K23-SSI/USB/25B-C

Messumformer

Handbuch

Es gelten die Allgemeinen Lieferbedingungen für Erzeugnisse und Leistungen der Elektroindustrie, herausgegeben vom Zentralverband Elektroindustrie (ZVEI) e.V. in ihrer neusten Fassung sowie die Ergänzungsklausel: "Erweiterter Eigentumsvorbehalt".

Inhaltsverzeichnis

١.	Sici	ierneit und Verantwortung	ວ
	1.1	Allgemeine Sicherheitshinweise	5
	1.2	Bestimmungsgemäße Verwendung	5
	1.3	Installation	6
	1.4	Störsicherheit	6
	1.5	Reinigungs-, Pflege- und Wartungshinweise	7
2.	Allg	emeines	8
	2.1	Betriebsarten	8
	2.2	Funktionsdiagram	8
	2.3	Power – LED / Fehlermeldungen	8
3.	Elel	ktrische Anschlüsse	11
	3.1	DC-Spannungsversorgung (X1)	11
	3.2	Hilfsspannungs-Ausgang (X2)	11
	3.3	Inkrementaldrehgeber-Eingang (X2)	12
	3.4	Absolutwertdrehgeber-Eingang (X2)	14
	3.5	Start-Stopp-Geber-Eingänge (X2)	15
	3.6	Control-Eingänge (X3)	16
	3.7	Parallel-Ausgang (X5) / COM+ (X3)	18
	3.7.	1 "Error" – Ausgang	18
	3.7.	2 "Data stable" – Ausgang	18
	3.8	Serielle Schnittstelle (X4)	19
4.	Bed	liensoftware OS6.0 / OS10.0	20
	4.1	General Menu	22
	4.2	Mode Frequency	24
	4.3	Mode Counter	30
	4.4	Mode SSI	32
	4.5	Mode Start/Stop	35
	4.6	Serial Menu	38
	4.7	Parallel Menu	42
	4.8	Command Menu	44
	4.9	Linearization Menu	46
5.	Anh	ang	48
	5.1	Auslesen von Daten über serielle Schnittstelle	48
	5.2	Parameterliste / Serielle Codes	49
	5.3	Serielle Codes der Commands:	54
	5.4	Linearisierung	55
	5.5	SSI-Wert einlesen	

5.6	Verarbeitung und Berechnung SSI-Daten	.58
5.7	Betriebsarten/OP Modes der Start-Stopp-Schnittstelle	.61
5.8	Abmessungen	.63

1. Sicherheit und Verantwortung

1.1 Allgemeine Sicherheitshinweise

Diese Beschreibung ist wesentlicher Bestandteil des Geräts und enthält wichtige Hinweise bezüglich Installation, Funktion und Bedienung. Nichtbeachtung kann zur Beschädigung oder zur Beeinträchtigung der Sicherheit von Menschen und Anhänge führen!

Bitte lesen Sie vor der ersten Inbetriebnahme des Geräts diese Beschreibung sorgfältig durch und beachten Sie alle Sicherheits- und Warnhinweise! Bewahren Sie diese Beschreibung für eine spätere Verwendung auf.

Voraussetzung für die Verwendung dieser Gerätebeschreibung ist eine entsprechende Qualifikation des jeweiligen Personals. Das Gerät darf nur von einer geschulten Elektrofachkraft installiert, konfiguriert, in Betrieb genommen und gewartet werden.

Haftungsausschluss: Der Hersteller haftet nicht für eventuelle Personen- oder Sachschäden, die durch unsachgemäße Installation, Inbetriebnahme, Bedienung und Wartung sowie aufgrund von menschlichen Fehlinterpretationen oder Fehlern innerhalb dieser Gerätebeschreibung auftreten. Zudem behält sich der Hersteller das Recht vor, jederzeit - auch ohne vorherige Ankündigung - technische Änderungen am Gerät oder an der Beschreibung vorzunehmen. Mögliche Abweichungen zwischen Gerät und Beschreibung sind deshalb nicht auszuschließen.

Die Sicherheit der Anlage bzw. des Gesamtsystems, in welche(s) dieses Gerät integriert wird, obliegt der Verantwortung des Errichters der Anlage bzw. des Gesamtsystems.

Es müssen während der Installation, beim Betrieb sowie bei Wartungsarbeiten sämtliche allgemeinen sowie länderspezifischen und anwendungsspezifischen Sicherheitsbestimmungen und Standards beachtet und befolgt werden.

Wird das Gerät in Prozessen eingesetzt, bei denen ein eventuelles Versagen oder eine Fehlbedienung die Beschädigung der Anlage oder eine Verletzung von Personen zur Folge haben kann, dann müssen entsprechende Vorkehrungen zur sicheren Vermeidung solcher Folgen getroffen werden.

1.2 Bestimmungsgemäße Verwendung

Dieses Gerät dient ausschließlich zur Verwendung in industriellen Maschinen und Anlagen. Hiervon abweichende Verwendungszwecke entsprechen nicht den Bestimmungen und obliegen allein der Verantwortung des Nutzers. Der Hersteller haftet nicht für Schäden, die durch eine unsachgemäße Verwendung entstehen. Das Gerät darf nur ordnungsgemäß eingebaut und in technisch

einwandfreiem Zustand - entsprechend der technischen Daten - eingesetzt und betrieben werden. Das Gerät ist nicht geeignet für den explosionsgeschützten Bereich sowie Einsatzbereiche, die in DIN EN 61010-1 ausgeschlossen sind.

1.3 Installation

Das Gerät darf nur in einer Umgebung installiert und betrieben werden, die dem zulässigen Temperaturbereich entspricht. Stellen Sie eine ausreichende Belüftung sicher und vermeiden Sie den direkten Kontakt des Geräts mit heißen oder aggressiven Gasen oder Flüssigkeiten.

Vor der Installation sowie vor Wartungsarbeiten ist die Einheit von sämtlichen Spannungsquellen zu trennen. Auch ist sicherzustellen, dass von einer Berührung der getrennten Spannungsquellen keinerlei Gefahr mehr ausgehen kann.

Geräte, die mittels Wechselspannung versorgt werden, dürfen ausschließlich via Schalter bzw. Leistungsschalter mit dem Niederspannungsnetz verbunden werden. Dieser Schalter muss in Gerätenähe platziert werden und eine Kennzeichnung als Trennvorrichtung aufweisen.

Eingehende sowie ausgehende Leitungen für Kleinspannungen müssen durch eine doppelte bzw. verstärkte Isolation von gefährlichen, stromführenden Leitungen getrennt werden (SELV Kreise).

Sämtliche Leitungen und deren Isolationen sind so zu wählen, dass sie dem vorgesehenen Spannungs- und Temperaturbereich entsprechen. Zudem sind sowohl die geräte-, als auch länderspezifischen Standards einzuhalten, die in Aufbau, Form und Qualität für die Leitungen gelten. Angaben über zulässige Leitungsquerschnitte für die Schraubklemmverbindungen sind den technischen Daten zu entnehmen.

Vor der Inbetriebnahme sind sämtliche Anschlüsse. bzw. Leitungen auf einen soliden Sitz in den Schraubklemmen zu überprüfen. Alle (auch unbelegte) Schraubklemmen müssen bis zum Anschlag nach rechts gedreht und somit sicher befestigt werden, damit sie sich bei Erschütterungen und mechanische Schwingungen nicht lösen können.

Überspannungen an den Anschlüssen des Geräts sind auf die Werte der Überspannungskategorie Gasgruppe II zu begrenzen.

1.4 Störsicherheit

Alle Anschlüsse sind gegen elektromagnetische Störungen geschützt.

Es ist jedoch zu gewährleisten, dass am Einbauort des Gerätes möglichst geringe kapazitive oder induktive Störungen auf das Gerät und alle Anschlussleitungen einwirken.

Hierzu sind folgende Maßnahmen notwendig:

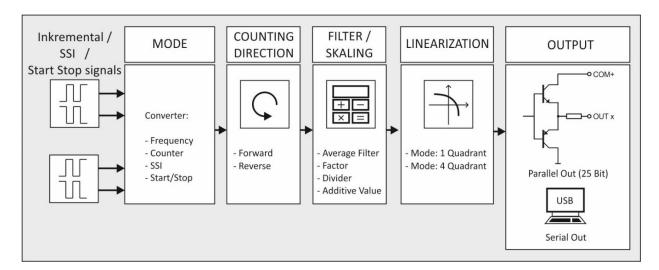
- Für alle Ein und Ausgangssignale ist grundsätzlich geschirmtes Kabel zu verwenden
- Steuerleitungen (digitale Ein- und Ausgänge, Relaisausgänge) dürfen eine Länge von 30 m nicht überschreiten und das Gebäude nicht verlassen.
- Die Kabelschirme müssen über Schirmklemmen großflächig mit Erde verbunden werden
- Die Verdrahtung der Masse-Leitungen (GND bzw. 0 V) muss sternförmig erfolgen und darf nicht mehrfach mit Erde verbunden sein
- Das Gerät sollte in ein metallisches Gehäuse und möglichst entfernt von Störquellen eingebaut werden
- Die Leitungsführung darf nicht parallel zu Energieleitungen und anderen störungsbehafteten Leitungen erfolgen

1.5 Reinigungs-, Pflege- und Wartungshinweise

Zur Reinigung der Frontseite verwenden Sie bitte ausschließlich ein weiches, leicht angefeuchtetes Tuch. Für die Geräte-Rückseite sind keinerlei Reinigungsarbeiten vorgesehen bzw. erforderlich. Eine außerplanmäßige Reinigung obliegt der Verantwortung des zuständigen Wartungspersonals, bzw. dem jeweiligen Monteur.

Im regulären Betrieb sind für das Gerät keinerlei Wartungsmaßnahmen erforderlich. Bei unerwarteten Problemen, Fehlern oder Funktionsausfällen muss das Gerät an den Hersteller geschickt und dort überprüft sowie ggfs. repariert werden. Ein unbefugtes Öffnen und Instandsetzen kann zur Beeinträchtigung oder gar zum Ausfall der vom Gerät unterstützten Schutzmaßnahmen führen.

2. Allgemeines


Das Gerät ist als Messumformer mit Steuereingängen konzipiert, welcher die entsprechenden Sensor- oder Encoder-Informationen in ein paralleles Signal umwandelt. Ebenso ist es möglich, serielle Daten in ein paralleles Format umzuwandeln. Durch die umfangreichen Funktionen und Betriebsarten ist es außerdem universell einsetzbar.

2.1 Betriebsarten

Grundsätzlich sind alle Funktionen im Parameter Menu zu konfigurieren. Das Gerät kann in folgenden Betriebsarten verwendet werden:

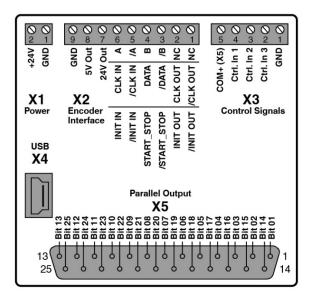
- Betrieb als Frequenzumformer für inkrementelle Eingangssignale
- Betrieb als Positionsumformer / Zähler für inkrementelle Eingangssignale
- Betrieb als Absolutwertumformer für SSI Signale
- Betrieb als Absolutwertumformer für Signale einer Start-Stop-Schnittstelle

2.2 Funktionsdiagram

2.3 Power – LED / Fehlermeldungen

Das Gerät besitzt eine grüne LED auf dessen Frontfolie. Diese leuchtet dauerhaft, sobald die Versorgungsspannung des Gerätes angelegt wurde. Tritt ein Fehler auf, blinkt die LED im 1 Hz Takt. Besteht der Fehler nicht mehr, leuchtet die LED automatisch wieder dauerhaft und die Parallelausgänge reagieren wieder auf das derzeit anstehende Messergebnis.

Der genaue Fehler kann mittels Bedieneroberfläche (OS 6.0) über die serielle Schnittstelle ausgelesen werden. (→ Variable: Error_Status, Code: ";3"). Siehe Kapitel 4.


Die einzelnen Fehlercodes sind nachfolgend genauer erläutert:

Fehlercode	Fehlerbezeichnung	Fehlerbeschreibung
(Error_Status)		
0x0000001	Maximum Value	SPECIAL PIN FUNCTION "Data-Bit / Data-Bit": Messwert ist größer als + 16777215 (2^24-1)
		SPECIAL PIN FUNCTION "Error" oder "Data – Stable": Messwert ist größer als + 8388607 (2^23-1)
		SPECIAL PIN FUNCTION "Error" und "Data – Stable": (oder jeweils entsprechend negiert) Messwert ist größer als + 4194303 (2^22-1).
0x00000002	Minimum Value	SPECIAL PIN FUNCTION "Data-Bit / Data-Bit": Messwert ist kleiner als - 16777216 (2^24)
		SPECIAL PIN FUNCTION "Error" oder "Data – Stable": Messwert ist kleiner als - 8388608 (2^23)
		SPECIAL PIN FUNCTION "Error" und "Data – Stable": (oder jeweils entsprechend negiert) Messwert ist kleiner als - 4194304 (2^22).
0x00000004	SSI Encoder Error	SSI Error Bit gesetzt (nur für Mode: SSI)
0x0000010	Frequency (Input A) out of range	Maximal bzw. minimal zulässige Eingangsfrequenz an Eingang A wurde mit verwendeter Exponentialfiltereinstellung über- bzw. unterschritten. (nur Mode: Frequency)
0x00000020	Frequency (Input B) out of range	Maximal bzw. minimal zulässige Eingangsfrequenz an Eingang B wurde mit verwendeter Exponentialfiltereinstellung über- bzw. unterschritten. (nur Mode: Frequency)
0x00000040	Start/Stop Encoder Error	Kein "Start"- und kein "Stop"-Impuls zwischen zwei "Init"-Impulsen

Fehlercode	Fehlerbezeichnung	Fehlerbeschreibung
(Error_Status)		
		erkannt. (nur Mode: Start/Stop) Sensoranschlüsse prüfen!
0x00000080	Position Encoder Outside the Limit	Kein "Stop"-Impuls zwischen zwei "Init"-Impulsen erkannt. (nur Mode: Start/Stop) Mögliche Ursache: Kein Positionsgeber oder Positions- geber außerhalb der Grenzen.

3. Elektrische Anschlüsse

Die Klemmen sollten mit einem Schlitz-Schraubendreher (Klingenbreite 2 mm) angezogen werden.

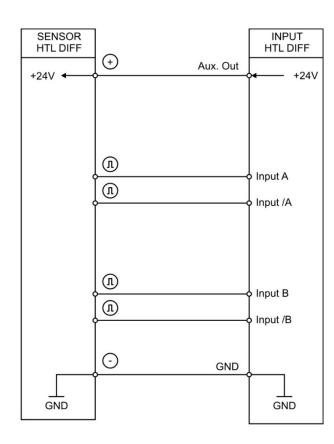
3.1 DC-Spannungsversorgung (X1)

Über die Klemme X1 Pin 1 und 2 kann das Gerät mit einer Gleichspannung zwischen 10 und 30 VDC versorgt werden. Die Stromaufnahme hängt u.a. von der Höhe der Versorgungsspannung und der Einstellung ab und liegt bei ca. 25 mA, zuzüglich des am Hilfsspannungs-Ausgang entnommenen Drehgeberstroms.

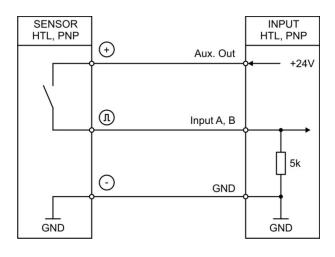
Alle GND-Anschlüsse sind intern miteinander verbunden.

3.2 Hilfsspannungs-Ausgang (X2)

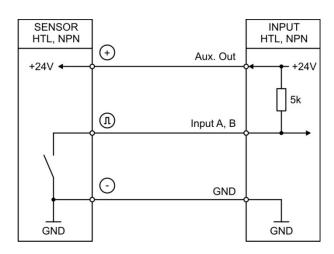
An Klemme X2 Pin 7, 8 und 9 stehen zwei Hilfsspannungen 24 VDC und 5 VDC als Drehgeber-/Sensorversorgung zur Verfügung. Die 24 VDC Ausgangsspannung ist abhängig von der Geräteversorgung (siehe Datenblatt).


3.3 Inkrementaldrehgeber-Eingang (X2)

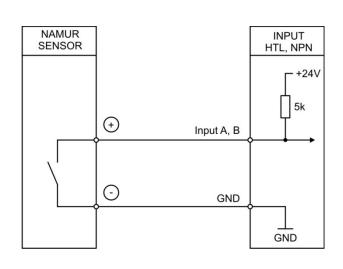
An Klemme X2 Pin 3, 4, 5 und 6 steht ein Anschluss für verschiedene inkrementelle Signale zur Verfügung.

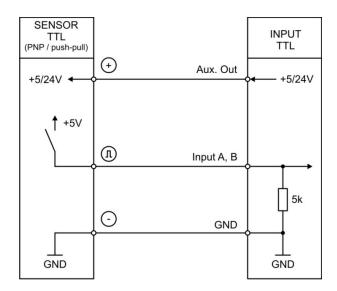

RS422

SENSOR INPUT RS422 RS422 \oplus Aux. Out +5/24V**◆** +5/24V 120R (J) Input A (I) Input /A 120R (I) Input B **①** Input /B O GND GND **GND**


HTL DIFFERENTIAL

HTL PNP




HTL NPN

HTL NPN (NAMUR)

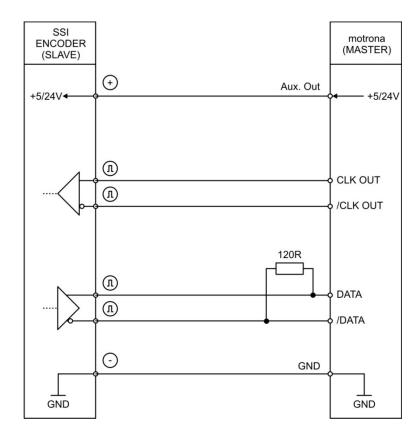
TTL (PNP)

Grundsätzlich sind offene PNP Eingänge "LOW" und offene NPN Eingänge "HIGH".

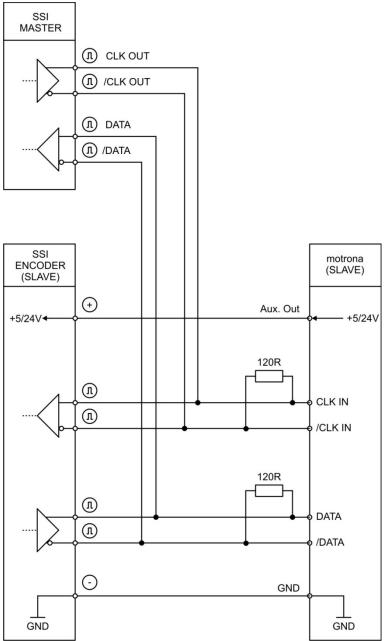
Die Eingangsstufen sind für elektronische Impulsgeber ausgelegt.

Hinweis für mechanische Schaltkontakte:

Sollten ausnahmsweise mechanische Kontakte als Impulsquelle verwendet werden, muss an den Anschlussklemmen zwischen GND (-) und dem entsprechenden Eingang (+) ein handelsüblicher, externer Kondensator von ca. 10 µF angebracht werden. Dadurch wird die maximale Eingangsfrequenz auf ca. 20 Hz gedämpft und ein Prellen unterdrückt.



3.4 Absolutwertdrehgeber-Eingang (X2)

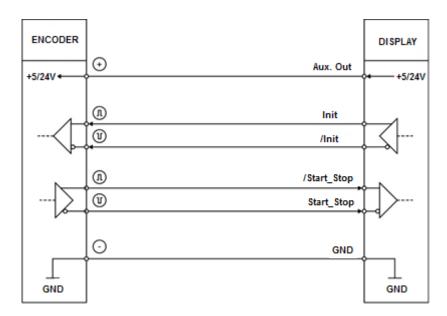

An Klemme X2 Pin 1, 2, 3, 4 steht der SSI Anschluss für den führenden Betrieb zur Verfügung.

An Klemme X2 Pin 3, 4, 5, 6 steht der SSI Anschluss für den geführten Betrieb zur Verfügung.

Anschluss führender Betrieb:

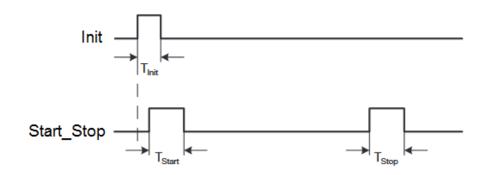
Anschluss geführter Betrieb: SSI MASTER

3.5 Start-Stopp-Geber-Eingänge (X2)


An Klemme X2 - Pin 1 + 2 steht der RS422-Anschluss für den Init-Impuls im führenden Betrieb zur Verfügung. Das Gerät erzeugt den Init-Impuls.

An Klemme X2 - Pin 5+6 steht der RS422-Anschluss für den Init-Impuls im geführten Betrieb zur Verfügung. Der Init-Impuls wird von einem externen Gerät erzeugt.

An Klemme X2 - Pin 3+4 steht der RS422 Anschluss für den Start-Stopp-Impuls zur Verfügung.


Anschluss der RS422-Signale

DPI-Messbetrieb:

Auf der Init-Leitung wird im führenden Betrieb in regelmäßigen Abständen (=SAMPLING TIME [ms]) der Init-Impuls zum Wegaufnehmer geschickt, dessen steigende Flanke eine Messung auslöst.

Die Pulsbreite des Init-Impulses ist mittels Parameter "INIT PULSE TIME (μs)" einstellbar.

T: 1...9 µs (einstellbar)

T_{stat}: ~3...5 μs

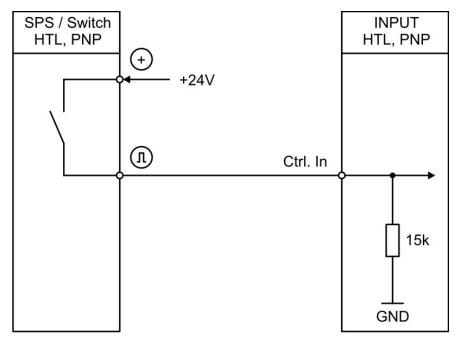
T_: ~3...5 μs

3.6 Control-Eingänge (X3)

An Klemme X3 Pin 2,3 und 4 stehen drei Control-Eingänge mit HTL-PNP-Charakteristik zur Verfügung.

Control-Eingang 1 (Ctrl. In 1) und Control-Eingang 2 (Ctrl. In 2) sind im COMMAND MENU frei konfigurierbar und werden für extern auszulösende Funktionen wie z. B. Rücksetzen des Messergebnisses oder zum Einfrieren des

Parallelausganges verwendet.


Control-Eingang 3 (Ctrl. In 3) dient ausschließlich zum Rücksetzen der Geräteparameter auf die "Default"-Werte und ist somit nicht frei konfigurierbar.

Hinweis

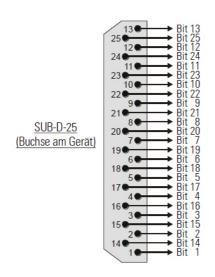
Ein HTL-Impuls (steigende Flanke) an Ctrl. In 3 bewirkt ein Rücksetzen des Geräts auf die Werkseinstellungen. Der HTL-Impuls muss hierzu mindestens eine Sekunde anliegen.

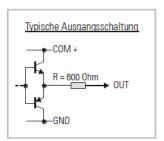
Anschluss der Control-Eingänge:

Grundsätzlich sind offene Control-Eingänge "LOW".

Die Eingangsstufen sind für elektronische Steuersignale ausgelegt.

Hinweis für mechanische Schaltkontakte:


Bei mechanischen Kontakte als Impulsquelle, muss zwischen GND (-) und dem entsprechenden Eingang (+) ein handelsüblicher, externer Kondensator von ca. 10 μ F angebracht werden. Dadurch wird die maximale Eingangsfrequenz auf ca. 20 Hz gedämpft und ein Prellen unterdrückt.

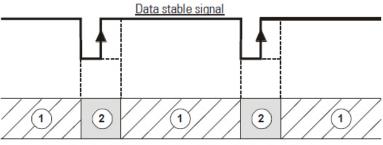


3.7 Parallel-Ausgang (X5) / COM+ (X3)

Bei den Parallelausgängen handelt es sich um 25 kurzschlussfeste Push-Pull-Ausgänge. Die gemeinsame, unabhängige Versorgungsspannung der Ausgänge wird an Klemme X3 - Pin 5 (COM+) angelegt. Die Versorgungsspannung an COM+ sollte +27 V nicht überschreiten, da ansonsten die Dauer-Kurzschluss-Festigkeit der Ausgänge nicht mehr gewährleistet ist.

Der Spannungsabfall zwischen COM+ und einem Ausgang im HIGH-Zustand beträgt ca. 1 Volt (unbelastet).

3.7.1 "Error" – Ausgang


Im Parallel-Menu kann mit Hilfe des Parameters "SPECIAL PIN FUNCTION" der Ausgang Bit 25 (oder Bit 24 - wenn außerdem noch ein Datastable Signal konfiguriert wird) auch als "Error"-Signal eingestellt werden. In diesem Falle zeigt ein LOW-Signal (bzw. HIGH-Signal) an, dass ein Fehler erkannt wurde.

3.7.2 "Data stable" - Ausgang

Mit Hilfe des Parameters "SPECIAL PIN FUNCTION" (im Parallel-Menu) lässt sich der Ausgang Bit 25 auch als "Data stable"-Signal konfigurieren. In diesem Falle zeigt ein LOW-Signal (bzw. HIGH-Signal) an, dass die Parallel-Daten stabil sind und sich nicht verändern werden. Die ansteigende bzw. abfallende Flanke befindet sich ebenfalls noch garantiert im stabilen Bereich und kann z. B. als "Latch"-Signal verwendet werden.

Die LOW-Phase (bzw. HIGH-Phase) des Signals ist mindestens 1/3 der eingestellten "Parallel Update Time (s)". Die dargestellte Skizze zeigt den Signalverlauf des "Datastable"-Ausganges bei der Einstellung "Active Low". Bei der Einstellung "Active High" wird der Signalverlauf entsprechend invertiert.

Zone 1: Parallel-Datenausgänge können Zustand wechseln Zone 2: Parallel-Datenausgänge sind stabil

3.8 Serielle Schnittstelle (X4)

An Klemme X4 steht eine serielle USB Schnittstelle (Mini-USB) zur Verfügung.

Die USB Schnittstelle kann wie folgt verwendet werden:

- Zur Parametrierung des Gerätes bei der Inbetriebnahme
- Zum Ändern von Parametern während des Betriebes
- Zum Auslesen von Istwerten über PC

Hinweis

Die serielle USB Kommunikation erfolgt mit einer Baudrate von 115200 Baud und einem seriellen Datenformat von 8none1.

Diese Werte können nicht durch den Benutzer verändert werden!

4. Bediensoftware OS6.0

Die Parametrierung des Geräts erfolgt über die serielle Schnittstelle mit Hilfe eines PCs und der Bedienersoftware OS6.0.

Die kostenlose Bediensoftware OS6.0 finden Sie unter Pepperl-Fuchs.de

Dieser Abschnitt zeigt die Übersicht der einzelnen Menüs und deren Parameter.

Menü	Parameter
GENERAL MENU	MODE
GENERALINE	ENCODER PROPERTIES
	ENCODER DIRECTION
	FACTOR
	DIVIDER
	ADDITIVE VALUE
	LINEARIZATION MODE
	BACKUP MEMORY
	FACTORY SETTINGS
MODE FREQUENCY	FREQUENCY MODE
WODETTIEGOLINOT	FREQUENCY BASE
	SAMPLING TIME 1 (S)
	WAIT TIME 1(S)
	` '
	STANDSTILL TIME 1 (S) AVERAGE FILTER 1
	SAMPLING TIME 2 (S)
	WAIT TIME 2(S)
MODE COUNTED	AVERAGE FILTER 2
MODE COUNTER	COUNT MODE
	FACTOR A
	SET VALUE A
	FACTOR B
	SET VALUE B
	ROUND LOOP VALUE
MODE SSI	SSI MODE
	ENCODER RESOLUTION
	DATA FORMAT
	BAUD RATE
	SSI ZERO
	HIGH BIT

Menü	Parameter
	LOW BIT
	SSIOFFSET
	ROUND LOOP VALUE
	SAMPLING TIME (S)
	ERROR BIT
	ERROR POLARITY
MODE START/STOP	INIT MODE
	SAMPLING TIME (ms)
	INIT PULSE TIME (μs)
	VELOCITY (m/s)
	OPERATIONAL MODE
	OFFSET
	CIRCUMFERENCE (mm)
	ROUND LOOP VALUE
	AVERAGE FILTER - POSITION
	STANDSTILL TIME (s)
	AVERAGE FILTER - SPEED
SERIAL MENU	UNIT NUMBER
	SERIAL BAUD RATE
	SERIAL FORMAT
	SERIAL INIT
	SERIAL PROTOCOL
	SERIAL TIMER (s)
	SERIAL VALUE
	MODBUS
PARALLEL MENU	PARALLEL MODE
	PARALLEL INV.
	PARALLEL VALUE
	PARALLEL UPDATE TIME (s)
	SPECIAL PIN FUNCTION
COMMAND MENU	INPUT 1 ACTION
	INPUT 1 CONFIG
	INPUT 2 ACTION
	INPUT 2 CONFIG
	INPUT 3 ACTION (FACTORY SETTINGS)
	INPUT 3 CONFIG (ACTIVE HIGH)
LINEARISATION MENU	P1(X)

Menü	Parameter
	P1(Y)
	P2(X)
	P2(Y9
	P23(X)
	P23(Y)
	P24(X)
	P24(Y)

4.1 General Menu

MODE (Betriebsart)

Dieser Parameter legt fest, welche Messfunktion (Betriebsart/Mode) das Gerät erfüllen soll.

Wert	Bezeichnung	Funktion
0	NOT DEFINED	Betriebsart: Nicht definiert, Aussteuerung und Messergebnisse sind Null
1	FREQUENCY	Betriebsart: Frequenzumformer, Inkrementelle Signale (ersetzt FU252)
2	COUNTER	Betriebsart: Zähler, Inkrementelle Signale (ersetzt ZU252)
3	SSI	Betriebsart: Absolutwertumformer, SSI Signale (ersetzt IV251)
4	START/STOP	Betriebsart: Start-Stopp-Schnittstellenwandler

ENCODER PROPERTIES

Dieser Parameter legt die Charakteristik des Inkrementaleingangs fest.

Wert	Bezeichnung	Funktion
0	RS422	RS422 Standard
1	HTL DIFFERENTIAL	HTL Differenziell
2	HTL PNP	PNP (gegen + schaltend)
3	HTL NPN	NPN (gegen – schaltend)
4	TTL PNP	TTL PNP (gegen + schaltend)

ENCODER DIRECTION

Mit diesem Parameter wird die Zähl- bzw. Verfahrrichtung umgekehrt.

Wert	Bezeichnung	Funktion
0	FORWARD	Vorwärts
1	REVERSE	Rückwärts

FACTOR (Multiplikationsfaktor)

Dieser Parameter definiert den Faktor, mit welchem das Messergebnis multipliziert wird.

Wert	Funktion
-99999999	Kleinster Wert
1	Default Wert
9999999	Größter Wert

DIVIDER (Teilungsfaktor)

Dieser Parameter definiert den Divisor, mit welchem das Messergebnis dividiert wird.

Wert	Funktion
-99999999	Kleinster Wert
1	Default Wert
99999999	Größter Wert

ADDITIVE VALUE (additive Konstante)

Dieser Parameter definiert eine additive Konstante, welche auf das Messergebnis aufaddiert wird.

Wert	Funktion
-99999999	Kleinster Wert
0	Default Wert
99999999	Größter Wert

LINEARIZATION MODE

Dieser Parameter definiert die Linearisierungsfunktion. Hinweise im Anhang beachten!

Wert	Bezeichnung	Funktion
0	OFF	Keine Linearisierung

Wert	Bezeichnung	Funktion
1	1 QUADRANT	Linearisierung im 1. Quadranten
2	4 QUADRANT	Linearisierung in allen 4 Quadranten

BACK UP MEMORY (Nullspannungssicherung)

Wert	Bezeichnung	Funktion
0	NO	Keine Nullspannungssicherung
1	YES	Nullspannungssicherung aktiv. Speichert den Istwert der Zählerstände bei Stromausfall und eingeschaltetem Mode "Counter".

FACTORY SETTINGS (Werkseinstellungen)

Wert	Bezeichnung	Funktion
0	NO	Die Werkseinstellungen werden nicht geladen
1	YES	Die Werkseinstellungen werden geladen

4.2 Mode Frequency

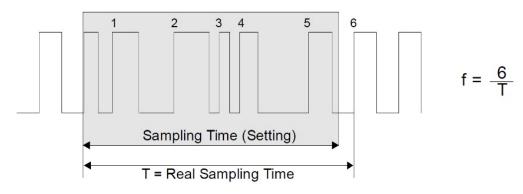
In diesem Menu wird der Betrieb als Frequenzumformer (inkrementelle Signale) definiert. Je nach eingestellter Betriebsart ist nur Kanal A oder beide Kanäle (Kanal A <u>und</u> Kanal B) aktiv.

FREQUENCY MODE

Dieser Parameter legt fest, welche Betriebsart der Frequenzmessung gewünscht wird.

Wert	Bezeichnung	Funktion
0	A ONLY	Einkanalige Frequenzmessung (nur für Kanal A).
1	RATIO	Frequenzverhältnis beider Kanäle (Kanal B / Kanal A).
		Hinweis: Interpretation des Ergebnisses mit 4 Nachkommastellen im Format +/- x.xxxx
2	PERCENT	Prozentuale Abweichung von Kanal B zu Kanal A.
		Hinweis: Interpretation des Ergebnisses mit 2 Nachkommastellen im Format +/- xxx.xx %
3	A + B	Frequenzaddition beider Kanäle (Kanal A + Kanal B)
4	A - B	Frequenzsubtraktion beider Kanäle (Kanal A - Kanal B)
5	A/B x 90°	Frequenzmessung mit A/B x 90° Signal.

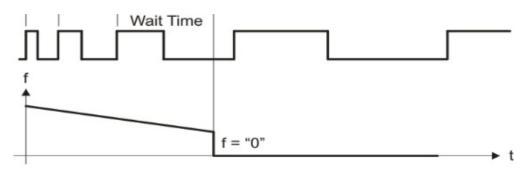
Wert	Bezeichnung	Funktion
		(Vorwärts- / Rückwärts –
		Drehrichtungserkennung)


FREQUENCY BASE

Einstellung der gewünschten Basis für die Frequenzmessung (Auflösung).

Wert	Funktion	
0	1 Hz	
	(Interpretation des Ergebnisses im Format: xxxxxxxx Hz)	
1	1/10 Hz	
	(Interpretation des Ergebnisses im Format: xxxxxxxx Hz)	
2	1/100 Hz	
	(Interpretation des Ergebnisses im Format: xxxxxx.xx Hz)	
3	1/1000 Hz	
	(Interpretation des Ergebnisses im Format: xxxxx.xxx Hz)	

SAMPLING TIME 1 (S)


Der eingestellte Wert entspricht der minimalen Messzeit (für Kanal A) in Sekunden. Die Sampling Time dient als Filter bei unregelmäßigen Frequenzen. Dieser Parameter beeinflusst direkt die Reaktionszeit des Geräts.

Wert	Funktion	
0,001	Minimale Messzeit in Sekunden	
0,1	Default Wert	
9,999	Maximale Messzeit in Sekunden	

WAIT TIME 1 (S)

Der eingestellte Wert entspricht der Nullstellzeit. Dieser Parameter definiert die Periodendauer der niedrigsten Frequenz, bzw. die Wartezeit zwischen zwei ansteigenden Flanken an Kanal A, bei der das Gerät die Frequenz 0 Hz detektiert. Frequenzen deren Periodendauer größer ist als die eingestellte WAIT TIME 1 werden als Frequenz = 0 Hz ausgewertet.

Wert	Funktion
0,01	Frequenz = 0 Hz bei Frequenzen kleiner 100 Hz
1,00	Default Wert
79,99	Frequenz = 0 Hz bei Frequenzen kleiner ~0,01 Hz

STANDSTILL TIME 1 (S)

Dieser Parameter definiert die Zeit zur Stillstands-Definition. Bei Feststellung der Frequenz = 0 Hz an Kanal A wird nach xx,xx Sekunden Stillstand signalisiert und die Anlaufüberbrückung wieder aktiviert. Eine Stillstandüberwachung kann im PRESELCTION MENU eingestellt werden.

Wert	Funktion
0,01	Kürzeste Verzögerungszeit in Sekunden
99,99	Längste Verzögerungszeit in Sekunden

AVERAGE FILTER 1 (Mittelwertbildung)

Zuschaltbare Mittelwertbildung oder Filterfunktion bei instabilen Frequenzen an Eingang A zur Glättung des Analogsignals. Bei Filtereinstellung 5 ... 16 benutzt das Gerät eine Exponentialfunktion. Die Zeitkonstante T (63 %) entspricht der Anzahl der Sampling-Zyklen.

Beispiel: SAMPLING TIME = 0.1 s und AVERAGE FILTER = Exponentialfilter, T (63 %) = 2 x Sampling Time.

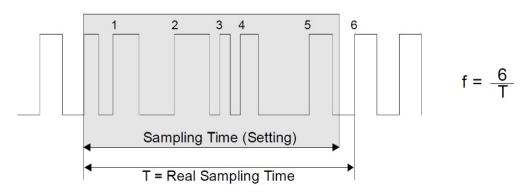
D.h. nach 0,2 s werden 63% der Sprunghöhe erreicht.

