
- DB: verschmutze Optik. Bitte reinigen Sie das Abtastsystem mit einem weichen, feuchten Tuch ohne Reinigungszusätze

6.2 Leitungsführung im RS-485-Bus

Die Datenkabel sollen vom ersten bis zum letzten Busteilnehmer eine Linienverbindung bilden. Diese Linienverbindung muss mit einem Abschlusswiderstand enden.

In den WCS-Leseköpfen und beim Interface-Modul sind die RS-485-Abschlusswiderstände integriert und können zu- oder abgeschaltet werden.

Falls nur **ein WCS-Lesekopf** angeschlossen wird, befindet sich ein Gerät am Anfang und ein Gerät am Ende der Datenleitung.

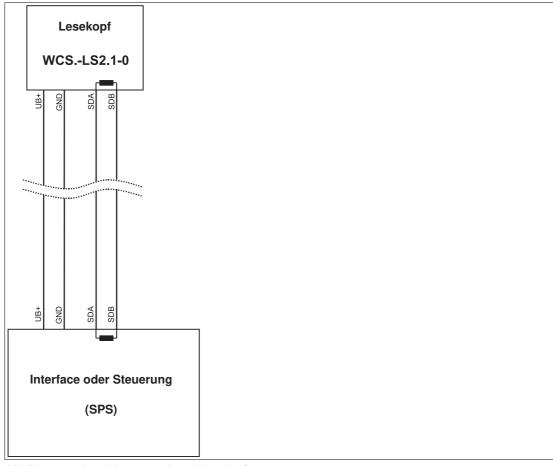


Abbildung 6.1 Anschluss von einem Lesekopf

Falls **2 WCS-Leseköpfe** an einem Interface-Modul angeschlossen werden, gibt es 2 Verdrahtungsvarianten:

Variante A:

Ein WCS-Lesekopf befindet sich am Anfang und ein WCS-Lesekopf am Ende der Datenleitung. Bei beiden WCS-Leseköpfen ist der RS–485-Abschlusswiderstand aktiviert. Das Interface-Modul liegt dazwischen und erhält keinen RS–485-Abschlusswiderstand. Jeder WCS-Lesekopf wird mit einem separaten Datenkabel am Interface-Modul angeschlossen.

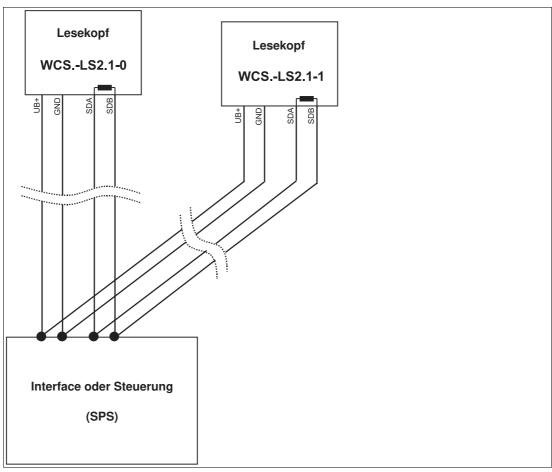


Abbildung 6.2 Anschluss von zwei Leseköpfen, Variante A

Variante B:

Das Interface-Modul befindet sich am Anfang der Datenleitung, ein WCS-Lesekopf befindet sich am Ende der Datenleitung. Beide benötigen den RS 485-Abschlusswiderstand. Der zweite WCS-Lesekopf wird über eine kurze Stichleitung (Länge < 1 m) an die Linienverbindung zwischen Interface-Modul und erstem WCS-Lesekopf angeschlossen. Für den Anschluss der Stichleitung verwenden Sie ein Busterminal.

