ICA-A*-IO-V1
IO-Link-Analog-Konverter

Handbuch

IO-Link

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e. V. in ihrer neuesten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Weltweit

Pepperl+Fuchs-Gruppe Lilienthalstr. 200 68307 Mannheim Deutschland

Telefon: +49 621 776 - 0

E-Mail: info@de.pepperl-fuchs.com https://www.pepperl-fuchs.com

1	Einleit	tung	4	
	1.1	Inhalt des Dokuments	4	
	1.2	Zielgruppe, Personal	4	
	1.3	Verwendete Symbole	5	
	1.4	Allgemeine Sicherheitshinweise	6	
2	Produ	Produktbeschreibung		
	2.1	Bestimmungsgemäße Verwendung	7	
	2.2	Varianten	7	
	2.3	Abmessungen	7	
	2.4 2.4.1 2.4.2	LED 1LED 2	8	
	2.5	Schnittstellen und Anschlüsse	9	
	2.6	Zubehör	14	
3	Install	Installation19		
	3.1	Montagevorbereitung	15	
	3.2	Montage	15	
	3.3	Anschluss	16	
4	Betrieb			
	4.1	IO-Link-Parameter	17	
	4.2	Diagnose	19	
	4.2.1 4.2.2	IO-Link-EventsProzessdaten		
	4.2.2	Prozessdaten	23	
5	Instan	ıdhaltung		
	5.1	Wartung	26	
6	Gloss	ar und Abkürzungsverzeichnis	27	

1 Einleitung

1.1 Inhalt des Dokuments

Dieses Dokument beinhaltet Informationen, die Sie für den Einsatz Ihres Produkts in den zutreffenden Phasen des Produktlebenszyklus benötigen. Dazu können zählen:

- Produktidentifizierung
- Lieferung, Transport und Lagerung
- Montage und Installation
- Inbetriebnahme und Betrieb
- Instandhaltung und Reparatur
- Störungsbeseitigung
- Demontage
- Entsorgung

Hinweis!

Entnehmen Sie die vollständigen Informationen zum Produkt der weiteren Dokumentation im Internet unter www.pepperl-fuchs.com.

Hinweis!

Sie finden spezifische Geräteinformationen wie z. B. das Baujahr, indem Sie den QR-Code auf dem Gerät scannen. Alternativ geben Sie die Seriennummer in der Seriennummernsuche unter www.pepperl-fuchs.com ein.

Die Dokumentation besteht aus folgenden Teilen:

- vorliegendes Dokument
- Datenblatt

Zusätzlich kann die Dokumentation aus folgenden Teilen bestehen, falls zutreffend:

- EU-Baumusterprüfbescheinigung
- EU-Konformitätserklärung
- Konformitätsbescheinigung
- Zertifikate
- Control Drawings
- Betriebsanleitung
- · Handbuch funktionale Sicherheit
- weitere Dokumente

1.2 Zielgruppe, Personal

Die Verantwortung hinsichtlich Planung, Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage liegt beim Anlagenbetreiber.

Nur Fachpersonal darf die Montage, Inbetriebnahme, Betrieb, Instandhaltung und Demontage des Produkts durchführen. Das Fachpersonal muss die Betriebsanleitung und die weitere Dokumentation gelesen und verstanden haben.

Machen Sie sich vor Verwendung mit dem Gerät vertraut. Lesen Sie das Dokument sorgfältig.

1.3 Verwendete Symbole

Dieses Dokument enthält Symbole zur Kennzeichnung von Warnhinweisen und von informativen Hinweisen.

Warnhinweise

Sie finden Warnhinweise immer dann, wenn von Ihren Handlungen Gefahren ausgehen können. Beachten Sie unbedingt diese Warnhinweise zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden.

Je nach Risikostufe werden die Warnhinweise in absteigender Reihenfolge wie folgt dargestellt:

Gefahr!

Dieses Symbol warnt Sie vor einer unmittelbar drohenden Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, drohen Personenschäden bis hin zum Tod.

Warnung!

Dieses Symbol warnt Sie vor einer möglichen Störung oder Gefahr.

Falls Sie diesen Warnhinweis nicht beachten, können Personenschäden oder schwerste Sachschäden drohen.

Vorsicht!

Dieses Symbol warnt Sie vor einer möglichen Störung.

Falls Sie diesen Warnhinweis nicht beachten, können das Produkt oder daran angeschlossene Systeme und Anlagen gestört werden oder vollständig ausfallen.

Informative Hinweise

Hinweis!

Dieses Symbol macht auf eine wichtige Information aufmerksam.

Handlungsanweisung

1. Dieses Symbol markiert eine Handlungsanweisung. Sie werden zu einer Handlung oder Handlungsfolge aufgefordert.

1.4

Allgemeine Sicherheitshinweise

Gefahr!

Tod oder schwerste Verletzungen durch elektrischen Schlag.

Hohe elektrische Spannung in der Maschine / Anlage.

Halten Sie beim Arbeiten am Gerät die 5 Sicherheitsregeln der Elektrotechnik ein.

