
PGV\*-F213-B16-1.5M-\*
Auflicht-Positioniersystem

Handbuch







Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

### Weltweit

Pepperl+Fuchs-Gruppe Lilienthalstr. 200 68307 Mannheim Deutschland

Telefon: +49 621 776 - 0

E-Mail: info@de.pepperl-fuchs.com https://www.pepperl-fuchs.com

| 1 | Einlei              | Einleitung5                                                                      |    |  |  |  |  |  |
|---|---------------------|----------------------------------------------------------------------------------|----|--|--|--|--|--|
|   | 1.1                 | Inhalt des Dokuments                                                             |    |  |  |  |  |  |
|   | 1.2                 | Zielgruppe, Personal                                                             | 5  |  |  |  |  |  |
|   | 1.3                 | Verwendete Symbole                                                               | 6  |  |  |  |  |  |
| 2 | Produktbeschreibung |                                                                                  |    |  |  |  |  |  |
|   | 2.1                 | Einsatz und Anwendung                                                            | 7  |  |  |  |  |  |
|   | 2.2                 | CANopen-Schnittstelle                                                            | 8  |  |  |  |  |  |
|   | 2.3                 | LED-Anzeigen                                                                     | 9  |  |  |  |  |  |
|   | 2.4                 | Zubehör                                                                          | 11 |  |  |  |  |  |
| 3 | Instal              | lation                                                                           | 12 |  |  |  |  |  |
|   | 3.1                 | Montage des Lesekopfes                                                           | 12 |  |  |  |  |  |
|   | 3.2                 | Anbringung des Codebands                                                         | 13 |  |  |  |  |  |
|   | 3.3                 | Elektrischer Anschluss                                                           | 23 |  |  |  |  |  |
| 4 | Inbetr              | iebnahme                                                                         | 24 |  |  |  |  |  |
|   | 4.1                 | Richtungsentscheidung                                                            | 24 |  |  |  |  |  |
|   | 4.2                 | Richtungsentscheidung über das Protokoll                                         | 24 |  |  |  |  |  |
|   | 4.3<br>4.3.1        | Parametrierung mittels Codekarten  Die Codekarten "CANCEL", "USE", und "DEFAULT" |    |  |  |  |  |  |
| 5 | Betrie              | eb und Kommunikation                                                             | 27 |  |  |  |  |  |
|   | 5.1                 | Datenaustausch im CANopen-Bus                                                    | 27 |  |  |  |  |  |
|   | 5.1.1               | Allgemeines zu CANopen                                                           |    |  |  |  |  |  |
|   | 5.1.2<br>5.1.3      | Technische Grundlagen zu CANopen                                                 |    |  |  |  |  |  |
|   |                     | .3.1 Orientierung O                                                              |    |  |  |  |  |  |
|   |                     | .3.2 Seite S                                                                     |    |  |  |  |  |  |
|   | 5.1.4               | LSS-Service                                                                      | 50 |  |  |  |  |  |
|   | 5.1.5               | Objekt 3001                                                                      |    |  |  |  |  |  |
|   | 5.2                 | Betrieb mit Steuercodes                                                          |    |  |  |  |  |  |
|   | 5.3                 | Betrieb im Reparaturfall                                                         |    |  |  |  |  |  |
|   | 5.4                 | Elektrischer Schaltausgang                                                       | 53 |  |  |  |  |  |
| 6 | Anhar               | ng                                                                               | 54 |  |  |  |  |  |
|   | 6.1                 | ASCII-Tabelle                                                                    | 54 |  |  |  |  |  |
|   | 6.2                 | Codekarten mit besonderer Funktion                                               | 55 |  |  |  |  |  |
|   | 6.3                 | Codekarten zur Einstellung der Baudrate                                          | 58 |  |  |  |  |  |

2021-05

| 6.4 | Codekarten für Terminierungswiderstand        | 60 |
|-----|-----------------------------------------------|----|
| 6.5 | Codekarten zur Einstellung der Feldbusadresse | 61 |

# 1 Einleitung

### 1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- · Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung



#### Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Die Dokumentation besteht aus folgenden Teilen:

- · vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- · weitere Dokumente

# 1.2 Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.

2021-05

# 1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

### Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:



#### Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.



### Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.



#### Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

### Informative Hinweise



## Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.



## Handlungsanweisung

Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.



# 2 Produktbeschreibung

# 2.1 Einsatz und Anwendung

# Bestimmungsgemäße Verwendung

Dieses Gerät stellt zusammen mit auf dem Boden aufgeklebten DataMatrix-Codebändern und Tags mit aufgedruckten DataMatrix-Codes ein hochauflösendes Spurverfolgungs- und Positioniersystem dar. Es kann überall dort eingesetzt werden, wo fahrerlosen Transportsystemen (FTS) die genaue Positionierung an markanten Positionen entlang einer vorgegebenen Spur ermöglicht werden soll.

Der Lesekopf ist Teil des Positioniersystems im Auflichtverfahren von Pepperl+Fuchs. Er besteht unter anderem aus einem Kameramodul und einer integrierten Beleuchtungseinheit. Damit erfasst der Lesekopf ein auf dem Boden aufgeklebtes DataMatrix-Codeband zur Spurverfolgung. Zur Navigation innerhalb eines Rasters erkennt der Lesekopf DataMatrix-Tags. Der Lesekopf erkennt ebenfalls Steuercodes und Positionsmarken, welche in Form von DataMatrix-Codes auf einem selbstklebenden Codeband aufgedruckt sind.

Der Lesekopf befindet sich an einem fahrerlosen Transportsystem (FTS) und leitet dieses entlang des DataMatrix-Codebandes.

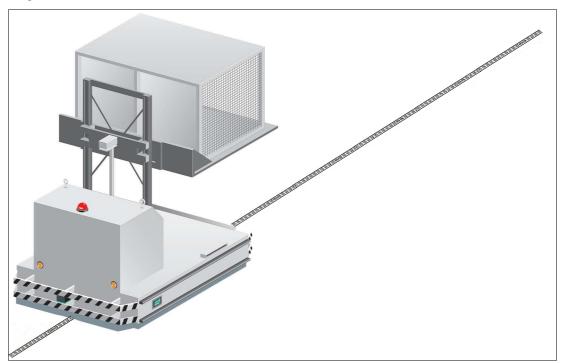



Abbildung 2.1 Fahrerloses Transportsystem mit DataMatrix-Codeband

# **Tag-Modus**

Neben der Spurverfolgung können Sie den Lesekopf im Tag-Modus betreiben. Dabei erkennt der Lesekopf DataMatrix-Tags, die typischerweise in einem Raster auf dem Boden aufgeklebt sind. Die einzelnen DataMatrix-Tags sind durchnummeriert und enthalten Positionsinformationen. Der Lesekopf meldet die Positionn des FTS in Bezug auf den Nullpunkt des DataMatrix-Tags an die Steuerung weiter.

Der Tag-Modus ermöglicht dem FTS, sich in einem beliebig großem Raster zu bewegen, ohne die Verfahrwege mit Spurbändern zu markieren.

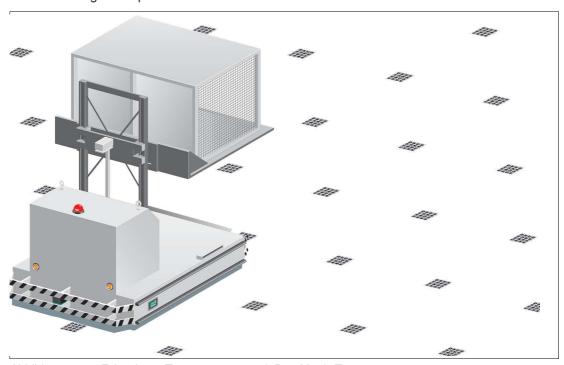



Abbildung 2.2 Fahrerloses Transportsystem mit DataMatrix-Tags

Der Lesekopf wechselt selbstständig zwischen dem Tag-Modus und der Spurverfolgung. Dadurch kann ein Transportsystem aus einem DataMatrix-Tag-Raster über eine DataMatrix-Codebandspur in ein weiteres Data-Matrix-Tag-Raster geführt werden.

Durch seine umfassende und einfache Parametrierfähigkeit und durch die konfigurierbaren Ein- und Ausgänge kann der Lesekopf optimal an die jeweilige Anwendung angepasst werden.

# 2.2 CANopen-Schnittstelle

Zur Kommunikation, wie bei der Parametrierung der Lesekopffunktionen oder dem Auslesen aktueller Prozessdaten im Betrieb, verfügt der Lesekopf über eine CANopen-Schnittstelle. Daten auf dem CANopen-Netzwerk können mit verschiedenen Baudraten zwischen 50 kBaud und 1 MBaud ausgetauscht werden. Der Lesekopf unterstützt die folgenden Baudraten:

- 50 kBAud
- 125 kBAud
- 250 kBaud
- 500 kBaud
- 1 MBaud



# 2.3 LED-Anzeigen

Der Lesekopf ist zur optischen Funktionskontrolle und zur schnellen Diagnose mit 2 Anzeige-LEDs ausgestattet.

### **LEDs**

| LED | Farbe     | Beschriftung               | Bedeutung                                                                         |
|-----|-----------|----------------------------|-----------------------------------------------------------------------------------|
| 1   | grün/gelb | COM STATE<br>COM ERROR     | Die LED zeigt den CANopen-Status des Lesekopfs und Fehler auf dem CANopen-Bus an. |
| 2   | grün/rot  | POWER ON<br>NO CODE/ ERROR | Code erkannt/ nicht erkannt<br>Error                                              |

Tabelle 2.1 LEDs

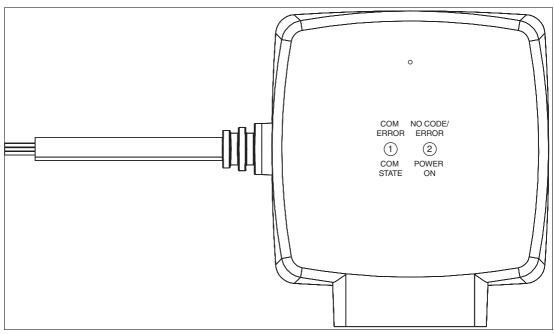



Abbildung 2.3 Anzeigeelemente

## LED-Zustände

| LED                 | Zustand                                                                                                                 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| aus                 | LED dauerhaft aus                                                                                                       |
| leuchtet dauerhaft  | LED statisch ein                                                                                                        |
| blinkt              | LED ist in Phasen ein- bzw. ausgeschaltet, mit einer Frequenzvon 2,5 Hz: "Ein" für 200 ms gefolgt von "Aus" für 200 ms. |
| leuchtet einmal auf | LED leuchtet einmal kurz auf (200 ms) gefolgt von einer längeres "Aus-Phase" (1000 ms bwz. 1 s).                        |
| Х                   | LED-Status hat keine Bedeutung                                                                                          |

# **CANopen-Status**

# Betriebsmodusanzeige

| LED     | 1    |                         | 2    |     |                                                                    |
|---------|------|-------------------------|------|-----|--------------------------------------------------------------------|
| Farbe   | grün | gelb                    | grün | rot | Beschreibung                                                       |
| Zustand | aus  | aus                     | Х    | Х   | Gerät ist ausgeschaltet.                                           |
|         | aus  | blinkt                  | Х    | Х   | Gerät befindet sich im Zustand "PREOPERATIONAL" (vor dem Betrieb). |
|         | aus  | leuchtet einmal<br>auf  | Х    | Х   | Gerät befindet sich im Zustand "STOPPED" (angehalten).             |
|         | aus  | leuchtet dauer-<br>haft | Х    | Х   | Gerät befindet sich im Zustand "OPERATIONAL" (in Betrieb).         |

## **Fehleranzeige**

| LED     | D 1 2                 |      |      |                                 |                 |
|---------|-----------------------|------|------|---------------------------------|-----------------|
| Farbe   | grün                  | gelb | grün | rot                             | Beschreibung    |
| Zustand | blinkt aus x          |      | Х    | Genereller Konfigurationsfehler |                 |
|         | leuchtet<br>dauerhaft | aus  | Х    | Х                               | CANopen-Bus aus |

## Statusanzeige

| LED     | 1         |           | 2    |     |                                                                                                                      |  |
|---------|-----------|-----------|------|-----|----------------------------------------------------------------------------------------------------------------------|--|
| Farbe   | grün      | gelb      | grün | rot | Beschreibung                                                                                                         |  |
| Zustand | 2x blinkt | 1x blinkt | Х    | Х   | Der Lesekopf wird, während des Startvorgangs<br>im "PREOPERATIONAL" -Status, vom<br>CANopen-Master nicht akzeptiert. |  |

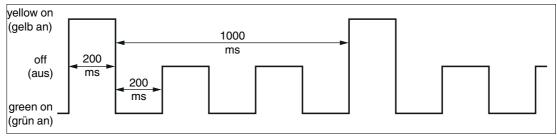



Abbildung 2.4 "CAN-Warngrenze erreicht" während des "PREOPERATIONAL"-Status

# Lesekopfstatus

| LED     | 1    |      | 2             |               |                         |
|---------|------|------|---------------|---------------|-------------------------|
| Farbe   | grün | gelb | grün          | rot           | Beschreibung            |
| Zustand | Х    | Х    | leuchtet aus  |               | Code erkannt            |
|         | х    | Х    | aus           | blinkt        | Code nicht erkannt      |
|         | Х    | Х    | x leuchtet    |               | Systemfehler            |
|         | х    | Х    | leuchtet, 1 s | aus           | Codekarte gelesen       |
|         | х    | Х    | aus           | leuchtet, 1 s | Codekarte nicht gelesen |



# 2.4 Zubehör

Passendes Zubehör bietet Ihnen enormes Einsparpotenzial. So sparen Sie nicht nur bei der Erstinbetriebnahme viel Zeit und Arbeit, sondern auch beim Austausch und Instandhaltung unserer Produkte.

Falls harte äußere Umgebungsbedingungen herrschen, kann entsprechendes Zubehör von Pepperl+Fuchs die Lebensdauer der eingesetzten Produkte verlängern.

| Bestellbezeichnung | Beschreibung                                     |
|--------------------|--------------------------------------------------|
| PGV-CC25-0*        | Codeband, versch. Steuercodes                    |
| PGV*M-CA25-0       | Positionsband, Anfangsposition 0, versch. Längen |
| PGV85-CT4          | DataMatrix-Tag                                   |

Tabelle 2.2 Zubehör

# 3 Installation

# 3.1 Montage des Lesekopfes

Montieren Sie den Lesekopf am fahrerlosen Transportsystem. Die Befestigung erfolgt mit 4 Schrauben am Befestigungsflansch des Lesekopfes. Montieren Sie den Lesekopf so, dass die Optik des Lesekopfes mit Ringlicht und Kameramodul zum Boden hin ausgerichtet ist.

Die Stabilität der Montage muss so beschaffen sein, dass im laufenden Betrieb der Schärfentiefebereich des Lesekopfes nicht verlassen wird.

Der Abstand des Lesekopfes zum Boden sollte dem Leseabstand des Lesekopfes entsprechen.

### **Optimaler Leseabstand**

| Bestellbezeichnung | Leseabstand [mm] |      | Sichtfeld (BxH)<br>[mm] |
|--------------------|------------------|------|-------------------------|
| PGV100R*           | 100              | ± 30 | 115 x 73                |

## Abmessungen, Lesekopf

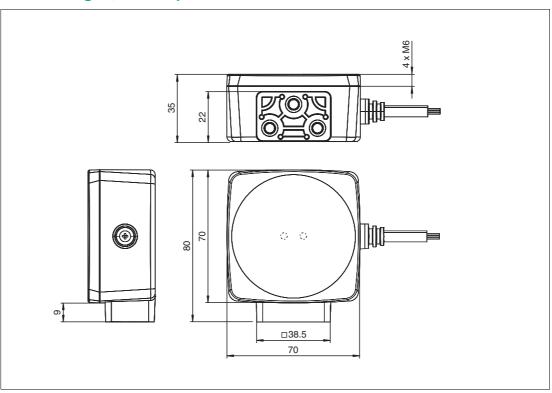



Abbildung 3.1 Abmessung Gehäuse



## Vorsicht!

Wählen Sie die Länge der Befestigungsschrauben so, dass die Einschraubtiefe in die Gewindeeinsätze am Lesekopf max. 8 mm beträgt!

Der Einsatz längerer Schrauben kann zu einer Beschädigung des Lesekopfes führen.



### Vorsicht!

Das maximale Drehmoment der Befestigungsschrauben darf 9 Nm nicht übersteigen! Ein Anziehen der Schrauben mit größerem Drehmoment kann zu einer Beschädigung des Lesekopfes führen.



# 3.2 Anbringung des Codebands

## Abmessungen des Codebands

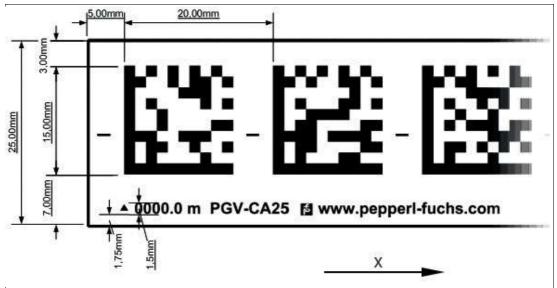



Abbildung 3.2 Abmessung DataMatrix-Codeband



### Vorsicht!

Ausrichtung

Der DataMatrix-Code befindet sich nicht auf der Mittellinie des Codebands.



### Vorsicht!

Stoßkanten

Wenn Sie an das Ende eines Codebands ein weiteres Codeband ansetzen, muss das Code-Raster von 20 mm erhalten bleibt.

Das Codeband besteht aus silikonfreier Polyesterfolie. Am unteren Rand des Codebandes finden Sie alle 100 mm eine Positionsmarkierung (siehe "Abmessungen, Codeband"). Diese Positionsmarkierung dient u. a. dem exakten Positionieren des Codebands bei der Anbringung.

Die Rückseite des Codebands trägt einen permanent haftenden modifizierten Klebstoff auf Acrylatbasis. Bringen Sie das selbstklebende Codeband entlang des gewünschten Verfahrwegs an. Gehen Sie dazu wie folgt vor:

Verlegen Sie das Codeband so, dass sich die Aufschrift **www.pepperl-fuchs.com** und die Positionsmarkierungen in X-Richtung rechts der DataMatrix-Codes befinden. Die Positionswerte nehmen dann in X-Richtung zu.

### DataMatrix-Codebänder mit Anfangsposition 0 m

| Bestellbezeichnung | Beschreibung           |
|--------------------|------------------------|
| PGV10M-CA25-0      | Codeband, Länge: 10 m  |
|                    |                        |
| PGV100M-CA25-0     | Codeband, Länge: 100 m |

Tabelle 3.1 DataMatrix-Codebänder siehe auch Datenblatt PGV\*-CA25-\* unter www.pepperl-fuchs.com

### **DataMatrix-Steuercodes**

| Bestellbezeichnung | Beschreibung                           |
|--------------------|----------------------------------------|
| PGV-CC25-001       | Codeband, Control Code 001, Länge: 1 m |
|                    |                                        |
| PGV-CC25-999       | Codeband, Control Code 999, Länge: 1 m |

Tabelle 3.2 DataMatrix-Steuercodes



## Codeband anbringen

- Reinigen Sie den Untergrund von fettigen oder öligen Anhaftungen und von Staub.
- 2. Vergewissern Sie sich, dass der Untergrund trocken, sauber und tragfähig ist.
- 3. Ziehen Sie die Schutzfolie am Anfang des Codebands einige Zentimeter weit ab. Setzen Sie das Codeband exakt an der gewünschten Startposition auf den Untergrund und drücken Sie es an.
- **4.** Kleben Sie nun das Codeband entlang des gewünschten Verfahrwegs. Beachten Sie dazu die folgenden Informationen:
- Ziehen Sie die Schutzfolie immer nur so weit ab, dass das Codeband nicht unbeabsichtigt verklebt. Achten Sie beim Verkleben des Codebands darauf, dass sich keine Falten oder Blasen bilden.

→ Nach 72 Stunden ist der Kleber des Codebands ausgehärtet.



#### Hinweis!

### Thermische Ausdehnung des Codebands

Der Wärmeausdehnungskoeffizient des verklebten Codebands soll dem Wärmeausdehnungskoeffizienten des Untergrunds entsprechen. Beachten Sie dies z. B. bei der Anbringung über Dehnungsfugen hinweg.



### Hinweis!

## Dehnungsfugen und Codebänder

Bei großen Streckenlängen werden in der Anlagenstruktur Dehnungsfugen vorhanden sein. Hier empfehlen wir, das Codeband zu unterbrechen. Die dadurch entstehende Lücke darf 75 mm nicht überschreiten.



### Hinweis!

### Aufbringen des Codebandes in Kurvenbereichen

Wenn Sie das Codeband in Kurvenbereichen auf den Boden aufbringen, schneiden Sie das Codeband in der aufgeführten Art und Weise beim Übergang in die Kurve mehrfach ein. Achten Sie darauf keine DataMatrix-Codes zu zerstören und eine Ruhezone von 2 mm um die Codes nicht zu beschädigen.

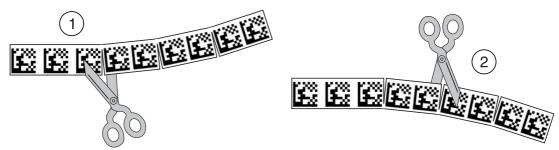



Abbildung 3.3 Prinzipdarstellung: DataMatrix-Codebandkurven vorbereiten

- 1. Linkskurve
- 2. Rechtskurve

## **Reinigung Codeband**

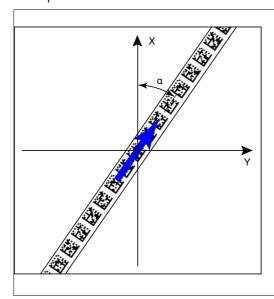
Starke Verschmutzung der Codebänder kann zu Beeinträchtigung der Erkennung durch den Lesekopf führen. Reinigen Sie die Codebänder ggf. mit Isopropanol. Bei stärkerer Verschmutzung können Sie einen nicht-aggresiven Kunststoffreiniger verwenden, z. B. von Caramba®.



### Hinweis!

Verwenden Sie beim Reinigen keinen starken Druck, um ein Polieren der Oberfläche zu vermeiden. Eine glänzende Oberfläche des Codebands führt zur Beeinträchtigung bei der Erkennung durch den Lesekopf.

# Winkelausgabe




### Hinweis!

Winkel werden als Absolutwerte angegeben. Dabei berechnet sich der jeweilige Wert aus der gewählten Auflösung "Angle Resolution". Ein Winkel von  $60^{\circ}$  wird bei einer Auflösung vom  $0,1^{\circ}$  als  $60^{\circ}/0,1^{\circ}=600$  ausgegeben.

Der Lesekopf erkennt den absoluten Winkel in Bezug zur verfolgten Spur mit einer maximalen Auflösung von 0,1°. Der Winkel wird absolut zur verfolgten Spur angegeben, da ein DataMatrix-Codeband eine Richtungsinformation enthält. Der ausgegebene Winkel umfasst den Bereich von 0° bis 360°. Die Auflösung kann auf die folgenden Werte eingestellt werden:

- 0,1°
- 0,2°
- 0,5°
- 1°



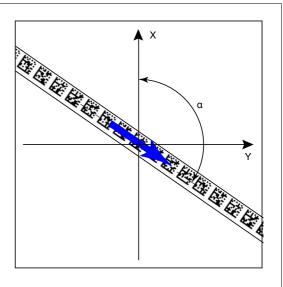



Abbildung 3.4 absolute Winkel

# **Abstandsausgabe**

Der Lesekopf erkennt den Abstand zum Nullpunkt in Y-Richtung eines DataMatrix-Codebands und gibt diesen Wert an die Steuerung weiter.

Der Lesekopf gibt den senkrechten Abstand des Nullpunkts relativ zum DataMatrix-Codeband aus

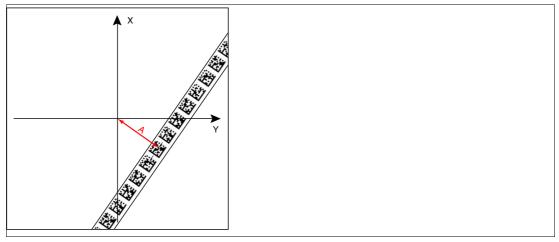



Abbildung 3.5 Abstand A bei DataMatrix-Codeband



### Hinweis!

### Abzweigungen/Einmündungen mit DataMatrix-Positionscode

Beachten Sie die folgenden Vorgaben 1 m vor und nach Abzweigungen oder Einmündungen einer Spur mit Positionscode:

- Die Positionscodes der Hauptspur müssen für 2 m kontinuierlich verlaufen, die Positionscodes der abzweigenden bzw. einmündenden Spur müssen für 1 m kontinuierlich verlaufen. Dabei gibt der Lesekopf den X-Wert des DataMatrix-Codebands aus, dass über die Richtungsentscheidung vorgegeben ist. Siehe nachfolgende Abbildung.
- Die Differenz der Absolutposition der Hauptspur zu der Anfangsposition der abzweigenden bzw. einmündenden Spur muss größer als 1 m sein.