Wert	Funktion
0	Keine Mittelwertbildung
	(schnelle Reaktion auf jede Änderung)
1	Fließende Mittelwertbildung mit 2 Zyklen
2	Fließende Mittelwertbildung mit 4 Zyklen
3	Fließende Mittelwertbildung mit 8 Zyklen
4	Fließende Mittelwertbildung mit 16 Zyklen
5	Exponentialfilter, T (63 %) = 2x SAMPLING TIME
6	Exponentialfilter, T (63 %) = 4x SAMPLING TIME
7	Exponentialfilter, T (63 %) = 8x SAMPLING TIME
8	Exponentialfilter, T (63 %) = 16x SAMPLING TIME
9	Exponentialfilter, T (63 %) = 32x SAMPLING TIME
10	Exponentialfilter, T (63 %) = 64x SAMPLING TIME
11	Exponentialfilter, T (63 %) = 128x SAMPLING TIME
12	Exponentialfilter, T (63 %) = 256x SAMPLING TIME
13	Exponentialfilter, T (63 %) = 512x SAMPLING TIME
14	Exponentialfilter, T (63 %) = 1024x SAMPLING TIME
15	Exponentialfilter, T (63 %) = 2048x SAMPLING TIME
16	Exponentialfilter, T (63 %) = 4096x SAMPLING TIME
	(sehr langsame Reaktion)

VORSICHT!

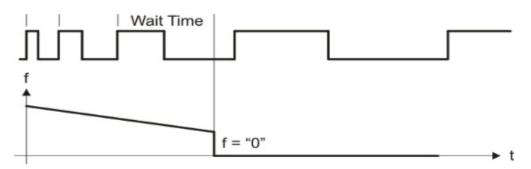
Maximal zulässige Frequenz

Bei Verwendung des Exponentialfilters dürfen die maximal zulässigen Frequenzen am Eingang aufgrund eines sonst folgenden Datentypüberlaufs nicht überschritten werden!


Wird die Frequenz trotzdem überschritten, wird für die weitere Berechnung die Frequenz durch den maximal zulässigen Wert bei entsprechender Einstellung ersetzt und ein Fehler ausgegeben. Die LED blinkt. Die maximal zulässigen Frequenzen sind für die zugehörigen Einstellungen nachfolgend aufgelistet.

		FREQUENCY BASE			
		[0] – 1 Hz	[1] – 1/10 Hz	[2] – 1/100 Hz	[3] – 1/1000 Hz
	[5] - 2x	1.073.741.823 Hz	107.374.182,3 Hz	10.737.418,23 Hz	1.073.741,823 Hz
	[6] - 4x	536.870.911 Hz	53.687.091,1 Hz	5.368.709,11 Hz	536.870,911 Hz
	[7] - 8x	268.435.455 Hz	26.843.545,5 Hz	2.684.354,55 Hz	268.435,455 Hz
1+2	[8] - 16x	134.217.727 Hz	13.421.772,7 Hz	1.342.177,27 Hz	134.217,727 Hz
Ä	[9] - 32x	67.108.863 Hz	6.710.886,3 Hz	671.088,63 Hz	67.108,863 Hz
FILTER	[10] - 64x	33.554.431 Hz	3.355.443,1 Hz	335.544,31 Hz	33.554,431 Hz
	[11] - 128x	16.777.215 Hz	1.677.721,5 Hz	167.772,15 Hz	16.777,215 Hz
AVERAGE	[12] - 256x	8.388.607 Hz	838.860,7 Hz	83.886,07 Hz	8.388,607 Hz
AVE	[13] - 512x	4.194.303 Hz	419.430,3 Hz	41.943,03 Hz	4.194,303 Hz
	[14] - 1024x	2.097.151 Hz	209.715,1 Hz	20.971,51 Hz	2.097,151 Hz
	[15] - 2048x	1.048.575 Hz	104.857,5 Hz	10.485,75 Hz	1.048,575 Hz
	[16] - 4096x	524.287 Hz	52.428,7 Hz	5.242,87 Hz	524,287 Hz

SAMPLING TIME 2 (S)


Der eingestellte Wert entspricht der minimalen Messzeit (für Kanal B) in Sekunden. Die Sampling Time dient als Filter bei unregelmäßigen Frequenzen. Dieser Parameter beeinflusst direkt die Reaktionszeit des Geräts.

Wert	Funktion
0,001	Minimale Messzeit in Sekunden
0,1	Default Wert
9,999	Maximale Messzeit in Sekunden

WAIT TIME 2 (S)

Der eingestellte Wert entspricht der Nullstellzeit. Dieser Parameter definiert die Periodendauer der niedrigsten Frequenz, bzw. die Wartezeit zwischen zwei ansteigenden Flanken an Kanal B, bei der das Gerät die Frequenz 0 Hz detektiert. Frequenzen deren Periodendauer größer ist als die eingestellte WAIT TIME 2 werden als Frequenz = 0 Hz ausgewertet.

Wert	Funktion
0,01	Frequenz = 0 Hz bei Frequenzen kleiner 100 Hz
1,00	Default Wert
79,99	Frequenz = 0 Hz bei Frequenzen kleiner ~0,01 Hz

AVERAGE FILTER 2 (Mittelwertbildung)

Zuschaltbare Mittelwertbildung oder Filterfunktion bei instabilen Frequenzen an Eingang B zur Glättung des Analogsignals. Bei Filtereinstellung 5 ... 16 benutzt das Gerät eine Exponentialfunktion. Die Zeitkonstante T (63 %) entspricht der Anzahl der Sampling-Zyklen.

z.B. SAMPLING TIME = 0,1 s und AVERAGE FILTER = Exponentialfilter, T (63 %) = 2 x Sampling Time.

D.h. nach 0,2 s werden 63% der Sprunghöhe erreicht.

Wert	Funktion	
0	Keine Mittelwertbildung	
	(schnelle Reaktion auf jede Änderung)	
1	Fließende Mittelwertbildung mit 2 Zyklen	
2	Fließende Mittelwertbildung mit 4 Zyklen	
3	Fließende Mittelwertbildung mit 8 Zyklen	
4	Fließende Mittelwertbildung mit 16 Zyklen	
5	Exponentialfilter, T (63 %) = 2x SAMPLING TIME	
6	Exponentialfilter, T (63 %) = 4x SAMPLING TIME	
7	Exponentialfilter, T (63 %) = 8x SAMPLING TIME	
8	Exponentialfilter, T (63 %) = 16x SAMPLING TIME	
9	Exponentialfilter, T (63 %) = 32x SAMPLING TIME	

Wert	Funktion
10	Exponentialfilter, T (63 %) = 64x SAMPLING TIME
11	Exponentialfilter, T (63 %) = 128x SAMPLING TIME
12	Exponentialfilter, T (63 %) = 256x SAMPLING TIME
13	Exponentialfilter, T (63 %) = 512x SAMPLING TIME
14	Exponentialfilter, T (63 %) = 1024x SAMPLING TIME
15	Exponentialfilter, T (63 %) = 2048x SAMPLING TIME
16	Exponentialfilter, T (63 %) = 4096x SAMPLING TIME (sehr langsame Reaktion)

VORSICHT!

Maximal zulässige Frequenz

Bei Verwendung des Exponentialfilters dürfen die maximal zulässigen Frequenzen am Eingang aufgrund eines sonst folgenden Datentypüberlaufs nicht überschritten werden!

Wird die Frequenz trotzdem überschritten, wird für die weitere Berechnung die Frequenz durch den maximal zulässigen Wert bei entsprechender Einstellung ersetzt und ein Fehler ausgegeben. Die LED blinkt. Die maximal zulässigen Frequenzen wurden bereits im Parameter AVERAGE FILTER 1 aufgelistet und können dort entnommen werden.

4.3 Mode Counter

In diesem Menu wird der Betrieb als Positionsumformer für inkrementelle Signale (Impuls-, Summen-, Differenz-, Vor- oder Rückwärtszähler) definiert. Input A und B sind aktiv.

COUNT MODE

Auswahl der Zählerkonfiguration

Wert	Bezeichnung	Funktion
0	A SINGLE	Eingang A ist der Zähleingang.
		Eingang B bestimmt die Zählrichtung:
		"LOW" = vorwärts / "HIGH" = rückwärts
1	A + B	Summe: zählt Impulse A + Impulse B
2	A - B	Differenz: zählt Impulse A – Impulse B
3	A/B 90 x1	Vor/Rückwärtszähler für Impulse mit 2x90° Versatz
		(einfache Flankenauswertung x1)
4	A/B 90 x2	Vor/Rückwärtszähler für Impulse mit 2x90° Versatz

Wert	Bezeichnung	Funktion
		(doppelte Flankenauswertung x2)
5	A/B 90 x4	Vor/Rückwärtszähler für Impulse mit 2x90° Versatz
		(vierfache Flankenauswertung x4)

FACTOR A

Impulsbewertungsfaktor für Input A.

Beispiel: Bei einer Einstellung von 1,23456 zeigt das Gerät nach 100000 Eingangsimpulsen den Wert 123456 an..

Wert	Funktion
0,00001	Kleinster Wert
1	Default Wert
99,99999	Größter Wert

SET VALUE A

Bei einem "RESET/SET COUNTER A" Befehl (über Control-Eingang), wird der Zähler von Input A auf den hier eingestellten Wert gesetzt.

Wert	Funktion
-9999999	Kleinster Wert
0	Default Wert
+99999999	Größter Wert

FACTOR B

Impulsbewertungsfaktor für Input B.

Beispiel: Bei einer Einstellung von 1,23456 zeigt das Gerät nach 100000 Eingangsimpulsen den Wert 123456 an..

Wert	Funktion
0,00001	Kleinster Wert
1	Default Wert
99,99999	Größter Wert

SET VALUE B

Bei einem "RESET/SET COUNTER B" Befehl (über Control-Eingang), wird der Zähler von Input B auf den hier eingestellten Wert gesetzt.

Wert	Funktion
-99999999	Kleinster Wert

Wert	Funktion
0	Default Wert
+99999999	Größter Wert

ROUND LOOP VALUE

Definiert die Anzahl der Geberschritte, wenn eine Rundlauf-Funktion gewünscht wird. (Nur für COUNT MODE: A SINGLE und A/B x 90)

Wert	Funktion
0	kein Rundlauf
9999999	Schrittzahl für die Rundlauf-Funktion

4.4 Mode SSI

In diesem Menu wird der Betrieb als Absolutwert-Umformer (SSI Signale) definiert.

SSI MODE

SSI Einstellung der Betriebsart: führend oder geführt Abhängig vom SSI MODE sind unterschiedliche Klemmen für den SSI CLK zu verwenden:

Führender Betrieb: Klemme X2 – Pin 1 u. 2 Geführter Betrieb: Klemme X2 – Pin 5 u. 6)

Wert	Bezeichnung	Funktion
0	PRIMARY	Führender Betrieb: Takt für SSI-Drehgeber wird vom Gerät erzeugt.
1	SECONDARY	Geführter Betrieb: Takt für SSI-Drehgeber kommt vom externer Steuerung.

ENCODER RESOLUTION

Auflösung des SSI-Drehgebers (Gesamtzahl aller Bits)

Wert	Funktion
10	Kleinster Wert
25	Default Wert
32	Größter Wert

DATA FORMAT

Einstellung des SSI-Codes (Binär oder Gray)

Wert	Bezeichnung	Funktion
0	GRAY CODE	SSI-Code Gray
1	BINARY CODE	SSI-Code Binär

BAUD RATE

Taktfrequenz der SSI-Telegramme

Wert	Bezeichnung	Funktion
0	2 MHZ	N.A.
1	1.5 MHZ	N.A.
2	1 MHZ	Taktfrequenz 1 MHz
3	500 KHZ	Taktfrequenz 500 kHz
4	250 KHZ	Taktfrequenz 250 kHz
5	100 KHZ	Taktfrequenz 100 kHz

SSI ZERO

Bei einem "ZERO POSITION" Befehl (über Control-Eingang) wird die aktuelle SSI-Position des Drehgebers in den Parameter "SSI ZERO" übernommen und der eigentliche Drehgeber-Nullpunkt entsprechend verschoben. (Drehgeber-Nullpunktverschiebung)

Wert	Funktion
0	Kleinster Wert
99999999	Größter Wert

HIGH BIT (für Bit-Ausblendung)

Definiert das höchste, auszuwertende Bit (MSB) der Bit Ausblendung.

Sollen alle Bits ausgewertet werden, muss HIGH BIT auf die vorgegebene Gesamtbitzahl eingestellt sein.

Wert	Funktion
01	Kleinster Wert
25	Default Wert
32	Größter Wert

LOW BIT (für Bit-Ausblendung)

Definiert das niedrigste, auszuwertende Bit (LSB) der Bit-Ausblendung.

Sollen alle Bits ausgewertet werden, muss LOW BIT auf "01" eingestellt sein.