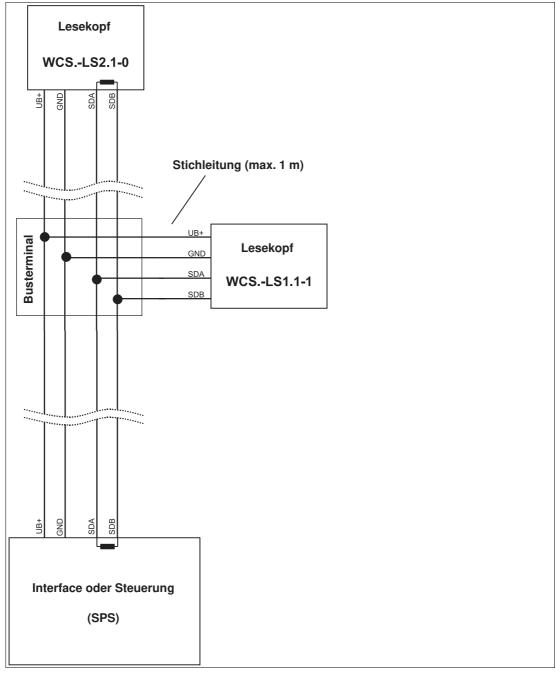


Abbildung 6.3 Anschluss von zwei Leseköpfen, Variante B

Sie entscheiden in Abhängigkeit von der Anwendung, welche Verdrahtungsvariante günstiger ist. Falls Sie **drei** oder **vier WCS-Leseköpfe** an einem Interface-Modul betreiben, schließen Sie diese über Stichleitungen an wie in Variante B gezeigt.

6.3 Datenkabel

Für den elektrischen Anschluss wird ein geschirmtes Datenkabel mit paarweise verdrillten Adern eingesetzt. Von Pepperl und Fuchs können Sie dazu passende vorkonfektionierte M12-Kabeldosen () oder konfektionierbare M12-Kabeldosen sowie Datenkabel, beziehen.

Datenkabel WCS-DC*

Es werden 2 Datenkabeltypen angeboten:

- WCS-DCS f
 ür die station
 äre Kabelverlegung
- WCS-DCF für die Verlegung im Kabelschlepp und Schleppketten.

Die Datenkabel sind paarverseilt und haben ein verzinntes Kupferabschirmgeflecht. Das Abschirmgeflecht umschließt alle Aderpaare. Die Parameter der Datenkabel, die für RS-485-, SSI- und CANopen-Datenübertragung geeignet sind, sind in untenstehender Tabelle aufgeführt.

	WCS-DCS	WCS-DCF
Kapazität (Ader-Ader)	120 pF/m	60 pF/m
Querschnitt	0,14 mm ²	0,25 mm ²
Aderzahl	6 (3 x 2)	6 (3 x 2)
Außendurchmesser	5,8 mm	7,5 mm
Temperaturbereich	-40 80 °C	-40 70 °C

Kabelverlegung

Grundvoraussetzung für eine störungsfreie Datenübertragung ist, dass die Datenkabel so verlegt werden, dass Einkopplungen von elektromagnetischen Feldern und Störungen ausgeschlossen sind. Für eine EMV-gerechte Leitungsführung ist es notwendig die Leitungen in Leitungsgruppen einzuteilen und diese Gruppen getrennt zu verlegen.

Gruppe A

- geschirmte Datenleitung (auch analog)
- ungeschirmte Leitung f
 ür Gleich- und Wechselspannungen 0 ... 60 V
- geschirmte Leitung f
 ür Gleich- und Wechselspannungen 0 ... 230 V
- Koaxialleitungen f

 ür Monitore

Gruppe B

ungeschirmte Leitung f
 ür Gleich- und Wechselspannungen 60 ... 400 V

Gruppe C

ungeschirmte Leitung für Gleich- und Wechselspannungen größer 400 V

Schirmung von Leitungen

Das Schirmen ist eine Maßnahme zur Dämpfung von elektromagnetischen Störungen. Damit diese Störströme nicht selbst zur Störquelle werden, ist eine niedrigohmige bzw. impedanzarme Verbindung zum Schutzleiter besonders wichtig.

Die WCSB2B- und WCS3B-Leseköpfe haben keine Anschlussmöglichkeit für den Kabelschirm. Der Kabelschirm wird im Schaltschrank niederohmig (großflächig) mit dem Anlagenpotential verbunden. Bei hohen elektromagnetischen Störstrahlungen wird empfohlen, den Schirm des Datenkabels zusätzlich in unmittelbarer Nähe des Lesekopfes durch eine Erdungsschelle niederohmig mit dem Anlagenpotenzial zu verbinden.

Kabellänge

Für die RS-485-Datenübertragungsstrecke muss ein 4-adriges, paarverseiltes und abgeschirmtes Datenkabel (twisted pair) verwendet werden. Ein Aderpaar wird für die Versorgungsspannung benutzt und ein Aderpaar für den RS-485-Datenanschluss. Die maximale Länge des Kabels hängt einerseits von der Kapazität des Datenkabels (Ader-Ader) für die Datenübertragung und andererseits vom Querschnitt der Leitungen für die Spannungsversorgung der Leseköpfe ab. Für die Datenübertragung ist ein kleiner Aderquerschnitt und damit eine kleine Kabelkapazität von Vorteil, für die Spannungsversorgung hingegen wird ein möglichst großer Querschnitt benötigt. Untenstehende Tabelle zeigt die möglichen Leitungslängen in Abhängigkeit zum Kabelquerschnitt.

Kabelquer-		Anzahl Heizun	Leseköp g	ofe ohne		Anzahl Leseköpfe mit Heizung			
schnitt	AWG ¹	1	2	3	4	1	2	3	4
0,14 mm ²	~ 26	200 m	110 m	70 m	50 m	15 m	10 m	7 m	5 m
0,22 mm ²	~ 24	320 m	170 m	110 m	80 m	30 m	15 m	10 m	7 m
0,25 mm ²	-	350 m	190 m	130 m	90 m	35 m	17 m	12 m	8 m
0,28 mm ²	-	400 m	220 m	150 m	110 m	40 m	20 m	15 m	10 m
0,34 mm ²	~ 22	500 m	250 m	180 m	140 m	50 m	25 m	17 m	12 m
0,50 mm ²	~ 20	500 m	400 m	270 m	200 m	70 m	35 m	25 m	17 m

American Wire Gauge, in Nordamerika gebräuchliches System zur Angabe von Drahtdurchmessern in der Elektrotechnik.

Bei den Berechnungen wurde der ungünstigste Fall angenommen: Alle Leseköpfe befinden sich am Ende der Datenleitung. Bei großen Leitungslängen und beim Anschluss von mehreren WCS2-Leseköpfen mit Heizung, können 6-adrige Datenkabel (3 x 2) eingesetzt werden. Bei diesen Datenkabeln werden zwei Paare für die Spannungsversorgung (Verdoppelung des Kabelquerschnitts) und ein Paar für die RS-485-Datenleitung verwendet. Untenstehende Tabelle zeigt die möglichen Leitungslängen in Abhängigkeit der Kabelkapazität (Ader-Ader). Die Anzahl der angeschlossenen Leseköpfe ist dabei ohne Bedeutung.

Kapazität	RS-485-Schnittstelle						
(Ader-Ader)	19,2 kb	62,5 kb	187,5 kb				
60 pF	500 m	500 m	300 m				
90 pF	500 m	450 m	275 m				
120 pF	500 m	400 m	250 m				

Übersicht Kabel

Die nachfolgend aufgeführten Kabeltypen stellen eine Auswahl der Pepperl+Fuchs angebotenen Typen dar. Weiter Kabeltypen finden Sie auf unserer Webseite.

Hinweis!

Beachten Sie bei selbst konfektionierbaren Kabeln die Leitungslänge-Beschränkungen, die durch die Spezifikation der Schnittstelle vorgegeben ist. In den jeweiligen Schnittstellenkapiteln finden Sie Empfehlungen für die maximale Kabellänge.

RS-485 (LS1xx*, LS2xx*)

Kabel	Beschreibung
Kabel vorkonfektioniert	
V15-G-2M-PUR-ABG	M12-Kabeldose, 5-polig, gerade, 2 m PUR-Leitung, geschirmt
V15-G-5M-PUR-ABG	M12-Kabeldose, 5-polig, gerade, 5 m PUR-Leitung, geschirmt
V15-G-10M-PUR-ABG	M12-Kabeldose, 5-polig, gerade, 10 m PUR-Leitung, geschirmt
Kabeldosen und Meterw	are konfektionierbar
V15-G-ABG-PG9	M12-Kabeldose 5-polig, gerade, konfektionierbar, geschirmt
V15-G-ABG-PG9-FE	M12-Kabeldose 5-polig, gerade, konfektionierbar, geschirmt mit Erdungsklemme
V15-G-PG9	M12-Kabeldose 5-polig, gerade, konfektionierbar
V15-W-PG9	M12-Kabeldose 5-polig, gewinkelt, konfektionierbar
WCS-DCS	Meterware, Datenkabel 6-polig + Schirm, 0,14 mm ² 3x2 Adern paarverseilt (twisted pair)
WCS-DCF	Meterware, Datenkabel 6-polig + Schirm, 0,25 mm ² 3x2 Adern paarverseilt (twisted pair), schleppkettentauglich

Your automation, our passion.

Explosionsschutz

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet