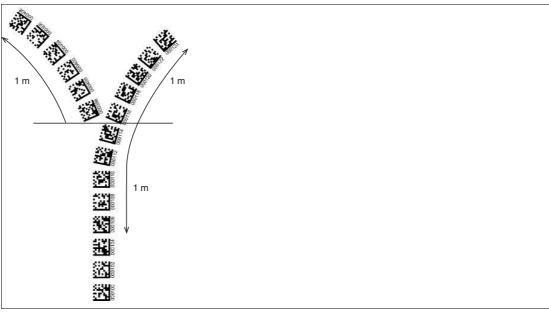



Abbildung 3.6 Abstände



# Verhalten des Lesekopfs bei Abzweigungen und Kurven

Je nach Art der Abzweigung und der vorgegebenen Spur verhält sich der Lesekopf unterschiedlich. Der Lesekopf muss die aktuell anstehende Richtungsentscheidung kennen.

- Eine zweite Spur zweigt von der geraden Spur nach links ab:
  - » Der Lesekopf folgt der geraden Spur, wenn die Richtungsentscheidung "Rechter Spur folgen" getroffen wurde.
- Eine zweite Spur zweigt von der geraden Spur nach rechts ab:
  - » Der Lesekopf folgt der geraden Spur, wenn die Richtungsentscheidung "Linker Spur folgen" getroffen wurde.
- Eine einzelne Spur mit Positionscode biegt nach links oder rechts ab:
  - » Der Lesekopf folgt dem Positionscode, wenn die Richtungsentscheidung "geradeaus" getroffen wurde.



### Hinweis!

### Informationsverlust

Achten Sie darauf, dass DataMatrix-Codes bei einer Abzweigung nicht übereinander geklebt sind, da ansonsten Informationsverlust droht.

Steuercodes können in unmittelbarer Nähe einer Abzweigung mit DataMatrix-Codes zur Positionierung montiert werden, nicht jedoch in der Nähe einer Einmündung. Der Steuercode muss dabei direkt neben der führenden Spur montiert werden.

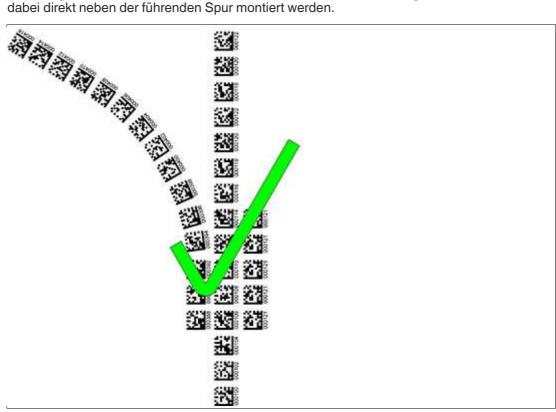



Abbildung 3.7 Abzweigung mit Steuercode



### Hinweis!

### Ende der gewählten Spur

Endet die aktuell gewählte Spur und befindet sich eine zweite Spur im Sichtfenster, so folgt der Lesekopf automatisch der zweiten Spur.



## **Abstände**

Damit der Lesekopf DataMatrix-Codes eindeutig erkennen und zuordnen kann, müssen Sie bei der Montage der Spuren Mindest- und Maximalabstände einhalten.

Der Versatz V zwischen Positionscodes einer Spur darf nicht größer als 5 mm sein.



Abbildung 3.8 Versatz:  $0 \text{ mm} \le V \le 5 \text{ mm}$ 

Der Abstand zwischen den DataMatrix-Codebändern bei einer Abzweigung bzw. Einmündung als separate Spur muss zwischen 0 mm und 5 mm liegen.

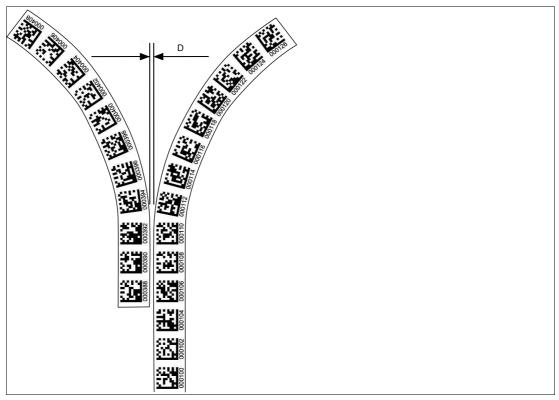



Abbildung 3.9 Abstand:  $0 \text{ mm} \le D \le 5 \text{ mm}$ 

Der Abstand zwischen einem DataMatrix-Positionscode und einem DataMatrix-Steuercode muss zwischen 0 mm und 5 mm liegen.

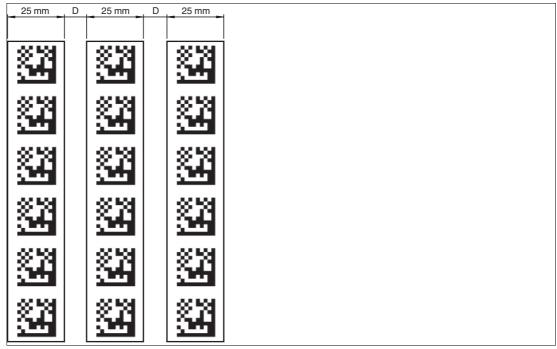



Abbildung 3.10 0 mm  $\leq$  D  $\leq$  5 mm

# **DataMatrix-Tag (8-stellige Nummer)**

Ein DataMatrix-Tag enthält neben einer spezifischen 8-stelligen Nummer auch Positionsinformationen. Im Mittelpunkt des DataMatrix-Tags befindet sich ein Kreuz, das den Nullpunkt markiert. Vom Nullpunkt aus ist die X- und die Y-Achse markiert. Der schwarze Pfeil markiert die positive Achse, der weiße Pfeil markiert die negative Achse.



### Hinweis!

Abhängig vom verwendeten Material, können die Maße abweichen. Beachten Sie hierzu die jeweiligen Datenblätter der DataMatrix-Tags.

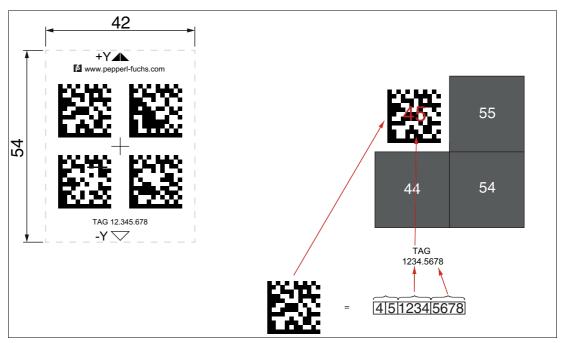



Abbildung 3.11 2x2-DataMatrix-Tag mit der Nummer 12345678 und Positionsinformationen

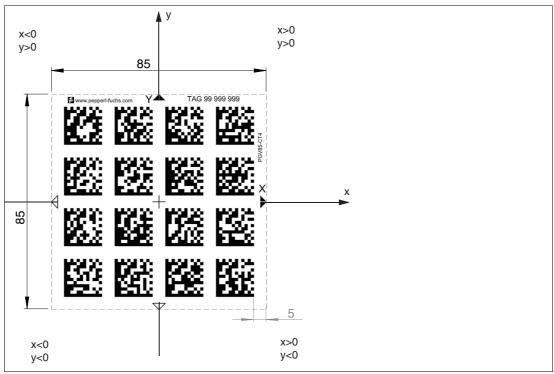



Abbildung 3.12 4x4-DataMatrix-Tag mit der Nummer 9999999 und Positionsinformation



# **DataMatrix-Tag Extended (14-stellige Nummer)**

Ein DataMatrix-Tag enthält neben einer spezifischen 14-stelligen Nummer auch Positionsinformationen. Im Mittelpunkt des DataMatrix-Tags befindet sich ein Kreuz, das den Nullpunkt markiert. Vom Nullpunkt aus ist die X- und die Y-Achse markiert. Der schwarze Pfeil markiert die positive Achse, der weiße Pfeil markiert die negative Achse.



## Hinweis!

Abhängig vom verwendeten Material, können die Maße abweichen. Beachten Sie hierzu die jeweiligen Datenblätter der DataMatrix-Tags.

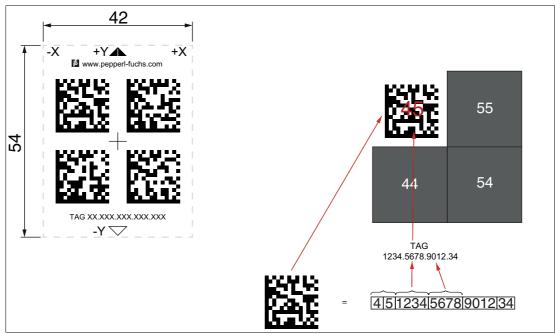



Abbildung 3.13 2x2-DataMatrix-Tag mit der Nummer 12345678901234 und Positionsinformationen

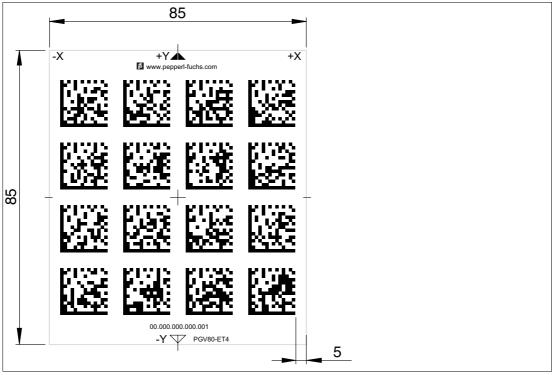



Abbildung 3.14 4x4-DataMatrix-Tag mit der Nummer 000000000001 und Positionsinformationen



## 3.3 Elektrischer Anschluss

Der elektrische Anschluss des Lesekopfs erfolgt über ein Festkabel mit offenen Adern an der Gehäuseseite. Über diesen Anschluss erfolgt die Spannungsversorgung. Ebenso stehen an diesem Anschluss die konfigurierbaren Ein- bzw. Ausgänge des Lesekopfs zur Verfügung.

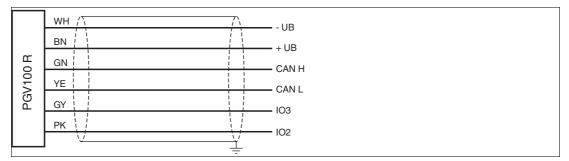



Abbildung 3.15 Elektrischer Anschluss

#### **Farbzuordnung**

| Adernfarbe | Farbkurzzeichen |  |  |
|------------|-----------------|--|--|
| weiß       | WH              |  |  |
| braun      | BN              |  |  |
| grün       | GN              |  |  |
| gelb       | YE              |  |  |
| grau       | GY              |  |  |
| rosa       | PK              |  |  |

Tabelle 3.3 Farbzuordnung

# **Abschirmung von Leitungen**

Das Abschirmen ist eine Maßnahme zur Dämpfung elektromagnetischer Störungen. Damit diese Störströme nicht selbst zur Störquelle werden, ist eine niederohmige bzw. impedanzarme Verbindung zum Schutzleiter bzw. Potenzialausgleich besonders wichtig. Der Schirm der Anschlussleitung des Lesekopfs muss schaltschrankseitig auf den Potentialausgleich aufgelegt werden.

Bei der Abschirmung müssen ferner folgende Punkte beachtet werden:

- Verwenden Sie Kabelschellen aus Metall, die die Abschirmung großflächig umschließen.
- Legen Sie den Kabelschirm direkt nach Eintritt in den Schaltschrank auf die Potenzialausgleichsschiene.
- Führen Sie Schutzerdungsanschlüsse sternförmig zu einem gemeinsamen Punkt.
- Verwenden Sie für die Erdung möglichst große Leitungsquerschnitte.



#### Vorsicht!

Beschädigung des Geräts

Anschließen von Wechselspannung oder zu hoher Versorgungsspannung kann das Gerät beschädigen oder die Gerätefunktion stören.

Falscher elektrischer Anschluss durch Verpolung kann das Gerät beschädigen oder die Gerätefunktion stören.

Gerät an Gleichspannung (DC) anschließen. Stellen Sie sicher, dass die Höhe der Versorgungsspannung im spezifizierten Bereich des Geräts liegt. Stellen Sie sicher, dass die Anschlussdrähte der verwendeten Kabeldose richtig angeschlossen sind.

# 4 Inbetriebnahme

# 4.1 Richtungsentscheidung

Der Lesekopf benötigt für die Ausgabe von Positionsinformationen eie Vorgabe der zu wählenden Spur. Die Spur wird über das Protokoll vorgegeben.

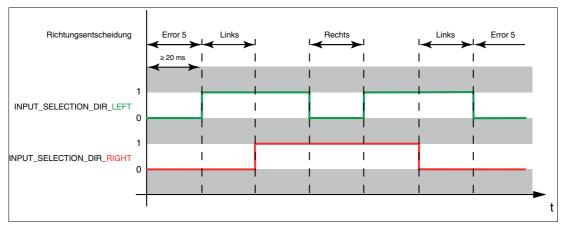



Abbildung 4.1



## Hinweis!

Bei einer Richtungsentscheidung über das Protokoll muss in den globalen Primärdaten der Subindex 12 "Input Sorce Selection" auf Software geschaltet werden.

# 4.2 Richtungsentscheidung über das Protokoll

Die Richtungesentscheidung erfolgt über das 1. RxPDO "Input Data". Siehe "Eingangsdaten" auf Seite 46.

| Eingang 2<br>Input_Dir_Sel_Left | Eingang 1<br>Input_Dir_Sel_Right | Richtungsentscheidung                                                                                              |
|---------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 0                               | 0                                | Keine Spur gewählt<br>Fehlercode 5                                                                                 |
| 0                               | 1                                | Rechter Spur folgen                                                                                                |
| 1                               | 0                                | Linker Spur folgen                                                                                                 |
| 1                               | 1                                | Data-Matrix-Codeband: Spur mit<br>weiterführenden Positionsinformationen folgen<br>DataMatrix-Tag: keine Bedeutung |

Tabelle 4.1

# 4.3 Parametrierung mittels Codekarten

Bei der Parametrierung tastet der Lesekopf spezielle Codekarten optisch ab und setzt danach die jeweiligen Parameter. Halten Sie zu diesem Zweck einfach die entsprechenden Codekarten im korrekten Abstand vor die Optik des Lesekopfes. Sie finden die Standard-Codekarten im Kapitel Anhang.



#### Hinweis!

Das Aktivieren des Parametriermodus ist innerhalb der ersten 5 Minuten nach Spannungszuschaltung möglich. Nach Ablauf dieser Frist verriegelt ein Zeitschloss den Lesekopf. Falls zu einem späteren Zeitpunkt eine Parametrierung erwünscht ist, nehmen Sie die Versorgungsspannung vom Lesekopf und schalten Sie diese anschließend wieder zu. Solange der Parametriervorgang läuft, bleibt das Zeitschloss geöffnet.



### Parametriermodus aktivieren

1. Halten Sie zur Aktivierung des Lesekopfs die Codekarte "ACTIVATE" in das Sichtfeld des Kamerasystems des Lesekopfs.

→ Die Codekarte "ACTIVATE" wird eingelesen. Es gibt keine Rückmeldung vom Lesekopf.



#### Hinweis!

Das Aktivieren des zweiten Parametriercodes "USER" ist in den ersten **zwei Minuten** nach dem Einlesen des ersten Parametriercodes "ACTIVATE" möglich.

- Halten Sie zur Aktivierung des Lesekopfs die Codekarte "USER" in das Sichtfeld des Kamerasystems des Lesekopfs.
  - → Nach Erkennen des Parametriercodes leuchtet die LED2 für 1 Sekunde grün auf. Der Lesekopf befindet sich nun im Parametriermodus.



# Parametrierung durchführen

Bringen Sie den Parametriercode in das Sichtfeld des Kameramoduls.

→ Nach Erkennen des Parametriercodes leuchtet die LED2 für 1 Sekunde grün. Bei ungültigem Parametriercode leuchtet die LED2 für 1 Sekunden rot.



### Parametrierung abschließen und Parameter speichern

Halten Sie nun zum Speichern der Konfiguration den Code "STORE" vor das Kamerasystem des Lesekopfes.

→ Wird der Speichercode "STORE" erkannt, leuchtet die LED2 für 1 Sekunde grün. Die Parametrierung wird nichtflüchtig im Lesekopf abgespeichert und der Parametriermodus beendet. Die Parametrierung des Lesekopfes ist damit abgeschlossen. Bei nicht erkanntem Speichercode leuchtet die LED2 für 1 Sekunde rot.



### Hinweis!

Zum Speichern der Parameter für den Terminierungswiderstand verwenden Sie die Codekarte "Store Termination", siehe Kapitel 6.4.

# 4.3.1 Die Codekarten "CANCEL", "USE", und "DEFAULT"

Durch Vorhalten einer dieser Karten wird der Parametriermodus mit folgenden Auswirkungen verlassen:

#### CANCEL:

Alle vorgenommenen, noch nicht gespeicherten Parameteränderungen werden verworfen. Der Lesekopf arbeitet danach mit den zuletzt gültig abgespeicherten Parametern.

#### USE:

Der Lesekopf arbeitet danach mit den aktuell geänderten Parametern zu Testzwecken. Die vorgenommene Parametrierung ist aber nicht abgespeichert. Nach dem Aus- und wieder Einschalten des Lesekopfes arbeitet dieser mit den zuletzt gültig abgespeicherten Parametern.

### DEFAULT:

Im Lesekopf werden alle Parameter mit den ursprünglichen Werkseinstellungen überschrieben. Wechseln Sie erneut in den Parametriermodus und speichern Sie die Werkseinstellung nichtflüchtig mit der Codekarte STORE.

# 5 Betrieb und Kommunikation

# 5.1 Datenaustausch im CANopen-Bus

### 5.1.1 Allgemeines zu CANopen

CANopen ist ein multimasterfähiges Feldbussystem, dass auf dem CAN (Controller Area Network) basiert.



### Abbildung 5.1

Teilnehmer auf dem CANopen-Feldbus kommunizieren nicht über Adressen, sondern mit Nachrichten-Identifiern. Alle Teilnehmer können dabei zu jedem Zeitpunkt auf den Feldbus zugreifen. Der Zugriff auf den Feldbus erfolgt nach dem CSMA/CA-Prinzip (Carrier Sense Multiple Access/Collision Avoidance). Jeder Teilnehmer hört dabei den Feldbus ab und kann Nachrichten senden, wenn der Feldbus frei ist. Starten zwei Teilnehmer gleichzeitig einen Zugriff, so erhält der Teilnehmer mit der höchsten Priorität, also dem niedrigsten Identifier, das Zugriffsrecht. Teilnehmer mit niedrigerer Priorität unterbrechen den Datentransfer und versuchen einen neuen Zugriff, wenn der Feldbus wieder frei ist.

Die Nachrichten können von jedem Teilnehmer empfangen werden. Durch einen Akzeptanzfilter übernimmt der einzelne Teilnehmer nur die für ihn bestimmten Nachrichten. Die Datenübertragung erfolgt über Nachrichtentelegramme. Nachrichtentelegramme bestehen aus COB-ID (Communication Object Identifier) und maximal 8 Folgebyte. Die COB-ID bestimmt die Priorität der Nachrichten. Die COB-ID setzt sich zusammen aus dem Funktionscode und der Knotennummer.

Der Funktionscode beschreibt die Art der Nachricht:

### Nachricht mit Servicedaten (SDO)

zur Parametrierung von Objektverzeichniseinträgen

- beliebige Länge
- Zyklische Übertragung
- SDOs eines Gerätes sind im Objektverzeichnis zusammengefasst
- Mailbox ist auf eine (Server-) SDO gelegt, 36 Byte Länge

## Nachricht mit Prozessdaten (PDO)

zur Übermittlung von Echtzeitdaten

- maximal 8 Byte lang
- Zyklische oder ereignisgesteuerte Übertragung
- Unterscheidung in Sende- (max. 512) und Empfangs-PDOs (max. 512)
- PDOs belegen im CAN-Netzwerk einen eigenen Identifier

### Nachrichten zum Netzwerkmanagement (NMT)

zur Steuerung des Zustandsautomaten des CANopen-Teilnehmers und zur Überwachung der Knoten

 weitere Objekte wie Synchronisationsobjekt (SYNC), Zeitstempel und Fehler-Nachrichten (EMCY).

Die wichtigsten Eigenschaften der Prozessdatenobjekte (PDOs) und Servicedatenobjekte (SDOs) zeigt die folgende Tabelle.

| Prozessdatenobjekte (PDOs)                | Servicedatenobjekte (SDOs)                                                                                                     |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| werden für Echtzeitdatenaustausch benutzt | ermöglichen den Zugriff zum<br>Objektverzeichnis; jedes SDO baut einen<br>Punkt-zu-Punkt-Service-Kommunikations-<br>kanal auf. |
| typisch Nachrichten mit hoher Priorität   | Nachrichten mit niedriger Priorität                                                                                            |
| synchrone und asynchrone Datenübertragung | typisch asynchrone Datenübertragung                                                                                            |
| zyklische und azyklische Übertragung      | typisch azyklische Übertragung                                                                                                 |
| Daten der PDOs über SDOs konfigurierbar   | Gebrauch des Datenfelds wird bestimmt durch<br>das CMS (CAN Message Specification)<br>Multiplexed Domain Protokoll.            |
| vorformatiertes Datenfeld                 | Zugriff auf einen Eintrag im Geräteobjektverzeichnis über Index und Subindex.                                                  |

# **Weitere Informationen**

CAN in Automation (CiA) International Users and Manufacturers Group e.V. Kontumazgarten 3 90429 Nürnberg

http://www.can-cia.org/

- CiA Draft Standard V4.02
- · CiA Draft Standard 303 LED-Behavior



# 5.1.2 Technische Grundlagen zu CANopen

### Anschluss des Bussystems

Innerhalb des CANopen-Netzwerks kommunizieren alle Teilnehmer über ein 2-poliges Netzwerk-Kabel. Dabei sind alle Teilnehmer parallel mit dem Kabel verbunden. Um störende Reflektionen innerhalb eines Netzwerks zu vermeiden, müssen Sie an jedes Ende einen passenden Abschlusswiderstand anschließen.

## Geräteprofil

CANopen definiert verschiedene Geräteprofile für eine Vielzahl an Gerätetypen. Der Lesekopf PGV100R-F200-B16\* entspricht momentan keinem speziellen Geräteprofil. Dem Lesekopf ist daher das Profil "Generic Device" implementiert.

## Buslänge

Die maximale Leitungslänge innerhalb eines CANopen-Netzwerks wird durch die Signallaufzeit bestimmt. Die Kommunikation innerhalb des Netzwerkes erfordert, dass Signale zeitgleich an allen Busknoten anliegen. Durch verschiedene Baudraten kann das Netzwerk an vorhandene Leitungslängen angepasst werden. Die Werte in der folgenden Tabelle dienen dabei als Anhaltspunkt. Je nach Applikationen können die tatsächlichen Werte davon abweichen.

| Baudrate [kBit/s] | max. Buslänge [m] |
|-------------------|-------------------|
| 1000              | 30                |
| 500               | 100               |
| 250               | 250               |
| 125               | 500               |
| 50                | 1000              |

Tabelle 5.1 Buslänge

### **Schirmung**

Achten Sie bei der Verkabelung des Lesekopfs auf eine durchgehende Schirmung.

### Startverhalten

Nach dem Einschalten durchläuft der Lesekopf in einem CANopen-Netzwerk mehrere Betriebszustände.

### 1. Initialization

Startvorgang des Lesekopfs.

### 2. Pre-Operational

Zustand des Lesekopfs, nachdem der Startvorgang abgeschlossen ist. Der Lesekopf meldet diesen Zustand an den NMT-Master.

#### 3. Operational

Operativer Betriebszustand des Lesekopfs. Der NMT-Master setzt diesen Zustand durch ein NMT-Start-Node-Telegramm, nachdem er die Pre-Operational-Meldung vom Lesekopf erhalten hat.