Nach DIN VDE 0105-100 - Betrieb von elektrischen Anlagen - Teil 100: Allgemeine Festlegungen

Schützen Sie Personen und Geräte vor hoher elektrischer Spannung:

- Freischalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit allpolig feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken

Das Gerät ist nur für eine sachgerechte und bestimmungsgemäße Verwendung zugelassen. Bei Zuwiderhandlung erlischt jegliche Garantie und Herstellerverantwortung.

Elektrostatische Aufladung

Vermeiden Sie elektrostatische Aufladungen, die beim Installieren, Betreiben oder Instandhalten des Geräts elektrostatische Entladungen auslösen können.

Achten Sie auf ausreichende Erdung von Mensch und Betriebsmittel.

Schalten Sie das Gerät spannungsfrei, bevor Sie Steckverbinder und Leitungen ziehen oder stecken.

Bei Messungen an elektrostatisch gefährdeten Geräten, beachten Sie folgende Punkte:

- Entladen Sie kurzzeitig potenzialfreie Messgeräte.
- Erden Sie die verwendeten Messgeräte.

Bei Änderungen an elektrostatisch gefährdeten Geräten, verwenden Sie einen geerdeten Lötkolben.

Betrieb, Instandhaltung

Verwenden Sie das Gerät nur innerhalb der zulässigen Umgebungs- und Einsatzbedingungen.

Beachten Sie die für die bestimmungsgemäße Verwendung und für den Einsatzort zutreffenden Richtlinien, Normen und nationalen Gesetze.

Setzen Sie das Gerät nicht im Freien, in explosionsgefährdeten Umgebungen (EX-Zone) oder zu permantem Betrieb in Flüssigkeiten ein.

Betreiben Sie das Gerät nur in technisch einwandfreiem Zustand.

Verändern oder manipulieren Sie nicht das Gerät.

Falls eine Reinigung erforderlich ist, verwenden Sie kein Hochdruck.

Lagerung, Transport, Entsorgung

Lagern oder transportieren Sie das Gerät immer in der Originalverpackung.

Das Gerät, die eingebauten Komponenten, die Verpackung sowie eventuell enthaltene Batterien müssen entsprechend den einschlägigen Gesetzen und Vorschriften im jeweiligen Land entsorgt werden.

2 Produktbeschreibung

2.1 Bestimmungsgemäße Verwendung

Das im Handbuch beschriebene Gerät dient zur Kommunikation und Prozesskontrolle. Verwenden Sie das Gerät für allgemeine Steuerungs- und Automatisierungsaufgaben.

Ausgelegt ist das Gerät für den industriellen Einsatz bis zur Schutzart IP67/IP69K.

Zur bestimmungsgemäßen Verwendung gehört auch die EMV-gerechte elektrische Installation.

Vorsicht!

Störungen von Geräten im Wohn- und Mischbereich möglich!

Diese Einrichtung kann im Wohn- und Mischbereich Funkstörungen verursachen.

- Beachten Sie geltende Normen für den Wohn- oder Mischbereich.
- Ergreifen Sie geeignete Maßnahmen zur Funkentstörung.

2.2 Varianten

Das Handbuch ist für nachfolgende Varianten gültig.

Konverter analoger Eingang (I/U) zu IO-Link

Artikelnummer	Bestellbezeichnung
70153267	ICA-AI-I/U-IO-V1

Konverter IO-Link zu analogem Ausgang (I/U)

Artikelnummer	Bestellbezeichnung
70153268	ICA-AO-I/U-IO-V1

Konverter Temperatureingang für RTD-Widerstands-Temperatursensoren zu IO-Link

Artikelnummer	Bestellbezeichnung
70163607	ICA-AI-RTD-IO-V1

2.3 Abmessungen

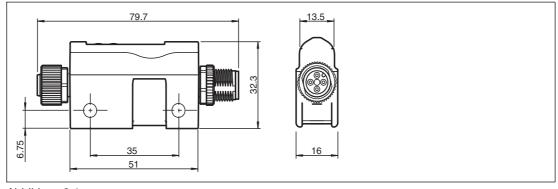


Abbildung 2.1

2.4 LED-Anzeigen

Das Gerät hat 2 LEDs zur Statusanzeige.

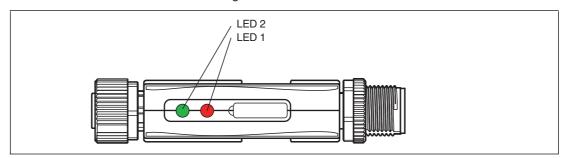


Abbildung 2.2

1 LED 1: Gerätestatus / Diagnose

2 LED 2: IO-Link-Status

2.4.1 LED 1

LED 1 zeigt geräte- und funktionsbezogene Statusinformationen an. Grün signalisiert den allgemeinen Gerätestatus. Rot signalisiert den Status des Analogkanals.

Hinweis!

Falls rote und grüne Komponente gleichzeitig aufleuchten, kann die Farbe der LED 1 orange wirken.

Gerätestatus grün

Status	Beschreibung
grün leuchtend	Gerät ist an, Status ok
grün blinkend (1 Hz)	Geräteversorgung Unterspannung (U _B < 18 V)
grün assymetrisch blinkend (1 Hz: 250 ms on/750 ms off)	Geräteversorgung Überspannung (U _B > 30 V)
grün aus	Geräte ohne Spannungsversorgung

Tabelle 2.1

Hinweis!

Falls mehrere Diagnosen gleichzeitig auftreten, wird der LED-zustand gemäß der Reihenfolge in der jeweiligen Tabelle priorisiert. Der oberste Eintrag hat die höchste Priorität.

Gerätestatus rot

Status	Beschreibung
rot blinkend (1 Hz)	Bereichsüberschreitung der Sensordaten
rot blinkend (2 Hz)	Konverter Übertemperatur
rot assymetrisch blinkend (1 Hz: 250 ms on/750 ms off)	Leitungsbruch am Sensor
rot aus	OK

Tabelle 2.2

2.4.2 LED 2

IO-Link-Status

LED 2 signalisiert den Status der IO-Link-Kommunikationsverbindung.

Status	Beschreibung
grün leuchtend	Keine IO-Link-Prozessdaten-Kommunikation, Pre-Operate- Mode
grün assymetrisch blinkend (1 Hz: 250 ms on/750 ms off)	IO-Link-Kommunikation, Operate-Mode
aus	Keine IO-Link Kommunikation

Tabelle 2.3

2.5 Schnittstellen und Anschlüsse

Steckerbelegung

ICA-AI-I/U-IO-V1

Anschluss für	Steckverbinder	Steckertyp/Steckerbelegung
IO-Link	2 4	M12, 4-polig, Stecker, A-kodiert 1: +24 V (L+) 2: n.c. 3: GND (L-) 4: C/Q
Eingang Analog	4 000 2	M12, 4-polig, Buchse, A-kodiert 1: +24 V (L+) 2: Al 3: GND (L-) 4: n.c.

Tabelle 2.4

ICA-AO-I/U-IO-V1

4	
4	M12, 4-polig, Stecker, A-kodiert 1: +24 V (L+) 2: n.c. 3: GND (L-)
1 2	4: C/Q M12, 4-polig, Buchse, A-kodiert 1: +24 V (L+) 2: n.c. 3: GND (L-) 4: AO
/ (/) /	3 1

Tabelle 2.5

ICA-AI-RTD-IO-V1

Anschluss für	Steckverbinder	Steckertyp/Steckerbelegung
IO-Link	2 4	M12, 4-polig, Stecker, A-kodiert 1: +24 V (L+) 2: n.c. 3: GND (L-) 4: C/Q
Eingang RTD-Wider- stands-Temperatur- sensoren	4 0000 2	M12, 5-polig, Buchse, A-kodiert 1: RD 1 2: RD 2 3: WH 1 4: WH 2 5: n.c.

Tabelle 2.6

Analoge Eingänge

Sensoren mit analogem Ausgang sind abhängig vom Adaptertyp verwendbar.

Sensoren mit Stromausgang (0/4 mA ... 20 mA)

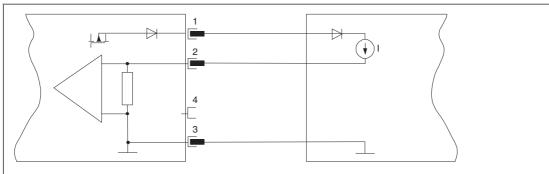


Abbildung 2.3 ICA-AI-I/U-IO-V1

- 1 +24 V (L+)
- 2 AI (Strom)
- 3 GND (L-)
- 4 n.c.

Sensoren mit Spannungsausgang (-10/0 V ... +10 V)

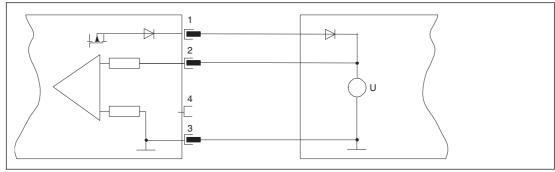


Abbildung 2.4 ICA-AI-I/U-IO-V1

- 1 +24 V (L+)
- 2 AI (Spannung)
- 3 GND (L-)
- 4 n.c.

Analoge Ausgänge

Aktoren mit analogem Eingang sind abhängig vom Adaptertyp verwendbar.

Aktoren mit Stromeingang (0/4 mA ... 20 mA)

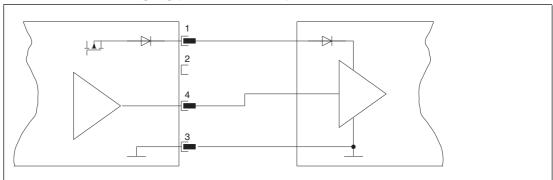


Abbildung 2.5 ICA-AO-I/U-IO-V1

- 1 +24 V (L+)
- **2** n.c.
- 3 GND (L-)
- 4 AO (Strom)

Aktoren mit Spannungseingang (-10/0 V ... +10 V)

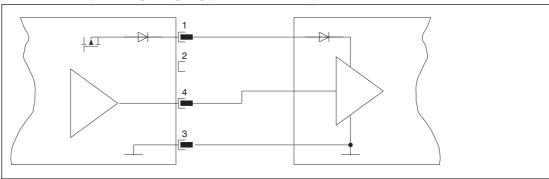


Abbildung 2.6 ICA-AO-I/U-IO-V1

- 1 +24 V (L+)
- **2** n.c.
- 3 GND (L-)
- 4 AO (Spannung)

Temperatureingang für RTD-Widerstands-Temperatursensoren

RTD-Sensoren können als 2-, 3- oder 4-adrige Variante angeschlossen werden.