Wert	Funktion
01	Kleinster Wert
32	Größter Wert

SSI OFFSET

Bei einem "RESET/SET VALUE" Befehl (über Control-Eingang oder PC-Bedieneroberfläche) wird der noch nicht skalierte, aktuell erfasste Positionswert (nach Bitausblendung und eventuell vorgenommener Drehgeber-

Nullpunktverschiebung) in den Parameter "SSI OFFSET" übernommen und das Messergebnis nullgesetzt. Vom neuen Nullpunkt aus kann nun in positive sowie in negative Richtung verfahren werden, je nach Drehrichtung.

(Anzeigenullpunktverschiebung)

Wert	Funktion
0	Kleinster Wert
99999999	Größter Wert

ROUND LOOP VALUE

Definiert die Anzahl der Drehgeberschritte, wenn eine Rundlauf-Funktion gewünscht wird.

Wert	Funktion
0	kein Rundlauf
9999999	Schrittzahl für die Rundlauf-Funktion

SAMPLING TIME (S)

Bestimmt den Einlese-Zyklus für das SSI Signal im führenden Betrieb

Wert	Funktion
0.001	Minimale Messzeit in Sekunden
0.010	Default Wert
9.999	Maximale Messzeit in Sekunden

ERROR BIT

Definiert die Drehgeberüberwachung und das Error-Bit

Wert	Funktion
0	Kein Error-Bit vorhanden.
	Überprüfung auf angeschlossenen Drehgeber ist ausgeschalten.
32	Position des auszuwertenden Error-Bits.
	Überprüfung auf angeschlossenen Drehgeber ist eingeschaltet.

ERROR POLARITY

Definiert die Polarität des Error Bits im Fehlerfall

Wert	Funktion	
0	Bit ist Low im Fehlerfall	
1 Bit ist High im Fehlerfall		

Hinweis

SSI-Werte

Zur Verarbeitung von SSI-Werten siehe Linearisierung und SSI-Wert einlesen im Anhang

4.5 Mode Start/Stop

In diesem Menü wird der Betrieb als Start-Stopp-Schnittstellenumformer definiert.

INIT MODE

Führender oder geführter Betrieb

Abhängig vom gewählten INIT MODE sind unterschiedliche Klemmen für den Init-Impuls zu verwenden!

Führender Betrieb: Klemme X2 – Pin 1 u. 2 Geführter Betrieb: Klemme X2 – Pin 5 u. 6

Wert	Bezeichnung	Funktion
0	PRIMARY	Führender Betrieb: Init-Impuls wird vom Gerät
		erzeugt
1	SECONDARY	Geführter Betrieb: Init-Impuls wird extern erzeugt

SAMPLING TIME (ms)

Periodendauer zwischen zwei Init-Impulsen in Millisekunden. Entspricht der Zeit, nach der eine neue Messung gestartet wird und beeinflusst direkt die Reaktionszeit des Geräts.

Wert	Funktion	
00.200	Minimale Messzeit	
04.000	Default-Wert	
16.000	Maximale Messzeit	

INIT PULSE TIME (μs)

Dieser Parameter definiert die Pulsbreite des Init-Impulses in Mikrosekunden.

Wert	Funktion	
1	Kleinster Wert	
2	Default-Wert	
9	Größter Wert	

VELOCITY (m/s)

Wellenleitergeschwindigkeit des verwendeten Drehgebers in m/s.

Wert	Funktion	
0001.00	Kleinster Wert	
2800.00	Default-Wert	
9999.99	Größter Wert	

OPERATIONAL MODE

Dieser Parameter legt fest, welche Messart das Gerät ausführen soll.

Wert	Bezeichnung	Funktion
0	POSITION	Streckenmessung
1	ANGLE	Winkelmessung
2	SPEED	Geschwindigkeitsmessung

Hinweis

Nähere Informationen bezüglich der unterschiedlichen "OPERATIONAL MODES" und Interpretation der jeweiligen Messergebnisse siehe Kapitel 6.7)

OFFSET

Bei einem "Reset/Set Value"-Befehl über den Control-Eingang oder die PC-Bedieneroberfläche wird die aktuelle Position des Drehgebers nichtflüchtig in den Parameter "OFFSET" übernommen. (=Nullpunktverschiebung)

Wert	Funktion
-99999999	Kleinster Wert
0	Default-Wert
9999999	Größter Wert

CIRCUMFERENCE (mm)

Einstellung der Bezugsgröße in mm für eine Winkelmessung.

Einzustellen ist hier die zurückgelegte Strecke, z.B. den Umfang, bei welcher der nachfolgende Ausgabewert ROUND LOOP VALUE erzeugt werden soll.

Hinweis

Nur für OPERATIONAL MODE: "ANGLE"

Wert	Funktion	
00000.001	leinster Wert	
01000.000	Default-Wert	
99999.999	Größter Wert	

ROUND LOOP VALUE

Einstellung des gewünschten Messwertes, der bei Erreichen von vorangegangener Bezugsgröße CIRCUMFERENCE erzeugt werden soll.

Hinweis

Nur für OPERATIONAL MODE: "ANGLE"

Wert	Funktion
1	Kleinster Wert
360	Default-Wert
9999999	Größter Wert

AVERAGE FILTER – POSITION (Filter für Mittelwertbildung)

Zuschaltbare Mittelwertbildung zur Vermeidung von Positionsschwankungen.

Wert	Funktion	
0	Keine Mittelwertbildung	
1	Fließende Mittelwertbildung mit 2 Zyklen	
2	Fließende Mittelwertbildung mit 4 Zyklen	
3	Fließende Mittelwertbildung mit 8 Zyklen	
4	Fließende Mittelwertbildung mit 16 Zyklen	

STANDSTILL TIME(s)

Wert	Funktion
0,01	Kürzeste Verzögerungszeit in Sekunden
99,99	Längste Verzögerungszeit in Sekunden

Dieser Parameter definiert die Zeit zur Stillstandsdefinition. Bei der Feststellung von Stillstand wird nach xx,xx Sekunden Stillstand signalisiert.

AVERAGE FILTER – SPEED (Filter für Mittelwertbildung)

Zuschaltbare Mittelwertbildung zur Vermeidung von Geschwindigkeitsschwankungen.

Wert	Funktion	
0	Keine Mittelwertbildung	
1	Fließende Mittelwertbildung mit 2 Zyklen	
2	Fließende Mittelwertbildung mit 4 Zyklen	
3	Fließende Mittelwertbildung mit 8 Zyklen	
4	Fließende Mittelwertbildung mit 16 Zyklen	

4.6 Serial Menu

In diesem Menü werden die Grundeinstellungen für die serielle Schnittstelle definiert.

UNIT NUMBER

Mit diesem Parameter können serielle Geräteadressen eingestellt werden. Den Geräten können Adressen zwischen 11 und 99 zugeordnet werden. Adressen

die eine "0" enthalten sind nicht erlaubt, da diese als Gruppen-bzw. Sammeladressen verwendet werden.

Wert	Funktion
11	Kleinste Adresse ohne Null
99	Größte Adresse ohne Null

SERIAL BAUD RATE

Mit diesem Parameter wird die serielle Baudrate eingestellt. Die Baudrate ist bei der USB-Schnittstelle fest auf "115200" eingestellt und kann nicht verstellt werden.

Wert	Bezeichnung	Funktion
0	9600	-
1	19200	-
2	38400	-
3	115200	115200 Baud

SERIAL FORMAT

Mit diesem Parameter wird das Bit-Datenformat eingestellt.

Wert	Bezeichnung	Funktion
0	7-EVEN-1	7 Daten Parity even 1 Stopp
1	7-EVEN-2	7 Daten Parity even 2 Stopps
2	7-ODD-1	7 Daten Parity odd 1 Stopp
3	7-ODD-2	7 Daten Parity odd 2 Stopps
4	7-NONE-1	7 Daten kein Parity 1 Stopp
5	7-NONE-2	7 Daten kein Parity 2 Stopps
6	8-EVEN-1	8 Daten Parity even 1 Stopp
7	8-ODD-1	8 Daten Parity odd 1 Stopp
8	8-NONE-1	8 Daten kein Parity 1 Stopp
9	8-NONE-2	8 Daten kein Parity 2 Stopps

SERIAL INIT

Der Parameter bestimmt, mit welcher Baudrate die Initialisierungswerte an die PC-Bedienoberfläche übertragen werden. Mit Einstellungen größer 9600 Baud kann so die Dauer der Initialisierung verkürzt werden.

Wert	Bezeichnung	Funktion
0	NO	Die Initialisierungswerte werden mit 9600 Baud übertragen. Danach arbeitet das Gerät wieder mit dem vom Benutzer eingestellten Wert
1	YES	Die Initialisierungswerte werden mit der vom Benutzer eingestellten Baudrate im Parameter SERIAL BAUD RATE übertragen. Danach arbeitet das Gerät weiterhin mit dem vom Benutzer eingestellten Wert

SERIAL PROTOCOL

Legt die Zeichenfolge für Befehls- oder Zeitgesteuerte Übertragungen fest (xxxxxxx = Wert SERIAL VALUE).

Bei Vorgabe 1 entfällt die Unit Nr. und die Übertragung beginnt direkt mit dem Messwert, was einen schnelleren Übertragungszyklus ermöglicht.

Wert	Funktion											
0	Sendeprotokoll = Unit Nr., +/-, Daten, LF, CR											
	1	1	+/-	X	X	Χ	Χ	Χ	Х	Χ	LF	CR
1	Send	depr	otoko	ll = +	/-, Da	aten,	LF, C	CR				
			+/-	Χ	Χ	Χ	Χ	Χ	Χ	Χ	LF	CR

SERIAL TIMER (S)

Einstellbarer Zeitzyklus in Sekunden zur automatischen (zyklischen) Übertragung des SERIAL VALUE über die serielle Schnittstelle.

Bei einer Anfrage per Anfrageprotokoll, wird die zyklische Übertragung für 20 Sekunden unterbrochen.

Wert	Funktion
0,000	Die zyklische Übertragung ist ausgeschaltet und das Gerät sendet nur auf Befehl SERIAL PRINT über einen Control- Eingang oder Anfrage per Anfrageprotokoll
60,000	Zeitzyklus in Sekunden.

SERIAL VALUE

Der Parameter bestimmt, welcher Wert übertragen wird.

Wert	Code	Funktion
0	:0	Measurement_Result (Ergebnis nach Verknüpfung,
		Skalierung, Filter, etc.)
1	:1	Analog_Out_Voltage
		(Analogausgangsaussteuerung (in mV))
2	:2	Frequency 1 (gemessene Frequenz - Kanal A)
3	:3	Frequency 2 (gemessene Frequenz - Kanal B)
4	:4	Counter (Gesamtzählerstand nach Verknüpfung ohne Skalierung, Filter, etc.)
5	:5	Counter_A (Zählerstand - Kanal A)
6	:6	Counter_B (Zählerstand - Kanal B)
7	:7	SSI_Data (eingelesener + evtl. gewandelter binärer SSI Wert)
8	:8	SSI_Calc_Result (SSI Wert inkl. SSI Zero und SSI Offset ohne Skalierung, Filter, etc.)
9	:9	Minimum_Value (Minimaler Wert von Measurement_Result)
10	;0	Maximum_Value (Maximaler Wert von
		Measurement_Result)
11	;1	Reserve
12	;2	Reserve
13	;3	Error Status (Auslesen des Fehlercodes)
14	;4	SSI Read Value (eingelesener, unkonventierter SSI Wert)
15	;5	SSI Loop Value (SSI Wert nach Round Loop Verechnung)
16	;6	Actual Speed (Start Stop: Geschwindigkeit)
17	;7	Actual Position (Start Stop: Position [in μm] mit Offset ohne Skalierung)
18	;8	Actual Angle (Start Stop: z.B. Winkel mit Offset ohne Skalierung)
19	;9	Raw Position (Start Stop: Position [in µm] ohne Offset u. ohne Skalierung)

MODBUS

Wert	Funktion
0	Serielle Schnittstelle verwendet das Lecom-Protokoll
1 247	-

Note

Das Modbus-Protokoll ist über die USB-Schnittstelle nicht anwählbar:

4.7 Parallel Menu

In diesem Menü werden die Grundeinstellungen für den Parallel Ausgang definiert. Der Parallelausgang bezieht sich immer auf das skalierte Messergebnis "Measurement Result"!

PARALLEL MODE

Bestimmt das Ausgabeformat des Parallelausgangs sowie die Quelle der Eingangsdaten wie folgt:

Wert	Code	Funktion
0	BINÄR	Paralleles Ausgangsformat als Binär - Code.
		Datenquelle: Messergebnis in "Measurement Result".
1	GRAY	Paralleles Ausgangsformat als Gray - Code.
		Datenquelle: Messergebnis in "Measurement Result".
2	BCD	Paralleles Ausgangsformat als BCD - Code.
		Datenquelle: Messergebnis in "Measurement Result".
3	BINÄR	Paralleles Ausgangsformat als Binär – Code.
		Datenquelle: Wert in "PARALLEL VALUE".
4	GRAY	Paralleles Ausgangsformat als Gray - Code.
		Datenquelle: Wert in "PARALLEL VALUE".
5	BCD	Paralleles Ausgangsformat als BCD - Code.
		Datenquelle: Wert in "PARALLEL VALUE".