## Prozessdaten-Austausch

Innerhalb des CANopen-Netzwerks werden Prozessdaten über Prozessdatenobjekte (PDO) ausgetauscht. Siehe Kapitel 5.1.1. Prozessdatenobjekte werden unterschieden in:

## Transmit PDOs (TxPDO)

Prozessdatenobjekte, die Eingangsdaten und Diagnosedaten übertragen.

### Receive PDOs (RxPDO)

Prozessdatenobjekte, die Ausgangsdaten übertragen.

Die ersten 4 PDOs pro Transmit- oder Receive-Datenpaket übertragen die Default-CAN-Identifier. Alle weiteren PDOs eines Datenpakets können vom Anwender konfiguriert werden.



### Kommunikationsarten

Im CANopen-Netzwerk sind für die Prozessdatenobjekte verschiedene Kommunikationsarten festgelegt. Die Kommunikationsart jedes PDOs wird über den Parameter "Transmission Type" gesteuert. Der Parameter "Transmission Type" ist im Subindex 2 des Kommunikationsparameter-Objekts (ab 0x1400) festgelegt und wird während des Startvorgangs über ein SDO übermittelt. Siehe Kapitel 5.1.1.

Der Lesekopf unterstützt folgende Kommunikationsarten:

| Parameter "Transmission Type" | Übertragung Beschreibung                                                                                                                                      |                                                                                                                                                                                                             |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0                             | ereignisgesteuert<br>synchron                                                                                                                                 | TxPDO: Daten werden beim Empfang eines SYNC (= Synchronisationsobjekt) ermittelt. Daten werden nur bei einer Änderung gesendet.  RxPDO: Daten werden ereignisgesteuert gesendet und in ein SYNC übernommen. |  |  |
| 1                             | zyklisch synchron  Daten werden bei jedem n-ten SYNC übernommen und gesendet n = 1 240. n kann pro PDO individuell vergeben um Übertragungszyklen zu steuern. |                                                                                                                                                                                                             |  |  |
| 241251                        | reserviert                                                                                                                                                    |                                                                                                                                                                                                             |  |  |
| 252 (nur TxPDO)               | synchron<br>RTR (= <b>R</b> emote-<br><b>T</b> ransmission<br><b>R</b> equest)                                                                                | Daten werden beim Empfang eines SYNC ermittelt. Daten werden nur bei einer Anforderung per RTR gesendet.                                                                                                    |  |  |
| 253 (nur TxPDO)               | asynchron<br>RTR                                                                                                                                              | Daten werden nur bei einer Anforderung per RTR ermittelt und gesendet.                                                                                                                                      |  |  |
| 254                           | ereignisgesteuert<br>Hersteller-spezifisch                                                                                                                    | Lesekopf sendet Daten bei Setzen des Betriebszustands "Operational" und bei Änderungen.                                                                                                                     |  |  |
| 255                           | ereignisgesteuert<br>Profil-spezifisch                                                                                                                        | Lesekopf sendet Daten bei Setzen des Betriebszustands "Operational" und bei Änderungen.                                                                                                                     |  |  |

Tabelle 5.2 Parameter "Transmission Type"

### Kommunikationsüberwachung

Zur Überwachung der Buskommunikation können Sie im Lesekopf die folgenden Verfahren konfigurieren.

### Nodeguarding

Wenn Sie den Lesekopf für das Nodeguarding konfiguriert haben, sendet der NMT-Master Guard-Telegramme, die vom Lesekopf mit dem aktuellen CANopen-Status beantwortet werden müssen. Der Abstand zwischen den Guard-Telegrammen wird im Objekt 0x100C festgelegt.

Wenn der Lesekopf keine Antwort sendet, wird ein "Node Guard Event" gesetzt. Das Nodeguarding ist deaktiviert, wenn Sie die "Guard Time" im Objekt 0x100C auf 0 setzen.

### Lifeguarding

Wenn Sie den Lesekopf für das Lifeguarding konfiguriert haben, sendet der Lesekopf Lifeguard-Telegramme, die vom NMT-Master beantwortet werden müssen. Der Abstand zwischen einem Lifeguard-Telegramm und der Antwort des NMT-Masters wird im Objekt 0x100D festgelegt.

Bleibt das Guard-Telegramm für die definierte Zeit unbeantwortet, setzt der Lesekopf ein "Life Guarding Event" und sendet ein EMCY-Telegramm. Das Lifeguarding ist deaktiviert, wenn Sie die "Guard Time" im Objekt 0x100C oder den "Life Time Factor" im Objekt 0x100D auf 0 setzen.



### Heartbeat

Der Lesekopf kann sowohl als Sender als auch als Empfänger eines Heartbeat-Telegramms konfiguriert werden. Wenn der Lesekopf zum Senden eines Heartbeat-Telegramms konfiguriert ist, wird dieses Telegramm vom MNT-Master oder einem anderen Busknoten überwacht. Wenn der Lesekopf zum Empfangen eines Heartbeat-Telegramms konfiguriert ist, überwacht der Lesekopf einen anderen Busknoten oder den NMT-Master. Konfigurieren Sie das Senden eines Heartbeat-Telegramms im Objekt 0x1017. Dort legen Sie den Abstand der Heartbeat-Telegramme mittels der "Heartbeat Producer Time" fest. Der Heartbeat ist deaktiviert, wenn die "Heartbeat-Telegramms im Objekt 0x1016. Dort legen Sie den Abstand der Heartbeat-Telegramme mittels der "Heartbeat Consumer Time" fest. Der Heartbeat ist deaktiviert, wenn die "Heartbeat Consumer Time" auf 0 gesetzt ist.

# **Ausfall-Sicherheit (Failsafe)**

Das Failsafe-Verhalten beschreibt das Verhalten des Lesekopfs beim Auftreten von Fehlern. Das Failsafe-Verhalten wird über einen Parameter gesteuert.

Über das Objekt 0x1029 "Verhalten im Falle eines Fehlers" kann das Verhalten des Lesekopfs bei einem CANopen-Fehler gesteuert werden.

# 5.1.3 CANopen Objektverzeichnis



## Hinweis!

# **CANopen-Parameterkommunikation**

In diesem Abschnitt finden Sie die notwendigen Informationen für den Datenaustausch über CANopen. Der Datenaustausch mit dem Lesekopf erfolgt über Objekte. Im folgenden SDO-Verzeichnis sind diese Objekte und die jeweils zulässigen Funktionen definiert.

Der Lesekopf unterstützt das Identifier-Format 2.0A (11-Bit-Identifier) gemäß CAN-Spezifikation. Der extended 29-Bit-Identifier wird nicht unterstützt.

## **Unterstützte Objekte**

| Objekt | Beschreibung                                        |
|--------|-----------------------------------------------------|
| 0x1000 | Gerätetyp                                           |
| 0x1001 | Fehlerregister                                      |
| 0x1005 | SYNC-Kennung                                        |
| 0x1008 | Hersteller Gerätename                               |
| 0x1009 | Hersteller Hardwareversion                          |
| 0x100A | Hersteller-Softwareversion                          |
| 0x100C | Überwachungszeit                                    |
| 0x100D | Lebensdauerfaktor                                   |
| 0x1012 | COB-ID Zeitstempel                                  |
| 0x1014 | COB-ID Emergency                                    |
| 0x1015 | Inhibit Time Emergency                              |
| 0x1016 | Heartbeat-Verbrauchereinträge                       |
| 0x1017 | Produzent Heartbeat-Zeit                            |
| 0x1018 | Gerätekennung (Identify Object)                     |
| 0x1029 | Verhalten im Falle eines Fehlers                    |
| 0x1200 | 1. Server SDO-Parameter (Default SDO)               |
| 0x1400 | 1.RxPDO Eingangsdaten                               |
| 0x1600 | Empfangs-PDO 1. Mapping                             |
| 0x1800 | 1. TxPDO Y-Daten, Status, Warnung                   |
| 0x1801 | 2. TxPDO X-Daten, Winkel                            |
| 0x1802 | 3. TxPDO TAG-Daten                                  |
| 0x1803 | 4. TxPDO Steuercode-Status, Steuercode, Zeitstempel |
| 0x1804 | 5. TxPDO Z-Abstand                                  |
| 0x1A00 | Sende-PDO 1. Mapping                                |
| 0x1A01 | Sende-PDO 2. Mapping                                |
| 0x1A02 | Sende-PDO 3. Mapping                                |
| 0x1A03 | Sende-PDO 4. Mapping                                |
| 0x1A04 | Sende-PDO 5. Mapping                                |
| 0x2000 | Positions- und Statusdaten                          |
| 0x2200 | Eingangsdaten                                       |
| 0x3000 | Seriennummer                                        |
| 0x3001 | Parametrierobjekt                                   |

Das Geräte-spezifische Objektverzeichnis OV enthält alle Parameter und Prozessdaten des Lesekopfs. Die Parameter und Prozessdaten sind in Tabellen gelistet. Im Objektverzeichnis sind 2 Bereiche definiert. Im ersten Bereich wird der Lesekopf allgemein beschrieben. Er enthält unter anderem die Geräte-ID, den Namen des Herstellers und die Kommunikationsparameter. De 2. Bereich wird die spezifische Funktionalität des Lesekopfs beschrieben.

Ein Eintrag in der Objektliste wird über einen 16-Bit-Index und einen 8-Bit-Subindex identifiziert. Über die Zuordnung innerhalb der Objektliste werden Geräteparameter und Prozessdaten, wie etwa Ein- und Ausgangssignale, Gerätefunktionen und Netzwerkvariable in standartisierter Form über das CANopen-Netzwerk zugänglich gemacht.

### Gerätetyp

| Index  | Subindex | Bezeichnung | Datentyp                |                                 | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|-------------|-------------------------|---------------------------------|--------------------------|-------------|
| 0x1000 | 0x00     | Device Type | unsigned32 <sup>1</sup> | ro (= <b>r</b> ead <b>o</b> nly | no                       | 0x0         |

Tabelle 5.3 Der Gerätetyp des Lesekopfs ist 0x00000000, da kein spezifisches Geräteprofil implementiert ist.

## **Fehlerregister**

| Index  | Subindex | Bezeichnung    | Datentyp  |    | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|----------------|-----------|----|--------------------------|-------------|
| 0x1001 | 0x00     | Error Register | unsigned8 | ro | no                       | 0x0         |

Die 8-Bit-Daten des Fehlerregisters beschreiben Fehler wie folgt:

| Bit | Bit        |            |                           |            |            |            |                                                                      |  |  |
|-----|------------|------------|---------------------------|------------|------------|------------|----------------------------------------------------------------------|--|--|
| 7   | 6          | 5          | 4                         | 3          | 2          | 1          | 0                                                                    |  |  |
| 0   | reserviert | reserviert | Kommunika-<br>tionsfehler | reserviert | reserviert | reserviert | Generisch,<br>nicht näher<br>spezifizier-<br>ter Fehler <sup>1</sup> |  |  |

<sup>1.</sup> Flag ist bei jeder Fehlermeldung gesetzt

### **SYNC-Kennung**

| Index  | Subindex | Bezeichnung            | Datentyp   | Attribut             | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|------------------------|------------|----------------------|--------------------------|-------------|
| 0x1005 | 0x00     | COB-ID SYNC<br>Message | unsigned32 | rw (=<br>read/write) | no                       | 0x00000080  |

Die 32-Bit-Daten des Identifier der SYNC-Nachricht beschreiben die Synchronisation wie folgt:

| Bit            |    |  |                                         |  |  |
|----------------|----|--|-----------------------------------------|--|--|
| 31             | 30 |  | 10 0                                    |  |  |
| ohne Bedeutung | 01 |  | Identifier<br>0x80 = 128 <sub>dez</sub> |  |  |

<sup>1.</sup> immer 0, da Lesekopf nur SYNC-Consumer, nicht SYNC-Producer



<sup>1.</sup> Datentyp ohne Vorzeichen, 32 Bit

## Hersteller Gerätename

| Index  | Subindex | Bezeichnung                 | Datentyp                    | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|-----------------------------|-----------------------------|----------|--------------------------|-------------|
| 0x1008 | 0x00     | Manufacturer<br>Device Name | visible string <sup>1</sup> | ro       | no                       | -           |

<sup>1.</sup> ASCII String, variable Länge

## **Hersteller Hardwareversion**

| Index  | Subindex | Bezeichnung                           | Datentyp       | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|---------------------------------------|----------------|----------|--------------------------|-------------|
| 0x1009 | 0x00     | Manufacturer<br>Hardware-Ver-<br>sion | visible string | ro       | no                       | -           |

## **Hersteller-Softwareversion**

| Index  | Subindex | Bezeichnung                           | Datentyp       |    | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|---------------------------------------|----------------|----|--------------------------|-------------|
| 0x100A | 0x00     | Manufacturer<br>Software-Ver-<br>sion | visible string | ro | no                       | -           |

# Überwachungszeit

| Index  | Subindex | Bezeichnung        | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|--------------------|------------|----------|--------------------------|-------------|
| 0x100C | 0x00     | Guard Time<br>[ms] | unsigned16 | rw       | no                       | 0x0         |

## Lebensdauerfaktor

| Index  | Subindex | Bezeichnung      | Datentyp  | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|------------------|-----------|----------|--------------------------|-------------|
| 0x100D | 0x00     | Life Time Factor | unsigned8 | rw       | no                       | 0x0         |

Tabelle 5.4 Life Time Factor x Guard Time = Life Time (Watchdog für Life Guarding - Masterüberwachung

## **COB-ID Zeitstempel**

| Index  | Subindex | Bezeichnung          | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|----------------------|------------|----------|--------------------------|-------------|
| 0x1012 | 0x00     | COB-ID Time<br>Stamp | unsigned32 | rw       | no                       | 0x80000100  |

## **COB-ID Emergency**

| Index  | Subindex | Bezeichnung           | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert      |
|--------|----------|-----------------------|------------|----------|--------------------------|------------------|
| 0x1014 | 0x00     | COB-ID Emer-<br>gency | unsigned32 | rw       | no                       | NODEID +<br>0x80 |

## **Inhibit Time Emergency**

| Index  | Subindex | Bezeichnung               | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|---------------------------|------------|----------|--------------------------|-------------|
| 0x1015 | 0x00     | Inhibit Time<br>Emergency | unsigned16 | rw       | no                       | 0x0         |

## Heartbeat-Verbrauchereinträge

| Index  | Subindex  | Bezeichnung                                | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|-----------|--------------------------------------------|------------|----------|--------------------------|-------------|
| 0x1016 | 0x00      | Anzahl folgen-<br>der Parameter            |            | ro       | no                       | 0x40        |
|        | 0x01 0x40 | Consumer<br>Heartbeat<br>Time <sup>1</sup> | unsigned32 | rw       | no                       | 0x0         |

<sup>1.</sup> erwartete Heartbeat-Zykluszeit [ms] und Node-ID des überwachten Busknotens

Der überwachte Identifier Guard-ID ergibt sich aus der Default-Identifier-Verteilung: Guard-ID = 0x700 + Node-ID

| Bit                     |        |                     |
|-------------------------|--------|---------------------|
| 3124                    | 2316   | 15 0                |
| reserviert <sup>1</sup> | NODEID | Heartbeat Time [ms] |

<sup>1.</sup> immer 0

### **Produzent Heartbeat-Zeit**

| Index  | Subindex | Bezeichnung                                | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|--------------------------------------------|------------|----------|--------------------------|-------------|
| 0x1017 | 0x00     | Producer<br>Heartbeat<br>Time <sup>1</sup> | unsigned16 | rw       | no                       | 0x0         |

<sup>1.</sup> Zeitspanne [ms] zwischen zwei gesendeten Heartbeat-Telegrammen

## **Gerätekennung (Identify Object)**

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------|
| 0x1018 | 0x00     | Anzahl folgen-<br>der Parameter | unsigned8  | ro       | no                       | 0x4         |
|        | 0x01     | Herstellerken-<br>nung          | unsigned32 | ro       | no                       | 0xAD        |
|        | 0x02     | Geräteken-<br>nung              | unsigned32 | ro       | no                       | 0x6         |
|        | 0x03     | Versionsnum-<br>mer             | unsigned32 | ro       | no                       | 0x1         |
|        | 0x04     | Seriennum-<br>mer               | unsigned32 | ro       | no                       | 0x0         |

## Verhalten im Falle eines Fehlers

| Index  | Subindex | Bezeichnung                            | Datentyp  | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|----------------------------------------|-----------|----------|--------------------------|-------------|
| 0x1029 | 0x00     | Anzahl folgen-<br>der Parameter        |           | ro       | no                       | 0x01        |
|        | 0x01     | Kommunikati-<br>onsfehler <sup>1</sup> | unsigned8 | rw       | no                       | 0x0         |

<sup>1.</sup> Verhalten bei Kommunikationsfehler, siehe folgende Tabelle

| Datenbit | Verhalten bei Kommunikationsfehler                     |  |  |  |  |
|----------|--------------------------------------------------------|--|--|--|--|
| 0x00     | Lesekopf wechselt von Operational nach Pre-Operational |  |  |  |  |
| 0x01     | Lesekopf verbleibt im aktuellen Status                 |  |  |  |  |
| 0x02     | Lesekopf wechselt in <b>Stopped</b>                    |  |  |  |  |

## **Server SDO Parameter 0**

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------------|
| 0x1200 | 0x00     | Anzahl folgen-<br>der Parameter |            | ro       | no                       | 0x02              |
|        | 0x01     | COB ID Client<br>to Server      | unsigned32 | ro       | no                       | NODEID +<br>0x600 |
|        | 0x02     | COB ID Server to Client         | unsigned32 | ro       | no                       | NODEID +<br>0x580 |

# 1.RxPDO Eingangsdaten

| Index  | Subindex | Bezeichnung                       | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|-----------------------------------|------------|----------|--------------------------|-------------------|
| 0x1400 | 0x00     | Anzahl folgen-<br>der Parameter   |            | ro       | no                       | 0x02              |
|        | 0x01     | COB-ID ver-<br>wendet von<br>RPDO | unsigned32 | rw       | no                       | NODEID +<br>0x200 |
|        | 0x02     | Transmission<br>Type              | unsigned8  | rw       | no                       | 0xFE              |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden



## 1. TxPDO Y-Daten, Status, Warnung

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------------|
| 0x1800 | 0x00     | Anzahl folgen-<br>der Parameter | unsigned8  | ro       | no                       | 0x05              |
|        | 0x01     | COB-ID                          | unsigned32 | rw       | no                       | NODEID +<br>0x180 |
|        | 0x02     | Transmission<br>Type            | unsigned8  | rw       | no                       | 0xFE              |
|        | 0x03     | Inhibit Time                    | unsigned16 | rw       | no                       | 0x0               |
|        | 0x04     | Compatibility<br>Entry          | unsigned8  | rw       | no                       | 0x0               |
|        | 0x05     | Event Timer                     | unsigned16 | rw       | no                       | 0x0               |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden

## 2. TxPDO X-Daten, Winkel

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------------|
| 0x1801 | 0x00     | Anzahl folgen-<br>der Parameter | unsigned8  | ro       | no                       | 0x5               |
|        | 0x01     | COB-ID                          | unsigned32 | rw       | no                       | NODEID +<br>0x280 |
|        | 0x02     |                                 | unsigned8  | rw       | no                       | 0xFE              |
|        | 0x03     | Inhibit Time                    | unsigned16 | rw       | no                       | 0x0               |
|        | 0x04     | Compatibility<br>Entry          | unsigned8  | rw       | no                       | 0x0               |
|        | 0x05     | Event Timer                     | unsigned16 | rw       | no                       | 0x0               |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden

## 3. TxPDO TAG-Daten

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------------|
| 0x1802 | 0x00     | Anzahl folgen-<br>der Parameter |            | ro       | no                       | 0x5               |
|        | 0x01     | COB-ID                          | unsigned32 | rw       | no                       | NODEID +<br>0x380 |
|        | 0x02     | Transmission<br>Type            | unsigned8  | rw       | no                       | 0xFE              |
|        | 0x03     | Inhibit Time                    | unsigned16 | rw       | no                       | 0x0               |
|        | 0x04     | Compatibility<br>Entry          | unsigned8  | rw       | no                       | 0x0               |
|        | 0x05     | Event Timer                     | unsigned16 | rw       | no                       | 0x0               |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden

## 4. TxPDO Steuercode-Status, Steuercode, Zeitstempel

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert       |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------------|
| 0x1803 | 0x00     | Anzahl folgen-<br>der Parameter | unsigned8  | ro       | no                       | 0x5               |
|        | 0x01     | COB-ID                          | unsigned32 | rw       | no                       | NODEID +<br>0x480 |
|        | 0x02     | Transmission<br>Type            | unsigned8  | rw       | no                       | 0xFE              |
|        | 0x03     | Inhibit Time                    | unsigned16 | rw       | no                       | 0x0               |
|        | 0x04     | Compatibility<br>Entry          | unsigned8  | rw       | no                       | 0x0               |
|        | 0x05     | Event Timer                     | unsigned16 | rw       | no                       | 0x0               |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden



## 5. TxPDO Z-Abstand

| Index  | Subindex | Bezeichnung                     | Datentyp   | Attribut | PDO-Map-<br>ping möglich | Defaultwert |
|--------|----------|---------------------------------|------------|----------|--------------------------|-------------|
| 0x1804 | 0x00     | Anzahl folgen-<br>der Parameter |            | ro       | no                       | 0x5         |
|        | 0x01     | COB-ID                          | unsigned32 | rw       | no                       | 0x80000000  |
|        | 0x02     | Transmission<br>Type            | unsigned8  | rw       | no                       | 0xFE        |
|        | 0x03     | Inhibit Time                    | unsigned16 | rw       | no                       | 0x0         |
|        | 0x04     | Compatibility<br>Entry          | unsigned8  | rw       | no                       | 0x0         |
|        | 0x05     | Event Timer                     | unsigned16 | rw       | no                       | 0x0         |

| COB-ID: Bit                                                    |                                                  |      |                             |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------|------|-----------------------------|--|--|--|
| 31                                                             | 30                                               | 2911 | 10 0                        |  |  |  |
| PDO vorhanden:<br>0 = aktuell vorhanden<br>1 = nicht vorhanden | RTR-Zugriff:<br>0 = erlaubt<br>1 = nicht erlaubt |      | CAN-Identifier <sup>1</sup> |  |  |  |