2-Draht-Variante

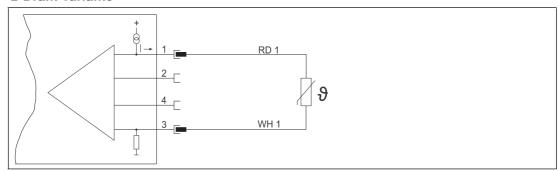


Abbildung 2.7 ICA-AI-RTD-IO-V1

- 1 RD 1
- 3 WH 1

3-Draht-Variante

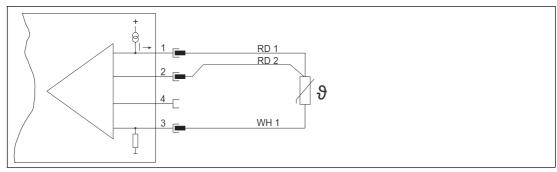


Abbildung 2.8 ICA-AI-RTD-IO-V1

- 1 RD 1
- 2 RD 2
- 3 WH 1

4-Draht-Variante

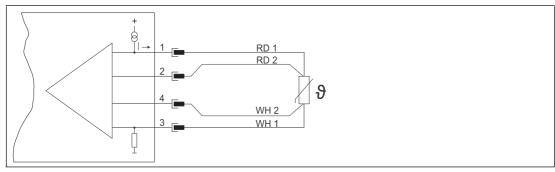


Abbildung 2.9 ICA-AI-RTD-IO-V1

- 1 RD 1
- 2 RD 2
- 3 WH 1
- 4 WH 2

Messbereiche

PT100, PT200, PT500, PT	1000	
Nennmessbereich		-200 °C +850 °C
Übersteuerungsbereich		-220 °C +1000 °C
Auflösung		0,1 °C
Messgenauigkeit	4-Leiter Messung	<0,1 % (Vollausschlag)
	3-Leiter Messung	<0,2 % (Vollausschlag)
	2-Leiter Messung ¹	<0,2 % (Vollausschlag)

^{1.} Leitungswiderstand = 0 Ω

PT100-Klima		
Nennmessbereich		-120 °C +130 °C
Übersteuerungsbereich		-145 °C +155 °C
Auflösung		0,01 °C
Messgenauigkeit	4-Leiter Messung	<0,2 % (Vollausschlag)

Ohm 0 Ω 3000 Ω		
Nennmessbereich		0 Ω 3000 Ω
Übersteuerungsbereich		0 Ω 3251,1 Ω
Auflösung	S7-Format	$0,1085~\Omega$
Messgenauigkeit	4-Leiter Messung	<0,05 % (Vollausschlag)
	3-Leiter Messung	<0,1 % (Vollausschlag)
	2-Leiter Messung	<0,1 % (Vollausschlag)

IO-Link-Schnittstelle

Alle IO-Link-Master, die IO-Link-Norm 1.12 oder 1.0 unterstützen, sind verwendbar.

Sensoren mit Stromausgang (0/4 mA ... 20 mA)

Abbildung 2.10 IO-Link

- 1 +24 V (L+)
- **2** n.c.
- 3 GND (L-)
- 4 C/Q

2.6 Zubehör

Systemkomponenten

Bestellbezeichnung	Beschreibung
MHY+T-SPLITTER HOLDER	Modularer Universalhalter für M12-T- und M12-Y-Verbindungskabel

Werkzeuge

Bestellbezeichnung	Beschreibung
MH V1-SCREWDRIVER	Drehmomentschraubendreher (0,6 Nm)
MH V1-BIT M12	Steckaufsatz für M12

3 Installation

3.1 Montagevorbereitung

Gefahr!

Tod oder schwerste Verletzungen durch elektrischen Schlag.

Hohe elektrische Spannung in der Maschine / Anlage.

- Halten Sie beim Arbeiten am Gerät die 5 Sicherheitsregeln der Elektrotechnik ein.
- Schließen Sie nur Versorgungen an, die einen Schutz gegen elektrischen Schlag bieten entsprechend SELV oder PELV.

Verwenden Sie ein Netzteil, das im Fehlerfall maximal 60 V DC bzw. 25 V AC zulässt.

- Stellen Sie sicher, dass der Sensor bzw. der Aktor sich in unmittelbarer N\u00e4he der Montagestelle befindet.
- Für eine mechanisch spannungsfreie Montage, stellen Sie sicher, dass die Montagefläche eben ist.
- Zur Erdung des Massebands erden Sie die Montagefläche.
- Nutzen Sie kurze Leitungswege zu allen Komponenten.
- Um das Gerät auszutauschen und Steckverbindungen anzuschießen, stellen Sie sicher, dass genügend Raum vorhanden ist.
- Beachten Sie bei Montage und Installlation die Umgebungs- und Einsatzbedingungen des Geräts.
- Schützen Sie die Anschlussleitungen vor Abreißen.
- Montieren Sie das Gerät so, dass die LED-Anzeigen des Geräts im Betrieb sichtbar sind.