PARALLEL INV.

Invertierung der Daten am Parallelausgang.

Wert	Code	Funktion
0	NORMAL	Daten am Parallelausgang werden normal ausgegeben.
		Logisch 1 entspricht HIGH am Parallel-Ausgang
		Logisch 0 entspricht LOW am Parallel-Ausgang
1	INVERTED	Daten am Parallelausgang werden invertiert ausgegeben.
		Logisch 1 entspricht LOW am Parallel-Ausgang
		Logisch 0 entspricht HIGH am Parallel-Ausgang

PARALLEL VALUE

Der unter diesem Parameter hinterlegte Wert erscheint direkt am Parallelausgang, wenn zuvor der Parameter "Parallel Mode" auf Werte größer 2 eingestellt wurde. Der Parameter hat den seriellen Zugriffscode "B1" und kann über die serielle Schnittstelle beschrieben werden.

(Diese Funktion kann zum Testen der Ausgänge und der Verdrahtung nützlich sein!)

Wert	Funktion
-16777216	Kleinster Startwert
0	Default Wert
+16777215	Größter Startwert

PARALLEL UPDATE TIME (s)

Bestimmt die Auffrischungszeit des Parallelausgangs.

Wert	Funktion
0.001	Minimale Updatezeit in Sekunden
0.010	Default Wert
9.999	Maximale Updatezeit in Sekunden

SPECIAL PIN FUNCTION

Bestimmt die Funktion des 24. und 25. Parallelausgangs. (Pin 24 + Pin 25)

Wert	Code	Funktion
0	DATA & DATA	Pin 25 : Datenausgang (Bit 25)
		Pin 24: Datenausgang (Bit 24)

Wert	Code	Funktion
1	ERROR & DATA	Pin 25 : Errorausgang (Active High)
		Pin 24: Datenausgang (Bit 24)
2	/ERROR &	Pin 25 : Errorausgang (Active Low)
	DATA	Pin 24: Datenausgang (Bit 24)
3	ERROR &	Pin 25 : Errorausgang (Active High)
	/ERROR	Pin 24: Errorausgang (Active Low)
4	DATASTABLE &	Pin 25 : Datastableausgang (Active High)
	DATA	Pin 24: Datenausgang (Bit 24)
5	/DATASTABLE	Pin 25 : Datastableausgang (Active Low)
	& DATA	Pin 24: Datenausgang (Bit 24)
6	DATASTABLE &	Pin 25 : Datastableausgang (Active High)
	ERROR	Pin 24: Errorausgang (Active High)
7	DATASTABLE &	Pin 25 : Datastableausgang (Active High)
	/ERROR	Pin 24: Errorausgang (Active Low)
8	/DATASTABLE	Pin 25 : Datastableausgang (Active Low) Pin 24:
	& ERROR	Errorausgang (Active High)
9	/DATASTABLE	Pin 25 : Datastableausgang (Active Low) Pin 24:
	&/ERROR	Errorausgang (Active Low)
10	DATASTABLE &	Pin 25 : Datastableausgang (Active High)
	/DATASTABLE	Pin 24: Datastableausgang (Active Low)

4.8 Command Menu

INPUT 1 ACTION_(Funktion Eingang 1)

Dieser Parameter legt die Steuerfunktion des Eingangs "Ctrl. In 1" fest.

- (s) = stat. Schaltverhalten (Pegelausw.) \rightarrow INPUT CONFIG muss auf ACTIVE LOW/HIGH gesetzt sein.
- (d) = dyn. Schaltverhalten (Flankenausw.) \rightarrow INPUT CONFIG muss auf RISING/FALLING EDGE gesetzt sein.

Wert	Bezeichnung	Funktion	
0	NO	Keine Funktion.	
1	RESET/SET	Mode "SSI": Übernahme des aktuell	(d)
	VALUE	erfassten Positionswertes (nach Bitaus-	(s)
		blendung und eventuell vorgenommener	
		Gebernullpunktverschiebung) in den Para-	
		meter "SSI-Offset" (Anzeigenullpunktver-	
		schiebung).	

Wert	Bezeichnung	Funktion	
		Mode "Counter": Rücksetzen / Setzen beider Zählerwerte (Kanal A u. B) auf die eingestellten Werte in SET VALUE A u. B.	
		Mode "Start/Stop": Netzausfallsicher gespeicherte Übernahme der aktuellen Positions- bzw. Winkelmessung in den Parameter "Offset".	
2	FREEZE	Einfrieren des aktuellen Messergebnisses / des Parallelausgangs.	(s)
3	SSI ZERO POSITION	Mode "SSI": Übernahme der aktuellen SSI-Position in den Parameter "SSI-Zero" (Gebernullpunktverschiebung).	(d) (s)
4	RESET/SET COUNTER A	Mode "Counter": Rücksetzen / Setzen des Zählerwertes von Kanal A auf den eingestellten Wert in SET VALUE A.	(d) (s)
5	RESET/SET COUNTER B	Mode "Counter": Rücksetzen / Setzen des Zählerwertes von Kanal B auf den eingestellten Wert in SET VALUE B.	(d) (s)
6	LOCK COUNTER A	Mode "Counter": Zähler (Kanal A) ist gesperrt und zählt keine weiteren Impulse, solange dieser Befehl ansteht.	(s)
7	LOCK COUNTER B	Mode "Counter": Zähler (Kanal B) ist gesperrt und zählt keine weiteren Impulse, solange dieser Befehl ansteht.	(s)
8	RESET MIN/MAX	Rücksetzen des Minimum / Maximum Wertes	(d) (s)
9	FACTORY SETTINGS	Gerät wird auf Werkseinstellungen zurückgesetzt.(Impuls muss hierzu mindestens eine Sekunde anliegen!)	(s)

INPUT 1 CONFIG

Dieser Parameter legt das Schaltverhalten für "Ctrl. In 1" fest.

Wert	Bezeichnung	Funktion
0	ACTIVE LOW	Aktivierung bei "LOW" (statisch)
1	ACTIVE HIGH	Aktivierung bei "HIGH" (statisch)
2	RISING EDGE	Aktivierung bei ansteigende Flanke (dynamisch)
3	FALLING EDGE	Aktivierung bei abfallende Flanke (dynamisch)

INPUT 2 ACTION

Dieser Parameter legt die Steuerfunktion des Eingangs Ctrl. In 2 fest

Siehe Funktionszuordnung Parameter INPUT 1 ACTION

INPUT 2 CONFIG

Dieser Parameter legt das Schaltverhalten für "Ctrl. In 2" fest.

Siehe Aktivierungszuordnung Parameter INPUT 1 CONFIG

INPUT 3 ACTION (FACTORY SETTINGS)

Dieser Parameter ist fest auf "Factory Settings" (Gerät auf Werkseinstellungen zurücksetzen) voreingestellt und kann nicht verändert werden.

INPUT 3 CONFIG (ACTIVE HIGH)

Dieser Parameter ist fest auf "Active High" eingestellt und kann nicht verändert werden.

4.9 Linearization Menu

In diesem Menü werden die Linearisierungspunkte definiert. Die Linearisierungsfunktion bezieht sich immer auf das skalierte Messergebnis "Measurement Result".

Beschreibung und Beispiele der Linearisierungsfunktion siehe Anhang.

P1(X) ... P24(X)

X-Koordinate der Linearisierungspunkte.

Das ist der Wert, den das Gerät ohne Linearisierung in Abhängigkeit des Eingangssignals erzeugen würde.

Wert	Funktion
-9999999	Kleinster Wert
0	Default Wert
+9999999	Größter Wert

P1(Y) ... P24(Y)

Y-Koordinate der Linearisierungspunkte.

Das ist der Wert, den das Gerät anstatt der x-Koordinate erzeugen soll.

Beispiel: P2(X) wird durch P2(Y) ersetzt.

Wert	Funktion
-9999999	Kleinster Wert
0	Default Wert
+99999999	Größter Wert

5. Anhang

5.1 Auslesen von Daten über serielle Schnittstelle

Die kostenlose Bedienersoftware OS 6.0 ist verfügbar unter: Pepperl-Fuchs.de

Die im SERIAL MENU definierten Codestellen (SERIAL VALUE) können jederzeit von einem PC oder einer SPS seriell ausgelesen werden. Die Kommunikation mit diesem Gerät basiert auf dem Drivecom-Protokoll entsprechend ISO 1745 oder dem Modbus RTU-Protokoll. Details hierzu sind im Kapitel "Modbus RTU Schnittstelle" in diesem Handbuch zu entnehmen. Siehe Kapitel 5.2.

Der Anfrage-String zum Auslesen von Daten lautet:

EOT	AD1	AD2	C1	C2	ENQ
-----	-----	-----	----	----	-----

EOT = Steuerzeichen (Hex 04)

AD1 = Geräteadresse, High Byte

AD2 = Geräteadresse, Low Byte

C1 = auszulesende Codestelle, High Byte

C2 = auszulesende Codestelle, Low Byte

ENQ = Steuerzeichen (Hex 05)

Soll z. B. von einem Gerät mit der Geräteadresse 11 der aktuelle Anzeigewert ausgelesen werden (Code = 1), dann lautet der detaillierte Anfrage-String wie folgt:

ASCII-Code:	EOT	1	1	:	1	ENQ
Hexadezimal:	04	31	31	ЗА	31	05
Binär:	0000	0011	0011	0011	0011	0000
	0100	0001	0001	1010	0001	0101

Die Antwort des Geräts lautet bei korrekter Anfrage:

	STX	C1	C2	XXXXX	ETX	BCC
--	-----	----	----	-------	-----	-----

STX = Steuerzeichen (Hex 02)

C1 = auszulesende Codestelle, High Byte

C2 = auszulesende Codestelle, Low Byte

xxxxx = auszulesende Daten

ETX = Steuerzeichen (Hex 03)

BCC = Block check character

5.2 Parameterliste / Serielle Codes

#	Menü	Name	Code	Min	Max	Default
0	GENERAL MENU	MODE	00	0	4	0
1	GENERAL MENU	ENCODER PROPERTIES	01	0	4	0
2	GENERAL MENU	ENCODER DIRECTION	02	0	1	0
3	GENERAL MENU	FACTOR	03	-99999999	99999999	1
4	GENERAL MENU	DIVIDER	04	-99999999	99999999	1
5	GENERAL MENU	ADDITIVE VALUE	05	-99999999	99999999	0
6	GENERAL MENU	LINEARIZATION MODE	06	0	2	0
7	GENERAL MENU	BACKUP MEMORY	07	0	1	1
8	GENERAL MENU	FACTORY SETTINGS	08	0	1	0
9	GENERAL MENU	_	09	0	0	0
10	GENERAL MENU	_	10	0	0	0
11	MODE FREQUENCY	FREQUENCY MODE	11	0	5	0
12	MODE FREQUENCY	FREQUENCY BASE	12	0	3	2
13	MODE FREQUENCY	SAMPLING TIME 1 (s)	13	1	9999	100
14	MODE FREQUENCY	WAIT TIME 1 (s)	14	1	7999	100
15	MODE FREQUENCY	STANDSTILL TIME 1 (s)	15	1	9999	1
16	MODE FREQUENCY	AVERAGE FILTER 1	16	0	16	0
17	MODE FREQUENCY	SAMPLING TIME 2 (s)	17	1	9999	100
18	MODE FREQUENCY	WAIT TIME 2 (s)	18	1	7999	100
19	MODE FREQUENCY	AVERAGE FILTER 2	19	0	16	0
20	MODE FREQUENCY	_	20	0	0	0
21	MODE FREQUENCY	_	21	0	0	0
22	MODE COUNTER	COUNT MODE	22	0	5	3

#	Menü	Name	Code	Min	Max	Default
23	MODE COUNTER	FACTOR A	23	1	9999999	100000
24	MODE COUNTER	SET VALUE A	24	-99999999	99999999	0
25	MODE COUNTER	FACTOR B	25	1	9999999	100000
26	MODE COUNTER	SET VALUE B	26	-99999999	99999999	0
27	MODE COUNTER	ROUND LOOP VALUE	27	0	99999999	0
28	MODE COUNTER	_	28	0	0	0
29	MODE COUNTER	_	29	0	0	0
30	MODE SSI	SSIMODE	30	0	1	0
31	MODE SSI	ENCODER RESOLUTION	31	10	32	25
21	MODE SSI	DATA FORMAT	32	0	1	0
33	MODE SSI	BAUD RATE	33	0	5	2
34	MODE SSI	SSI ZERO	34	0	99999999	0
35	MODE SSI	HIGH BIT	35	1	32	25
36	MODE SSI	LOW BIT	36	1	32	1
37	MODE SSI	SSI OFFSET	37	0	99999999	0
38	MODE SSI	ROUND LOOP VALUE	38	0	99999999	0
39	MODE SSI	SAMPLING TIME (s)	39	1	9999	10
40	MODE SSI	ERROR BIT	40	0	32	0
41	MODE SSI	ERROR POLARITY	41	0	1	0
42	MODE SSI	_	42	0	0	0
43	MODE SSI	_	43	0	0	0
44	MODE START/STOP	INIT MODE	44	0	1	0
45	MODE START/STOP	SAMPLING TIME (ms)	45	200	16000	4000
46	MODE START/STOP	INIT PULSE TIME (μs)	46	1	9	2
47	MODE START/STOP	VELOCITY (m/s)	47	100	999999	280000
48	MODE START/STOP	OPERATIONAL MODE	48	0	2	0
49	MODE START/STOP	OFFSET	49	-99999999	99999999	0
50	MODE START/STOP	CIRCUMFERENCE (mm)	50	1	99999999	100000

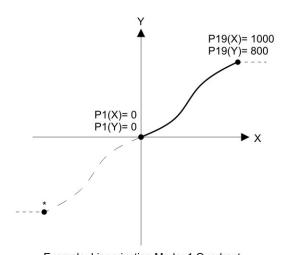
#	Menü	Name	Code	Min	Max	Default
51	MODE START/STOP	ROUND LOOP VALUE	51	1	99999999	360
52	MODE START/STOP	AVERAGE FILTER - POSITION	52	0	4	0
53	MODE START/STOP	STANDSTILL TIME (s)	53	1	9999	1
54	MODE START/STOP	AVERAGE FILTER - SPEED	A0	0	4	0
55	MODE START/STOP	_	A1	0	0	0
56	MODE START/STOP	_	A2	0	0	0
57	SERIAL MENU	UNIT NUMBER	90	11	11	11
58	SERIAL MENU	SERIAL BAUD RATE	91	3	3	3
59	SERIAL MENU	SERIAL FORMAT	92	8	8	8
60	SERIAL MENU	SERIAL INIT	9~	1	1	1
61	SERIAL MENU	SERIAL PROTOCOL	A3	0	1	0
62	SERIAL MENU	SERIAL TIMER (S)	A4	0	60000	0
63	SERIAL MENU	SERIAL VALUE	A5	0	19	0
64	SERIAL MENU	MODBUS	A6	0	0	0
65	SERIAL MENU	_	A7	0	0	0
66	SERIAL MENU	_	A8	0	0	0
67	PARALLEL MENU	PARALLEL MODE	A9	0	5	0
68	PARALLEL MENU	PARALLEL INV.	В0	0	1	0
69	PARALLEL MENU	PARALLEL VALUE	B1	-16777216	16777215	0
70	PARALLEL MENU	PARALLEL UPDATE TIME (s)	B2	1	9999	10
71	PARALLEL MENU	SPECIAL PIN FUNCT.	B3	0	10	0
72	COMMAND MENU	INPUT 1 ACTION	B4	0	9	0
73	COMMAND MENU	INPUT 1 CONFIG.	B5	0	3	2
74	COMMAND MENU	INPUT 2 ACTION	B6	0	9	0
75	COMMAND MENU	INPUT 2 CONFIG.	B7	0	3	2
76	COMMAND MENU	INPUT 3 ACTION (FACTORY SETTINGS)	B8	9	9	9
77	COMMAND MENU	INPUT 3 CONFIG. (ACTIVE HIGH)	B9	2	2	2
78	COMMAND MENU	_	C0	0	0	0
79	COMMAND MENU	_	C1	0	0	0

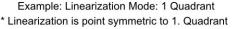
#	Menü	Name	Code	Min	Max	Default
80	LINEARIZATION MENU	P1(X)	C2	-99999999	99999999	0
81	LINEARIZATION MENU	P1(Y)	C3	-99999999	99999999	0
82	LINEARIZATION MENU	P2(X)	C4	-99999999	99999999	0
83	LINEARIZATION MENU	P2(Y)	C5	-99999999	99999999	0
84	LINEARIZATION MENU	P3(X)	C6	-99999999	99999999	0
85	LINEARIZATION MENU	P3(Y)	C7	-99999999	99999999	0
86	LINEARIZATION MENU	P4(X)	C8	-99999999	99999999	0
87	LINEARIZATION MENU	P4(Y)	C9	-99999999	99999999	0
88	LINEARIZATION MENU	P5(X)	D0	-99999999	99999999	0
89	LINEARIZATION MENU	P5(Y)	D1	-99999999	99999999	0
90	LINEARIZATION MENU	P6(X)	D2	-99999999	99999999	0
91	LINEARIZATION MENU	P6(Y)	D3	-99999999	99999999	0
92	LINEARIZATION MENU	P7(X)	D4	-99999999	99999999	0
93	LINEARIZATION MENU	P7(Y)	D5	-99999999	99999999	0
94	LINEARIZATION MENU	P8(X)	D6	-99999999	99999999	0
95	LINEARIZATION MENU	P8(Y)	D7	-99999999	99999999	0
96	LINEARIZATION MENU	P9(X)	D8	-99999999	99999999	0
97	LINEARIZATION MENU	P9(Y)	D9	-99999999	99999999	0
98	LINEARIZATION MENU	P10(X)	E0	-99999999	99999999	0
99	LINEARIZATION MENU	P10(Y)	E1	-99999999	99999999	0

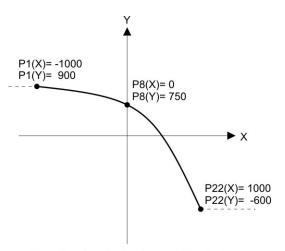
#	Menü	Name	Code	Min	Max	Default
100	LINEARIZATION MENU	P11(X)	E2	-99999999	99999999	0
101	LINEARIZATION MENU	P11(Y)	E3	-99999999	99999999	0
102	LINEARIZATION MENU	P12(X)	E4	-99999999	99999999	0
103	LINEARIZATION MENU	P12(Y)	E5	-99999999	99999999	0
104	LINEARIZATION MENU	P13(X)	E6	-99999999	99999999	0
105	LINEARIZATION MENU	P13(Y)	E7	-99999999	99999999	0
106	LINEARIZATION MENU	P14(X)	E8	-99999999	99999999	0
107	LINEARIZATION MENU	P14(Y)	E9	-99999999	99999999	0
108	LINEARIZATION MENU	P15(X)	F0	-99999999	99999999	0
109	LINEARIZATION MENU	P15(Y)	F1	-99999999	99999999	0
110	LINEARIZATION MENU	P16(X)	F2	-99999999	99999999	0
111	LINEARIZATION MENU	P16(Y)	F3	-99999999	99999999	0
112	LINEARIZATION MENU	P17(X)	F4	-99999999	99999999	0
113	LINEARIZATION MENU	P17(Y)	F5	-99999999	99999999	0
114	LINEARIZATION MENU	P18(X)	F6	-99999999	99999999	0
115	LINEARIZATION MENU	P18(Y)	F7	-99999999	99999999	0
116	LINEARIZATION MENU	P19(X)	F8	-99999999	99999999	0
117	LINEARIZATION MENU	P19(Y)	F9	-99999999	99999999	0
118	LINEARIZATION MENU	P20(X)	G0	-99999999	99999999	0
119	LINEARIZATION MENU	P20(Y)	G1	-99999999	99999999	0

#	Menü	Name	Code	Min	Max	Default
120	LINEARIZATION MENU	P21(X)	G2	-99999999	99999999	0
121	LINEARIZATION MENU	P21(Y)	G3	-99999999	99999999	0
122	LINEARIZATION MENU	P22(X)	G4	-99999999	99999999	0
123	LINEARIZATION MENU	P22(Y)	G5	-99999999	99999999	0
124	LINEARIZATION MENU	P23(X)	G6	-99999999	99999999	0
125	LINEARIZATION MENU	P23(Y)	G7	-99999999	99999999	0
126	LINEARIZATION MENU	P24(X)	G8	-99999999	99999999	0
127	LINEARIZATION MENU	P24(Y)	G9	-99999999	99999999	0

5.3 Serielle Codes der Commands:


Serial Code	Command
54	RESET/SET
55	FREEZE DISPLAY
56	SSI ZERO POSITION
57	RESET/SET COUNTER A
58	RESET/SET COUNTER B
59	LOCK COUNTER A
60	LOCK COUNTER B
61	RESET MIN/MAX
62	FACTORY SETTINGS
63	-
64	-
65	CLEAR LOOP TIME
66	SERIAL PRINT
67	ACTIVATE DATA
68	STORE DATA
69	TESTPROGRAM


5.4 Linearisierung


Mit Hilfe dieser Funktion kann ein lineares Eingangssignal in eine nichtlineare Darstellung umgewandelt werden (oder umgekehrt). Es stehen bis zu 24 Linearisierungspunkte zur Verfügung, die über den gesamten Wandlungsbereich in beliebigen Abständen verteilt werden können. Zwischen 2 vorgegebenen Koordinaten findet automatisch eine lineare Interpolation statt.

Es empfiehlt sich, an Stellen mit starker Kurvenkrümmung möglichst viele Punkte zu setzen, wohingegen an Stellen mit schwacher Krümmung nur wenige Punkte ausreichend sind. Um eine Linearisierungskurve vorzugeben, muss der Parameter LINEARIZATION MODE auf 1 QUADRANT oder auf 4 QUADRANT eingestellt werden (siehe nachstehendes Schaubild). Mit den Parametern P1(X) bis P24(X) können bis zu 24 X-Koordinaten vorgegeben werden. Diese entsprechen den Anzeigewerten ohne Linearisierung. Mit den Parametern P1(Y) bis P24(Y) werden die Werte eingetragen, welche der Messwert anstelle der X-Werte annehmen soll. Es wird also zum Beispiel der Wert P5(X) durch den Wert P5(Y) ersetzt.

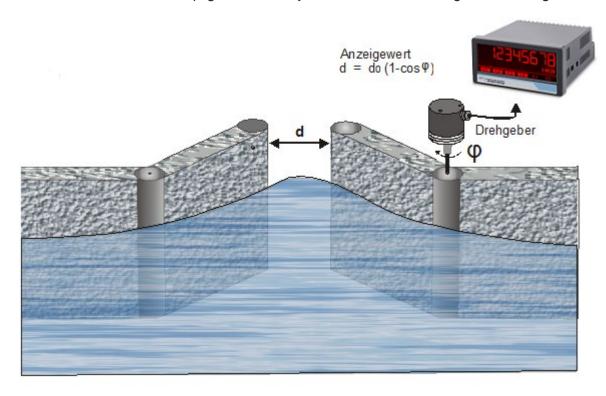
Die X-Koordinaten müssen mit kontinuierlich ansteigenden Werten belegt werden. Das heißt P1(X) ist der kleinste Wert, jeder folgende muss größer sein. Bei Messwerten größer des letzten definierten X-Wertes wird konstant der dazugehörige Y-Wert verwendet.

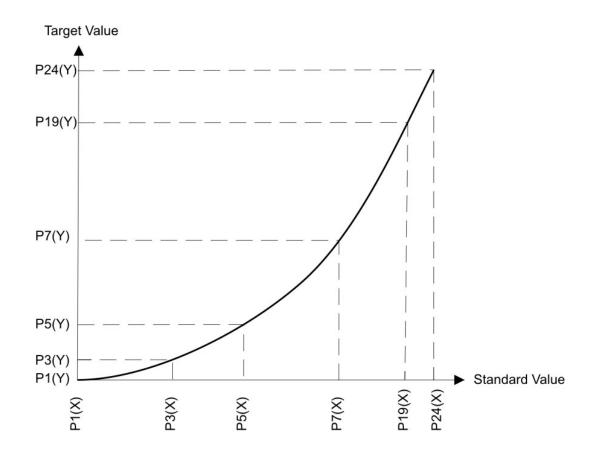
Example: Linearization Mode: 4 Quadrant

Mode: 1 Quadrant:

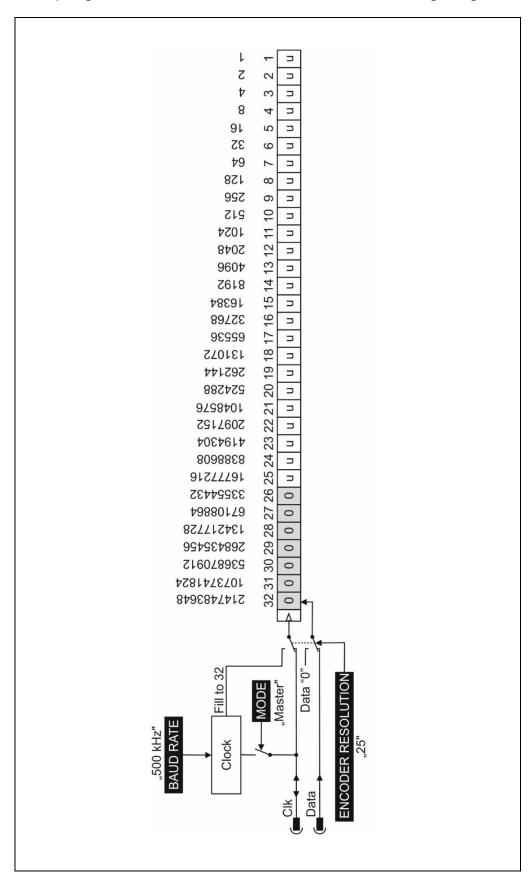
P1(X) muss auf 0 gestellt sein. Die Linearisierung wird nur im positiven Wertebereich definiert.