<sup>1.</sup> nicht änderbar, wenn PDO aktuell vorhanden

## Mapping 1. RxPDO

| Index  | Subindex | Bezeich-<br>nung                   | Datentyp   | Attribut | PDO-Map-<br>ping mög-<br>lich | Defaultwert | Bedeu-<br>tung <sup>1</sup>                         |
|--------|----------|------------------------------------|------------|----------|-------------------------------|-------------|-----------------------------------------------------|
| 0x1600 | 0x00     | Anzahl fol-<br>gender<br>Parameter | unsigned8  | rw       | no                            | 0x08        | Anzahl der<br>gemappten<br>Objekte                  |
|        | 0x01     | Mapping<br>von Input<br>Data       | unsigned32 | rw       | no                            | 0x22000108  | Input Data<br>MSB<br>Data =<br>0x2200,<br>Byte 0x01 |
|        | 0x02     | reserviert                         | unsigned32 | rw       | no                            | 0x22000208  | reserviert                                          |
|        | 0x03     | reserviert                         | unsigned32 | rw       | no                            | 0x22000308  | reserviert                                          |
|        | 0x04     | reserviert                         | unsigned32 | rw       | no                            | 0x22000408  | reserviert                                          |
|        | 0x05     | reserviert                         | unsigned32 | rw       | no                            | 0x22000508  | reserviert                                          |
|        | 0x06     | reserviert                         | unsigned32 | rw       | no                            | 0x22000608  | reserviert                                          |
|        | 0x07     | reserviert                         | unsigned32 | rw       | no                            | 0x22000708  | reserviert                                          |
|        | 0x08     | reserviert                         | unsigned32 | rw       | no                            | 0x22000808  | reserviert                                          |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## Mapping 1. TxPDO

|        | Sub-  |                                 |            |          | PDO-<br>Mapping |             |                                                                                               |
|--------|-------|---------------------------------|------------|----------|-----------------|-------------|-----------------------------------------------------------------------------------------------|
| Index  | index | Bezeichnung                     | Datentyp   | Attribut | möglich         | Defaultwert | Bedeutung <sup>1</sup>                                                                        |
| 0x1A00 | 0x00  | Anzahl folgen-<br>der Parameter | unsigned8  | rw       | no              | 0x08        | Anzahl der gemappten<br>Objekte                                                               |
|        | 0x01  | Mapping von<br>YP24-YP31        | unsigned32 | rw       | no              | 0x20000108  | Y-Positionsdaten<br>YP24-YP31<br>MSB<br>Data = 0x2000, Byte<br>0x01<br>1. Bit = Vorzeichenbit |
|        | 0x02  | Mapping von<br>YP16-YP23        | unsigned32 | rw       | no              | 0x20000208  | Y-Positionsdaten YP16-YP23 MSB Data = 0x2000, Byte 0x02 1. Bit = Vorzeichenbit                |
|        | 0x03  | Mapping von<br>YP08-YP15        | unsigned32 | rw       | no              | 0x20000308  | Y-Positionsdaten<br>YP08-YP15<br>MSB<br>Data = 0x2000, Byte<br>0x03<br>1. Bit = Vorzeichenbit |
|        | 0x04  | Mapping von<br>YP00-YP07        | unsigned32 | rw       | no              | 0x20000408  | Y-Positionsdaten<br>YP00-YP07<br>LSB<br>Data = 0x2000, Byte<br>0x04<br>1. Bit = Vorzeichenbit |
|        | 0x05  | Mapping von<br>ST08-ST15        | unsigned32 | rw       | no              | 0x20001108  | Status ST08-ST15<br>MSB<br>Data = 0x2000, Byte<br>0x11                                        |
|        | 0x06  | Mapping von<br>ST00-ST07        | unsigned32 | rw       | no              | 0x20001208  | Status ST00-ST07<br>MSB<br>Data = 0x2000, Byte<br>0x12                                        |
|        | 0x07  | Mapping von<br>WRN08-WRN15      | unsigned32 | rw       | no              | 0x20001308  | Warnung<br>WRN08-WRN15<br>MSB<br>Data = 0x2000, Byte<br>0x13                                  |
|        | 0x08  | Mapping von<br>WRN00-WRN07      | unsigned32 | rw       | no              | 0x20001408  | Warnung<br>WRN00-WRN07<br>LSB<br>Data = 0x2000, Byte<br>0x14                                  |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## Mapping 2. TxPDO

| Index      | Sub-<br>index | Bezeichnung                     | Datentyp   | Attribut | PDO-<br>Mapping<br>möglich | Defaultwert | Bedeutung <sup>1</sup>                                           |
|------------|---------------|---------------------------------|------------|----------|----------------------------|-------------|------------------------------------------------------------------|
| 0x1A0<br>1 | 0x00          | Anzahl folgen-<br>der Parameter | unsigned8  | rw       | no                         | 0x08        | Anzahl der gemappten<br>Objekte                                  |
|            | 0x01          | Mapping von<br>XP24-XP31        | unsigned32 | rw       | no                         | 0x20000908  | X-Positionsdaten<br>XP24-XP31<br>MSB<br>Data = 0x2000, Byte 0x09 |
|            | 0x02          | Mapping von<br>XP16-XP23        | unsigned32 | rw       | no                         | 0x20000A08  | X-Positionsdaten<br>XP16-XP23<br>MSB<br>Data = 0x2000, Byte 0x0A |
|            | 0x03          | Mapping von<br>XP08-XP15        | unsigned32 | rw       | no                         | 0x20000B08  | X-Positionsdaten<br>XP08-XP15<br>MSB<br>Data = 0x2000, Byte 0x0B |
|            | 0x04          | Mapping von<br>XP00-XP07        | unsigned32 | rw       | no                         | 0x20000C08  | X-Positionsdaten<br>XP00-XP07<br>LSB<br>Data = 0x2000, Byte 0x0C |
|            | 0x05          | Mapping von<br>AG08-AG15        | unsigned32 | rw       | no                         | 0x20000D08  | Winkel AG08-AG15<br>MSB<br>Data = 0x2000, Byte 0x0D              |
|            | 0x06          | Mapping von<br>AG00-AG07        | unsigned32 | rw       | no                         | 0x20000E08  | Winkel AG00-AG07<br>LSB<br>Data = 0x2000, Byte 0x0E              |
|            | 0x07          | reserviert                      | unsigned32 | rw       | no                         | 0x20000F08  | reserviert                                                       |
|            | 0x08          | reserviert                      | unsigned32 | rw       | no                         | 0x20001008  | reserviert                                                       |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## **Mapping 3. TxPDO**

| Index  | Sub-  | Bereichnung                     | Dotantus   | Attribut | PDO-<br>Mapping<br>möglich | Defaulturent | Bedeutung <sup>1</sup>                                              |
|--------|-------|---------------------------------|------------|----------|----------------------------|--------------|---------------------------------------------------------------------|
|        | index | Bezeichnung                     | Datentyp   | Attribut | moglich                    | Defaultwert  |                                                                     |
| 0x1A02 | 0x00  | Anzahl folgen-<br>der Parameter | unsigned8  | rw       | no                         | 0x08         | Anzahl der gemappten<br>Objekte                                     |
|        | 0x01  | Mapping von<br>TAG56 - TAG63    | unsigned32 | rw       | no                         | 0x20001D08   | DataMatrix-Tag<br>TAG56-TAG63<br>MSB<br>Data = 0x2000, Byte<br>0x1D |
|        | 0x02  | Mapping von<br>TAG48 - TAG55    | unsigned32 | rw       | no                         | 0x20001E08   | DataMatrix-Tag<br>TAG48-TAG55<br>MSB<br>Data = 0x2000, Byte<br>0x1E |
|        | 0x03  | Mapping von<br>TAG40 - TAG47    | unsigned32 | rw       | no                         | 0x20001F08   | DataMatrix-Tag<br>TAG40-TAG47<br>MSB<br>Data = 0x2000, Byte<br>0x1F |
|        | 0x04  | Mapping von<br>TAG32 - TAG39    | unsigned32 | rw       | no                         | 0x20002008   | DataMatrix-Tag<br>TAG32-TAG39<br>LSB<br>Data = 0x2000, Byte<br>0x20 |
|        | 0x05  | Mapping von<br>TAG24 - TAG31    | unsigned32 | rw       | no                         | 0x20001508   | DataMatrix-Tag<br>TAG24-TAG31<br>MSB<br>Data = 0x2000, Byte<br>0x15 |
|        | 0x06  | Mapping von<br>TAG16 - TAG23    | unsigned32 | rw       | no                         | 0x20001608   | DataMatrix-Tag<br>TAG16-TAG23<br>MSB<br>Data = 0x2000, Byte<br>0x16 |
|        | 0x07  | Mapping von<br>TAG08 - TAG15    | unsigned32 | rw       | no                         | 0x20001708   | DataMatrix-Tag<br>TAG08-TAG15<br>MSB<br>Data = 0x2000, Byte<br>0x17 |
|        | 0x08  | Mapping von<br>TAG00 - TAG07    | unsigned32 | rw       | no                         | 0x20001808   | DataMatrix-Tag<br>TAG00-TAG07<br>MSB<br>Data = 0x2000, Byte<br>0x18 |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## Mapping 4. TxPDO

| Index  | Sub-<br>index | Bezeichnung                       | Datentyp   | Attribut | PDO-<br>Mapping<br>möglich | Defaultwert | Bedeutung <sup>1</sup>                                                       |
|--------|---------------|-----------------------------------|------------|----------|----------------------------|-------------|------------------------------------------------------------------------------|
| 0x1A03 | 0x00          | Anzahl folgen-<br>der Parameter   | unsigned8  | rw       | no                         | 0x08        | Anzahl der gemappten<br>Objekte                                              |
|        | 0x01          | Mapping von<br>STCC00 -<br>STCC07 | unsigned32 | rw       | no                         | 0x20001908  | Status Kontroll-Code<br>STCC1_00-STCC1_07<br>MSB<br>Data = 0x2000, Byte 0x19 |
|        | 0x02          | Mapping von<br>CC08 - CC15        | unsigned32 | rw       | no                         | 0x20001A08  | Kontroll-Code<br>CC1_08-CC1_15<br>MSB<br>Data = 0x2000, Byte<br>0x1A         |
|        | 0x03          | Mapping von<br>CC00 - CC07        | unsigned32 | rw       | no                         | 0x20001B08  | Kontroll-Code<br>CC1_00-CC1_07<br>LSB<br>Data = 0x2000, Byte<br>0x1B         |
|        | 0x04          | reserviert                        | unsigned32 | rw       | no                         | 0x20001C08  | reserviert                                                                   |
|        | 0x05          | Mapping von<br>TS24 - TS31        | unsigned32 | rw       | no                         | 0x20000508  | Timestamp<br>TS_24 - TS_31<br>Data = 0x2000, Byte 0x05                       |
|        | 0x06          | Mapping von<br>TS16 - TS23        | unsigned32 | rw       | no                         | 0x20000608  | Timestamp<br>TS_16 - TS_23<br>Data = 0x2000, Byte 0x06                       |
|        | 0x07          | Mapping von<br>TS08 - TS15        | unsigned32 | rw       | no                         | 0x20000708  | Timestamp<br>TS_08 - TS_15<br>Data = 0x2000, Byte 0x07                       |
|        | 0x08          | Mapping von<br>TS00 - TS07        | unsigned32 | rw       | no                         | 0x20000808  | Timestamp<br>TS_00 - TS_07<br>Data = 0x2000, Byte 0x08                       |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## **Mapping 5. TxPDO**

| Index  | Sub-<br>index | Bezeichnung                     | Datentyp   | Attribut | PDO-<br>Mapping<br>möglich | Defaultwert | Bedeutung <sup>1</sup>                                      |
|--------|---------------|---------------------------------|------------|----------|----------------------------|-------------|-------------------------------------------------------------|
| 0x1A04 | 0x00          | Anzahl folgen-<br>der Parameter | unsigned8  | rw       | no                         | 0x08        | Anzahl der gemappten<br>Objekte                             |
|        | 0x01          | Mapping von<br>Z08 - Z15        | unsigned32 | rw       | no                         | 0x20002108  | <b>Z-Abstandsdaten Z08-Z15</b> MSB Data = 0x2000, Byte 0x21 |
|        | 0x02          | Mapping von<br>Z00 - Z07        | unsigned32 | rw       | no                         | 0x20002208  | <b>Z-Abstandsdaten Z00-Z07</b> LSB Data = 0x2000, Byte 0x22 |
|        | 0x03          | reserviert                      | unsigned32 | rw       | no                         | 0x20002308  | reserviert                                                  |
|        | 0x04          | reserviert                      | unsigned32 | rw       | no                         | 0x20002408  | reserviert                                                  |
|        | 0x05          | reserviert                      | unsigned32 | rw       | no                         | 0x20002508  | reserviert                                                  |
|        | 0x06          | reserviert                      | unsigned32 | rw       | no                         | 0x20002608  | reserviert                                                  |
|        | 0x07          | reserviert                      | unsigned32 | rw       | no                         | 0x20002708  | reserviert                                                  |
|        | 80x0          | reserviert                      | unsigned32 | rw       | no                         | 0x20002808  | reserviert                                                  |

<sup>1.</sup> Applikationsobjekte: 2 Byte Index, 1 Byte Subindex, 1 Byte Anzahl Bits

## **Positions- und Statusdaten**

| Index  | Subindex    | Bezeichnung                   | Datentyp  | Attribut | PDO-<br>Mapping<br>möglich | Defaultwert | Bedeutung                     |
|--------|-------------|-------------------------------|-----------|----------|----------------------------|-------------|-------------------------------|
| 0x2000 | 0x00        | Anzahl folgender Parameter    | unsigned8 | rw       | no                         | 0x28        | Anzahl der gemappten Objekte  |
|        | 0x00 - 0x28 | Positions- und<br>Statusdaten | unsigned8 | ro       | yes                        | 0x0         | Positions- und<br>Statusdaten |

| la des | Sub-  | _          | _      | _        |          |                  |        | _      | 0         |
|--------|-------|------------|--------|----------|----------|------------------|--------|--------|-----------|
| Index  | index |            | 6      | 5        | 4        | 3                | 2      | 1      | ) (D. ) ( |
| 0x2000 | 0x01  | YP31       | YP30   | YP29     | YP28     | YP27             | YP26   | YP25   | YP24      |
|        | 0x02  | YP23       | YP22   | YP21     | YP20     | YP19             | YP18   | YP17   | YP16      |
|        | 0x03  | YP15       | YP14   | YP13     | YP12     | YP11             | YP10   | YP09   | YP08      |
|        | 0x04  | YP07       | YP06   | YP05     | YP04     | YP03             | YP02   | YP01   | YP00      |
|        | 0x05  | TS31       | TS30   | TS29     | TS28     | TS27             | TS26   | TS25   | TS24      |
|        | 0x06  | TS23       | TS22   | TS21     | TS20     | TS19             | TS18   | TS17   | TS16      |
|        | 0x07  | TS15       | TS14   | TS13     | TS12     | TS11             | TS10   | TS09   | TS08      |
|        | 0x08  | TS07       | TS06   | TS05     | TS04     | TS03             | TS02   | TS01   | TS00      |
|        | 0x09  | XP31       | XP30   | XP29     | XP28     | XP27             | XP26   | XP25   | XP24      |
|        | 0x0A  | XP23       | XP22   | XP21     | XP20     | XP19             | XP18   | XP17   | XP16      |
|        | 0x0B  | XP15       | XP14   | XP13     | XP12     | XP11             | XP10   | XP09   | XP08      |
|        | 0x0C  | XP07       | XP06   | XP05     | XP04     | XP03             | XP02   | XP01   | XP00      |
|        | 0x0D  | AG15       | AG14   | AG13     | AG12     | AG11             | AG10   | AG09   | AG08      |
|        | 0x0E  | AG07       | AG06   | AG05     | AG04     | AG03             | AG02   | AG01   | AG00      |
|        | 0x0F  | reserviert |        |          |          |                  |        |        |           |
|        | 0x10  | reserviert |        |          |          |                  |        |        |           |
|        | 0x11  | 0          | 0      | 0        | FlashOff | TAG <sup>1</sup> | 0      | 0      | 0         |
|        | 0x12  | 1          | LT     | RT       | 0        | CC1              | WRN    | NP     | ERR       |
|        | 0x13  | WRN15      | WRN14  | WRN13    | WRN12    | WRN11            | WRN10  | WRN09  | WRN08     |
|        | 0x14  | WRN07      | WRN06  | WRN05    | WRN04    | WRN03            | WRN02  | WRN01  | WRN00     |
|        | 0x15  | TAG31      | TAG30  | TAG29    | TAG28    | TAG27            | TAG26  | TAG25  | TAG24     |
|        | 0x16  | TAG23      | TAG22  | TAG21    | TAG20    | TAG19            | TAG18  | TAG17  | TAG16     |
|        | 0x17  | TAG15      | TAG14  | TAG13    | TAG12    | TAG11            | TAG10  | TAG09  | TAG08     |
|        | 0x18  | TAG07      | TAG06  | TAG05    | TAG04    | TAG03            | TAG02  | TAG01  | TAG00     |
|        | 0x19  | reserviert | I      | l.       | l.       | 01_1             | O1_0   | S1_1   | S1_0      |
|        | 0x1A  | CC1_15     | CC1_14 | CC1_13   | CC1_12   | CC1_11           | CC1_10 | CC1_09 | CC1_08    |
|        | 0x1B  | CC1_07     | CC1_06 | CC1_05   | CC1_04   | CC1_03           | CC1_02 | CC1_01 | CC1_00    |
|        | 0x1C  | reserviert | I      | l.       | l.       | I                |        | I      | l.        |
|        | 0x1D  | TAG63      | TAG62  | TAG61    | TAG60    | TAG59            | TAG58  | TAG57  | TAG56     |
|        | 0x1E  | TAG55      | TAG54  | TAG53    | TAG52    | TAG51            | TAG50  | TAG49  | TAG48     |
|        | 0x1F  | TAG47      | TAG46  | TAG45    | TAG44    | TAG43            | TAG42  | TAG41  | TAG40     |
|        | 0x20  | TAG39      | TAG38  | TAG37    | TAG36    | TAG35            | TAG34  | TAG33  | TAG32     |
|        | 0x21  | Z15        | Z14    | Z13      | Z12      | Z11              | Z10    | Z09    | Z08       |
|        | 0x22  | Z07        | Z06    | Z05      | Z04      | Z03              | Z02    | Z01    | Z00       |
|        | 0x23  | reserviert |        | <u> </u> |          |                  |        |        | ļ         |
|        | 0x24  | reserviert |        |          |          |                  |        |        |           |
|        | 0x25  | reserviert |        |          |          |                  |        |        |           |
|        | 0x26  | reserviert |        |          |          |                  |        |        |           |
|        | 0x27  | reserviert |        |          |          |                  |        |        |           |
|        | 0x28  | reserviert |        |          |          |                  |        |        |           |
|        |       |            |        |          |          |                  |        |        |           |

<sup>1.</sup> Bei Bit = 1: Lesekopf erkennt DataMatrix-Tag

# Eingangsdaten

| Index  | Subindex  | Bezeichnung                     | Datentyp  | Attribut | PDO-<br>Mapping<br>möglich | Defaultwert | Bedeutung                       |
|--------|-----------|---------------------------------|-----------|----------|----------------------------|-------------|---------------------------------|
| 0x2200 | 0x00      | Anzahl folgen-<br>der Parameter | unsigned8 | ro       | no                         | 0x08        | Anzahl der<br>gemappten Objekte |
|        | 0x01 0x08 | Eingangsdaten                   | unsigned8 | WO       | yes                        | 0x00        | Eingangsdaten                   |

| Index  | Sub-<br>index | 7          | 6          | 5        | 4      | 3 | 2 | 1                   | 0                  |  |
|--------|---------------|------------|------------|----------|--------|---|---|---------------------|--------------------|--|
| 0x2200 | 0x00          | Anzah      | l folgen   | der Para | ameter |   |   |                     |                    |  |
|        | 0x01          | 0          | 0          | 0        | I_Ctrl | 0 | 0 | Input_Dir_Sel_Right | Input_Dir_Sel_Left |  |
|        | 0x02          | reserv     | eserviert  |          |        |   |   |                     |                    |  |
|        | 0x03          | reserv     | reserviert |          |        |   |   |                     |                    |  |
|        | 0x04          | reserv     | iert       |          |        |   |   |                     |                    |  |
|        | 0x05          | reserv     | iert       |          |        |   |   |                     |                    |  |
|        | 0x06          | reserviert |            |          |        |   |   |                     |                    |  |
|        | 0x07          | reserv     | iert       |          |        |   |   |                     |                    |  |
|        | 0x08          | reserv     | iert       |          |        |   |   |                     |                    |  |

| Bezeich-<br>nung | Funktion                                                                                                                                                          |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AG_#             | Absolute Winkelangabe                                                                                                                                             |
| CC1_#/<br>CC2_#  | Kontrollcode 1 bzw. 2 mit Nummer # detektiert Kontrollcode 2 wird über die Funktion "SplitValue" ausgewertet. <sup>1</sup>                                        |
| CC1              | Zugehöriger Kontrollcode erkannt.                                                                                                                                 |
| ERR              | Fehlermeldung Fehlercodes werden in XP00 XP23 abgelegt. Zusätzliche Informationen zu den Codes finden Sie in der foglenden Tabelle <b>Fehlercodes</b> .           |
| LT/RT            | gewählte Richtungsentscheidung                                                                                                                                    |
| NP               | keine absolute X-Position                                                                                                                                         |
| O1_#/<br>O2_#    | Orientierung Steuercode zu Spur. Siehe Abschnitt "Orientierung O" ().                                                                                             |
| S1_#/<br>S2_#    | relative Position Steuercode zu Spur. Siehe Abschnitt "Seite S" ().                                                                                               |
| TAG              | DataMatrix-Tag detektiert                                                                                                                                         |
| TAG#             | DataMatrix-Tag mit Nummer # detektiert                                                                                                                            |
| WRN              | Warnmeldung<br>Warnungen werden in WRN00 WRN13 abgelegt. Zusätzliche Informationen<br>zu den Codes finden Sie in der nachfolgenden Tabelle <b>Warnmeldungen</b> . |
| XP#              | absolute Position in X-Richtung, vorzeichenbehaftet                                                                                                               |
| YP#              | absolute Position in Y-Richtung, vorzeichenbehaftet                                                                                                               |
| Z#               | Abstand des Lesekopfes zum Codeband/ TAG in Z-Richtung                                                                                                            |
| TS#              | Zeitstempel der Bildaufnahme 32 bit unsigned (37,04 ns steps) (Overflow after 159,07s)                                                                            |
| FlashOff         | Statusbit Blitz deaktiviert (1: Blitz aus, 0: Blitz an)                                                                                                           |
| I_Ctrl           | Steuerbit Blitz (1: Blitz aus, 0: Blitz an)                                                                                                                       |

1. Bei Fragen dazu wenden Sie Sich bitte an Pepperl+Fuchs

### **Fehlercodes**

| Fehlercode | Beschreibung                                                                                         | Priorität |
|------------|------------------------------------------------------------------------------------------------------|-----------|
| 2          | keine eindeutige Position ermittelbar, z.B. durch zu große<br>Codeunterschiede, falscher Codeabstand | 4         |
| 5          | keine Richtungsentscheidung vorhanden                                                                | 2         |
| > 1000     | interner Fehler                                                                                      | 1         |

## Warnmeldungen

| War-<br>ning<br>Code | Warn-<br>mel-<br>dung | Beschreibung                                                                                               | Priori-<br>tät |
|----------------------|-----------------------|------------------------------------------------------------------------------------------------------------|----------------|
| WRN00                | 1                     | Es wurde ein Code mit einem nicht PGV-Inhalt gefunden.                                                     | 3              |
| WRN01                | 2                     | Lesekopf zu nah am Codeband                                                                                | 4              |
| WRN02                | 3                     | Lesekopf zu weit vom Codeband entfernt                                                                     | 5              |
| WRN03                | 4                     | reserviert                                                                                                 | 6              |
| WRN04                | 5                     | reserviert                                                                                                 | 7              |
| WRN05                | 6                     | Lesekopf relativ zum Codeband verdreht/verkippt                                                            | 8              |
| WRN06                | 7                     | reserviert                                                                                                 | 9              |
| WRN07                | 8                     | Reparaturband detektiert                                                                                   | 1              |
| WRN08                | 9                     | reserviert                                                                                                 | 2              |
| WRN09                | 10                    | Positionscode nahe Abzweig/Kreuzung detektiert                                                             | 10             |
| WRN10                | 11                    | Mehr als die angegebene Anzahl an Code-Spuren vorhanden                                                    | 11             |
| WRN11                | 12                    | reserviert                                                                                                 | -              |
| WRN12                | 13                    | Gewählte Spur nicht sichtbar. Die Positionsdaten stammen aus einer anderen im Sichtfeld befindlichen Spur. | -              |
| WRN13                | 14                    | reserviert                                                                                                 | -              |
| WRN14                | 15                    | reserviert                                                                                                 | -              |
| WRN15                | 16                    | reserviert                                                                                                 | -              |

Tabelle 5.5 Wenn keine Warnmeldungen vorliegen, sind alle Bits im Warnungsdatensatz auf 0 gesetzt.

### Seriennummer

| Index  | Subindex | Bezeichnung  | Datentyp     | Attribut | PDO-Mapping möglich | Wert         |
|--------|----------|--------------|--------------|----------|---------------------|--------------|
| 0x3000 | 0x00     | Seriennummer | ASCII-String | ro       | no                  | Seriennummer |

## 5.1.3.1 Orientierung O

Die Orientierung O gibt die Ausrichtung der DataMatrix-Steuercodes (siehe Kapitel 5.2) im Lesefenster an. Siehe "Orientierung und Seite" auf Seite 49.

### **Bedeutung der Bits**

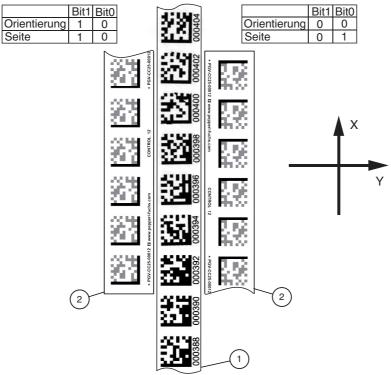
| Bit1=01 | Bit0=O0 | Bedeutung                                                                                                            |
|---------|---------|----------------------------------------------------------------------------------------------------------------------|
| 0       | 0       | DataMatrix-Steuercode hat gleiche Orientierung wie aufsteigende DataMatrix-Positioncode.                             |
| 0       | 1       | Orientierung DataMatrix-Steuercode um 90° im Uhrzeigersinn gedreht gegenüber aufsteigender DataMatrix-Positioncode.  |
| 1       | 0       | Orientierung DataMatrix-Steuercode um 180° im Uhrzeigersinn gedreht gegenüber aufsteigender DataMatrix-Positioncode. |
| 1       | 1       | Orientierung DataMatrix-Steuercode um 270° im Uhrzeigersinn gedreht gegenüber aufsteigender DataMatrix-Positioncode. |

#### 5.1.3.2 Seite S

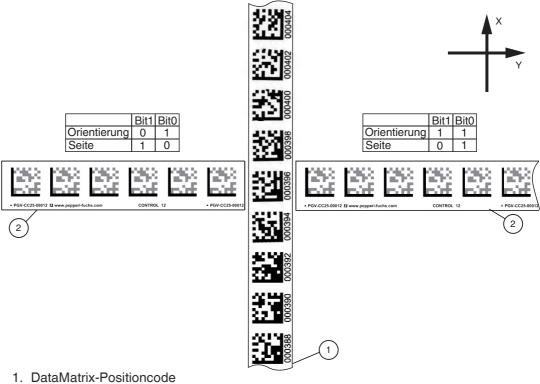
Die Seite S gibt an, auf welcher Seite der DataMatrix-Spur sich DataMatrix-Steuercodes befinden. Siehe "Orientierung und Seite" auf Seite 49.