3.2 Montage

Vorsicht!

Sachschaden durch nicht geeignete Befestigungsschrauben!

Die Verwendung von ungeeigneten Befestigungsschrauben kann zu Sachschäden führen.

 Verwenden Sie Befestigungsschrauben entsprechend der Beschaffenheit des Montageuntergrunds.

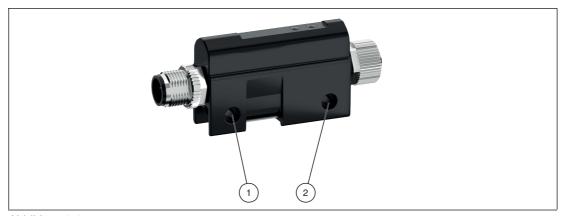
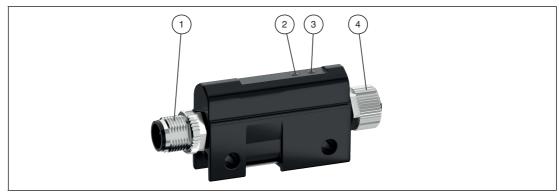


Abbildung 3.1

- 1 M5 Montagebohrung Ø 5,2 mm
- 2 M5 Montagebohrung Ø 5,2 mm

Verwenden Sie einen M5 Schraubendreher (Drehmoment 2,5 Nm).

3.3 Anschluss



Vorsicht!

Sachschaden durch nicht geeignete Befestigungsschrauben!

Die Verwendung von ungeeigneten Befestigungsschrauben kann zu Sachschäden führen.

 Verwenden Sie Befestigungsschrauben entsprechend der Beschaffenheit des Montageuntergrunds.

Abbildung 3.2

1 IO-Link-Anschluss

2 LED 1: Gerätestatus / Diagnose

3 LED 2: IO-Link-Status

4 Analogeingang/-ausgang

Anschlussleitungen

Vorsicht!

Verletzungsgefahr durch hohe Temperaturen!

Hohe Temperaturen über 70 °C können zu leichten Verletzungen und Leitungsschäden führen.

- Tragen Sie thermisch geeignete Schutzhandschuhe.
- · Verwenden Sie nur thermisch geeignete Leitungen.

Verwenden Sie ein M12-Montagewerkzeug (max. Anzugdrehmoment 0,6 Nm).

4 Betrieb

4.1 IO-Link-Parameter

Hinweis!

Alle Details der IO-Link-Parameter finden Sie in der IO Device Description (IODD) und dem Parameterdatenblatt des Geräts auf unserer Webseite www.pepperl-fuchs.com.

Parameterdatenblatt und IODD

- 1. Öffnen Sie unsere Webseite unter www.pepperl-fuchs.com
- 2. Geben Sie im Suchfeld die Bestellbezeichnung oder die Partnummer ihres Produkts ein.

Abbildung 4.1

- 3. Öffnen Sie die Produktdetailseite.
- **4.** Klicken Sie auf die Registerkarte "Dokumente" (1), um die verschiedenen Dokumente des Produkts aufzulisten.

Abbildung 4.2

→ Sie finden das Parameterdatenblatt unter "Kurzanleitungen, Sicherheitsinformationen" (2).

5. Klicken Sie auf die Registerkarte "Software" (1), um die Software des Produkts aufzulisten.

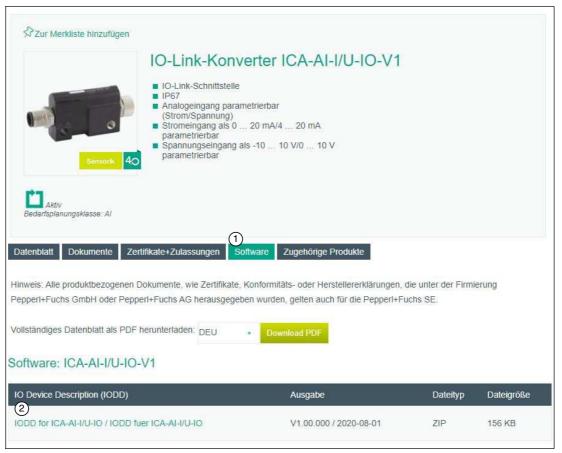


Abbildung 4.3

→ Sie finden die IODD unter "IO Device Description (IODD)" (2).

4.2 Diagnose

4.2.1 IO-Link-Events

Abhängig von der eingestellten Kanalfunktion stehen bestimmte IO-Link Events zur Verfügung, die das Gerät senden kann.