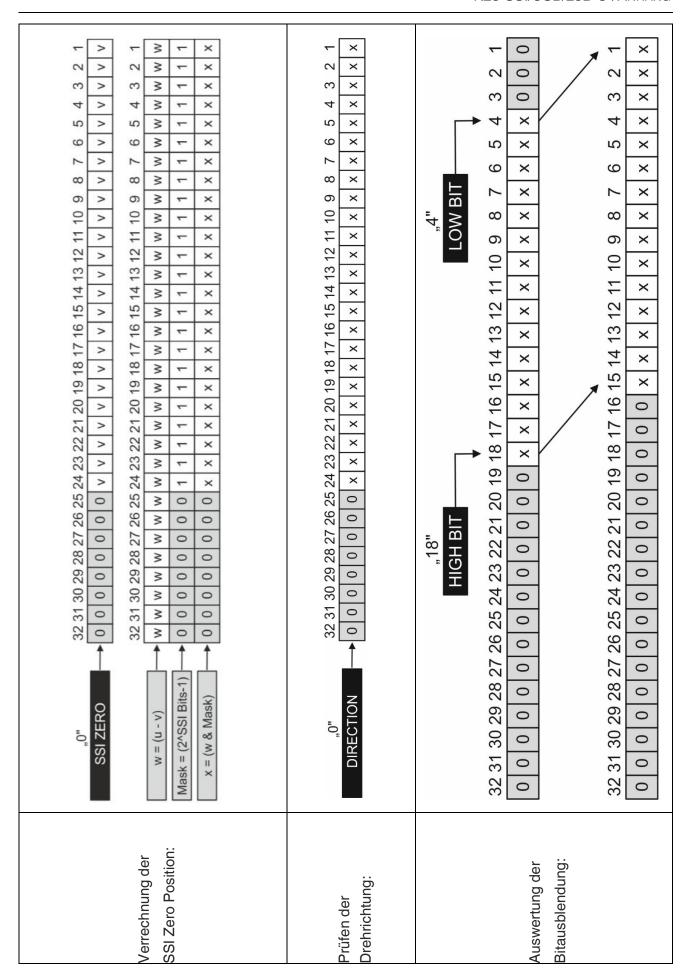
Bei negativen Messwerten wird die Kurve punktsymmetrisch gespiegelt.

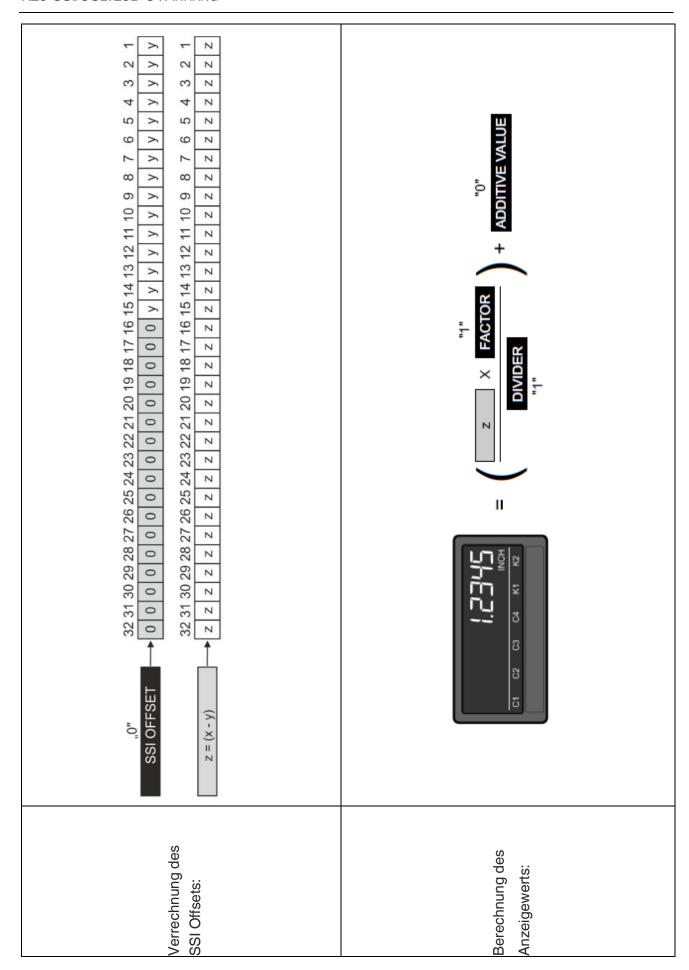

Mode: 4 Quadrant:


P1(X) kann auch auf negative Werte gestellt werden. Bei Messwerten kleiner P1(X) wird konstant der P1(Y) Wert verwendet.

Anwendungsbeispiel Linearisierung:


Das untenstehende Bild zeigt eine Wasserschleuse, bei welcher die Öffnungsweite über einen Drehgeber erfasst und zur Anzeige gebracht werden soll. Der Drehgeber erzeugt in dieser Anordnung ein Signal proportional zum Drehwinkel ϕ , gewünscht ist jedoch die direkte Anzeige der Öffnungsweite "d"


5.5 SSI-Wert einlesen


Die empfangenen Daten werden intern immer auf 32 Bit Datenlänge aufgefüllt.

5.6 Verarbeitung und Berechnung SSI-Daten

Prüfen des Error Bit:	ERROR POLARITY "25" ERROR BIT
Datenwandlung: Gray Code → binär	"gray" 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DATA FORMAT → 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Daten Aufteilung: Bit pro Umdrehung und Anzahl der Umdrehungen	

5.7 Betriebsarten/OP Modes der Start-Stopp-Schnittstelle

Das Gerät unterstützt die folgenden Betriebsarten:

Führender Betrieb

- Der Init-Impuls für einen angeschlossenen Drehgeber wird vom Gerät erzeugt.
- Die beiden Init-Anschlüsse (INIT OUT, /INIT OUT) sind als Ausgänge konfiguriert.

Geführter Betrieb

- Der Init-Impuls für einen Drehgeber wird von einem externen Gerät erzeugt.
- Die beiden Init-Anschlüsse (ext. INIT IN, ext. /INIT IN) sind als Eingänge konfiguriert.

Die gewünschte Betriebsart kann im "General Menu" mittels Parameter "INIT MODE" ausgewählt werden.

Das Gerät kann zudem in folgenden drei "Operational Modes" betrieben werden. Die gewünschte Messfunktion (Streckenmessung, Winkelmessung oder Geschwindigkeitsmessung) kann unter mittels Parameter "OPERATIONAL MODE" ausgewählt werden.

POSITION (Streckenmessung)

Anhand einer durchgeführten Laufzeitmessung aus Start- und Stoppimpuls wird die aktuelle Position des Positionsgebers ermittelt und kann mittels vorhandenen Skalierungsparametern (Factor, Divider und Additive Value) in eine andere Einheit umgerechnet werden, z.B. zum seriellen Auslesen des Positionswertes in einer gewünschten Einheit.

Interpretation des Messergebnisses bei der Streckenmessung:

Die Default - Einstellung der Skalierungsparameter ("FACTOR = 1", "DIVIDER = 1" und ADDITIVE VALUE = 0") entspricht einem Positionsmessergebnis in Mikrometern (μm).

Um beispielsweise eine Position in "inch" mit drei fiktiven Nachkommastellen zu bekommen, muss der Parameter "FACTOR" auf "10", der Parameter "DIVIDER" auf "254" und der Parameter "ADDITIVE VALUE" auf "0" eingestellt werden.

ANGLE (Winkelmessung)

Bei der Winkelmessung kann der gewünschte Positions- bzw. Winkelausgabewert je Umdrehung mittels Parameter "ROUND LOOP VALUE" vorgegeben werden. Dieser Ausgabewert wird dann erzeugt, sobald die zurückgelegte Strecke (z.B. Umfang), welche als Bezugsgröße im Parameter "CIRCUMFERENCE (in mm)" eingestellt wird, erreicht ist. Anschließend beginnt der Ausgabewert wieder bei 0 bis die zurückgelegte Strecke erneut erreicht ist. (Round Loop Funktion!)

Mittels vorhandenen Skalierungsparametern (Factor, Divider und Additive Value) kann dieser Ausgabewert, wenn gewünscht, nochmal umskaliert werden.

Interpretation des Messergebnisses bei der Winkelmessung:

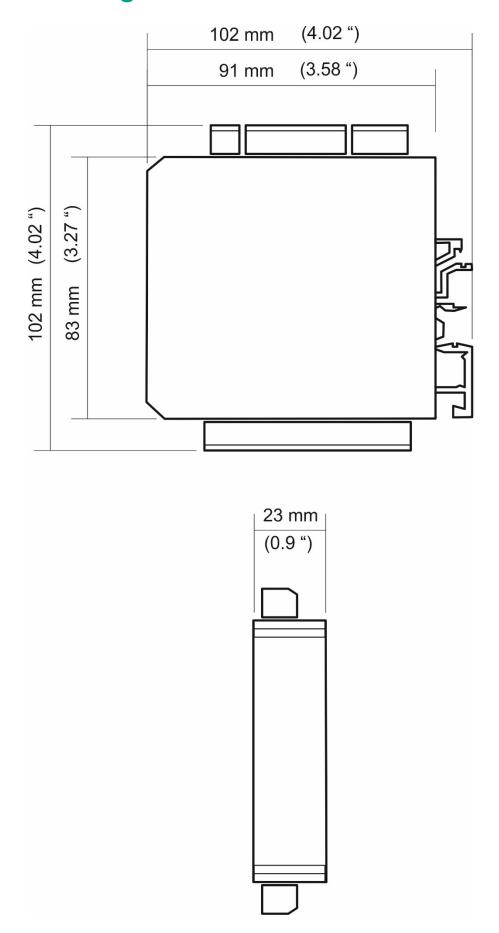
Die Default - Einstellung ("CIRCUMFERENCE (mm) = 100.000" und "ROUND LOOP VALUE = 360", sowie "FACTOR = 1", "DIVIDER = 1" und "ADDITIVE VALUE = 0") entspricht einer Winkel- bzw. Positionsausgabe von "0…360" (z.B.: Grad) alle 100.000 mm.

SPEED (Geschwindigkeitsmessung)

Die Geschwindigkeit wird erfasst und kann mittels vorhandenen Skalierungsparametern (Factor, Divider und Additive Value), wenn gewünscht, nochmals in eine andere Einheit umgerechnet werden.

Interpretation des Messergebnisses bei der Geschwindigkeitsmessung:

Die Default - Einstellung ("FACTOR = 1", "DIVIDER = 1" und "ADDITIVE VALUE = 0") entspricht einer Geschwindigkeitsausgabe in Meter pro Sekunde [m/s].



Hinweis

Der Parallelausgang sowie die Linearisierungsfunktion beziehen sich immer auf das skalierte Messergebnis des ausgewählten Operational Modes. (Measurement_Result)

5.8 Abmessungen

Your automation, our passion.

Explosionsschutz

- Eigensichere Barrieren
- Signaltrenner
- Feldbusinfrastruktur FieldConnex®
- Remote-I/O-Systeme
- Elektrisches Ex-Equipment
- Überdruckkapselungssysteme
- Bedien- und Beobachtungssysteme
- Mobile Computing und Kommunikation
- HART Interface Solutions
- Überspannungsschutz
- Wireless Solutions
- Füllstandsmesstechnik

Industrielle Sensoren

- Näherungsschalter
- Optoelektronische Sensoren
- Bildverarbeitung
- Ultraschallsensoren
- Drehgeber
- Positioniersysteme
- Neigungs- und Beschleunigungssensoren
- Feldbusmodule
- AS-Interface
- Identifikationssysteme
- Anzeigen und Signalverarbeitung
- Connectivity

Pepperl+Fuchs Qualität

Informieren Sie sich über unsere Qualitätspolitik:

www.pepperl-fuchs.com/qualitaet