### **Bedeutung der Bits**

| Bit1=S1 | Bit0=S0 | Bedeutung                                                     |
|---------|---------|---------------------------------------------------------------|
| 0       | 0       | kein DataMatrix-Steuercode vorhanden oder gefunden reserviert |
| 0       | 1       | DataMatrix-Steuercode rechts der DataMatrix-Spur              |
| 1       | 0       | DataMatrix-Steuercode links der DataMatrix-Spur               |
| 1       | 1       | nicht feststellbar <sup>1</sup>                               |


Tabelle 5.6 Bedeutung der Bits S1 und S0

<sup>1.</sup> Steuercode auf DataMatrix-Spur verlegt keine DataMatrix-Spur vorhanden




## Beispiel

## **Orientierung und Seite**



- 1. DataMatrix-Positioncode
- 2. DataMatrix-Steuercode



- 2. DataMatrix-Steuercode



### 5.1.3.3 Position/Spur

Aus der Rückmeldung des Lesekopfs bezüglich DataMatrix-Tag **TAG**, No X-Position **NP**, absoluter X-Position **XP** und der Y-Position und des Winkels **YPS/ANG** können Sie mit der folgenden Tabelle Rückschlüsse auf den aktuellen Ausschnitt im Lesefenster ziehen.

### **Bedeutung der Bits**

| TAG | NP | XP | YPS/ANG | Bedeutung                                                                   |
|-----|----|----|---------|-----------------------------------------------------------------------------|
| 0   | 0  | +  | +       | DataMatrix-Spur vorhanden.                                                  |
| 0   | 1  | -  | -       | keine auswertbaren Objekte vorhanden.                                       |
| 1   | 0  | +  | +       | Position aufgrund eines DataMatrix-Tags, X-Position ist vorzeichenbehaftet. |

### 5.1.4 LSS-Service

Der Lesekopf unterstützt die Änderung der Baudrate sowie der Node-ID über CANopen mittels Layer-Setting-Service (LSS).

## 5.1.5 Objekt 3001

Mit den globalen Primärdaten parametrieren Sie den Lesekopf über CANopen. Die globalen Primärdaten werden immer komplett an den Lesekopf übertragen.

| Sub-  |                                            |                                                                   |                                        |                          |                                                |  |  |  |
|-------|--------------------------------------------|-------------------------------------------------------------------|----------------------------------------|--------------------------|------------------------------------------------|--|--|--|
| Index | Bezeichnung                                | Funktion                                                          | daten                                  | Datentyp                 | Primärdaten                                    |  |  |  |
| 0     | Anzahl folgen-<br>der Parameter            |                                                                   |                                        | unsigned8                | 11                                             |  |  |  |
| 1     | X-Resolution                               | Multiplikator für<br>die Länge in<br>Richtung der<br>X-Koordinate | Auflösung                              | unsigned32               | 0x00: 0,1 mm<br>0x01: 1 mm<br>0x02: 10 mm      |  |  |  |
| 2     | Y-Resolution                               | Multiplikator für<br>die Länge in<br>Richtung der<br>Y-Koordinate | Auflösung                              | unsigned32               | 0x00: 0,1 mm<br>0x01: 1 mm<br>0x02: 10 mm      |  |  |  |
| 3     | Angle-<br>Resolution                       | Multiplikator für<br>die<br>Winkelausgabe                         | Auflösung                              | signed32                 | -16384 - 16384<br>360                          |  |  |  |
| 4     | Horizontal<br>Offset                       | Versatz in<br>Richtung der<br>X-Koordinate                        | Länge                                  | signed32                 | 0 – ±10 000 000 mm                             |  |  |  |
| 5     | Vertical Offset                            | Versatz in<br>Richtung der<br>Y-Koordinate                        | Länge                                  | signed32                 | 0 – ±10 000 000 mm                             |  |  |  |
| 6     | Angle Offset                               | Versatz der<br>Blickrichtung                                      | Winkel                                 | signed32                 | -16383 - 0 - 16383                             |  |  |  |
| 7     | No Position<br>Value X                     | X-Wert, wenn<br>kein Codeband<br>sichtbar ist                     | X-Daten bei<br>"No Position"           | octet_string<br>Byte 0-3 | Last Valid Position (0)<br>Specified Value (1) |  |  |  |
|       | No Position<br>Specific<br>X-Position      | festgelegter<br>X-Wert                                            |                                        | Byte 4-7                 | -2147483648 - 0 -<br>2147483647                |  |  |  |
| 8     | No Position<br>Value Y                     | Y-Wert, wenn<br>kein Codeband<br>sichtbar ist                     | Y-Daten bei<br>"No Position"           | octet_string<br>Byte 0-3 | Last Valid Position (0)<br>Specified Value (1) |  |  |  |
|       | No Position<br>Specific<br>Y-Position      | festgelegter<br>Y-Wert                                            |                                        | Byte 4-7                 | -32768 - 0 - 32767                             |  |  |  |
| 9     | No Position<br>Value Angle                 | Winkelaus-<br>gabe, wenn kein<br>Farbband<br>sichtbar ist         | Winkel-Daten<br>bei "No Posi-<br>tion" | octet_string<br>Byte 0-3 | Last Valid Angle (0)<br>Specified Angle (1)    |  |  |  |
|       | No Position Specific Winkel Angle-Position |                                                                   |                                        | Byte 4-7                 | 0 - 65535                                      |  |  |  |
| 10    | reserviert                                 |                                                                   |                                        |                          |                                                |  |  |  |
| 11    | reserviert                                 |                                                                   |                                        |                          |                                                |  |  |  |
| 12    | Input Source<br>Selection                  | Auswahl der<br>Quelle der<br>Eingangsdaten                        | Auswahl                                | unsigned32               | 0 = Hardware-Input<br>1 = Software (PDO)       |  |  |  |

#### 5.2 Betrieb mit Steuercodes

In zahlreichen Anwendungen eines Positioniersystems ist es erforderlich oder erwünscht, an bestimmten festen Positionen definierte Abläufe (= Event) zu starten. Dies bedeutet, dass die exakten Positionen über Codebänder zur Positionierung definiert werden müssen.

Soll an einer bestimmten Position ein Event gestartet werden oder eine Richtungsentscheidung getroffen werden, so wird ein Steuercode parallel zur eigentlichen Spur montiert.

In der Anlagensteuerung muss dann lediglich ein bestimmtes Event und der damit verknüpfte Ablauf programmiert werden. An welcher Position der entsprechende Steuercode neben das Codeband zur Positionierung geklebt wird, kann bis zur endgültigen Inbetriebnahme der Anlage offen bleiben. Auch bei nachträglichen Änderungen im Layout einer Anlage kann einfach der entsprechende Steuercode an seine neue Position geklebt werden. Es fallen keinerlei Programmänderungen an.

Steuercodes sind Codebänder mit einer Länge von einem Meter. Der Steuercode trägt eine kodierte Nummer. Es gibt Steuercodes mit Nummern von 001 bis 999.

Beim Einfahren in den Bereich eines Steuercodes setzt der Lesekopf in seinen Ausgangsdaten das Kontrollcode-Flag.

Der 1 Meter lange Steuercode kann gekürzt werden. Die Mindestlänge sollte jedoch 3 Codes (60 mm) betragen. Mit wachsender Fahrgeschwindigkeit des Lesekopfs ist eine größere Länge des Steuercodes notwendig. Bei der maximalen Verfahrgeschwindigkeit des Lesekopfs muss der Steuercode in seiner vollen Länge von 1 Meter neben das Codeband zur Positionierung geklebt werden.

Die Mindestlänge eines Steuercodes kann in Abhängigkeit von der Fahrgeschwindigkeit und der Triggerperiode nach folgender Formel berechnet werden:

 $L_{Steuercode} = 60 \text{ mm} + V_{max} [m/s] * T_{Triggerperiode} [s] x 2$ 

Die Triggerperiode beträgt 40 ms.



#### **Beispiel**

#### Berechnungsbeispiel

Die Mindestlänge des Steuercodes bei einer Geschwindigkeit von 3 m/s und einer Triggerperiode von 40 ms ist dann:

 $L_{Steuercode} = 60 \text{ mm} + 3 \text{ m/s} * 40 \text{ ms} * 2 = 300 \text{ mm}$ 

Erkennbar sind Steuercodes an der aufgedruckten Nummer, hier z. B. "Control 12".

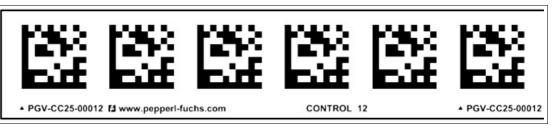



Abbildung 5.2 PGV-CC25-0012

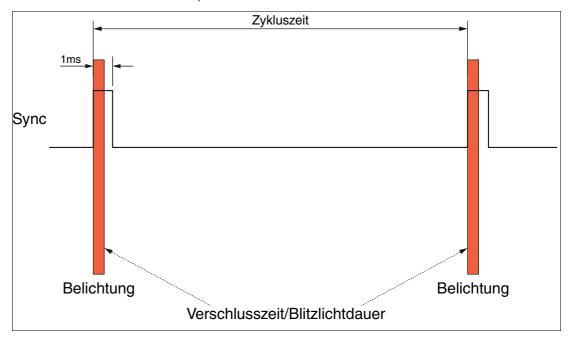
Die Abbildung zeigt einen Ausschnitt aus dem Steuercode #12

Bestellinformationen zu Steuercodes finden Sie im Kapitel Zubehör.

## 5.3 Betrieb im Reparaturfall

Im Reparaturfall steht Ihnen für eine kurzfristige Übergangslösung der **Codeband-Generator** auf www.pepperl-fuchs.com zur Verfügung. Dieser bietet Ihnen die Möglichkeit, Codeband-Segmente online zu erstellen und auszudrucken.

Geben Sie dazu den Anfangswert in Metern und die Codebandlänge des zu ersetzenden Teilstücks in Metern an. Sie erhalten eine ausdruckbare PDF-Datei mit dem gewünschten Segment des Codebands.


Nutzen Sie den Ausdruck nur als Notlösung. Die Haltbarkeit des Papierbands ist je nach Anwendung sehr begrenzt!

## 5.4 Elektrischer Schaltausgang

Der Lesekopf verfügt über zwei konfigurierbare Schaltausgänge. Die Defaulteinstellung ist im Datenblatt hinterlegt.

Ist der jeweilige Schaltausgang auf "snyc-out" gestellt, so wird am Schaltausgang ein Synchronisationspuls bereitgestellt. Der Puls ist mit der Bildaufnahme synchronisiert. Das Steuersignal der Bildaufnahme (Belichtung/ Verschlusszeit) wird am Ausgang latenzfrei zur Verfügung gestellt und auf 1 ms Pulsdauer verlängert.

Mit Hilfe dieses Synchronisationspulses lässt sich die exakte zeitliche Zuordnung der Positionsdaten zu dem Aufnahmezeitpunkt realisieren.



6

## 6.1 ASCII-Tabelle

**Anhang** 

| hex | dez | ASCII |
|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|
| 00  | 0   | NUL   | 20  | 32  | Space | 40  | 64  | @     | 60  | 96  | '     |
| 01  | 1   | SOH   | 21  | 33  | !     | 41  | 65  | Α     | 61  | 97  | а     |
| 02  | 2   | STX   | 22  | 34  | "     | 42  | 66  | В     | 62  | 98  | b     |
| 03  | 3   | ETX   | 23  | 35  | #     | 43  | 67  | С     | 63  | 99  | С     |
| 04  | 4   | EOT   | 24  | 36  | \$    | 44  | 68  | D     | 64  | 100 | d     |
| 05  | 5   | ENQ   | 25  | 37  | %     | 45  | 69  | Е     | 65  | 101 | е     |
| 06  | 6   | ACK   | 26  | 38  | &     | 46  | 70  | F     | 66  | 102 | f     |
| 07  | 7   | BEL   | 27  | 39  | 1     | 47  | 71  | G     | 67  | 103 | g     |
| 08  | 8   | BS    | 28  | 40  | (     | 48  | 72  | Н     | 68  | 104 | h     |
| 09  | 9   | HT    | 29  | 41  | )     | 49  | 73  | I     | 69  | 105 | i     |
| 0A  | 10  | LF    | 2A  | 42  | *     | 4A  | 74  | J     | 6A  | 106 | j     |
| 0B  | 11  | VT    | 2B  | 43  | +     | 4B  | 75  | K     | 6B  | 107 | k     |
| 0C  | 12  | FF    | 2C  | 44  | ,     | 4C  | 76  | L     | 6C  | 108 | I     |
| 0D  | 13  | CR    | 2D  | 45  | -     | 4D  | 77  | М     | 6D  | 109 | m     |
| 0E  | 14  | SO    | 2E  | 46  |       | 4E  | 78  | N     | 6E  | 110 | n     |
| 0F  | 15  | SI    | 2F  | 47  | 1     | 4F  | 79  | 0     | 6F  | 111 | 0     |
| 10  | 16  | DLE   | 30  | 48  | 0     | 50  | 80  | Р     | 70  | 112 | р     |
| 11  | 17  | DC1   | 31  | 49  | 1     | 51  | 81  | Q     | 71  | 113 | q     |
| 12  | 18  | DC2   | 32  | 50  | 2     | 52  | 82  | R     | 72  | 114 | r     |
| 13  | 19  | DC3   | 33  | 51  | 3     | 53  | 83  | S     | 73  | 115 | s     |
| 14  | 20  | DC4   | 34  | 52  | 4     | 54  | 84  | Т     | 74  | 116 | t     |
| 15  | 21  | NAK   | 35  | 53  | 5     | 55  | 85  | U     | 75  | 117 | u     |
| 16  | 22  | SYN   | 36  | 54  | 6     | 56  | 86  | V     | 76  | 118 | V     |
| 17  | 23  | ETB   | 37  | 55  | 7     | 57  | 87  | W     | 77  | 119 | w     |
| 18  | 24  | CAN   | 38  | 56  | 8     | 58  | 88  | Х     | 78  | 120 | х     |
| 19  | 25  | EM    | 39  | 57  | 9     | 59  | 89  | Υ     | 79  | 121 | У     |
| 1A  | 26  | SUB   | 3A  | 58  | :     | 5A  | 90  | Z     | 7A  | 122 | Z     |
| 1B  | 27  | ESC   | 3B  | 59  | ;     | 5B  | 91  | [     | 7B  | 123 | {     |
| 1C  | 28  | FS    | 3C  | 60  | <     | 5C  | 92  | \     | 7C  | 124 | I     |
| 1D  | 29  | GS    | 3D  | 61  | =     | 5D  | 93  | ]     | 7D  | 125 | }     |
| 1E  | 30  | RS    | 3E  | 62  | >     | 5E  | 94  | ٨     | 7E  | 126 | ~     |
| 1F  | 31  | US    | 3F  | 63  | ?     | 5F  | 95  | _     | 7F  | 127 | DEL   |

## 6.2 Codekarten mit besonderer Funktion

Besondere Funktion weisen folgende Codekarten auf:

- Activate
- User
- · Fieldbus Store
- Fieldbus Cancel
- Fieldbus Use
- · Fieldbus Default

#### **Activate**

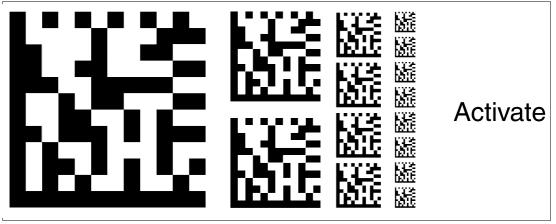



Abbildung 6.1 Die Codekarte "ACTIVATE" dient zur Aktivierung der Betriebsart für externe Parametrierung. Um in die Betriebsart Parametrierung zu gelangen, muss die Codekarte "USER" vom Lesekopf gelesen werden.

#### User

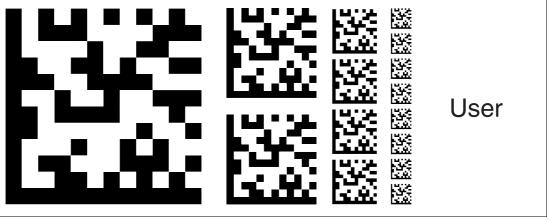



Abbildung 6.2 Die Codekarte "USER" dient zur Freischaltung der Benutzerebene in der Betriebsart für externe Parametrierung.

#### **Fieldbus Store**

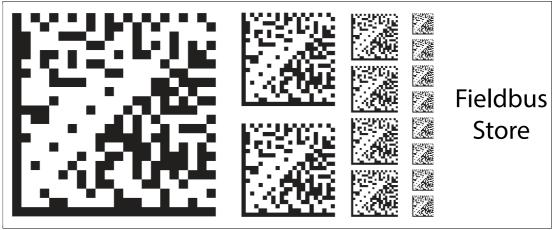



Abbildung 6.3 Die Codekarte "Fieldbus Store" speichert die vorgenommene Parametrierung nichtflüchtig im Lesekopf und beendet die Betriebsart für externe Parametrierung.

#### **Fieldbus Cancel**

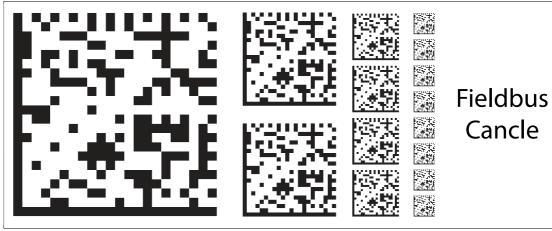



Abbildung 6.4 Die Codekarte "Fieldbus Cancel" verwirft die vorgenommene Parametrierung und beendet die Betriebsart für externe Parametrierung. Der Lesekopf geht in den Normalbetrieb unter Benutzung der zuletzt gültig gespeicherten Konfiguration.

#### Fieldbus Use

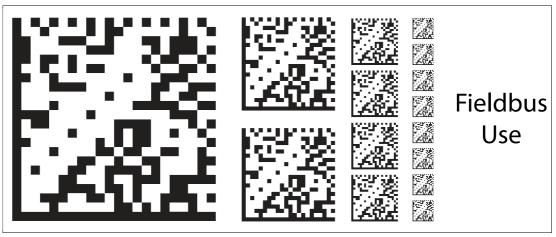



Abbildung 6.5 Die Codekarte "Fieldbus Use" übernimmt die vorgenommene Konfiguration **flüchtig** in den Arbeitsspeicher des Lesekopfes und beendet die Betriebsart für externe Parametrierung. Der Lesekopf arbeitet nun mit dieser Konfiguration. Wird der Lesekopf jedoch aus- und wieder eingeschaltet, so geht diese Konfiguration verloren und der Lesekopf arbeitet mit der zuletzt gültig gespeicherten Konfiguration. Diese Funktion dient überwiegend Testzwecken.



### **Fieldbus Default**

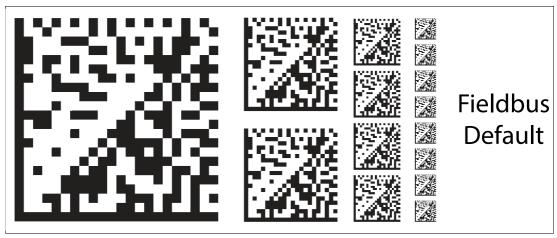



Abbildung 6.6 Die Codekarte "Fieldbus Default" stellt die Werkseinstellung des Lesekopfes wieder her und beendet die Betriebsart für externe Parametrierung.

Anhang

## 6.3 Codekarten zur Einstellung der Baudrate

Durch Parametrierung können dem Lesekopf verschiedene Übertragungsraten für die Kommunikation über CANopen zugewiesen werden.

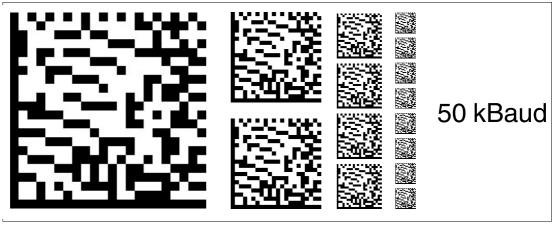



Abbildung 6.7 Die Codekarte weist dem Lesekopf die Baudrate 50 kBaud zu

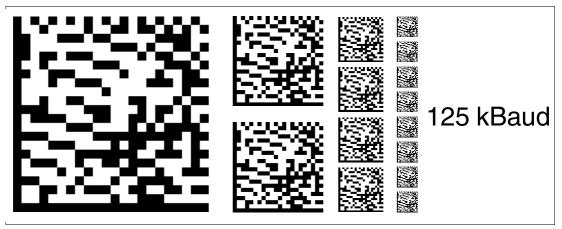



Abbildung 6.8 Die Codekarte weist dem Lesekopf die Baudrate 125 kBaud zu

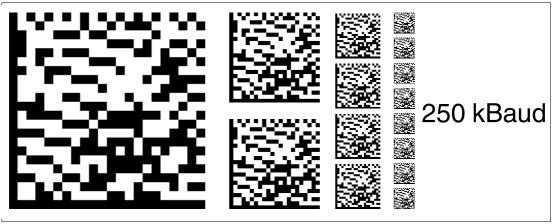



Abbildung 6.9 Die Codekarte weist dem Lesekopf die Baudrate 250 kBaud zu

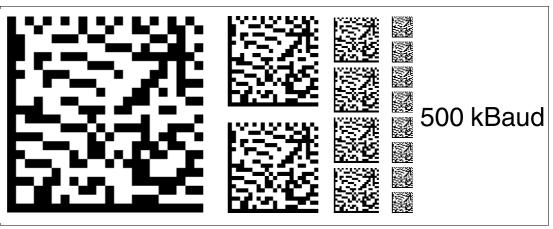



Abbildung 6.10 Die Codekarte weist dem Lesekopf die Baudrate 500 kBaud zu

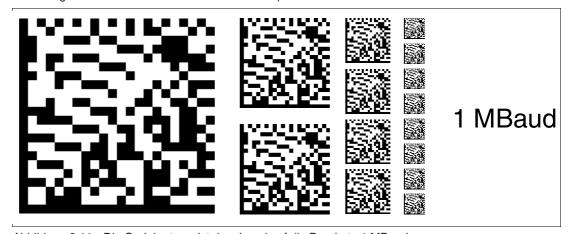



Abbildung 6.11 Die Codekarte weist dem Lesekopf die Baudrate 1 MBaud zu

## 6.4 Codekarten für Terminierungswiderstand

Schaltet den Terminierungswiderstand an oder aus und speichert die Einstellungen.



#### Hinweis!

Zum Speichern der Änderung am Terminierungswiderstand muss die Codekarte "Store Termination" verwendet werden. Der Lesekopf beendet damit den Parametriermodus.

Die Codekarte "Default" und "Cancle" wirken sich nicht auf Änderungen am Terminierungswiderstand aus.

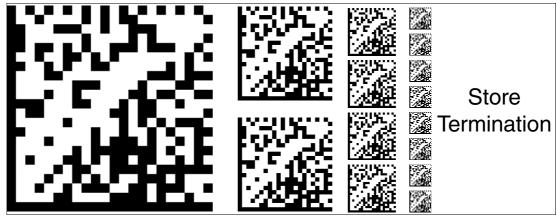



Abbildung 6.12 Die Codekarte "Store Termination" speichert die vorgenommene Änderungen am Terminierungswiderstand und beendet den Parametriermodus.

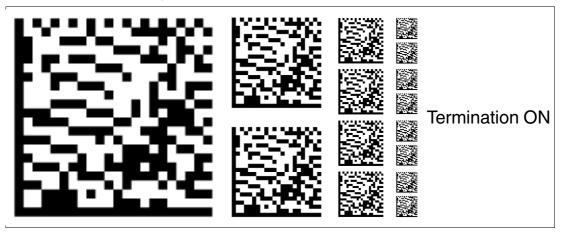



Abbildung 6.13 Die Codekarte Termination ON aktiviert den Terminierungswiderstand am Bus.