Allgemeine Events

Event- Kode	Beschreibung	Device -Status (ISDU IDX 0x24)		Qualifizierer	Bemerkungen
0x0000	Keine Fehlfunktion	0	Notifica- tion		
0x4210	Übertemperatur des Geräts	2	Warning	appearing disappearing	entspricht Bit 3 in ISDU- Index 0x40
0x5110	Primäre Geräteversor- gung Überspannung – Toleranz prüfen	2	Warning	appearing disappearing	Wenn Ub >30 V entspricht Bit 4 in ISDU- Index 0x40
0x5111	Primäre Geräteversor- gung Unterspannung – Toleranz prüfen	2	Warning	appearing disappearing	Wenn Ub <18 V entspricht Bit 5 in ISDU- Index 0x40

Event- Kode	Beschreibung	Device -Status (ISDU IDX 0x24)	Event- Typ	Qualifizierer	Bemerkungen
0x6320	Parameterfehler – Datenblatt und/oder Werte prüfen	4	Error	appearing disappearing	Wenn ein unzulässiger Wert auf einen Parame- ter geschrieben wurde
0x7700	Leitungsbruch an angeschlossenem Gerät – Verdrahtung prüfen	4	Error	appearing disappearing	entspricht Bit 10 in ISDU-Index 0x40 ¹
0x8C10	Prozesswert oberhalb des gültigen Bereichs	2	Warning	appearing disappearing	entspricht Bit 15 in ISDU-Index 0x40 ²
0x8C30	Prozesswert unter- halb des gültigen Bereichs	2	Warning	appearing disappearing	entspricht Bit 14 in ISDU-Index 0x40 ^{2<default sup="" ¬¹<=""> Font></default>}

Tabelle 4.1

Da es für IO-Link keine PNIO-Integration gibt, die vorgegebene Event-Codes der IO-Link Spec. 1.1 korrekt auf PNIO-Diagnosen abbildet, muss zusätzlich der ISDU-Index 0x45 ausgelesen werden. Mit einem Master, der die erweiterte IO-Link-Integration unterstützt, ist das Auslesen von ISDU-Index 0x45 nicht nötig.

Hersteller-spezifische Events

Event- Kode	Beschreibung	Device -Status		Qualifizierer	Bemerkungen
0x1800	Fertigungsdatenbereich enthält ungültige Daten	4	Error	appearing disappearing	Nicht maskierbar durch Event-Parametrierung in ISDU-Index 0x40
0x1801	Parameterdatenbereich enthält ungültige Daten	4	Error	appearing disappearineg	Nicht maskierbar durch Event-Parametrierung in ISDU-Index 0x40
0x1802	Untere Warnschwelle unterschritten	2	War- ning	appearing disappearing	entspricht Bit 1 in ISDU- Index 0x40
0x1803	Obere Warnschwelle überschritten	2	War- ning	appearing disappearing	entspricht Bit 2 in ISDU- Index 0x40
0x1804	Überstrom an der Sensorversorgung	4	Error	appearing disappearing	entspricht Bit 11 in ISDU-Index 0x40
0x1805	Übersteuerung Analog- eingang – Sensorsignal prüfen	2	War- ning	appearing disappearing	entspricht Bit 15 in ISDU-Index 0x40 Nur AIN-Typen
0x1806	Untersteuerung Analog- eingang - Sensorsignal prüfen	2	War- ning	appearing disappearing	entspricht Bit 14 in ISDU-Index 0x40 Nur AIN-Typen
0x1809	Fehler Analogausgang – Ausgangsspannung größer als Sollwert	4	Error	appearing disappearing	entspricht Bit 7 in ISDU- Index 0x40 Nur AO-Typen 0 10 V -10 10 V

^{1.} Nur AO I 0/4 ... 20 mA

^{2.} Nur ICA-AO-I/U-IO-V1

Event- Kode	Beschreibung	Device -Status	Event- Typ	Qualifizierer	Bemerkungen
0x180A	Fehler Analogausgang – Ausgangsspannung kleiner als Sollwert	4	Error	appearing disappearing	entspricht Bit 6 in ISDU- Index 0x40 Nur AO-Typen 0 10 V -10 10 V
0x180B	Fehler Analogausgang – Überlast am Ausgang	4	Error	appearing disappearing	entspricht Bit 6 in ISDU- Index 0x40 Nur AO-Typen 0 10 V -10 10 V

Tabelle 4.2

Gültigkeitsmatrix IO-Link-Events

Nicht alle Varianten der Analogen IO-Link Konverter besitzen die gleichen Diagnose-Events.

Abhängig von Variante und/oder eingestellter Kanalfunktion stehen nur bestimmte Events zur Verfügung.

Die folgende Tabelle stellt die Verfügbarkeit der Events abhängig von der Variante/Kanalfunktion dar.

Kanalfunktion analoge Eingänge

Bit ISDU-				
Index 0x40	AI U 0 10 V	AI U -10 10 V	Al I 0 20 mA	Al I 4 20 mA
15	Übersteuerung U _{IN} >10 V	Übersteuerung U _{IN} >10 V	Übersteuerung I _{IN} >20 mA	Übersteuerung I _{IN} >20 mA
14	Untersteuerung U _{IN} <0 V	Untersteuerung U _{IN} < -10 V	Untersteuerung I _{IN} <0 mA	Untersteuerung I _{IN} <4 mA
13	reserviert	reserviert	reserviert	reserviert
12	reserviert	reserviert	reserviert	reserviert
11	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung
10	reserviert	reserviert	reserviert	reserviert
9	reserviert	reserviert	reserviert	reserviert
8	reserviert	reserviert	reserviert	reserviert
7	reserviert	reserviert	reserviert	reserviert
6	reserviert	reserviert	reserviert	reserviert
5	Unterspannung Ub <18 V	Unterspannung Ub <18 V	Unterspannung Ub <18 V	Unterspannung Ub <18 V
4	Überspannung Ub >30 V	Überspannung Ub >30 V	Überspannung Ub >30 V	Überspannung Ub >30 V
3	Übertemperatur T(uC) >85 °C	Übertemperatur T(uC) >85 °C	Übertemperatur T(uC) >85 °C	Übertemperatur T(uC) >85 °C

Tabelle 4.3

Kanalfunktion analoge Ausgänge

Bit ISDU- Index				
0x40	AO U 0 10 V	AO U -10 10 V	AO I 0 20 mA	AO I 4 20 mA
15	Übersteuerung PDOUT-DATA >27648d	Übersteuerung PDOUT-DATA >27648d	Übersteuerung PDOUT-DATA >27648d	Übersteuerung PDOUT-DATA >27648d
14	Untersteuerung PDOUT-DATA <0d	Untersteuerung PDOUT-DATA <- 27648d	Untersteuerung PDOUT-DATA <0d	Untersteuerung PDOUT-DATA <0d
13	reserviert	reserviert	reserviert	reserviert
12	reserviert	reserviert	reserviert	reserviert
11	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung	Überstrom Sensor- versorgung
10	reserviert	reserviert	Leitungsbruch Sensor	Leitungsbruch Sensor
9	reserviert	reserviert	reserviert	reserviert
8	reserviert	reserviert	reserviert	reserviert
7	Kanalfehler U _{out} > U _{soll}	Kanalfehler U _{out} > U _{soll}	reserviert	reserviert
6	Kanalfehler U _{out} < U _{soll}	Kanalfehler U _{out} < U _{soll}	reserviert	reserviert
5	Unterspannung Ub <18 V	Unterspannung Ub <18 V	Unterspannung Ub <18 V	Unterspannung Ub <18 V
4	Überspannung Ub >30 V	Überspannung Ub >30 V	Überspannung Ub >30 V	Überspannung Ub >30 V
3	Übertemperatur T(uC) >85°C	Übertemperatur T(uC) >85 °C	Übertemperatur T(uC) >85°C	Übertemperatur T(uC) >85 °C
2	Obere Warn- schwelle überschrit- ten	Obere Warn- schwelle überschrit- ten	Obere Warn- schwelle überschrit- ten	Obere Warn- schwelle überschrit- ten
1	Untere Warn- schwelle unterschrit- ten	Untere Warn- schwelle unterschrit- ten	Untere Warn- schwelle unterschrit- ten	Untere Warn- schwelle unterschrit- ten
0	reserviert	reserviert	reserviert	reserviert

Tabelle 4.4

4.2.2 Prozessdaten

Hinweis!

Die Prozessdaten werden in Big-Endian-Reihenfolge übertragen.

Analoger Eingang I = 0 ... 20 mA

Werte		Messwerte	Bereich
32767 _{dez}	7FFF _{hex}	> 23,5178 mA	Überlauf
32511	7EFF	23,5178 mA	Übersteuerungs-
27649	6C01	20,0007 mA	bereich
27648	6C00	20,0000 mA	Nennbereich
1	0001	723,4 nA	
0	0000	0 μΑ	
-1	FFFF	-723,4 nA	Untersteuerungs-
-4864	ED00	-3,5185 mA	bereich
-32768	8000	< -3,5185 mA	Unterlauf

Tabelle 4.5

Analoger Eingang I = 4 ... 20 mA

Werte		Messwerte	Bereich
32767 _{dez}	7FFF _{hex}	> 22,8142 mA	Überlauf
32511	7EFF	22,8142 mA	Übersteuerungs-
27649	6C01	20,0006 mA	bereich
27648	6C00	20,0000 mA	Nennbereich
1	0001	4 mA + 578,7 nA	
0	0000	4 mA	
-1	FFFF	4 mA - 578,7 nA	Untersteuerungs-
-4864	ED00	1,1852 mA	bereich
-32768	8000	< -1,1852 mA	Unterlauf

Tabelle 4.6

Analoger Eingang U = 0 ... 10 V

Werte		Messwerte	Bereich
32767 _{dez}	7FFF _{hex}	>11,7589 V	Überlauf
32511	7EFF	11,7589 V	Übersteuerungs-
27649	6C01	10,0004 V	bereich
27648	6C00	10,0000 V	Nennbereich
1	0001	361,7 μV	
0	0000	0 μV	
-1	FFFF	-361,7 μV	Untersteuerungs-
-4864	ED00	-1,7593 V	bereich
-32768	8000	< -1,7593 V	Unterlauf

Tabelle 4.7

Analoger Eingang U = -10 ... 10 V

Werte		Messwerte	Bereich
32767 _{dez}	7FFF _{hex}	>11,7589 V	Überlauf
32511	7EFF	11,7589 V	Übersteuerungs-
27649	6C01	10,0004 V	bereich
27648	6C00	10,0000 V	Nennbereich
1	0001	361,7 μV	
0	0000	0 μV	
-1	FFFF	-361,7 μV	
-27648	9400	-10,0000 V	
-27649	93FF	-10,0004 V	Untersteuerungs-
-32512	8100	-11,7593 V	bereich
-32768	8000	< -11,7593 V	Unterlauf

Tabelle 4.8

Analoger Ausgang I = 0 ... 20 mA

Werte		Messwerte	Bereich
> 32511 _{dez}	> 7EFF _{hex}	> 23,5178 mA	Max. Ausgabewert
32511	7EFF	23,5178 mA	Übersteuerungs-
27649	6C01	20,0007 mA	bereich
27648	6C00	20,0000 mA	Nennbereich
1	0001	723,4 nA	
0	0000	0 μΑ	
< 0	< 0000	0,000 mA	Min. Ausgabewert

Tabelle 4.9

Analoger Ausgang I = 4 ... 20 mA

Werte		Messwerte	Bereich
> 32511 _{dez}	> 7EFF _{hex}	> 22,8142 mA	Max. Ausgabewert
32511	7EFF	22,8142 mA	Übersteuerungs-
27649	6C01	20,0006 mA	bereich
27648	6C00	20,0000 mA	Nennbereich
1	0001	4 mA + 578,7 nA	
0	0000	4 mA	
< 0	< 0000	4 mA	Min. Ausgabewert

Tabelle 4.10

Analoger Ausgang U = 0 ... 10 V

Werte		Messwerte	Bereich
> 32511 _{dez}	7EFF _{hex}	11,7589 V	Max. Ausgabewert
32511	7EFF	11,7589 V	Übersteuerungs-
27649	6C01	10,0004 V	bereich

Werte		Messwerte	Bereich
27648	6C00	10,0000 V	Nennbereich
1	0001	361,7 μV	
0	0000	0 V	
< 0	< 0000	0 V	Min. Ausgabewert

Tabelle 4.11

Analoger Ausgang U = -10 ... 10 V

Werte		Messwerte	Bereich
> 32511 _{dez}	> 7EFF _{hex}	11,7589 V	Max. Ausgabewert
32511	7EFF	11,7589 V	Übersteuerungs-
27649	6C01	10,0004 V	bereich
27648	6C00	10,0000 V	Nennbereich
1	0001	361,7 μV	
0	0000	0 μV	
-1	FFFF	-361,7 μV	
-27649	93FF	-10,0004 V	Untersteuerungs-
-32512	8100	-11,7593 V	bereich
< -32512	< 8100	-11,7593 V	Min. Ausgabewert

Tabelle 4.12

Filterbeschreibung

Für analoge Signale bzw. die Ausgabewerte ist ein FIR-Filter implementiert:

$$\frac{1}{N}\sum_{k=0}^{N-1}x\left[n-k\right]$$

y(n) gefilteter Wert zum Zeitpunkt n

x(n) Ausgabewert / Messwert zum Zeitpunkt n

x(n-k) k-ter Vorgänger des Ausgabewerts / Messwerts zum Zeitpunkt n

N Filterzeit in Anzahl der IO-Link-Zyklen

Ändert sich der Eingangswert bzw. die vorgegebenen Prozessdaten sprungartig, so steigt der gefilterte Wert linear an bis nach N IO-Link-Zyklen der Endwert erreicht wird.

Beispiel

Bei einer Zykluszeit von 2,3 ms und einer Filterzeit von N = 10 wird nach 23 ms der Endwert eingelesen/ausgegeben.

5 Instandhaltung

5.1 Wartung

Busknoten und Module des Geräts arbeiten wartungsfrei.

Für den laufenden Betrieb sind keine Inspektions- und Wartungsintervalle notwendig.

Tauschen Sie defekte Busknoten und/oder defekte Module aus.

Glossar und Abkürzungsverzeichnis

Abkürzung/Bezeichnung	Bedeutung	
Al	Analog Input, analoge Eingänge	
AO	Analog Output, analoge Ausgänge	
Bit	Binärziffer	
Byte	1 Byte entspricht 8 Bit	
DC	Diagnostic Coverage / Aufdeckungsgrad von Fehlern	
DIN	Deutsches Institut für Normung	
EMV	Elektromagnetische Verträglichkeit	
EN	Europäische Norm	
ESD	Elektrostatische Entladungen	
FE	Funktionserde	
IO-Link	Standardisiertes Kommunikationssystem zur Anbindung intelligenter Sensoren und Aktoren an ein Automatisierungssystem	
IP67	6: Staubdicht, Schutz gegen den Zugang mit einem Draht 7: Schutz gegen zeitweiliges Untertauchen	
ISDU (IO-Link)	Indexed Service Data Unit	
LED	Light Emitting Diode	
MTTF _d	Mean Time To (dangerous) Failure / Mittlere Betriebsdauer bis zum (gefährlichem) Ausfall	
n.c.	Not connected / nicht belegt	
PELV	Protective Extra Low Voltage / Schutzkleinspannung	
RTD	Resistive Temperature Detector - Widerstandsthermometer	
SELV	Safety Extra Low Voltage / Sicherheitskleinspannung	
TH	T/C Thermocouple - Thermoelement	

Tabelle 6.1

Your automation, our passion.

Explosionsschutz

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet