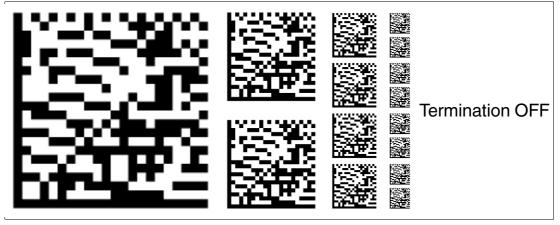



Abbildung 6.14 Die Codekarte Termination OFF deaktiviert den Terminierungswiderstand am Bus.



## 6.5 Codekarten zur Einstellung der Feldbusadresse

Mit den folgenden Codekarten können Sie die Feldbusadressen 001 bis 125 vergeben.

### Feldbusadresse 001

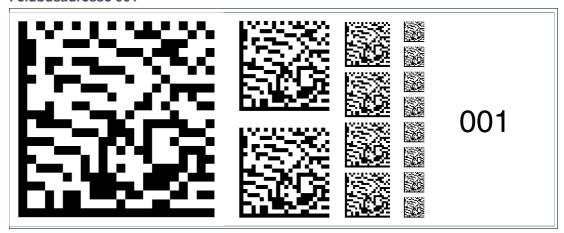



Abbildung 6.15 Die Codekarte "Feldbusadresse 001" weist dem Gerät die Feldbusadresse 001 zu.

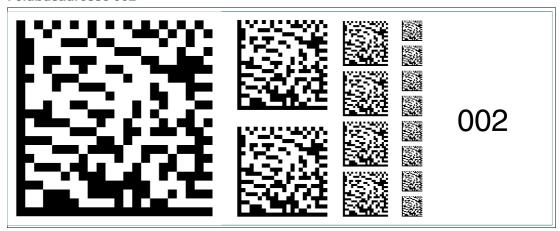



Abbildung 6.16 Die Codekarte "Feldbusadresse 002" weist dem Gerät die Feldbusadresse 002 zu.

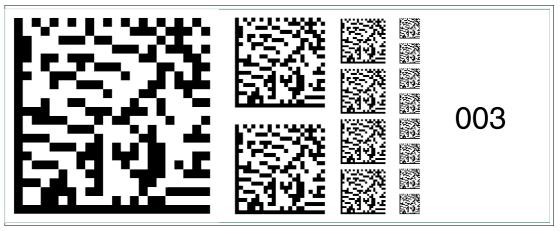



Abbildung 6.17 Die Codekarte "Feldbusadresse 003" weist dem Gerät die Feldbusadresse 003 zu. **Feldbusadresse 004** 

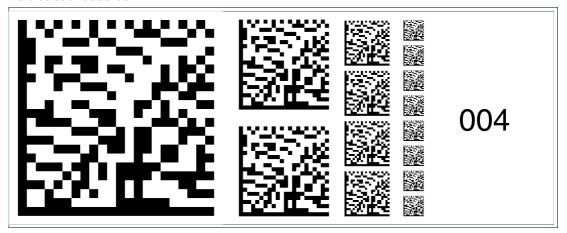



Abbildung 6.18 Die Codekarte "Feldbusadresse 004" weist dem Gerät die Feldbusadresse 004 zu.

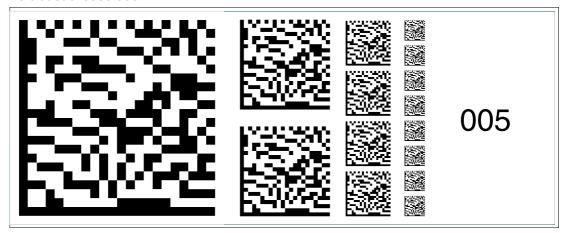



Abbildung 6.19 Die Codekarte "Feldbusadresse 005" weist dem Gerät die Feldbusadresse 005 zu.

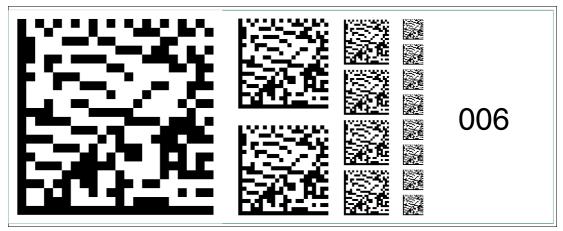



Abbildung 6.20 Die Codekarte "Feldbusadresse 006" weist dem Gerät die Feldbusadresse 006 zu. **Feldbusadresse 007** 

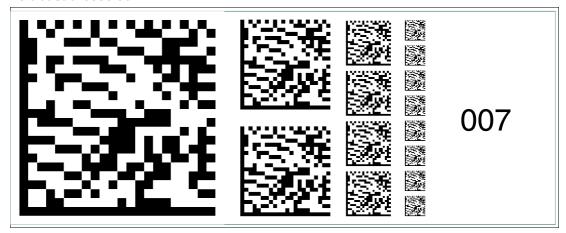



Abbildung 6.21 Die Codekarte "Feldbusadresse 007" weist dem Gerät die Feldbusadresse 007 zu.

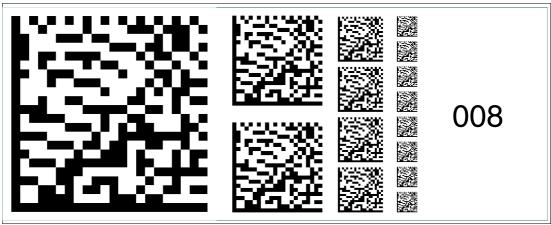



Abbildung 6.22 Die Codekarte "Feldbusadresse 008" weist dem Gerät die Feldbusadresse 008 zu.

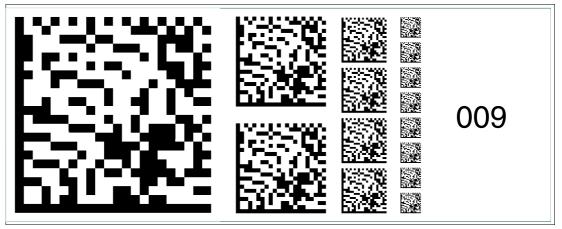



Abbildung 6.23 Die Codekarte "Feldbusadresse 009" weist dem Gerät die Feldbusadresse 009 zu. **Feldbusadresse 010** 

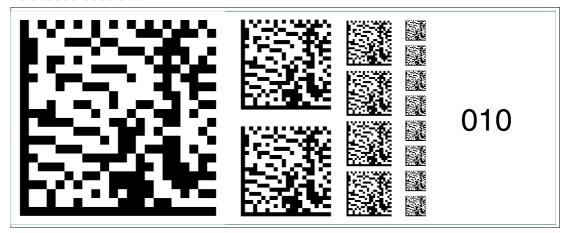



Abbildung 6.24 Die Codekarte "Feldbusadresse 010" weist dem Gerät die Feldbusadresse 010 zu.

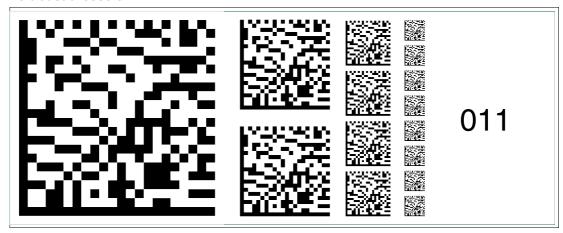



Abbildung 6.25 Die Codekarte "Feldbusadresse 011" weist dem Gerät die Feldbusadresse 011 zu.

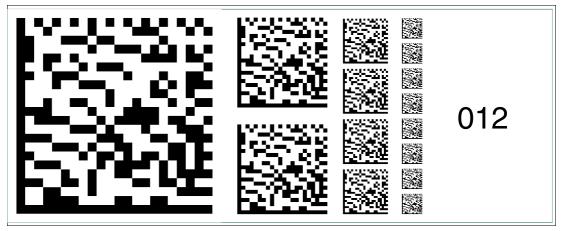



Abbildung 6.26 Die Codekarte "Feldbusadresse 012" weist dem Gerät die Feldbusadresse 012 zu. **Feldbusadresse 013** 

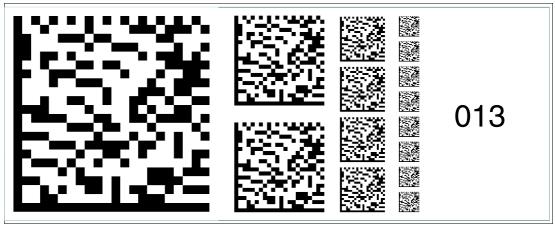



Abbildung 6.27 Die Codekarte "Feldbusadresse 013" weist dem Gerät die Feldbusadresse 013 zu.

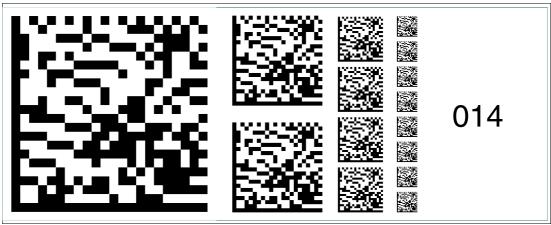



Abbildung 6.28 Die Codekarte "Feldbusadresse 014" weist dem Gerät die Feldbusadresse 014 zu.

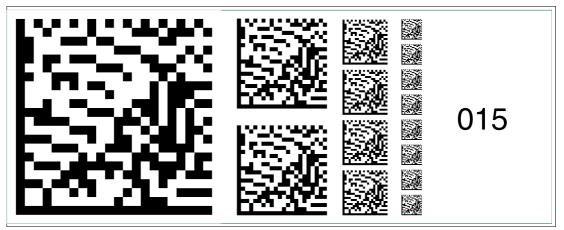



Abbildung 6.29 Die Codekarte "Feldbusadresse 015" weist dem Gerät die Feldbusadresse 015 zu. **Feldbusadresse 016** 

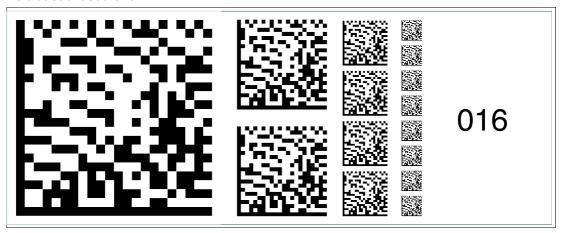



Abbildung 6.30 Die Codekarte "Feldbusadresse 016" weist dem Gerät die Feldbusadresse 016 zu.

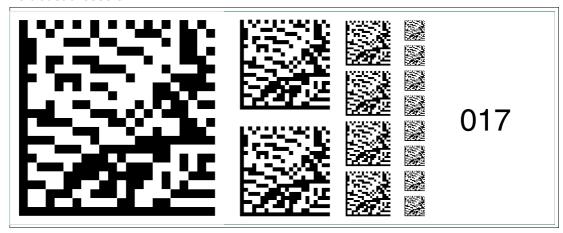



Abbildung 6.31 Die Codekarte "Feldbusadresse 017" weist dem Gerät die Feldbusadresse 017 zu.

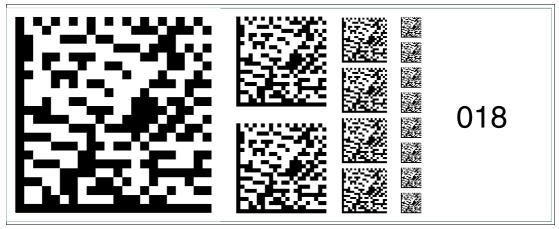



Abbildung 6.32 Die Codekarte "Feldbusadresse 018" weist dem Gerät die Feldbusadresse 018 zu. **Feldbusadresse 019** 

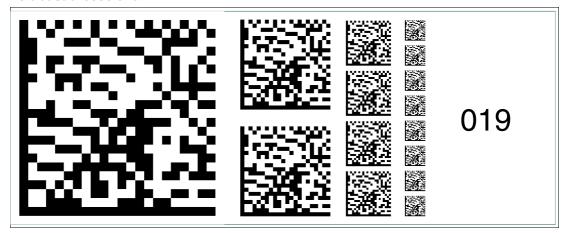



Abbildung 6.33 Die Codekarte "Feldbusadresse 019" weist dem Gerät die Feldbusadresse 019 zu.

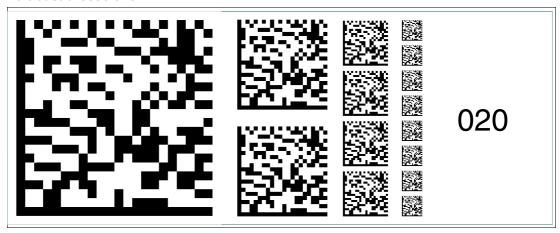



Abbildung 6.34 Die Codekarte "Feldbusadresse 020" weist dem Gerät die Feldbusadresse 020 zu.

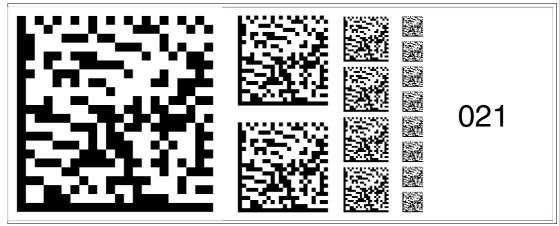



Abbildung 6.35 Die Codekarte "Feldbusadresse 021" weist dem Gerät die Feldbusadresse 021 zu. **Feldbusadresse 022** 

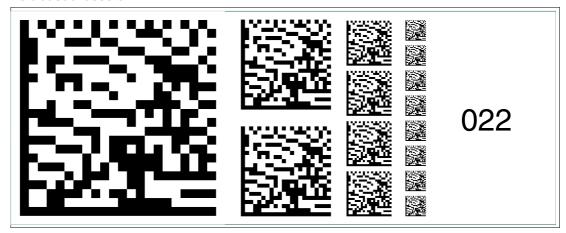



Abbildung 6.36 Die Codekarte "Feldbusadresse 022" weist dem Gerät die Feldbusadresse 022 zu.

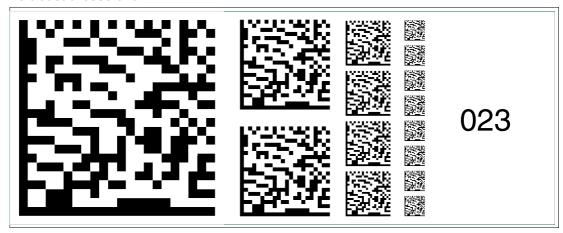



Abbildung 6.37 Die Codekarte "Feldbusadresse 023" weist dem Gerät die Feldbusadresse 023 zu.

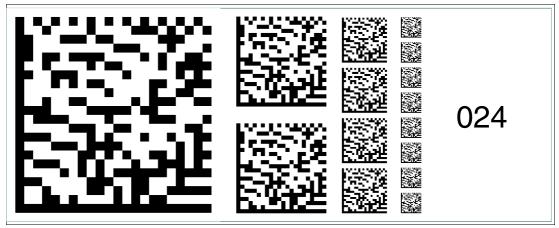



Abbildung 6.38 Die Codekarte "Feldbusadresse 024" weist dem Gerät die Feldbusadresse 024 zu. **Feldbusadresse 025** 

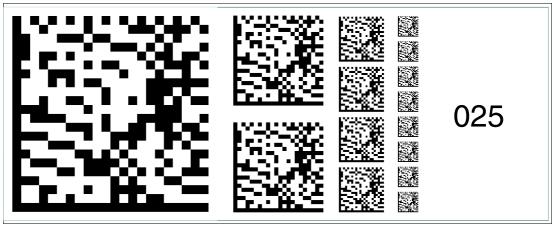



Abbildung 6.39 Die Codekarte "Feldbusadresse 025" weist dem Gerät die Feldbusadresse 025 zu.

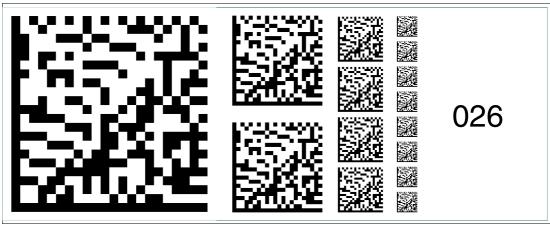



Abbildung 6.40 Die Codekarte "Feldbusadresse 026" weist dem Gerät die Feldbusadresse 026 zu.

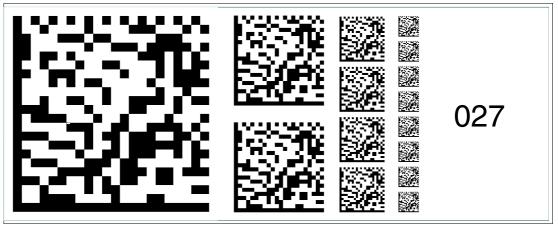



Abbildung 6.41 Die Codekarte "Feldbusadresse 027" weist dem Gerät die Feldbusadresse 027 zu. **Feldbusadresse 028** 

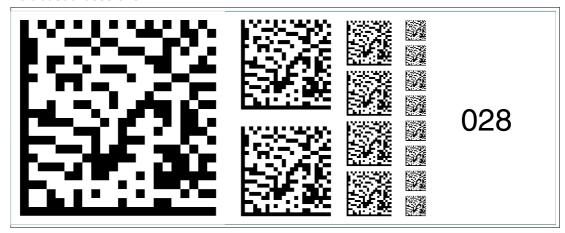



Abbildung 6.42 Die Codekarte "Feldbusadresse 028" weist dem Gerät die Feldbusadresse 028 zu.

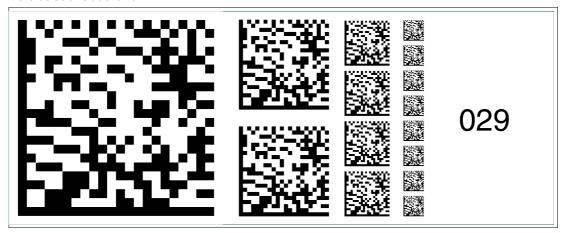



Abbildung 6.43 Die Codekarte "Feldbusadresse 029" weist dem Gerät die Feldbusadresse 029 zu.

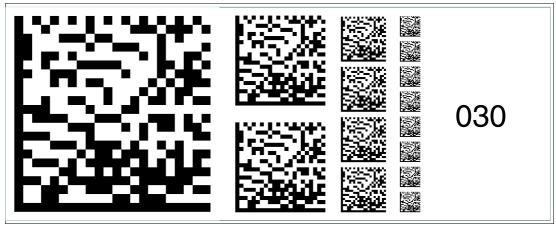



Abbildung 6.44 Die Codekarte "Feldbusadresse 030" weist dem Gerät die Feldbusadresse 030 zu. **Feldbusadresse 031** 

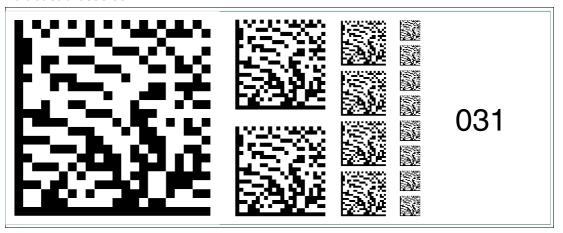



Abbildung 6.45 Die Codekarte "Feldbusadresse 031" weist dem Gerät die Feldbusadresse 031 zu.

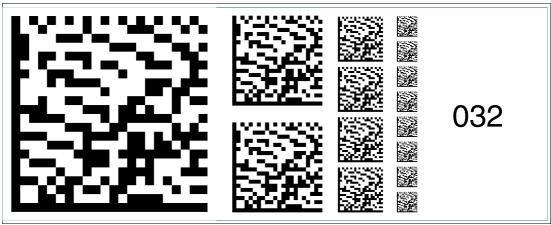



Abbildung 6.46 Die Codekarte "Feldbusadresse 032" weist dem Gerät die Feldbusadresse 032 zu.

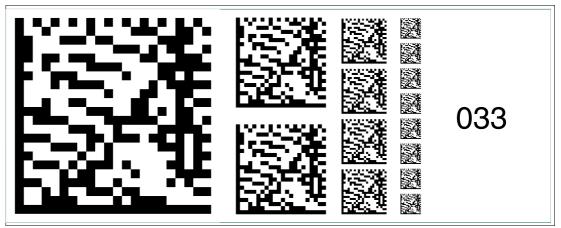



Abbildung 6.47 Die Codekarte "Feldbusadresse 033" weist dem Gerät die Feldbusadresse 033 zu. **Feldbusadresse 034** 

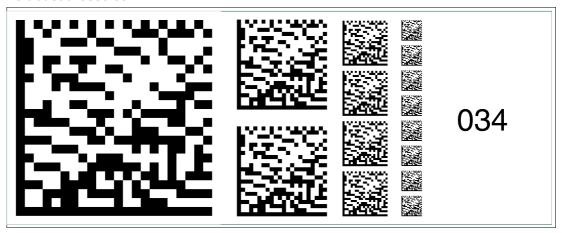



Abbildung 6.48 Die Codekarte "Feldbusadresse 034" weist dem Gerät die Feldbusadresse 034 zu.

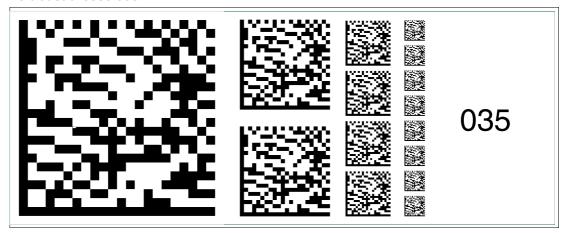



Abbildung 6.49 Die Codekarte "Feldbusadresse 035" weist dem Gerät die Feldbusadresse 035 zu.

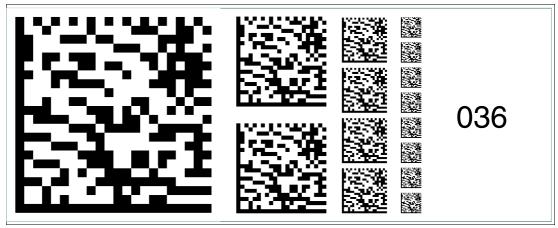



Abbildung 6.50 Die Codekarte "Feldbusadresse 036" weist dem Gerät die Feldbusadresse 036 zu. **Feldbusadresse 037** 

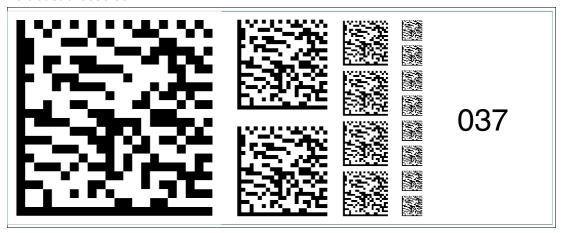



Abbildung 6.51 Die Codekarte "Feldbusadresse 037" weist dem Gerät die Feldbusadresse 037 zu.

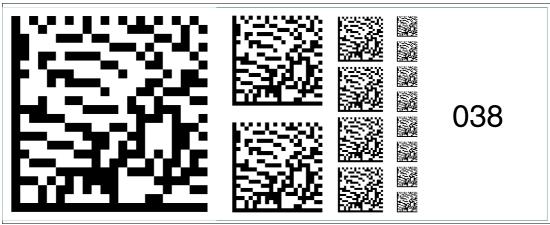



Abbildung 6.52 Die Codekarte "Feldbusadresse 038" weist dem Gerät die Feldbusadresse 038 zu.

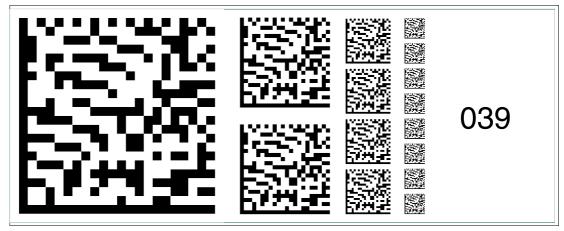



Abbildung 6.53 Die Codekarte "Feldbusadresse 039" weist dem Gerät die Feldbusadresse 039 zu. **Feldbusadresse 040** 

# 040

Abbildung 6.54 Die Codekarte "Feldbusadresse 040" weist dem Gerät die Feldbusadresse 040 zu.

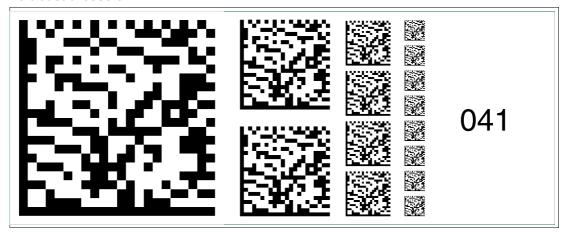



Abbildung 6.55 Die Codekarte "Feldbusadresse 041" weist dem Gerät die Feldbusadresse 041 zu.

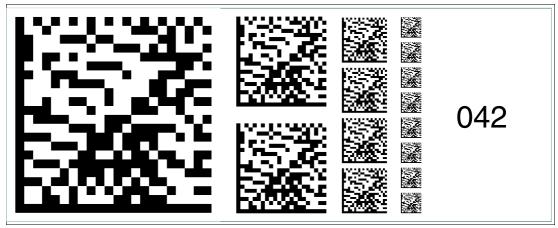



Abbildung 6.56 Die Codekarte "Feldbusadresse 042" weist dem Gerät die Feldbusadresse 042 zu. **Feldbusadresse 043** 

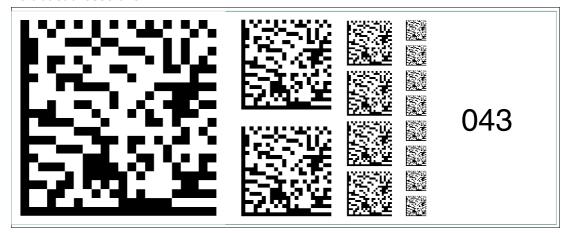



Abbildung 6.57 Die Codekarte "Feldbusadresse 043" weist dem Gerät die Feldbusadresse 043 zu.

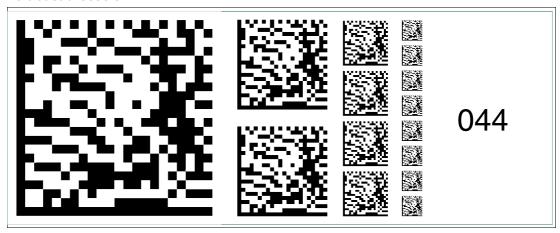



Abbildung 6.58 Die Codekarte "Feldbusadresse 044" weist dem Gerät die Feldbusadresse 044 zu.

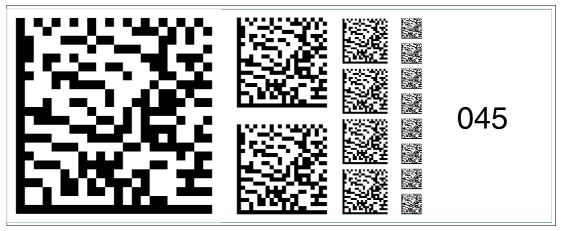



Abbildung 6.59 Die Codekarte "Feldbusadresse 045" weist dem Gerät die Feldbusadresse 045 zu. **Feldbusadresse 046** 

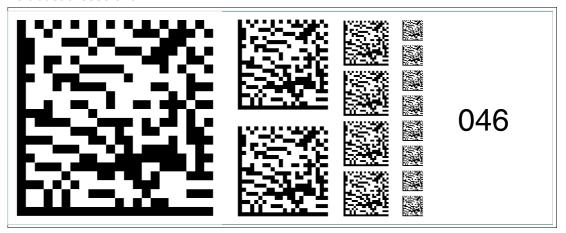



Abbildung 6.60 Die Codekarte "Feldbusadresse 046" weist dem Gerät die Feldbusadresse 046 zu.

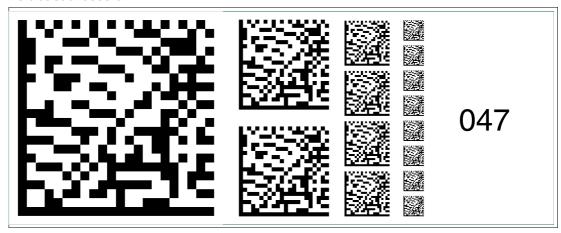



Abbildung 6.61 Die Codekarte "Feldbusadresse 047" weist dem Gerät die Feldbusadresse 047 zu.

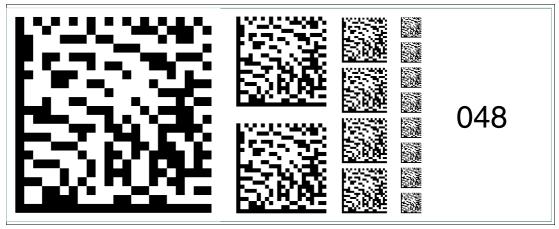



Abbildung 6.62 Die Codekarte "Feldbusadresse 048" weist dem Gerät die Feldbusadresse 048 zu. **Feldbusadresse 049** 

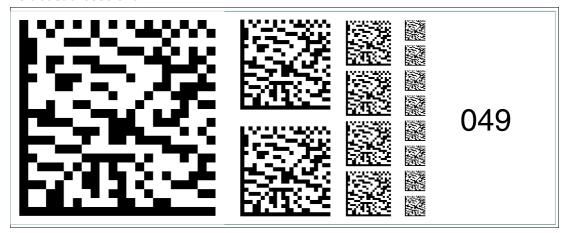



Abbildung 6.63 Die Codekarte "Feldbusadresse 049" weist dem Gerät die Feldbusadresse 049 zu.

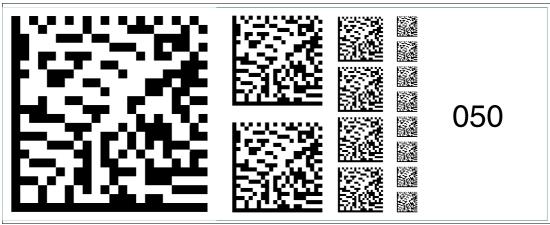



Abbildung 6.64 Die Codekarte "Feldbusadresse 050" weist dem Gerät die Feldbusadresse 050 zu.

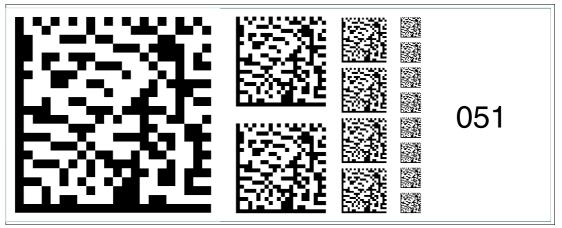



Abbildung 6.65 Die Codekarte "Feldbusadresse 051" weist dem Gerät die Feldbusadresse 051 zu. **Feldbusadresse 052** 

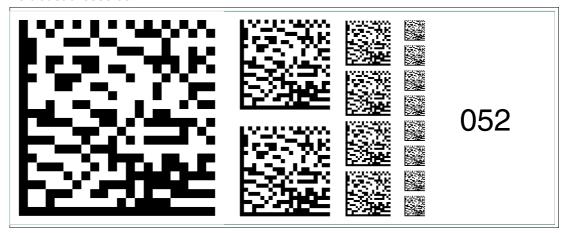



Abbildung 6.66 Die Codekarte "Feldbusadresse 052" weist dem Gerät die Feldbusadresse 052 zu.

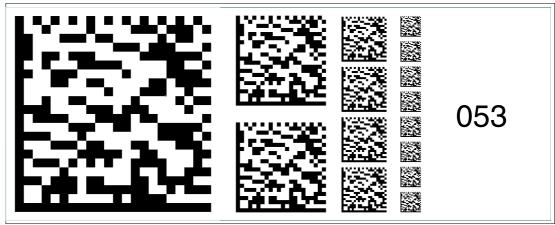



Abbildung 6.67 Die Codekarte "Feldbusadresse 053" weist dem Gerät die Feldbusadresse 053 zu.

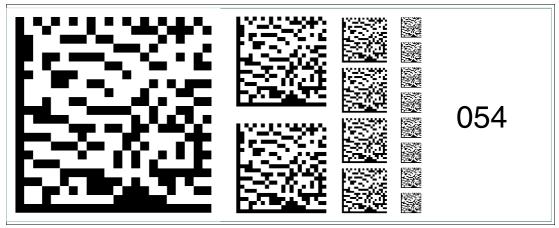



Abbildung 6.68 Die Codekarte "Feldbusadresse 054" weist dem Gerät die Feldbusadresse 054 zu. **Feldbusadresse 055** 

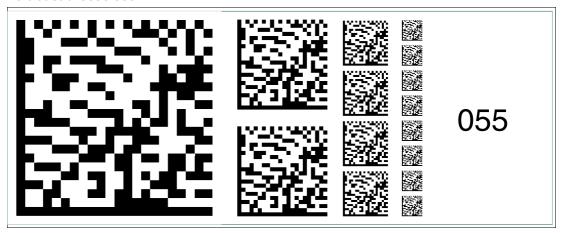



Abbildung 6.69 Die Codekarte "Feldbusadresse 055" weist dem Gerät die Feldbusadresse 055 zu.

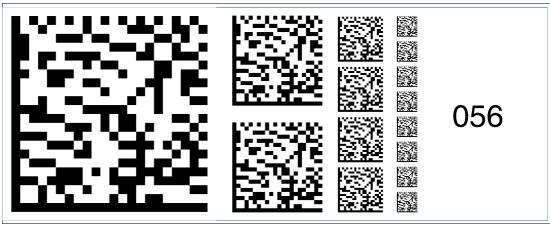



Abbildung 6.70 Die Codekarte "Feldbusadresse 056" weist dem Gerät die Feldbusadresse 056 zu.

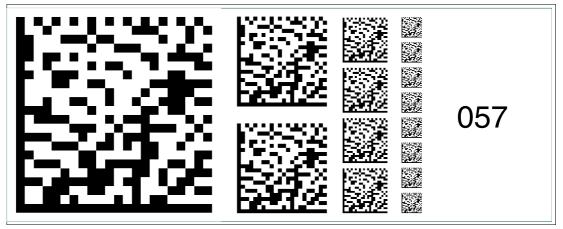



Abbildung 6.71 Die Codekarte "Feldbusadresse 057" weist dem Gerät die Feldbusadresse 057 zu. **Feldbusadresse 058** 

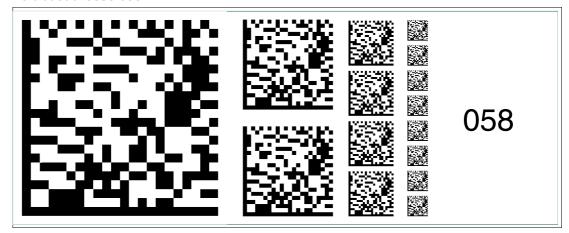



Abbildung 6.72 Die Codekarte "Feldbusadresse 058" weist dem Gerät die Feldbusadresse 058 zu.




Abbildung 6.73 Die Codekarte "Feldbusadresse 059" weist dem Gerät die Feldbusadresse 059 zu.

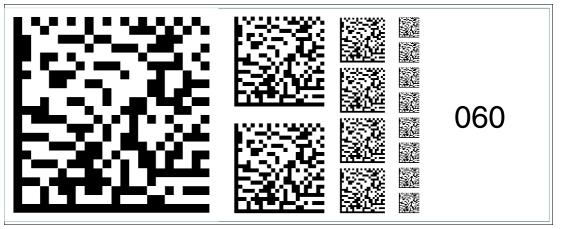



Abbildung 6.74 Die Codekarte "Feldbusadresse 060" weist dem Gerät die Feldbusadresse 060 zu. **Feldbusadresse 061** 

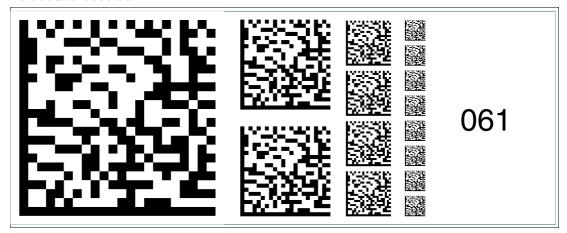



Abbildung 6.75 Die Codekarte "Feldbusadresse 061" weist dem Gerät die Feldbusadresse 061 zu.

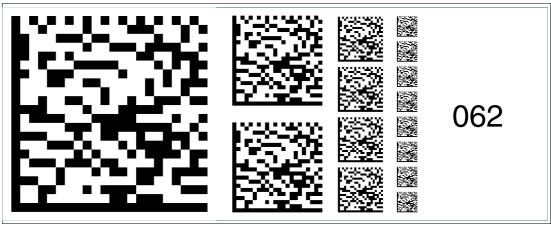



Abbildung 6.76 Die Codekarte "Feldbusadresse 062" weist dem Gerät die Feldbusadresse 062 zu.

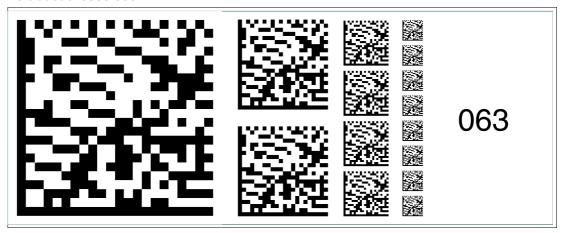



Abbildung 6.77 Die Codekarte "Feldbusadresse 063" weist dem Gerät die Feldbusadresse 063 zu. **Feldbusadresse 064** 

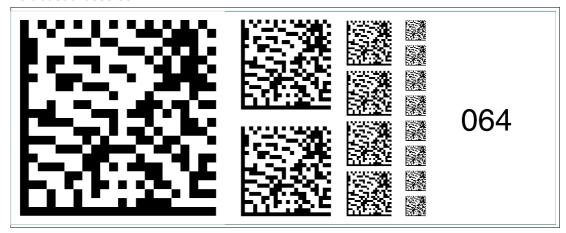



Abbildung 6.78 Die Codekarte "Feldbusadresse 064" weist dem Gerät die Feldbusadresse 064 zu.

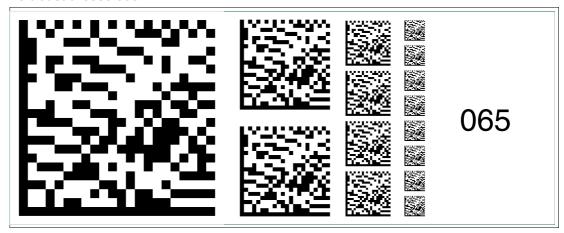



Abbildung 6.79 Die Codekarte "Feldbusadresse 065" weist dem Gerät die Feldbusadresse 065 zu.

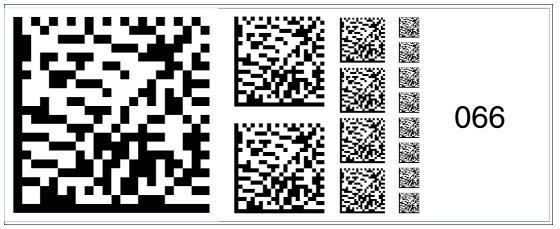



Abbildung 6.80 Die Codekarte "Feldbusadresse 066" weist dem Gerät die Feldbusadresse 066 zu. **Feldbusadresse 067** 

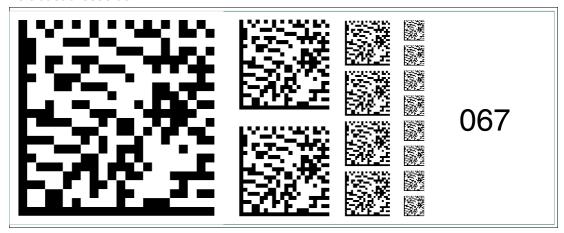



Abbildung 6.81 Die Codekarte "Feldbusadresse 067" weist dem Gerät die Feldbusadresse 067 zu.

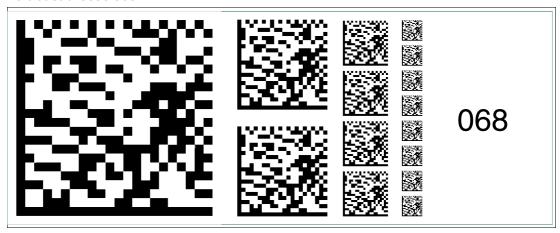



Abbildung 6.82 Die Codekarte "Feldbusadresse 068" weist dem Gerät die Feldbusadresse 068 zu.

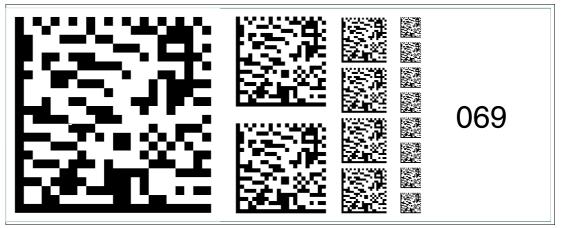



Abbildung 6.83 Die Codekarte "Feldbusadresse 069" weist dem Gerät die Feldbusadresse 069 zu.

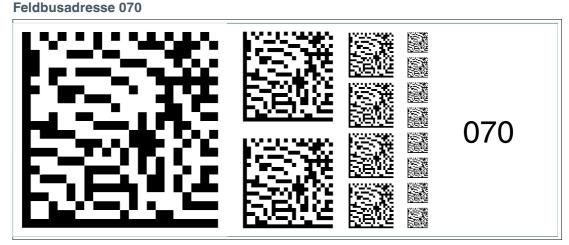



Abbildung 6.84 Die Codekarte "Feldbusadresse 070" weist dem Gerät die Feldbusadresse 070 zu.

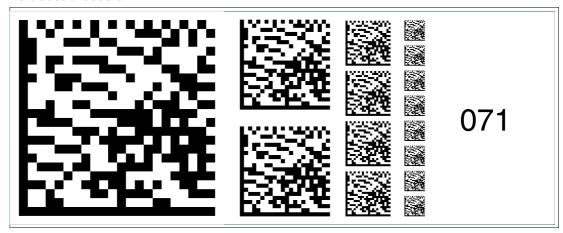



Abbildung 6.85 Die Codekarte "Feldbusadresse 071" weist dem Gerät die Feldbusadresse 071 zu.

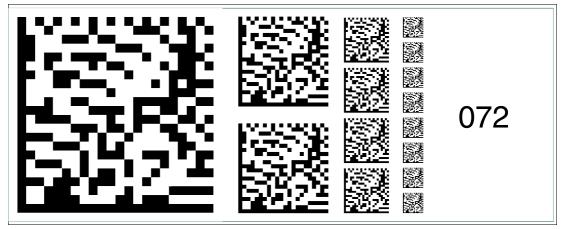



Abbildung 6.86 Die Codekarte "Feldbusadresse 072" weist dem Gerät die Feldbusadresse 072 zu. **Feldbusadresse 073** 

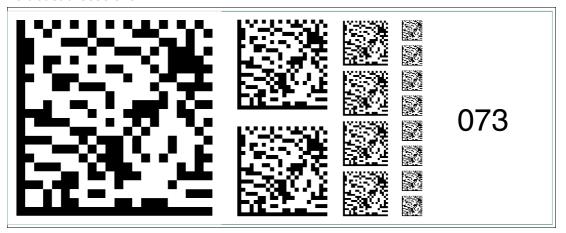



Abbildung 6.87 Die Codekarte "Feldbusadresse 073" weist dem Gerät die Feldbusadresse 073 zu.

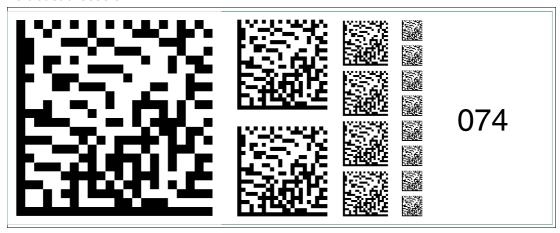



Abbildung 6.88 Die Codekarte "Feldbusadresse 074" weist dem Gerät die Feldbusadresse 074 zu.

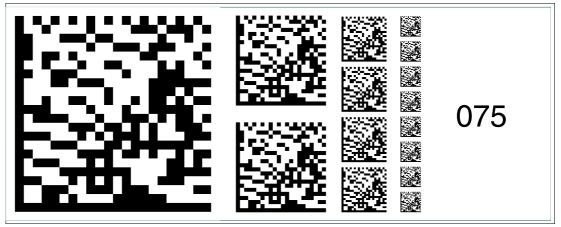



Abbildung 6.89 Die Codekarte "Feldbusadresse 075" weist dem Gerät die Feldbusadresse 075 zu. **Feldbusadresse 076** 

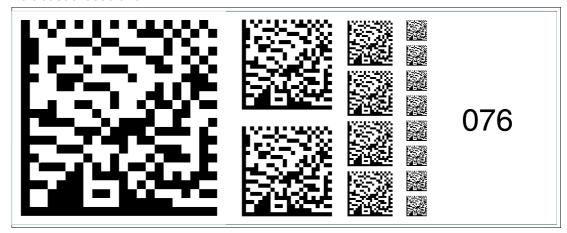



Abbildung 6.90 Die Codekarte "Feldbusadresse 076" weist dem Gerät die Feldbusadresse 076 zu.

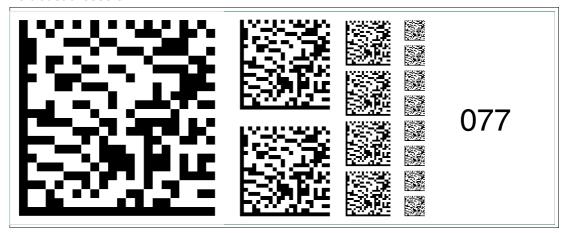



Abbildung 6.91 Die Codekarte "Feldbusadresse 077" weist dem Gerät die Feldbusadresse 077 zu.

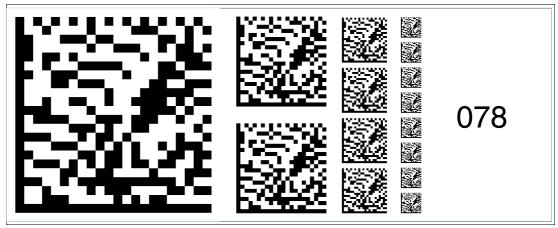



Abbildung 6.92 Die Codekarte "Feldbusadresse 078" weist dem Gerät die Feldbusadresse 078 zu. **Feldbusadresse 079** 

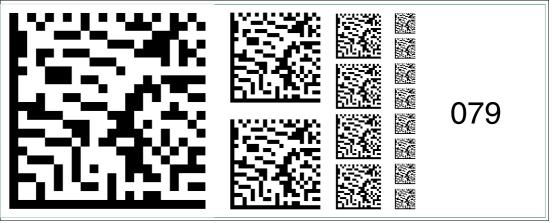



Abbildung 6.93 Die Codekarte "Feldbusadresse 079" weist dem Gerät die Feldbusadresse 079 zu.

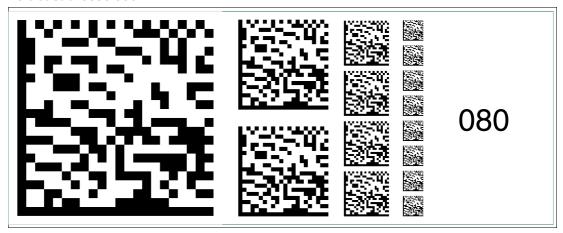



Abbildung 6.94 Die Codekarte "Feldbusadresse 080" weist dem Gerät die Feldbusadresse 080 zu.

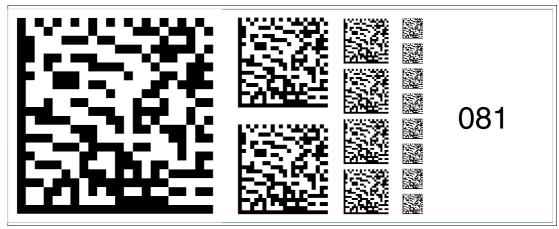



Abbildung 6.95 Die Codekarte "Feldbusadresse 081" weist dem Gerät die Feldbusadresse 081 zu. **Feldbusadresse 082** 

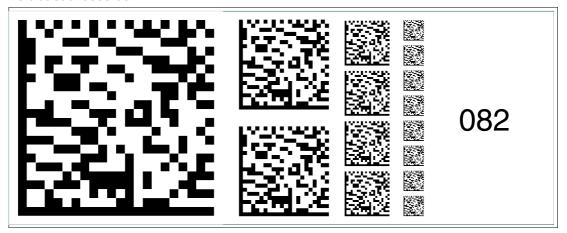



Abbildung 6.96 Die Codekarte "Feldbusadresse 082" weist dem Gerät die Feldbusadresse 082 zu.

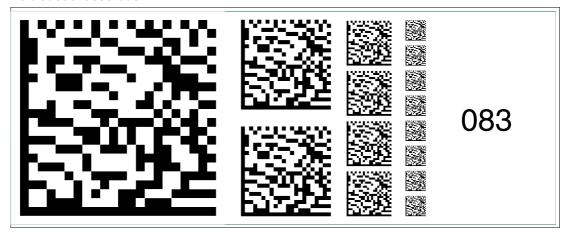



Abbildung 6.97 Die Codekarte "Feldbusadresse 083" weist dem Gerät die Feldbusadresse 083 zu.

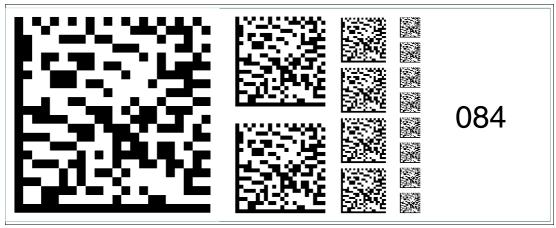



Abbildung 6.98 Die Codekarte "Feldbusadresse 084" weist dem Gerät die Feldbusadresse 084 zu. **Feldbusadresse 085** 

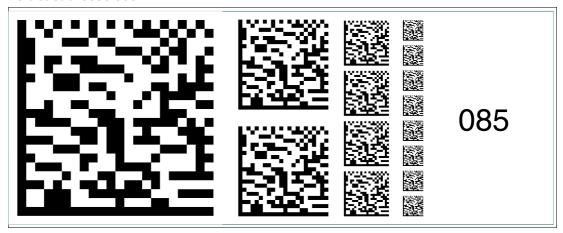



Abbildung 6.99 Die Codekarte "Feldbusadresse 085" weist dem Gerät die Feldbusadresse 085 zu.

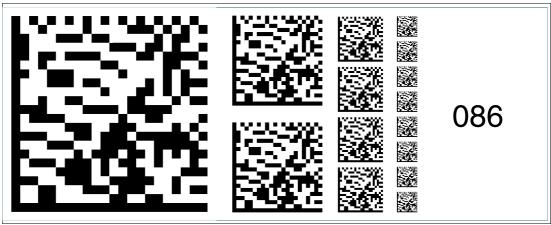



Abbildung 6.100 Die Codekarte "Feldbusadresse 086" weist dem Gerät die Feldbusadresse 086 zu.

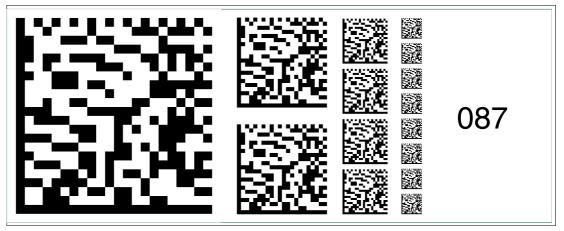



Abbildung 6.101 Die Codekarte "Feldbusadresse 087" weist dem Gerät die Feldbusadresse 087 zu. **Feldbusadresse 088** 

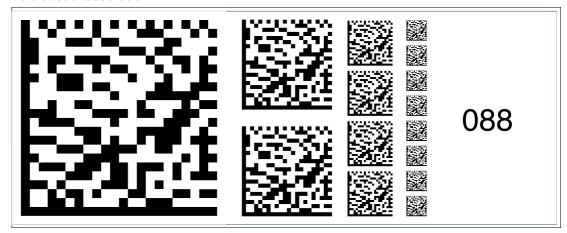



Abbildung 6.102 Die Codekarte "Feldbusadresse 088" weist dem Gerät die Feldbusadresse 088 zu.

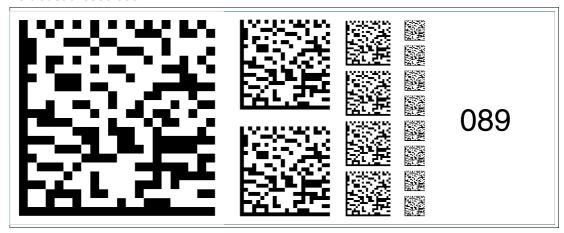



Abbildung 6.103 Die Codekarte "Feldbusadresse 089" weist dem Gerät die Feldbusadresse 089 zu.

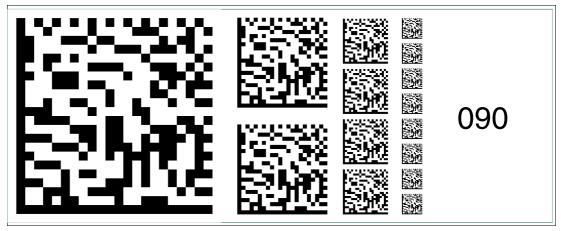



Abbildung 6.104 Die Codekarte "Feldbusadresse 090" weist dem Gerät die Feldbusadresse 090 zu. **Feldbusadresse 091** 

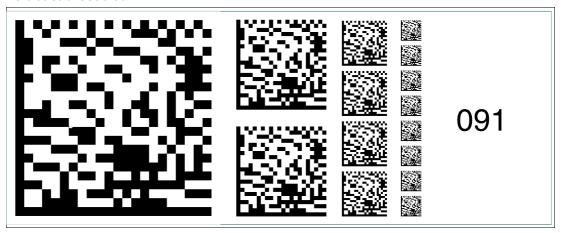



Abbildung 6.105 Die Codekarte "Feldbusadresse 091" weist dem Gerät die Feldbusadresse 091 zu.

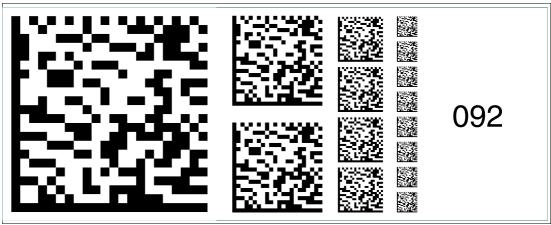



Abbildung 6.106 Die Codekarte "Feldbusadresse 092" weist dem Gerät die Feldbusadresse 092 zu.

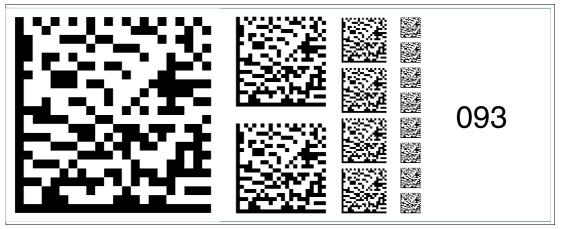



Abbildung 6.107 Die Codekarte "Feldbusadresse 093" weist dem Gerät die Feldbusadresse 093 zu. **Feldbusadresse 094** 

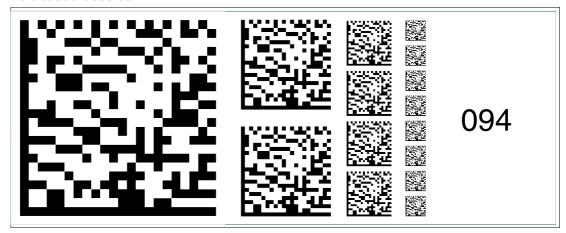



Abbildung 6.108 Die Codekarte "Feldbusadresse 094" weist dem Gerät die Feldbusadresse 094 zu.

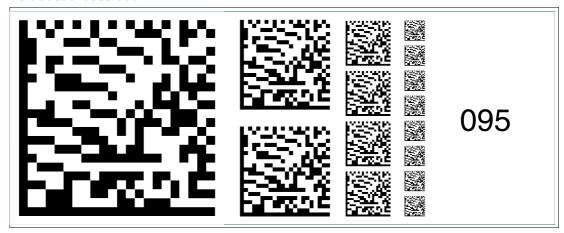



Abbildung 6.109 Die Codekarte "Feldbusadresse 095" weist dem Gerät die Feldbusadresse 095 zu.

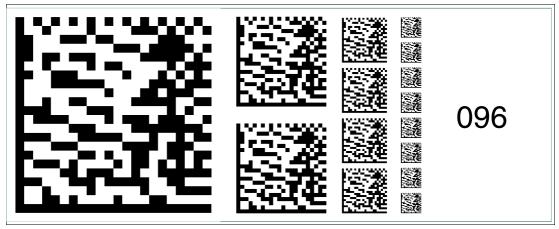



Abbildung 6.110 Die Codekarte "Feldbusadresse 096" weist dem Gerät die Feldbusadresse 096 zu. **Feldbusadresse 097** 

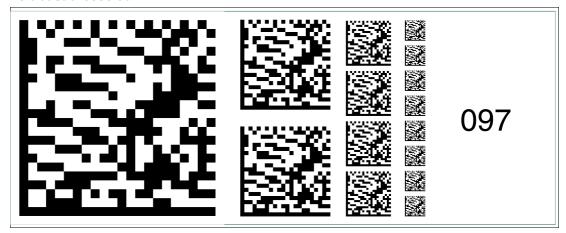



Abbildung 6.111 Die Codekarte "Feldbusadresse 097" weist dem Gerät die Feldbusadresse 097 zu.

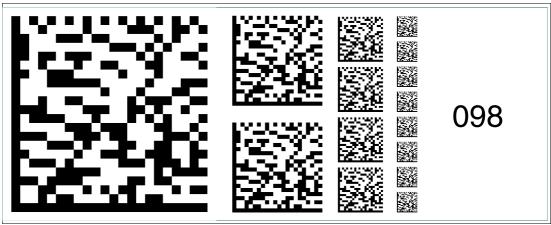



Abbildung 6.112 Die Codekarte "Feldbusadresse 098" weist dem Gerät die Feldbusadresse 098 zu.

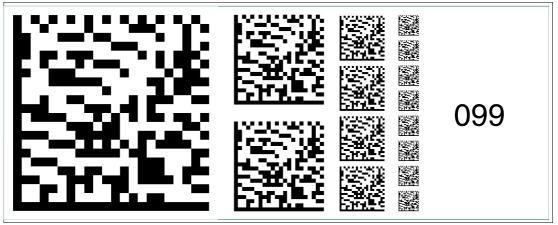



Abbildung 6.113 Die Codekarte "Feldbusadresse 099" weist dem Gerät die Feldbusadresse 099 zu.

#### Feldbusadresse 100

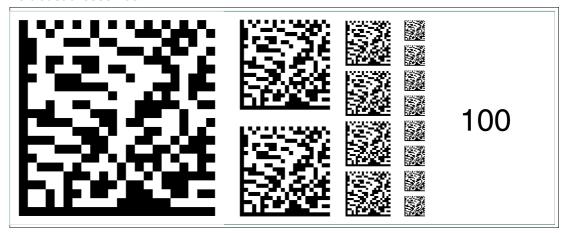



Abbildung 6.114 Die Codekarte "Feldbusadresse 100" weist dem Gerät die Feldbusadresse 100 zu.

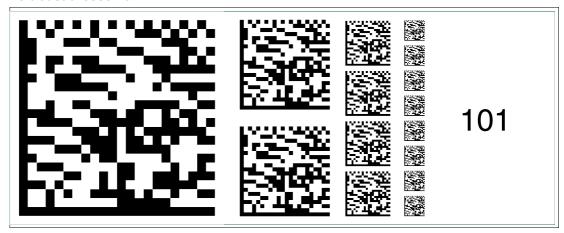



Abbildung 6.115 Die Codekarte "Feldbusadresse 101" weist dem Gerät die Feldbusadresse 101 zu.

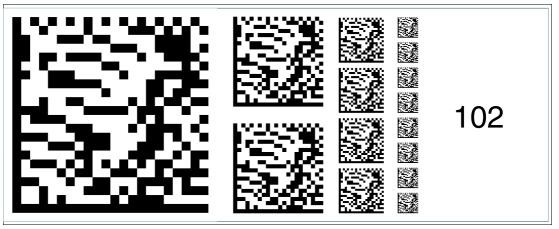



Abbildung 6.116 Die Codekarte "Feldbusadresse 102" weist dem Gerät die Feldbusadresse 102 zu. **Feldbusadresse 103** 

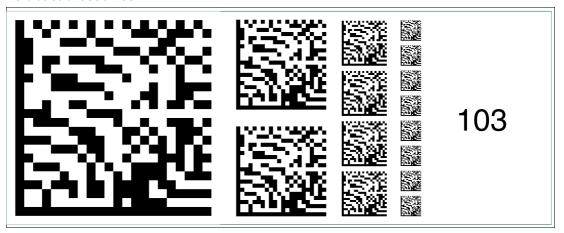



Abbildung 6.117 Die Codekarte "Feldbusadresse 103" weist dem Gerät die Feldbusadresse 103 zu.

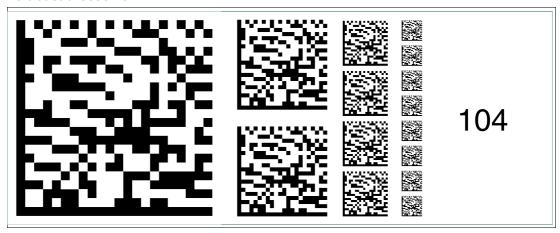



Abbildung 6.118 Die Codekarte "Feldbusadresse 104" weist dem Gerät die Feldbusadresse 104 zu.

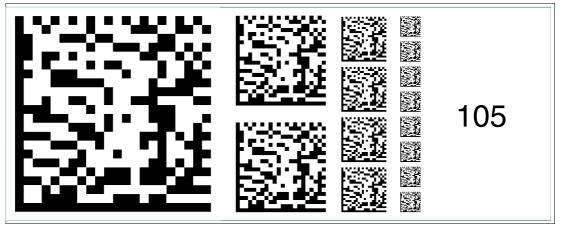



Abbildung 6.119 Die Codekarte "Feldbusadresse 105" weist dem Gerät die Feldbusadresse 105 zu.

#### Feldbusadresse 106

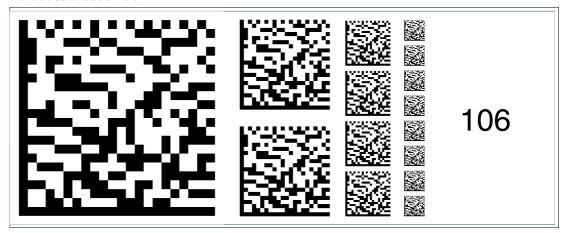



Abbildung 6.120 Die Codekarte "Feldbusadresse 106" weist dem Gerät die Feldbusadresse 106 zu.

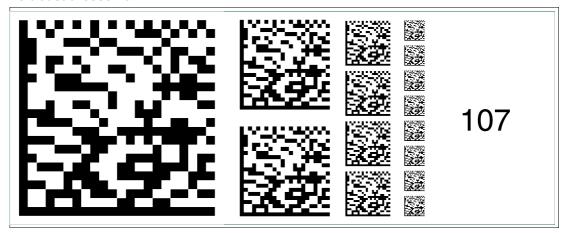



Abbildung 6.121 Die Codekarte "Feldbusadresse 107" weist dem Gerät die Feldbusadresse 107 zu.

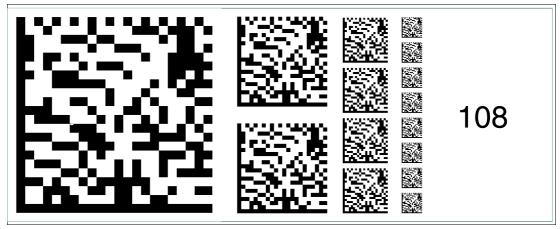



Abbildung 6.122 Die Codekarte "Feldbusadresse 108" weist dem Gerät die Feldbusadresse 108 zu. **Feldbusadresse 109** 

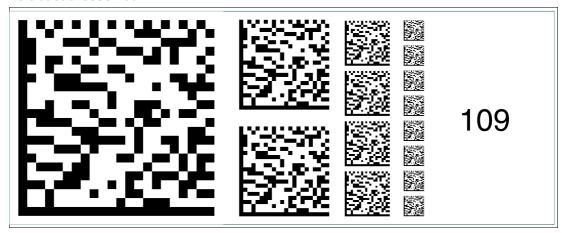



Abbildung 6.123 Die Codekarte "Feldbusadresse 109" weist dem Gerät die Feldbusadresse 109 zu.

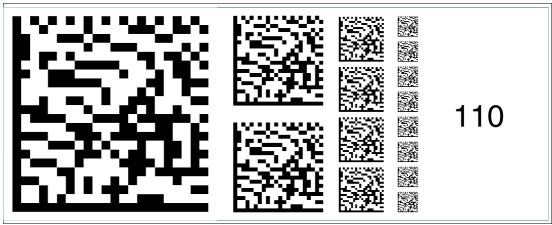



Abbildung 6.124 Die Codekarte "Feldbusadresse 110" weist dem Gerät die Feldbusadresse 110 zu.




Abbildung 6.125 Die Codekarte "Feldbusadresse 111" weist dem Gerät die Feldbusadresse 111 zu.

#### Feldbusadresse 112

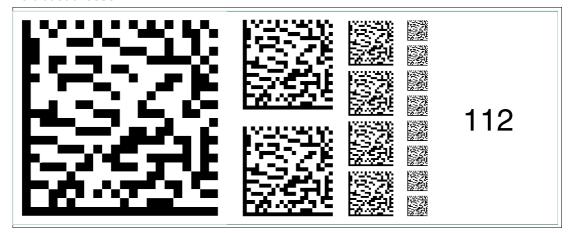



Abbildung 6.126 Die Codekarte "Feldbusadresse 112" weist dem Gerät die Feldbusadresse 112 zu.

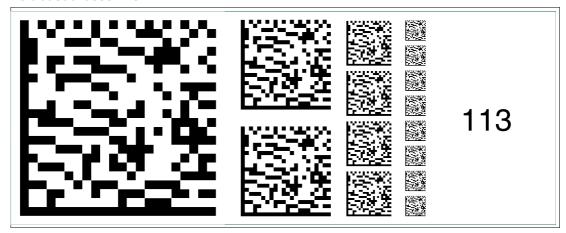



Abbildung 6.127 Die Codekarte "Feldbusadresse 113" weist dem Gerät die Feldbusadresse 113 zu.

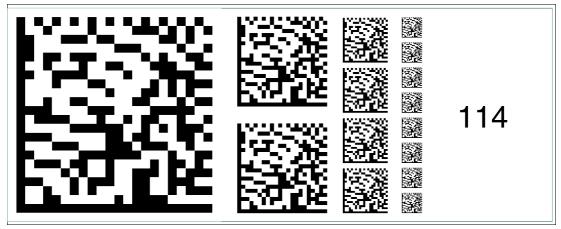



Abbildung 6.128 Die Codekarte "Feldbusadresse 114" weist dem Gerät die Feldbusadresse 114 zu. **Feldbusadresse 115** 

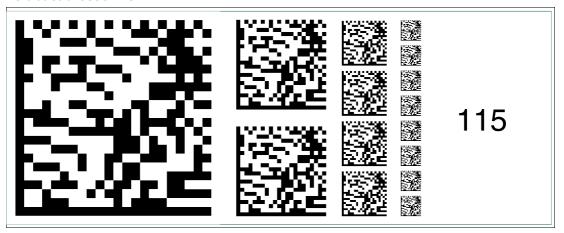



Abbildung 6.129 Die Codekarte "Feldbusadresse 115" weist dem Gerät die Feldbusadresse 115 zu.

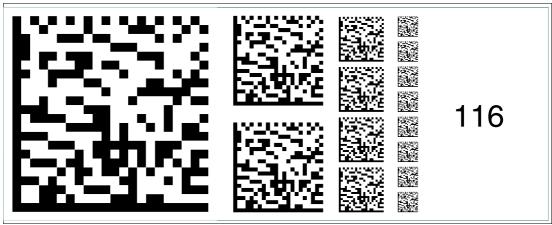



Abbildung 6.130 Die Codekarte "Feldbusadresse 116" weist dem Gerät die Feldbusadresse 116 zu.

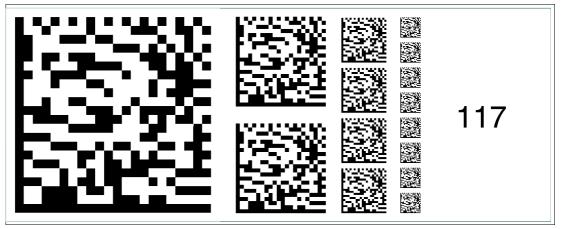



Abbildung 6.131 Die Codekarte "Feldbusadresse 117" weist dem Gerät die Feldbusadresse 117 zu. **Feldbusadresse 118** 

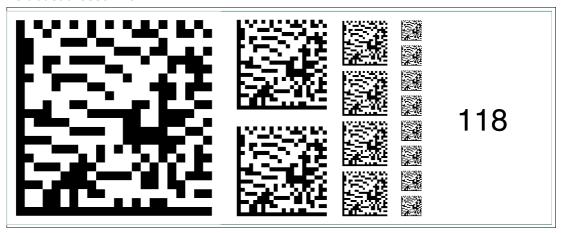



Abbildung 6.132 Die Codekarte "Feldbusadresse 118" weist dem Gerät die Feldbusadresse 118 zu.

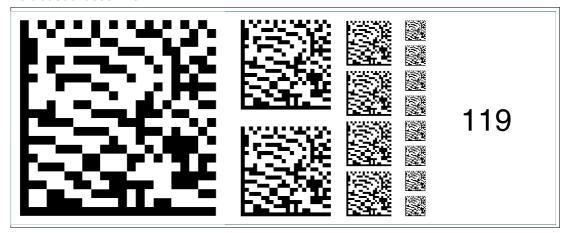



Abbildung 6.133 Die Codekarte "Feldbusadresse 119" weist dem Gerät die Feldbusadresse 119 zu.

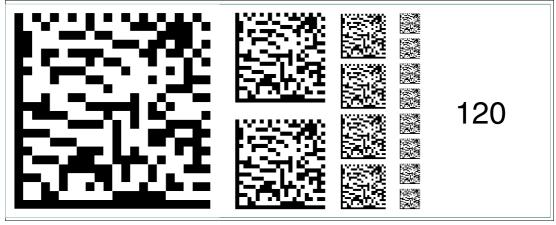



Abbildung 6.134 Die Codekarte "Feldbusadresse 120" weist dem Gerät die Feldbusadresse 120 zu. **Feldbusadresse 121** 

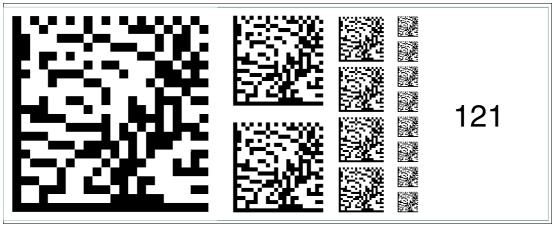



Abbildung 6.135 Die Codekarte "Feldbusadresse 121" weist dem Gerät die Feldbusadresse 121 zu.

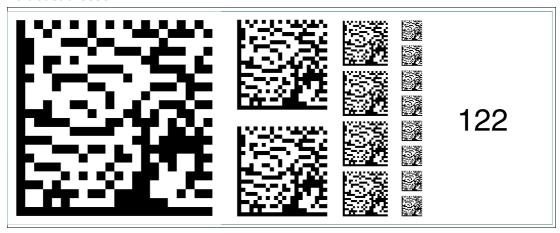



Abbildung 6.136 Die Codekarte "Feldbusadresse 122" weist dem Gerät die Feldbusadresse 122 zu.

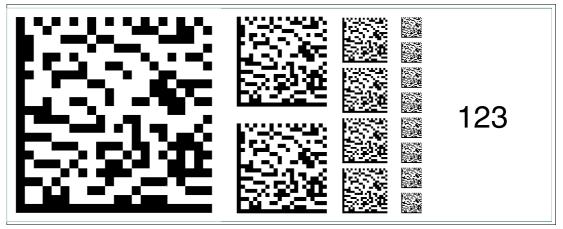



Abbildung 6.137 Die Codekarte "Feldbusadresse 123" weist dem Gerät die Feldbusadresse 123 zu. **Feldbusadresse 124** 

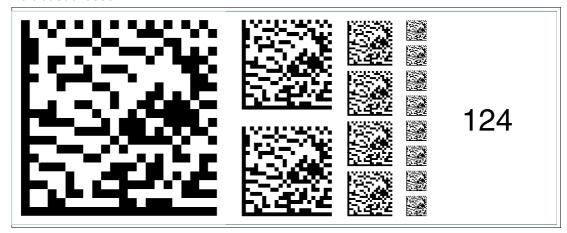



Abbildung 6.138 Die Codekarte "Feldbusadresse 124" weist dem Gerät die Feldbusadresse 124 zu.

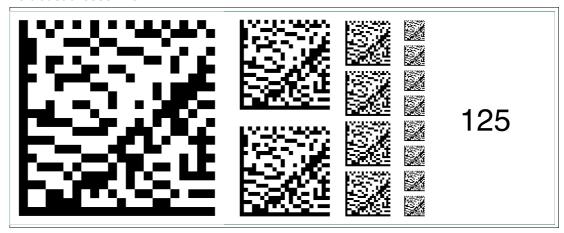



Abbildung 6.139 Die Codekarte "Feldbusadresse 125" weist dem Gerät die Feldbusadresse 125 zu.

# Your automation, our passion.

# **Explosionsschutz**

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

# Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet



