MWC25M-L2M-B16 Series

Parameterization of Radar Sensors with CANopen Interface

Manual

Your automation, our passion.

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry (Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary clause: "Expanded reservation of proprietorship"

Worldwide

Pepperl+Fuchs Group Lilienthalstr. 200 68307 Mannheim Germany Phone: +49 621 776 - 0 E-mail: info@de.pepperl-fuchs.com **North American Headquarters** Pepperl+Fuchs Inc. 1600 Enterprise Parkway Twinsburg, Ohio 44087 USA Phone: +1 330 425-3555 E-mail: sales@us.pepperl-fuchs.com **Asia Headquarters** Pepperl+Fuchs Pte. Ltd. P+F Building 18 Ayer Rajah Crescent Singapore 139942 Phone: +65 6779-9091 E-mail: sales@sg.pepperl-fuchs.com https://www.pepperl-fuchs.com

1	Introd	uction	6
	1.1	Content of this Document	6
	1.2	Target Group, Personnel	6
	1.3	Symbols Used	6
	1.4	Intended Use	7
	1.5	General Safety Information	8
	1.6	Declaration of Conformity	9
	1.7	Declaration of Conformity FCC, Canada	9
2	Produ	ct Description	
	2.1	Use and Application	11
	2.2	Measurement Characteristics	12
	2.3	Safety Applications	13
	2.4	Indicators	13
	2.5	Supported CANopen Functions	15
	2.6	Accessories	15
	2.6.1 2.6.2	Connection Accessories Parameterization Aids	15 16
3	Reflec	ctivity of Materials	17
	3.1	Reflectivity and Typical Radar Cross-Sections	17
	3.2	Dependency of Materials	17
4	Install	ation	19
	4.1	Safety Information	19
	4.2	Preparation	19
	4.3	Connection	19
	4.4	Mounting and Alignment	20
5	Cyber	security Information	22
6	Comm	nissioning	23
	6.1	Commissioning via PACTwareDC and DTM	23
	6.1.1	Change Transmission Rate and Node ID (DTM)	25
	6.2 6.2 1	Commissioning via CANopen Engineering Tool	27 28
	6.2.2	Enable Processing of the Process Data	
	6.2.3	Restoring the Factory Defaults	29
	0.2.4	Evaluate Error Micobayco	<i>L</i> I

PEPPERL+FUCHS

7	Param	eterization and Analysis Using PACTware and DTM via CANopen	31
	7.1	Overview	31
	7.2	Menu Item Information	32
	7.3	Menu Item Configuration	33
	7.4 7.4.1 7.4.2	Menu Item Analysis	15 35 38
	7.5	Menu Item Service4	0
8	Param with C	eterization Using the CANopen Engineering Tool ANopen Objects4	12
	8.1	CANopen Overview4	2
	8.2	CANopen Object Directory4	13
	8.3	Object 0x1000 Device Type4	15
	8.4	Object 0x1001 Error Register4	15
	8.5	Object 0x1002 Manufacturer Status Register4	15
	8.6	Object 0x1003 Predefined Error Field4	6
	8.7	Object 0x1005 COB ID SYNC4	6
	8.8	Object 0x1008 Manufacturer Device Name4	6
	8.9	Object 0x1009 Manufacturer Hardware Version4	6
	8.10	Object 0x100A Manufacturer Software Version4	17
	8.11	Object 0x1010 Store Parameters4	17
	8.12	Object 0x1011 Restore Default Parameters4	17
	8.13	Object 0x1014 COB ID Emergency4	17
	8.14	Object 0x1015 Inhibit Time Emergency4	8
	8.15	Object 0x1017 Producer Heartbeat Time4	8
	8.16	Objekt 0x1018 Identity Object4	8
	8.17	Object 0x1020 Verify Configuration4	8
	8.18	Object 0x1200 Server SDO Parameter (Default SDO)4	9
	8.19	Object 0x1800 Transmit PDO Communication Parameter 14	9
	8.20	Object 0x1801 Transmit PDO Communication Parameter 24	9
	8.21	Object 0x1802 Transmit PDO Communication Parameter 35	50
	8.22	Object 0x1803 Transmit PDO Communication Parameter 45	50
	8.23	Object 0x1A00 TPDO1 Mapping Parameter5	6 0

	8.24	Object 0x1A01 TPDO2 Mapping Parameter	.51
	8.25	Object 0x1A02 TPDO3 Mapping Parameter	.51
	8.26	Object 0x1A03 TPDO4 Mapping Parameter	.51
	8.27	Object 0x2000 Process Data	. 52
	8.28	Object 0x2001 Operating Hours	. 53
	8.29	Object 0x2010 Identification and Info	. 53
	8.30	Object 0x4000 Measurement Configuration	. 54
	8.31	Object 0x4001 LED Configuration	. 55
	8.32	Object 0x4100 Reflection Array List	. 55
9	Mainte	enance and Repair	. 59
	9.1	Maintenance Work	. 59
	9.2	Cleaning	. 59
10	Troubl	eshooting	.60
	10.1	What to Do in Case of an Error	. 60

1 Introduction

1.1 Content of this Document

This document contains information required to use the product in the relevant phases of the product life cycle. This may include information on the following:

- Product identification
- Delivery, transport, and storage
- Mounting and installation
- Commissioning and operation
- Maintenance and repair
- Troubleshooting
- Dismounting
- Disposal

Note

For full information on the product, refer to the further documentation on the Internet at www.pepperl-fuchs.com.

Note

For specific device information such as the year of construction, scan the QR code on the device. As an alternative, enter the serial number in the serial number search at www.pepperl-fuchs.com.

The documentation comprises the following parts:

- This document
- Datasheet

In addition, the documentation may comprise the following parts, if applicable:

- EU-type examination certificate
- EU declaration of conformity
- Attestation of conformity
- Certificates
- Control drawings
- Instruction manual
- Functional safety manual
- Other documents

1.2 Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Only appropriately trained and qualified personnel may carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the product. The personnel must have read and understood the instruction manual and the further documentation.

Prior to using the product make yourself familiar with it. Read the document carefully.

1.3 Symbols Used

This document contains symbols for the identification of warning messages and of informative messages.

Warning Messages

You will find warning messages, whenever dangers may arise from your actions. It is mandatory that you observe these warning messages for your personal safety and in order to avoid property damage.

Depending on the risk level, the warning messages are displayed in descending order as follows:

Danger!

This symbol indicates an imminent danger.

Non-observance will result in personal injury or death.

Warning!

This symbol indicates a possible fault or danger.

Non-observance may cause personal injury or serious property damage.

Caution!

This symbol indicates a possible fault.

Non-observance could interrupt the device and any connected systems and plants, or result in their complete failure.

Informative Symbols

		1

Note

This symbol brings important information to your attention.

Action

1. This symbol indicates a paragraph with instructions. You are prompted to perform an action or a sequence of actions.

1.4 Intended Use

Radar sensors in the MWC25M-L2M-B16 series emit electromagnetic waves (radar waves) that are reflected by an object and received again by the radar sensor to detect objects and measure their distance from the sensor and their relative velocities.

The radar sensor operates according to the frequency-modulated continuous wave (FMCW) method at 122 GHz, in the ISM band approved for industrial use. It emits a continuous radar signal that is varied in frequency within the bandwidth. This method enables the sensor to reliably detect the distance and velocity of static and moving objects. When measuring velocity, the radar sensor detects the velocity of an object only in the radial direction, without measuring tangential velocities or velocity components.

Note

Radar sensors in the MWC25M-L2M-B16 series are only approved in the countries listed in the relevant declaration of conformity for the radar sensor. These can be found online at www.pepperl-fuchs.com on the respective product page for the sensor version of the MWC25M-L2M-B16 series.

Only operate the device in countries in which approval has been granted. If the device is operated in other countries, it may interfere with protected frequency ranges.

The operator is responsible for complying with country-specific laws.

Note

Radar waves of the sensor are not hazardous according to the following standards:

- EN 62368-1 Tests for "Electrical safety"
- EN 62311 Tests for "Health"
- ETSI EN 305550-1
- FCC/CFR. 47 Part 15
- The maximum emitted power does not exceed the approved limits according to ETSI and FCC.

According to these standards/regulations, radar sensors in the MWC25M-L2M-B16 series are within the permissible limits and the radar waves are not damaging.

Caution!

Health hazards caused by high-frequency electromagnetic radiation

The radar sensor is designed for operation in accordance with ETSI EN 305550. During operation, the exposure limits defined in EN 62311 must be observed. To limit human exposure to electromagnetic fields, adequate safety distances must be maintained for both short-term and long-term work in the radiation range of the antenna. The minimum distance between the antenna and the human body during continuous operation is 20 cm. Country-specific special issues that must be taken into account when operating the device can be found in the declaration of conformity.

Radar sensors in the MWC25M-L2M-B16 series are standard sensors (standard components) without an independent safety certificate and are therefore not a safety component as defined in the EU Machinery Directive 2006/42/EC. However, under certain parameterization requirements and in combination with a higher-layer safety control unit, the sensor can be used up to a maximum of category 2 PL c in accordance with ISO 13849. The detailed description in the "Safety Application Report" document must be taken into account.

Only operate the device as described in these instructions to ensure the correct functioning of the device and the connected systems. The protection of operating personnel and the plant is guaranteed only if the device is operated in accordance with its intended use.

The operator is responsible for complying with all local safety regulations.

Only use recommended original accessories.

1.5

General Safety Information

Caution!

Health hazards caused by high-frequency electromagnetic radiation

The radar sensor is designed for operation in accordance with ETSI EN 305550. During operation, the exposure limits defined in EN 62311 must be observed. To limit human exposure to electromagnetic fields, adequate safety distances must be maintained for both short-term and long-term work in the radiation range of the antenna. The minimum distance between the antenna and the human body during continuous operation is 20 cm. Country-specific special issues that must be taken into account when operating the device can be found in the declaration of conformity.

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

Installation and commissioning of all devices may be performed only by trained and qualified personnel.

The device is only approved for appropriate and intended use. Ignoring these instructions will void any warranty and absolve the manufacturer from any liability.

If serious faults occur, stop using the device. Secure the device against inadvertent operation. In the event of repairs, return the device to your local Pepperl+Fuchs representative or sales office.

Note

Disposal

Electronic waste is dangerous. When disposing of the equipment, observe the current statutory requirements in the relevant country of use and local regulations.

1.6 Declaration of Conformity

This product was developed and manufactured in line with the applicable European standards and directives.

Note

A declaration of conformity can be requested from the manufacturer.

The product manufacturer, Pepperl+Fuchs Group, 68307 Mannheim, Germany, has a certified quality assurance system that conforms to ISO 9001.

1.7 Declaration of Conformity FCC, Canada

The product manufacturer, Pepperl+Fuchs Group, 68307 Mannheim, Germany, has a certified quality assurance system that conforms to ISO 9001.

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s) and complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation of the device..

Note

- Operation on board of an aircraft and/or on board of a satellite is prohibited.
- Canada-specific regulation: The device should not point >30° elevation toward the sky in normal operation
- Règlement spécifique au Canada : L'appareil ne doit pas être orienté vers le ciel à plus de 30° d'élevation en opération normale.
- Changes or modifications made to this equipment not expressly approved by Pepperl+Fuchs may void the FCC authorization to operate this equipment.
- This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at their own expense.

Radiofrequency Radiation Exposure Information:

- This equipment complies with FCC and ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps. Ce transmetteur ne doit pas être place au même endroit ou utilise simultanément avec un autre transmetteur ou antenne.

FCC ID: IRE-MWL2A

IC ID: 7037A-MWL2A

HVIN/PMN: MWL2A

2 Product Description

2.1 Use and Application

The MWC25M-L2M-B16 series radar sensor with CANopen interface for medium distances up to 25 m range is optimized for use in industrial applications. Its compact cubic L2 series housing is proven in many industrial areas due to its high robustness.

The radar sensor has a standardized CANopen interface according to the CiA 301 specification. Service Data Objects (SDOs) enable you to directly parameterize the radar sensor optimally for your application. You can parameterize the measurement mode, the foreground and background suppression, and the minimum and maximum velocity suppression. Many other parameters, such as filter mode, filter strength and sampling rate, can also be configured. Alternatively, parameterization with extended functionality can be carried out using the PACTware FTD framework program and a DTM (Device Type Manager). This makes it possible to use various evaluation and filter settings for distance and velocity data.

The radar sensor operates according to the frequency-modulated continuous wave (FMCW) method at 122 GHz, in the ISM band approved for industrial use. It emits a continuous radar signal, which is changed in frequency over the bandwidth. This method enables the sensor to reliably detect the distance and velocity of static and moving objects. When measuring velocity, the radar sensor detects the velocity of an object only in the radial direction, without measuring tangential velocities or velocity components.

You can parameterize the radar sensor in two ways. Either via a CANopen Engineering Tool or via DTM and an FTD frame application.

Typically, radar sensors are used in a wide range of applications, including:

- Distance measurement (between two vehicles, in the crane arm, between two cranes, etc.)
- Velocity measurement (of trains, on AGVs, etc.)
- Area monitoring/anti-collision monitoring (for front and rear of vehicles, etc.)
- Fill level measurement (silos, agricultural tanks, etc.)
- Height control (scissor lift table, working platforms, fork on forklifts, detection of building roofs for trucks, etc.)

Advantages of radar sensors in the MWC25M-L2M-B16 series:

- Measuring distance and velocity, and detecting direction of movement in a device
- Can be used for safety applications up to PL c in combination with a diagnostics-enabled controller (e.g. PLC); see "Safety Application Report"
- Reliable measurements in harsh environments and fast applications
- CANopen interface for service data and process data, and for parameterization
- Extended EMC
- Proven in use cubic VariKont housing design
- Flexible mounting

PEPPERL+FUCHS

Parameterization Via PACTware DC and DTM

Parameterization via PACTware DC and DTM allows convenient and comprehensive parameterization of the sensor due to the graphical interface of the DTM. The DTM (Device Type Manager, a kind of "device driver") displays the parameters clearly and graphically, by subject, in menu items. Furthermore, the measured distances, status changes, and individual radar reflections are visualized. Analysis and observation functions allow you to record and evaluate circumstances.

As an FTD frame application, we recommend using "PACTware 5.0" software or higher as the user interface. The PACTware software package includes the PACTware DC (DC Direct Connect) version for quickly and easily establishing a connection between PACTware and the sensor.

The latest available versions of the individual software components required, such as PACTware 5.0 or higher, CAN-COM-DTM, and device DTM, can be found online at www.pep-perl-fuchs.com, on the product page in the "Software" section.

As a convenient solution, we offer the "CANopen Parameterization Tool," which contains PACTware, PACTware DC, the device driver for the CAN/USB converter-SUBD9, and the DTM for CANopen communication. We recommend using this software package for easy commissioning and parameterization of the sensor. The latest available versions of the individual software components required, such as the "CANopen Parameterization Tool" and the device DTM, can be found online at www.pepperl-fuchs.com, on the product page for the MWC25M-L2M-B16 series.

Parameterization Using the CANopen Engineering Tool

You can carry out parameterization directly via the CANopen object directory using a CANopen Engineering Tool with LSS Manager functionality of your choice. CANopen Engineering Tools for configuration and parameterization are available from various suppliers.

Note EDS File

An EDS configuration file (EDS Electronic Datasheet) is available for easy integration and parameterization of the radar sensor. This contains the CANopen objects with all the parameter options and explanations to be configured. This can be found online at www.pepperl-fuchs.com, on the product page for the MWC25M-L2M-B16 series.

2.2 Measurement Characteristics

The sensor has the following measuring ranges:

- Dead band:
 - Objects are not detected in the dead band. This area should remain free to ensure reliable distance and velocity measurement of objects in the sensing range.
 - If objects are placed in the sensor's dead band, false reflections may occur in the sensing range, causing incorrect distance values to be output.
 - Placing materials that absorb radar waves to a limited extent is possible in the dead band, for example, mounting behind a plastic wall or thin glass pane. This may, however, limit the measuring range.
- Sensing range:
 - Objects can be detected in the sensing range if the cross-section of an object is sufficient for radar reflections and the alignment is suitable for reflecting radar signals. The maximum range of the sensing range is guaranteed under all ambient conditions specified in the datasheet.
 - This range is the adjustment range accepted by the firmware. Readings related to distances outside the sensing range, however, are not guaranteed measurement situations. Depending on the ambient conditions, the validity of the measured values is not guaranteed. This range is used at the customer's own risk.
 - Measuring different materials and their object alignment with the sensor. For details, see see chapter 3on the reflectivity of materials.
 - In the case of objects with a very large radar cross-section in the near range, the
 physical properties may cause false reflections to occur for a short time if the readings are not sufficiently filtered.
- Extension:
 - The measurement range extension specifies the sensor's operating reserve when using the sensor under typical ambient conditions.

2.3 Safety Applications

Radar sensors in the MWC25M-L2M-B16 series can be used in safety applications under certain circumstances, taking into account certain aspects up to PL c in combination with a diagnostics-enabled controller (e.g., PLC).

A "Safety Application Report" explains an example of a use case. You can download the application report from www.pepperl-fuchs.com, on the product page for your MWC25M-L2M-B16 series radar sensor.

If you are interested in using MWC25M-L2M-B16 series radar sensors for safety applications, contact an application specialist at Pepperl+Fuchs to discuss and review your use case.

2.4 Indicators

The radar sensor has multi-color LEDs, each with three colors, for displaying operating and status information. The LED display is in accordance with the CiA 303 specification part 3, V1.4.0.

Two LEDs with the same meaning are arranged diagonally on the device to ensure better visibility in an application environment.

Figure 2.1

SENSOR LED (yellow) STATUS LED (green/red) Object in the evaluation area

CANopen status indicator: green LED is run LED, red LED is error LED

Note

The STATUS LED (green/red) can also light up green and red successively at the same flashing frequency to indicate the states in the following tables.

SENSOR	IFD	(vellow)	
02110011		() 011011/	

LED status	Description
On	Object detected in the evaluation area
Off	No object detected in the evaluation area

Table 2.1

STATUS LED (green)

LED status	Description
On	The device is in the state "Operational"
Off	The device is in the reset state or there is no electric power supply
Flickering	LSS configuration state is active (flashing frequency 10 Hz)
Blinking	The device is in the "Pre-Operational" NMT state (flashing fre- quency 5 Hz)
Single flash	The device is in the "Stopped" NMT state (flashing frequency 1 Hz)
Three single flashes	A software download is running on the device (flashing fre- quency 1 Hz)

Table 2.2

STATUS LED (red)

LED status	Description
On	The device is in the state "CAN Bus Off"
Off	The device is operating without errors
Flickering	The "LSS-Node-ID" is not configured. CANopen is not initialized (flashing frequency 10 Hz)
Blinking	General error, invalid configuration on the device (flashing frequency 5 Hz)
Single flash	The CAN controller error counter has reached or exceeded its warning limit (flashing frequency 1 Hz)

Table 2.3

2.5 Supported CANopen Functions

The device has a standardized CANopen interface in accordance with the CiA301 specification. All usable CANopen objects of the object directory are listed in this manual.

Additional functions can be configured. You can set the node ID and baud rate via LSS.

You can set the transmission speed in increments of 125 kbit/s up to 1 Mbit/s, according to CiA 102, Table 1 and CiA 301 5.4 Table 1. We support transmission speeds of 125, 250, 500, 800, and 1000 kbit/s. The maximum permitted cable length for 1 Mbit/s is 30 m.

Note

An EDS configuration file is available for easy integration and parameterization of the radar sensor. You can download it from www.pepperl-fuchs.com, on the product page for the MWC25M-L2M-B16 series.

Note

This device does not have an internal terminator. If required, this can be implemented externally via a T-distributor at the end of the bus (120 ohms).

Available CANopen Functions

- Process data objects (PDO) (dynamic configuration)
- Service data object (SDO)
- Heartbeat monitoring mechanism
- Layer settings service (LSS) for setting the node ID and baud rate
- Save and restore function (store and load parameter field)
- Error messages by emergency object (EMCY)
 - Error register
 - Vendor-specific status register (manufacturer status register)
 - Error list (pre-defined error field)
- Status and fault indicator (status LED according to CiA 303-3)

Vendor-specific properties and functions

- Operating hours counter
- Application-specific tag, function tag, location tag
- The MWC25M-L2M-B16 series radar sensor supports the following operating modes:
 - Cyclic operation: The distance and velocity values are sent cyclically (regularly, adjustable interval) via the bus.
 - SYNC operation: The distance value is sent upon receiving a synchronization message (SYNC). The position value is sent every n SYNCs (n = 1 ... 240). The sensor accepts synchronous modes 00-F0h and event-driven modes FEh and FFh.

2.6 Accessories

Various accessories are available.

2.6.1 Connection Accessories

Various connection cables and cordsets are available for connecting the sensors of the MWC25M-L2M-B16 series. You will find details online at **www.pepperl-fuchs.com** on the product page for the relevant sensor or on the relevant datasheet.

Note

For mounting, connection and commissioning, the following product information is available online at **www.pepperl-fuchs.com** on the product page for the relevant sensor: datasheet, quick reference guide, manual. The relevant DTM contains comprehensive context-related help texts.

2.6.2

Parameterization Aids

EDS File

Note

An EDS configuration file (EDS Electronic Datasheet) is available for easy integration and parameterization of the radar sensor. This contains the CANopen objects with all the parameter options and explanations to be configured. This can be found online at www.pepperl-fuchs.com, on the product page for the MWC25M-L2M-B16 series.

The following parameterization aids are required for parameterization via the DTM:

Designation	Description
CANopen Parameterization Tool	Software package for simple commissioning and parameterization of the sensor, consisting of: • PACTware/PACTware DC
	DTM for CANopen communication
	VCI driver for the CAN/USB converter-SUBD9
	Visit www.pepperl-fuchs.com and access the product page for the relevant sensor in the MWC25M-L2M-B16 series
DTM for MWC25M-L2M-B16 series	DTM (Device Type Manager)—device description and graphic user interface for radar sensor parameteriza- tion, integration into the system environment Visit www.pepperl-fuchs.com and access the product page for the relevant sensor in the MWC25M-L2M-B16 series
PACTware (5.0 or higher)	FDT frame application for operating IODDs and DTMs. Includes the PACTware and PACTware DC versions. Compared to PACTware, the PACTware DC has a "plug-in" for quickly and easily establishing connec- tions between sensor and PACTware. Visit www.pepperl-fuchs.com and access the product pages for software in the "Products" section.
DTM for CANopen communication	Device Type Manager—Software for operating the CAN/USB converter-SUBD9 via FDT frame application Not required when installing the "CANopen Parameter- ization Tool." Visit www.pepperl-fuchs.com and access the product pages for software in the "Products" section.
CAN/USB configuration kit	Configuration kit for communications between FDT frame application and radar sensor Includes the following components: • CAN/USB converter-SUBD9
	Power supply for CAN/USB converter-SUBD9
	Connection cable and adapter cable for components
	The CANopen Parameterization Tool contains both VCI drivers for the CAN/USB converter-SUBD9 and the DTM for CANopen communication for CAN communication with PACTware/PACTwareDC.

Table 2.4

3 **Reflectivity of Materials**

3.1 **Reflectivity and Typical Radar Cross-Sections**

Microwaves behave similarly to light due to their short wavelength, e.g., 12 mm at 24 GHz or 2.45 mm at 122 GHz. There are therefore the same effects such as diffraction, total reflection, deflection, interference, and some others. Many properties of radar sensors can only be understood when these effects are taken into account. In applications with radar sensors, it is assumed that an emitted wave is diffusely scattered by an object such that at least a certain part of the wave is reflected back to the point of emission. The strength of this reflection (amplitude strength) is highly dependent on the material and properties of the object.

The radar cross-section is a measure of an object's ability to reflect radar signals. Its value depends on various factors such as the size, shape, and material of the target object. Bigger objects with a smooth surface usually have a larger radar cross-section and are therefore more easily detected by the radar.

The following table shows typical values for the resulting radar cross-section of a radar sensor.

Radar Target/Target Object	Radar Cross-Section [m ²]
Ship (container ship, passenger ship)	> 1000
Truck	200
Car	100
Radar corner reflector (metal) 10 cm side length	70
Radar corner reflector (metal) 5 cm side length	5
Tree (large)	1
Human	0.5 1
Bird	0.01

Table 3.1

A human target object therefore is evidently a poor radar target compared to a reflecting object made of metal. This affects the distance measurement of different materials due to the smaller radar cross-section. The properties of other radar targets or target objects will become clearer when the dependencies of materials are considered in the following chapter.

3.2 Dependency of Materials

Radar waves propagate freely in space in a vacuum. When the waves hit an object, the signal changes due to the influence of the object's properties. Depending on the materials, the radar waves are completely or partially absorbed or reflected. There is also penetration of various substances.

Material	Absorption	Reflection	Penetration
Metal	None	Total reflection with straight incidence With oblique incidence, refraction and partial reflection are possible	None
Wood	Medium to high (depending on humidity)	Low	Low
Water	Very high	Depending on the angle of incidence, partial or total reflection is possible	None, due to absorption
Foams	Low	Low	Very low
Plastics	Low to high (depending on the thick- ness and type of plastic)	Low to high (depending on the thick- ness and type of plastic)	Low to high (depending on the thick- ness and type of plastic)
Glass	Low to high (depending on the thick- ness of the glass)	Low to high (depending on the thick- ness of the glass)	Low to high (depending on the thick- ness of the glass)
Clothing	Medium to high (depending on humidity)	Low	Low
Rain	Low	Low	Very good
Humans	Medium	Medium	Low
Ice	Very high	Depending on the angle of incidence, partial or total reflection is possible	None, due to absorption

Table 3.2

In summary , absorbent materials constitute poorer radar targets. Although they generate a reflection due to the so-called "matter jump," most of the energy of the radar wave is absorbed.

4 Installation

4.1 Safety Information

Caution! Risk of short circuit

Carrying out work while the system is energized may result in damage to the device.

- Always disconnect the supply voltage before carrying out work on the device.
- Only connect the device to the supply voltage once all work has been completed.

4.2 Preparation

Unpacking the Device

1. Check the packaging and contents for damage.

 \mapsto In the event of damage, inform the shipping company and notify the supplier.

2. Check the package contents against your order and the shipping documents to ensure that all items are present and correct.

 \hookrightarrow Should you have any questions, direct them to Pepperl+Fuchs.

3. Retain the original packaging in case the device is to be stored or shipped again at a later date.

Note

4.3

i

Use a shielded 5-wire sensor connection cable to connect the sensor to a CANopen bus. Pay attention to the pinoutas the standard pinout (A-coded M12 plug) differs from the pinout in the CANopen specification.

Wiring Diagram

Connection

Figure 4.1

Applying Supply Voltage for a Sensor with V15 Connector Plug

To supply voltage to the sensor, proceed as follows:

- 1. Insert the prepared connection cable into the connector plug provided for this purpose on the sensor.
- 2. Screw the union nut onto the connector plug as far as it will go. This ensures that the power cable cannot be pulled out inadvertently.
- Now connect the supply voltage to the cables provided for this purpose and switch it on.

 → The sensor is now ready for operation.

Applying Supply Voltage to a Sensor with a Fixed Cable and Plug

To supply voltage to the sensor, proceed as follows:

- 1. Connect the prepared connection cable to the plug of the sensor connection cable.
- 2. If present, secure the plug connection with the securing elements provided.
- Now connect the supply voltage to the cables provided for this purpose and switch it on.

 → The sensor is now ready for operation.

4.4 Mounting and Alignment

Mounting

When mounting, observe the following points:

- Mount the sensor so that no foreign objects are in the sensing range.
- Note the dead band in which objects cannot be detected. If there are objects in the dead band, false reflections may occur. Thin materials with low absorption can be placed in the dead band after extensive testing (e.g., sensor behind a plastic wall, glass).

Alignment

When aligning the radar sensor, the beam direction of the radar wave is often crucial in determining how well the wave is reflected by an object. If object detection parameters are not configured in advance, the radar sensor will detect the object closest to it and reference its measured values to this object. You can use the parameterization options to configure different measurement modes for which object should be referenced.

If the radar sensor does not measure against a reference object, the sensors can be mounted in any alignment, observing the influencing factors of objects in the dead band. The radar wave spreads perpendicular to the radome (radar dome = lens). The opening angle and characteristic response curve of the radar beam can be found in the relevant datasheet for your radar sensor.

Note

In stationary applications, achieving the full performance of the radar sensor requires good alignment and mounting of the radar sensor and the reflector or reference object. In mobile applications, the following information must be taken into account in the system's design.

Planar reflecting object

Figure 4.2

When using a planar surface as the reflecting object, the maximum signal strength is reflected if the radar wave hits the reflecting object at a right angle.

When using an inclined surface and with total reflection of the radar wave, the inclination angle of the reflective object must be smaller than the opening angle of the sensor. If the reflected object is tilted too much, the reflected radar signal will be reflected away from the radar sensor and no object will be detected in the sensing range.

Curved reflecting object

Figure 4.3

When using a curved surface (e.g., cylindrical objects) as the reflecting object, align the radar sensor with the center of the reflecting object. After hitting the reflecting object, in this scenario the main part of the radar signal is scattered in different directions.

Distances to objects with these geometric properties are identifiable and measurable, but the strength of the detectable signal is lower than that of planar reflecting objects.

5 Cybersecurity Information

The CAN sensor is secure for the area of application defined here in accordance with IEC 62443-4-1. The plant operator must implement the countermeasures defined in this section to ensure the cybersecure operation and protection of the device.

Security Context

The device is designed for use in an industrial CAN bus network, such as in applications in the field of Mobile Equipment. The application operator must ensure that the device is physically protected against unauthorized access. It must also be ensured that only well-known and trusted nodes are connected to the CAN bus network.

Decommissioning

Only adjustable parameter data are permanently saved. Parameter data can be deleted by restoring the factory settings. The operating hours are stored retentively. In case of doubt, the device must be physically destroyed to ensure that this data is also destroyed.

6 Commissioning

6.1 Commissioning via PACTwareDC and DTM

Note

Various software components, adapters, and cables are required as parameterization aids for the parameterization of a CANopen radar sensorsee chapter 2.6.2.

The various software components can be downloaded from www.pepperl-fuchs.com, on the respective MWC25M-L2M-B16 series product page. The software can be downloaded in compressed form as a ZIP file. After unzipping, we recommend installation using the appropriate MSI file.

We recommend installing the "CANopen Parameterization Tool" for easy installation and commissioning.

Make sure that you have these available for commissioning the sensor via PACTwareDC and DTM.

i

Installing Software Components

Certain software components will need to be installed to communicate with the sensor via CANopen using "PACTware" software and the associated DTM (Device Type Manager). Proceed as follows:

- 1. Preferably install the "CANopen Parameterization Tool."
 - → PACTware, PACTware DC, the driver, and the DTM for CAN communication are installed automatically. If a PACTware version is installed separately, you must install the driver and DTM for CAN communication separately.
- 2. Restart your computer to start the newly installed drivers.
- 3. Install the DTM for the MWC25M-L2M-B16 sensors.

Note

For the CAN/USB converter-SUBD9 to work, the compatible VCI driver must be installed first. This is done automatically when you install the "CANopen Parameterization Tool." If you want to install software components outside this package individually, ensure that the VCI driver is installed before connecting the CAN/USB converter-SUBD9 and then restart your computer.

Establish connection between sensor, CAN/USB converter, and PC

- Connect the sensor to input 1 of the T-distributor for the CAN/USB converter-SUBD9 using a 5pin connection cable.
- 2. Connect the power supply to input 2 of the T-distributor for the CAN/USB converter-SUBD9 using the adapter cable (2.10 mm DC coupling to 4-pin M12 plug).
- 3. Make sure that the terminator on the T-distributor is activated.
- 4. Connect the T-distributor to the SUBD9 plug on the CAN/USB converter-SUBD9.
- 5. Connect the USB cable of the CAN/USB converter-SUBD9 to a USB port on your work PC or laptop.
- 6. Connect the power supply of the CAN/USB converter-SUBD9 to the electric power supply.

Note

Before establishing a connection between PACTwareDC and the sensor, check whether the CAN communication between the sensor and the work computer via CAN/USB converter-SUBD9 is working. You can check this by seeing if the "USB" LED is lit green on the CAN/USB converter-SUBD9.

If this is not the case, check:

- whether the correct CAN-USB driver (VCI driver) is installed for the CAN/USB converter-SUBD9.
- whether the electric power supply for the CAN/USB converter-SUBD9 is switched on and all cordsets are connected correctly.
- whether the terminator integrated in the T-distributor is activated.

Establishing a Connection between PACTwareDC and the Sensor

1. Start PACTware DC on your work computer.

Figure 6.1

- 2. First click on "Device," followed by "Find new device..."
 - → PACTwareDC first retrieves the DTM for CANopen communication with the CAN/USB converter-SUBD9.

PACTware DC	合 Device 🛧 Favorites 🐵 Settings
1. Start	Select available connection
2. Select Communication	Sort by vendor
	Pepperl+Fuchs
	क
	CANopen Communication

Figure 6.2

3. Click on "CANopen Communication" to perform a scan of the connected CANopen devices.

PACTware DC	🛆 Device ☆	r Favorites 🛞 Settings		
1. Start	Select device			
2. Select Communication	Use selected device			
3. Connection Parameter	Address	Device Information		
4. Search	26	MN/Cacht La Dif / Departy Fushe		
5. Select Device	10	MWC25M-L2-BIO7 Pepperi+Fucits		
	16	Unknown Device/173 Seral-Num: 4446		

Figure 6.3

 \mapsto PACTwareDC finds connected devices.

4. Now select the desired device by double-clicking.

→ PACTwareDC establishes a connection to the sensor, allowing you to then access the sensor.

PACTware DC	合 Device ☆ Favorites 🐵 Settings					
1. Start	Set devic	Set device parameter				
2. Connection Parameter	Save a	Save as favorite Clone parameters				
3. Search 4. Select Device	=<	My Device MWC25M-L2M-B16	Information			
5. Select DTM	i	Information	Sensor information	\rightarrow		
6. Device Read from device	@o =	Configuration	Sensor Node id MVC28M_L2M-B16-V15 16 Hardware revision HW01.00			
Write to device	X	Analysis	Firmware revision			
Parameter	Ľ	Service	MWC25M-L2M-B16 # EPPPERL+FUCHS MWC25M-L2M-B16	-		×
			DTM de The DTM parameter values differ from the device parameter v DTM Ve ? Read data from device Write data to device	values. Ca	ncel	

Figure 6.4

6.1.1 Change Transmission Rate and Node ID (DTM)

You can change the node ID and transmission rate (hereinafter referred to as "baud rate") in the CANopen communication DTM. The "Connection Parameter" menu tree contains four menu items for configuring various CANopen-specific settings.

Note

Ensure that the CANopen master (here: CAN/USB converter) and the connected device have the same baud rate setting and that the master node ID is different from the device node IDs.

1. To do this, go to the PACTwareDC menu tree and click Connection Parameter.

PACTware DC 🚽	🛆 Devic	<mark>e</mark> 🛧 Favorites 🌾	》 Se	ttings	
1. Start	Set conne	ection parameter			
2. Connection Parameter	Contin	ue search			
Parameter	-,	My Device		Device Info	rmation
Scan list	=<	CÁNopen Communication		Device into	mation
Communication Log	(j)	Information		Vendor	Pepperl+Fuchs
About				Device Type	UC-PROG-CAN
About	()) 	Configuration		Device Function	Communication Device
3. Search				Tag	CANopen Communication
4. Select Device	Z	DTM list			
5. Select DTM	g	Devicelist			
6. Device					

Figure 6.5

2. Click "Devicelist" to display recognized devices. Select the relevant device and go to step 5.

3. If no devices are listed, click "Scan list" in the left-hand menu tree and click "Yes" to confirm the following prompt.

Figure 6.6

- 4. Click "Devicelist" againand select the relevant device .
- 5. Double-click the relevant device in the "Devicelist" to set the node ID and baud rate in another window.
- 6. Use the selection lists in the "Device parameters" window to set the required node ID (1 ... 127) and baud rate (125 ... 1000 kbit/s) and confirm with "OK."

PACTware DC	合 Device ☆ Favorites 🍪	Settings				
1. Start	Set connection parameter					
2. Connection Parameter	Continue search					
Parameter Scan list	My Device CANopen Communication	Devicelist				
Communication Log		Node id Device	Ser	ial Productcode	Revision	Vendor id
About		16 MWC25M-L	2M-516-V15 444	117440513	65536	1/3
About 3. Search	Configuration					
4. Select Device	DTM list		Device parameter]	
5. Select DTM	🔍 Devicelist		Node id Baudrate	16 ~ 250 kbit/s ~		
6. Device			ОК	Cancel		
Figure 6.7						

Note

To now gain access via the sensor DTM with the correct node ID, you must select the correct node ID for communication from the "DTM list."

7. Select the relevant device in the "DTM list" menu and set the correct node ID again.

PACTware DC	合 Device ☆ Favorites 🐵 Settings
1. Start	Set connection parameter
2. Connection Parameter	Continue search
Parameter Scan list	≡ My Device CANopen Communication DTM list
Communication Log	Node id Tag Device 1 Information 16 MWC2SM4.294-816 MWC2SM4.294-816
About 3. Search	Configuration
4. Select Device	CTM list
5. Select DTM 6. Device	Devicelist Node id 16 17 Ckose
	19 20 21

Figure 6.8

 \rightarrow You can now parameterize the device with the set node ID and baud rate in the device DTM.

6.2 Commissioning via CANopen Engineering Tool

Note

Before commissioning the sensor on a CAN bus, check whether the communication parameters of the sensor match your CANopen network. The factory default settings are a transmission rate of 250 kbit/s and a node ID of 16. If the node ID is already assigned or not desired and a different transmission rate is required, you can change these settings.

Basic commissioning steps

- Connect the sensor to the CAN bus and ensure a 24 V DC electric power supply. An extended
 operating voltage range is possible. Information on this can be found in the data sheet for your
 MWC25M-L2M-B16 series radar sensor.
- 2. If necessary, change the communication parameters of the sensor using a suitable CANopen Engineering Tool.
- For correct communication, make sure that a terminator and at least one other device are connected to the CAN bus. A monitoring tool is sufficient for this purpose.
 - → The status LED flashes green and the sensor is in the "Pre-operational" state. The sensor sends the bootup message with the CAN identifier 0x700+node ID (default 0x710). You can now parameterize the sensor using service data objects (SDOs).
 - → If communication conditions are incorrect, the status LED flashes red and the sensor is in the "Error-passive" state.

Note

The following sections describe basic parameterization settings for commissioning, operation, diagnostics, and restoring to the factory settings.

6.2.1 Change Transmission Rate and Node ID

Change the transmission rate (baud rate) and the node ID using the following steps:

- 1. Perform a conventional LSS scan with the vendor ID and product code. You can find this data in the data sheet or alternatively in object 0x1018. A fast scan can be performed if the sensor has the node ID 255. This is shown by rapid flashing of the green status LED.
- 2. If the sensor is found, set it to LSS configuration mode either using the "Switch state selective" service or all devices using the "Switch state global configuration" service.
- 3. Now set the required node ID and baud rate.
- Save the new values using the "Store configuration" service.
- 5. Send an NMT reset command to the sensor to activate the node ID.

→ The baud rate will be active after a successful "Activate bit timing" LSS service.

6.2.2 Enable Processing of the Process Data

To enable the sensor to send/receive process data, you must use an NMT Main device in accordance with CiA 301 to set the sensor to the Operational state.

The mapping of the process data is specified in the respective TPDO Mapping Parameter. Here, the available objects are coded in the various subindices. The process data sequence corresponds to the subindices sequence.

By default, only TPDO1 is enabled and the process data is mapped as follows:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Distance byte 0 LSB	Distance byte 1 MSB	Velocity byte 0 LSB	Velocity byte 1 MSB	Signal quality byte 0	8-bit counter		

Table 6.1

The mapping in the four available TPDOs is dynamic and this can be changed. The following objects can be mapped, see chapter 8.2.

- Distance
- Velocity
- Signal quality
- 8-bit counter
- 16-bit counter
- Error register
- Manufacturer status register
- Operating hours

Note

Please note the following aspects when changing the mapping entries of TPDO1 (subindices of 0x1A00). The coding describes the index, subindex, and size in bits. For object index 0x2000 subindex 0x01, which is 16 bits (0x10), 0x20000110 must be written. For another 8-bit object 0x2010:2, the next subindex 0x20100208 must be written.

To change the mapping, perform the following steps:

- 1. Disable TPDO1 by setting the "Invalid Bit" to 0x1800:1 COB ID (writing node ID+0x80000180. For example, for node ID 16 [0x10], this is: 0x80000190).
- 2. Disable the current mapping by writing a 0 to 0x1A00:0.
- 3. Change the mapping entries (subindices of 0x1A00) as required and note the above.
- 4. Enable mapping by writing the number of required mapping entries to 0x1A00:0. For example, you must enter a "3" for three objects.
- Enable TPDO1 by resetting the Invalid bit to 0x1800:1 COB ID (writing node ID+0x00000180. (For node ID 16 [0x10], this is: 0x00000190).

6.2.3 Restoring the Factory Defaults

You can restore the sensor's factory defaults using index 0x1011 "Restore default parameters":

- 1. 1. Write the signature 0x64616F6C ("daol" corresponds to "load" backward) to object 0x1011:1 of the sensor.
- 2. Switch the voltage supply to the sensor off and then on again (power cycle).
- 3. Alternatively, you can also perform a NMT Node Reset .
 - → The sensor's factory settings are now restored. However, the node ID, baud rate, and operating hours are not restored to the factory defaults.

6.2.4 Evaluate Error Messages

If an error occurs in the sensor, it sends a CANopen emergency message (EMCY) if EMCY sending is enabled. The COB ID of the emergency message can be changed in object 0x1014. The value node ID + 0x80 is stored by default, which results in the message 0x90 for node ID 0x10.

Each emergency message can only be sent once, even if the error persists. It consists of an "Error code" and additional manufacturer-specific information.

If the error no longer exists, the emergency message is sent once more with error code 0x0000. The manufacturer-specific information shows which error has disappeared. The manufacturer-specific information can be found in the description field of the sensor's EDS file.

The error register (object 0x1001) is updated for each emergency message according to the error category that occurs/disappears. You can call up a history of the emergency messages that have occurred using index 0x1003.

7 Parameterization and Analysis Using PACTware and DTM via CANopen

7.1 Overview

The parameters of the sensors are device-specific. In the DTM (Device Type Manager), these parameters are described in a well-structured way and partly supported with graphics. The DTM can be imported into various engineering tools from different system providers, DTM support provided. The sensor can then be parameterized or diagnosed using the appropriate tool (e.g., PACTware). The DTM menus are outlined below on the basis of the "PACTware" FTD frame application being used.

For simple and comprehensive parameterization of the sensor via CANopen and analysis of the sensor behavior, the DTM (Device Type Manager) described below offers you a wide range of options.

In addition to configuring the sensor, you can use the **Analysis** and **Observation** menus to display and record the sensor behavior during operation to adapt it in the best way possible to your application.

Note

The following screenshots from the DTM in the PACTware frame application are described for all versions of the MWC25-L2M-B16 series using the example of the MWC25M-L2M-B16-V15 sensor.

Context-Related Help Texts Via F1

In the DTM, you can access context-related help texts by clicking on the "?" icon in the displayed menu or by clicking on the required parameter and then pressing the F1 key. A display will then open showing information about the adjustment options of the relevant menu and its parameters.

You can also call up the DTM help using "Open manual"; see figure below.

Basic DTM Operating Functions

Below are a few basic operating functions for the DTM in the PACTware environment.

■ My Device MWC25M-L2M-B16) ← 2		3 Load data from file
(i) Information	Sensor informati	Save data to file Print parameter	
63.5	General information		Open manual
Configuration	Vendor name	Pepperl+Fuchs	(4)
0	Sensor	MWC25M-L2M-B16-V15	\smile
Analysis	Device family	Radar Distance Sensor	
8	Part number	70134318-100000	
Service	Serial number	40000143855229	
5 Current Reading 8122 mm	Function tag Location tag Application specific tag	*** Your automation, our passion.	
Connected O Database			•

Figure 7.2

- 1 Basic menu structure of the DTM. When a menu is selected, clickable tile icons for submenus are displayed on the right, or information or control buttons are displayed directly.
- 2 Navigation: return from the submenu to the menu
- 3 Navigation to switch between the submenus and parameter handling
- 4 Manage parameter data, display DTM help via "Open manual"
- 5 Status indicator: radar sensor connection to DTM

7.2 Menu Item Information

Figure 7.3

In the **Information** menu item, information about the sensor, product -specific CANopen information, and DTM details can be accessed via the respective submenus.

- In the Sensor information submenu
 - Hard-coded vendor and device information is displayed, as is the number of operating hours. These fields are read-only.
 - You can input application-specific tags to identify and mark your sensor in the system environment. The "User tag" and "Application specific tag" fields can be used to input text information (strings).
 - Detailed information about the hardware and software versions of the device, a link to the product-specific website, and the operating hours are listed.
- In the CANopen submenu
 - CANopen identification information such as vendor ID, product code, etc., and the node ID are displayed.
- In the DTM details submenu
 - The DTM version and the creation date are displayed.

7.3 Menu Item Configuration

The **Configuration** menu item can be used to parameterize the sensor via the respective submenus.

Submenu CANopen

≡<	My Device MWC25M-L2M-B16	÷			$\langle \rangle \equiv ?$
í	Information	CANopen			
@o	Configuration	Producer heartbeat time	1000 ms		
\sim		Transmission type	254 event-driven (manufacturer-specific)	-	
X	Analysis	PDO mapping 1	Distance (16bit)	•	
න	Constant	PDO mapping 2	Velocity (16bit)	•	
	Service	PDO mapping 3	Signal quality (8bit)	•	
		PDO mapping 4	Cycle counter (8bit)	•	
	Current Reading				
	8123 mm				

Figure 7.4

In the **CANopen** submenu, you can set the producer heartbeat time and the PDO mapping for the sensor.

Submenu Sensor

Ш	My Device MWC25M-L2M-B16	÷			$\langle \rangle \equiv ?$
í	Information	Sensor			
80	Configuration	Measurement mode Filter mode	best reflection	· Filter strength	low (11)
Q	Analysis			_ · ····	
S	Service	Foreground suppression	500 mm	Background suppression	25000 mm
		Min. velocity suppression	0 cm/s	Max. velocity suppression	2000 cm/s
		Sampling rate	50 Hz		
	Current Reading				
	8123 mm				

Figure 7.5

In the **Sensor** submenu, you can parameterize the behavior during radar measurement and its evaluation.

Submenu LED Configuration

≡×	My Device MWC25M-L2M-B16	~		$\langle \rangle \equiv ?$
í	Information	Configuration		
@ •	Configuration	LED configuration	•	
Ø	Analysis			
Ŋ	Service			
)	Current Reading 8123 mm			

In the **LED configuration** submenu, you can enable or disable the sensor's sensor LED and status LED.

7.4 Menu Item Analysis

Figure 7.7

In the Analysis menu item, you can select between the Observation and Analysis submenus.

- Submenu Observation
- For tracking and recording measured values and corresponding behavior.
- Submenu Analysis For visualizing and analyzing all reflections received by the radar sensor.

7.4.1 Submenu Observation

Figure 7.8

You can use the **Observation** submenu item to track and record data from the radar sensor over time, and the corresponding behavior of the measured object's signal quality. You can choose from the "Visual observation" (1) or "Event-driven data logging" (2) application focuses.

Visual Observation

The visual observation functions (1) allow you to observe, during commissioning for example, whether the data of the sensor behave as intended.

When you first access the **Observation** menu item in the DTM, automatic recording of data will start in the graphic. From this point in time, recording will run continuously in the background. The data display works according to the "follow-mode" principle. It will always track the current measured value in accordance with the rescale settings in the x-axis and make sure it is visible in the display. You can save the data displayed in this trend graphic in a file in various file formats for evaluation at a later stage.

Placing the check mark in front of the available measured variables or output statuses selects which data will appear in the graphic.

Event-Driven Data Logging

Event-driven data logging functions (2) allow you, for cause analysis for example, to monitor sensor logic in such a way that an event occurring sporadically is recorded in a file. You can specify the recording conditions from predefined trigger criteria such as changing the status of the switching output or a change to the value of the distance measurement. The DTM function then observes the sensor and writes the measured variables and output statuses to a file if an event occurs.

Note

If the DTM is closed while data is being recorded, recording automatically stops. Values recorded up to this point in time will remain in the corresponding file.

Menu Description

Figure 7.9

No.	Name	Description
1	Follow mode on/off	If follow mode is "On," data is displayed in accordance with the current rescale setting of the x-axis. The measured value is visible in the display. If follow mode is "Off," the data stops being continuously displayed. When follow mode is restarted, data recorded in the background in the meantime is added to the graphic.
2	Save trend data	Only for visual observation You can save data recorded via follow mode in one of three avail- able file formats (.csv, .xml, or .txt) by pressing the "Save trend data" button. In addition to this data, sensor settings (parameter values) will also be saved. This means it is possible to evaluate recorded data later "offline."
3	Load data	You can load the saved trend data (visual observation) or logging data (event-driven data logging) into the DTM again by pressing the "Load data" button to assess or evaluate the data. Files with recorded data combined with the parameter settings can be very useful for discussing issues with our experts. Note: You can only load a saved file when disconnected from the sensor.
4	Delete	Pressing the "Delete" button allows you to delete all data in the display area (10). All data recorded up to this point is discarded and the display is cleared. Recording automatically restarts from scratch.
5, 6, 7	Data displayed	Clicking the relevant checkbox enables or disables the presenta- tion of distance data, velocity data, and the signal quality of the reflection amplitude in the display area, where lines are displayed in the colors shown in the legend.

No.	Name	Description
8	Interval	You can use the "Interval" selection function to specify the time interval at which data is recorded in the graphic. There are several fixed intervals available between 100 ms and 1 hour.
9	Start logging	Only for event-driven data logging You can use the "Start recording" button to start and end event- driven recording of data in a file (data logging).
10	Settings for data log- ging	Only for event-driven data logging You can use the "Settings for data logging" button to specify events for data recording and the name of the log file via a menu.
11	Display area	In the display area, the "Distance," "Velocity," and "Signal quality" checkboxes can be used to display selected measured variables and output statuses in the form of line diagrams.

Table 7.1

Scaling the X-Axis and Navigating to Significant Data

You can use the left and right mouse buttons to rescale the displayed area in the x direction or move the display to focus on the required data.

To do so, you will need to move the cursor over the x-axis until the cursor becomes a hand icon. Then hold down the required mouse button and move the hand icon left or right along the x-axis.

- Both mouse buttons: Moves the display area to the left or right.
- Right mouse button: Rescales the x-axis from the right, and retains left time value.
- Left mouse button: Rescales the x-axis from the left, and retains right time value.

Data Logging Setting

Pressing the "Settings for data logging" button opens the menu displayed below.

		Start logging	Settings for data logging
ا ه		:	×
Name of logfile	Date/time		750 700
Data logging mode	Continuous Continuous Fixed time interval	•	550 600 g
	Value changes exceed defined tolerances Value violating defined limits	3	50 500 - Good
	ОК	Cancel	Velocity 0 400

Figure 7.10

You can use the "Name of log file" field to set the file path and file name for the logging data.

You can select "Data logging mode" to set the events that trigger automatic data logging. You need to press the OK button at the end to save the setting.

Measured data can be recorded either on a continuous or event-driven basis. For event-driven recording, the amount of data to be recorded before and after the event is independently defined via two parameters.

The following recording modes are available:

Continuous

Data is continuously recorded and saved in the file. Data is sequentially recorded, but is not necessarily consistent. Individual data may not be recorded depending on the sensor's repeat measurement rate, data transmission rate, computer capacity, and operating system tasks.

- Fixed time interval Data is recorded at fixed time intervals. The time interval can be selected in fixed increments between 500 ms and 2 hours.
- Value changes exceed defined tolerances

Data recording is triggered by changes to data that exceed the specified tolerance limits. The reference value is the distance value determined during the previous measurement. The permissible tolerances can be specified either as an absolute value, i.e., in mm, or as a percentage, relative to the previous measurement. If this tolerance limit is exceeded from one measurement to the next, data recording is triggered.

Value violating defined limits
 Data is recorded if specified, absolute limit values are exceeded. The distance value in
 mm and the value at the sensor analog output (if physically present on the sensor) are
 available as reference values. In addition, the "Trigger" parameter can be used to deter mine whether data recording is to take place once per instance of the limit value being
 exceeded or for the complete duration.

7.4.2 Submenu Analysis

To better detect the reflections located in the sensor's detection field, all the reflections of one or more measurements received by the radar sensor can be visualized and analyzed in the Analysis submenu item.

The general procedure is as follows:

- **1.** You must first establish a connection to one of the sensors integrated into the application environment.
- 2. It is a good idea to take multiple reflection samples.

 \rightarrow The corresponding data will then be shown in the display.

3. Finally, verify the detected settings by taking fresh reflection samples.

 \mapsto The detected settings can be saved to/loaded from a file.

Menu Description

Figure 7.11

No.	Name	Description
1	Reflection (echo) sampling	In the "Reflection sampling" area, you can choose whether to record a single sample, 50 cycles, or continuous samples. Using the continuous display also provides you with an alignment aid. You can use the displayed amplitude of the evaluated reflecting object to check whether the sensor is optimally aligned with the object. You will know this has worked when slightly varying the alignment no longer increases the displayed reflection amplitude. Note: For information about alignment and the amplitude height of reflections, see also the "Reflectiveness of Materials" (see chapter 3) chapter.
2	Display in graphic	You can use the "Display in graphic" area to set whether all of the sampled reflecting objects are shown together or only the most recently sampled object image is shown.
3	Start	 The "Start" button is used to start and stop reflection sampling. After reflection sampling has started, the button changes to "Stop." In the case of "single" reflection sampling, reflection sampling stops after one measurement.
		 In the case of "50 cycles" reflection sampling, reflection sampling automatically stops after 50 measurements. You can stop it at any time by pressing the button again.
		 In the case of "continuous" reflection sampling, reflections will con- tinue to be sampled until you press the button again.
4	Display area	The sampled object reflections are displayed in the form of thin columns during and after completion of sampling. The counter in the upper left corner indicates the number of reflection samples that the current graphic is based on.
5	Save to file	You can save the reflection sample as a .CSV file, .XML file, or .TXT file by pressing the "Save to file" button. In addition to this data, sensor settings (parameter values) will also be saved. This means it is possible to evaluate recorded data later "offline."
6	Load file	You can load previously saved reflection samples to the DTM by pressing the "Load file" button, allowing you to assess or evaluate the samples. Note: You can only load a saved file when disconnected from the sensor.
7	Detailed information on selected reflec- tion	Clicking on one of the object reflection columns shown in the graphic displays detailed information about the selected reflection below the graphic.
8	Clear reflection sam- pling	You can use the "Clear reflection sampling" button to clear the dis- play area and restore it to its original state.
9	Rescale diagram	You can use the "Rescale diagram" (magnifying glass) button to enlarge the view along the x-axis up to 5-fold in 100 % incre- ments. If magnification is set to more than 100 %, the displayed area can be shifted along the x-axis (by scrolling) to be able to obtain a magnified view of sections of the entire sample area. To do so, right-click on the x-axis, keep it pressed and move left or right with the mouse.

Table 7.2

7.5 Menu Item Service

=×	My Device MWC25M-L2M-B16	Service	≡ ?
í	Information	Reset to factory defaults	
@o	Configuration	Product website	
X	Analysis		
2	Service		
	Current Reading 8123 mm		

Figure 7.12

In the Service menu item, you can restore the sensor to its factory settings.

Clicking the "Reset to factory defaults" button will restore the sensor to its factory settings. All previous parameter changes are lost as a result. After the voltage supply has been switched off and on again (power cycle), the sensor rinitializes on the bus with its factory defaults.

Note

H

The node ID, baud rate, and operating hours are not restored to the factory settings.

Use the "Product website" button to go to the product area information page (landing page) for the MWC25M-L2M-B16 series.

8 Parameterization Using the CANopen Engineering Tool with CANopen Objects

8.1 CANopen Overview

What Is CANopen?

CANopen is a multimaster-compliant fieldbus system based on the CAN (Controller Area Network).

Subscribers on the CANopen fieldbus communicate not with addresses, but with message identification numbers (message identifiers or CAN IDs for short). This allows all devices to access the fieldbus at any time. Fieldbus access is according to the CSMA/CA principle (Carrier Sense Multiple Access/Collision Avoidance).

CollisionAvoidancemeans that the dominant signal "0" overwrites the recessive signal "1" in the event of simultaneous sending. The bus node that sends the recessive level detects this and cancels its data transfer. This means that messages with a lower identifier have a higher priority, which ensures that messages with a higher priority are not disrupted by this procedure.

Each device intercepts the fieldbus and can send messages whenever the fieldbus is free. The device with the highest priority, i.e., the lowest identifier, receives the access right. Devices with a lower priority interrupt the data transfer and make a further access attempt once the fieldbus becomes free. However, this also means that there is no guaranteed transmission time for a message and that it is better to avoid an excessive bus load.

In CANopen, the CAN identifier is encoded in a COB-ID (Communication Object Identifier). This object type also contains information about whether the message is active or other CAN frame-specific options. The CAN identifier for a CANopen message consists of the function code and the node ID number.

The function code describes the message type:

Service data objects (SDOs)

For parameterization of object directory entries

- Any length
- Transmission "on request"
- SDOs of a device are combined in the object directory
- Process data objects (PDOs)
 - For transmitting real-time data
 - Maximum 8 bytes long
 - Cyclical or event-controlled transmission
 - Distinction between send (max. 512) and receive PDOs (max. 512)
 - In the CAN, PDOs occupy their own identifier
- Messages for network management (NMT) For controlling the state machine of the CANopen device and for monitoring the network nodes
- Further objects such as synchronization object (SYNC) and error messages (EMCY).

What is the difference between PDO and SDO?

PDO and SDO are two types of communication object in CANopen that are used to exchange data between different devices within the network.

PDO (Process Data Object): PDOs are used for exchanging process data cyclically between the nodes of a CANopen network. They are used for exchanging immediate data such as sensor measurements, actuator controls, and status information between the devices. PDOs are sent and received at regular time intervals and are usually restricted to a limited amount of data.

SDO (Service Data Object): SDOs are used for exchanging configuration and diagnostic data non-cyclically. They make it possible to read, write, and configure data objects in the devices. Unlike PDOs, which are sent cyclically,, SDOs are only used if a configuration change or data exchange are required outside the cyclic PDO exchange. SDOs provide greater flexibility in configuring and diagnosing devices, but they also require greater communication outlay and latency than PDOs.

In summary, it can be said that PDOs, are used to exchange immediate data cyclically, while SDOs are used to exchange configuration and diagnostic data non-cyclically. Both play an important role in a CANopen network and enable communication and interaction between the devices.

Note

EDS File

An EDS configuration file (EDS Electronic Datasheet) is available for easy integration and parameterization of the radar sensor. This contains the CANopen objects with all the parameter options and explanations to be configured. This can be found online at www.pepperl-fuchs.com, on the product page for the MWC25M-L2M-B16 series.

More Information

CAN in Automation (CiA)

International Users and Manufacturers Group e.V.

Kontumazgarten 3

90429 Nuremberg, Germany

http://www.can-cia.org/

References: CAN Application Layer for industrial applications CAL-based communication profile for industrial systems

- CiA Draft Standard 301
- CiA Draft Standard 305 Layer Setting Services

PEPPERL+FUCHS

8.2 CANopen Object Directory

Note

CANopen Parameter Communication

This section contains the information required for the data exchange via CANopen. Data is exchanged with the sensor via objects. These objects and their respective permissible functions are defined in the following SDO directory.

The sensor supports the identifier format 2.0A (11-bit identifier) according to the CAN specification. The extended 29-bit identifier is not supported.

The device-specific object directory contains all parameters and process data for the sensor. The object directory has two defined areas.

- Ox1000 ... 0x1FFF Communication segment: predefined CANopen objects as specified in CiA301
- 0x2000 ... 0xFFF Manufacturer segment: manufacturer-specific CANopen objects

Π

Note

PDO mapping is not possible for most CANopen objects. For CANopen objects for which mapping is enabled, this is explicitly mentioned in the relevant sections of the CANopen objects.

The sensor is described in general terms in the 0x1000 area up to and including object 0x1FFF. This includes the device ID, the name of the vendor, and the communication parameters, among others. The 2nd area starting with object 0x2000 covers the specific functionality of the sensor.

An entry in the object list is identified via a 16-bit index and an 8-bit subindex. The parameters and process data are described in detail in this manual as individual objects and are listed in tables. The following object list only lists the 16-bit index objects; the subindices are then described in the respective object descriptions. Access to device parameters and process data, such as input signals and output signals, device functions, and network variables, is provided via the assignment within the object list in standardized form over the CANopen network.

Note

The supported CANopen objects are listed below. Detailed information about these can be found in the EDS file.

Supported Objects

Object	Description
0x1000	Device type
0x1001	Error register
0x1002	Manufacturer status register
0x1003	Predefined error field, maximum of 32 entries
0x1005	COB ID SYNC
0x1008	Manufacturer device name
0x1009	Manufacturer hardware version
0x100A	Manufacturer software version
0x1010	Store parameters
0x1011	Restore default parameters
0x1014	COB-ID emergency
0x1015	Inhibit time emergency
0x1017	Producer heartbeat time
0x1018	Identity object
0x1020	Verify configuration
0x1200	Server SDO parameter (default SDO)
0x1800	TPDO1 communication parameter
0x1801	TPDO2 communication parameter
0x1802	TPDO3 communication parameter
0x1803	TPDO4 communication parameter
0x1A00	TPDO1 mapping parameter
0x1A01	TPDO2 mapping parameter
0x1A02	TPDO3 mapping parameter
0x1A03	TPDO4 mapping parameter
0x2000	Process data: Distance value, velocity value, signal quality, 8-bit counter, 16-bit counter
0x2001	Operating hours
0x2010	Identification and Info
0x4000	Measurement Configuration
0x4001	LED Configuration
0x4100	Reflections array list

Table 8.1

8.3 Object 0x1000 Device Type

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1000	0x00	Device Type	unsigned32 ¹	ro (= r ead o nly)	0x0

Table 8.2

1. Data type without prefix, 32 bit

8.4 Object 0x1001 Error Register

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1001	0x00	Error Register	unsigned8	ro	0x0

Table 8.3

The 8-bit data of the error register describes errors as follows:

Bit							
7	6	5	4	3	2	1	0
Manufac- turer-spe- cific	Reserved	Devices pro- filer	Communi- cation errors	Overtem- perature	Undervolt- age	Current	Generic error not specified in more detail ¹

Table 8.4

1. Flag is set for every error message

8.5 Object 0x1002 Manufacturer Status Register

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1002	0x00	Manufacturer Status Register	unsigned 32	ro	0

Table 8.5

The 32-bit data of the error register describes errors as follows:

Bit							
32 7	6	5	4	3	2	1	0
Reserved	Signal fault: In the event of noise or unexpected signal	Warning message: "No detected object." Only if parameter- ized.	Overtem- perature	Undervolt- age	Hardware error	No read- ing yet	No error

Table 8.6

MWC25M-L2M-B16 Series

Parameterization Using the CANopen Engineering Tool with CANopen Objects

8.6	Object 0x1003 Predefined Error Field

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1003	0x00	Predefined Error Field (Indicates the number of errors that occurred)	unsigned 32	rw	0
	0x01	Most Recent Error	unsigned 32	ro	No error
			unsigned 32	ro	
	0x20	Oldest Error	unsigned 32	ro	No error

Table 8.7

Note

Detailed information about this object can be found in the EDS file.

8.7 Object 0x1005 COB ID SYNC

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1005	0x00	COB-ID SYNC Message	unsigned32	rw (= read/write)	0x0000080

Table 8.8

The 32-bit data of the identifier in the SYNC message describes the synchronization as follows:

Bit							
31	30	29	10 0				
Has no meaning	0 ¹	0	Identifier 0x80 = 128 _{dec}				

Table 8.9

1. Always 0, since sensor is only for SYNC consumers, not SYNC producers

8.8 Object 0x1008 Manufacturer Device Name

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1008	0x00	Manufacturer Device Name	visible string ¹	ro	MWC25M-L2M- B16-*

Table 8.10

1. ASCII string, variable length

8.9 Object 0x1009 Manufacturer Hardware Version

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1009	0x00	Manufacturer Hardware Ver- sion	visible string	ro	HW01.00 Value may vary

Table 8.11

2023-12

47

8.10 Object 0x100A Manufacturer Software Version

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x100A	0x00	Manufacturer Software Version	visible string	ro	FW01.00 Value may vary

Table 8.12

8.11 Object 0x1010 Store Parameters

Note

This object is only required for continuous object storage. All configuration parameters are saved automatically.

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1010	0x00	Highest subindex supported	unsigned 8	ro	0x01
0x1010	0x01	Save all parame- ters	unsigned 32	ro	0x0000002

Table 8.13

8.12 Object 0x1011 Restore Default Parameters

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1011	0x00	Highest subindex supported	unsigned 8	ro	0x01
	0x01	Restore all default parame- ters	unsigned 32	rw	0x0000001

Table 8.14

To restore the factory parameters, write the specific code "0x64616f6c" to parameter 0x1011:1.

After turning the sensor off and on again or performing an NMT node reset, the factory settings are restored. Reading always restores the default value. It affects all objects of 0x1000 ... 0x6FFF.

Note

The node ID, baud rate, and operating hours are not restored to the factory settings.

8.13 Object 0x1014 COB ID Emergency

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1014	0x00	COB-ID emer- gency	unsigned32	rw	NODEID + 0x80

Parameterization Using the CANopen Engineering Tool with CANopen Objects

8.14 Object 0x1015 Inhibit Time Emergency

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1015	0x00	Inhibit time emer- gency (As a Multiple of 100 µs)	unsigned16	rw	0x0

Table 8.16

8.15 Object 0x1017 Producer Heartbeat Time

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1017	0x00	Producer Heart- beat Time ¹	unsigned16	rw	0

Table 8.17

1. Time span [ms] between two sent heartbeat messages

8.16 Objekt 0x1018 Identity Object

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1018	0x00	Highest subindex supported	unsigned8	ro	0x04
	0x01	Vendor ID	unsigned32	ro	0xAD
	0x02	Product code	unsigned32	ro	0x07000001 (example for MWC25M-L2M-B16-V15)
	0x03	Revision number	unsigned32	ro	0x0010000
	0x04	CANopen serial number	unsigned32	ro	Specific to device

Table 8.18

Note

The CANopen serial number is independent of the P+F serial number and is unique to each device.

8.17 Object 0x1020 Verify Configuration

Index	Subindex	Designation	Data Type	Attribute	Default Value
	0x00	Highest subindex sup- ported	unsigned 8	ro	0x02
0x1020	0x01	Configuration Date (number of days since 01/01/1984)	unsigned 32	rw	0x0000000
	0x02	Configuration Time (ms after midnight)	unsigned 32	rw	0x00000000

Table 8.19

8.18 Object 0x1200 Server SDO Parameter (Default SDO)

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1200	0x00	Highest subindex supported	unsigned8	ro	0x02
	0x01	COB ID Client to Server	unsigned32	ro	NODEID + 0x600
	0x02	COB ID Server to Client	unsigned32	ro	NODEID + 0x580

Table 8.20

8.19 Object 0x1800 Transmit PDO Communication Parameter 1

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1800	0x00	Highest subindex sup- ported	unsigned8	ro	0x06
	0x01	COB ID	unsigned32	rw	NODE ID+0x00000180
	0x02	Transmission Type	unsigned8	rw	254
	0x03	Inhibit Time	unsigned16	rw	0
	0x05	Event Timer	unsigned16	rw	0
	0x06	SYNC Start Value	unsigned8	rw	0

Table 8.21

8.20 Object 0x1801 Transmit PDO Communication Parameter 2

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1801	0x00	Highest subindex supported	unsigned8	ro	0x06
	0x01	COB ID	unsigned32	rw	NODE ID+0x00000280
	0x02	Transmission Type	unsigned8	rw	254
	0x03	Inhibit Time	unsigned16	rw	0
	0x05	Event Timer	unsigned16	rw	0
	0x06	SYNC Start Value	unsigned8	rw	0

8.21 Object 0x1802 Transmit PDO Communication Parameter 3

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1802	0x00	Highest subindex supported	unsigned8	ro	0x06
	0x01	COB ID	unsigned32	rw	NODE ID+0x00000380
	0x02	Transmission Type	unsigned8	rw	254
	0x03	Inhibit Time	unsigned16	rw	0
	0x05	Event Timer	unsigned16	rw	0
	0x06	SYNC Start Value	unsigned8	rw	0

Table 8.23

8.22 Object 0x1803 Transmit PDO Communication Parameter 4

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1802	0x00	Highest subindex supported	unsigned8	ro	0x06
	0x01	COB ID	unsigned32	rw	NODE ID+0x00000480
	0x02	Transmission Type	unsigned8	rw	254
	0x03	Inhibit Time	unsigned16	rw	0
	0x05	Event Timer	unsigned16	rw	0
	0x06	SYNC Start Value	unsigned8	rw	0

Table 8.24

8.23 Object 0x1A00 TPDO1 Mapping Parameter

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1A00	0x00	Highest subindex	unsigned8	rw	0x04
	0x01	Mapping Entry 1	unsigned32	rw	0x20000110
	0x02	Mapping Entry 2	unsigned32	rw	0x20000210
	0x03	Mapping Entry 3	unsigned32	rw	0x20000308
	0x04	Mapping Entry 4	unsigned32	rw	0x20000508
	0x05	Mapping Entry 5	unsigned32	rw	0x0000000
	0x06	Mapping Entry 6	unsigned32	rw	0x0000000
	0x07	Mapping Entry 7	unsigned32	rw	0x0000000
	0x08	Mapping Entry 8	unsigned32	rw	0x0000000

8.24 Object 0x1A01 TPDO2 Mapping Parameter

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1A01	0x00	Highest subindex	unsigned8	rw	0x04
	0x01	Mapping Entry 1	unsigned32	rw	0x0000000
	0x02	Mapping Entry 2	unsigned32	rw	0x0000000
	0x03	Mapping Entry 3	unsigned32	rw	0x0000000
	0x04	Mapping Entry 4	unsigned32	rw	0x0000000
	0x05	Mapping Entry 5	unsigned32	rw	0x0000000
	0x06	Mapping Entry 6	unsigned32	rw	0x0000000
	0x07	Mapping Entry 7	unsigned32	rw	0x0000000
	0x08	Mapping Entry 8	unsigned32	rw	0x0000000

Table 8.26

8.25 Object 0x1A02 TPDO3 Mapping Parameter

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1A02	0x00	Highest subindex	unsigned8	rw	0x04
	0x01	Mapping Entry 1	unsigned32	rw	0x0000000
	0x02	Mapping Entry 2	unsigned32	rw	0x0000000
	0x03	Mapping Entry 3	unsigned32	rw	0x0000000
	0x04	Mapping Entry 4	unsigned32	rw	0x0000000
	0x05	Mapping Entry 5	unsigned32	rw	0x0000000
	0x06	Mapping Entry 6	unsigned32	rw	0x0000000
	0x07	Mapping Entry 7	unsigned32	rw	0x0000000
	0x08	Mapping Entry 8	unsigned32	rw	0x0000000

Table 8.27

8.26 Object 0x1A03 TPDO4 Mapping Parameter

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x1A03	0x00	Highest subindex	unsigned8	rw	0x04
	0x01	Mapping Entry 1	unsigned32	rw	0x0000000
	0x02	Mapping Entry 2	unsigned32	rw	0x0000000
	0x03	Mapping Entry 3	unsigned32	rw	0x0000000
	0x04	Mapping Entry 4	unsigned32	rw	0x0000000
	0x05	Mapping Entry 5	unsigned32	rw	0x0000000
	0x06	Mapping Entry 6	unsigned32	rw	0x0000000
	0x07	Mapping Entry 7	unsigned32	rw	0x0000000
	0x08	Mapping Entry 8	unsigned32	rw	0x0000000

Parameterization Using the CANopen Engineering Tool with CANopen Objects

8.27 Object 0x2000 Process Data

Note PDO mapping is possible for these CANopen objects.

Index	Subindex	Designation	Data Type	Attribute	Default Value	Meaning
0x2000	0x00	Highest subin- dex supported	unsigned 8	ro	0x06	
	0x01	Distance	unsigned 16	ro	Assigned to the mapping object 0x1A00 by default	Distance value to the mea- sured object in mm 16-bit distance of 500 50,000 mm Resolution: 1 mm Object in dead band (300 500 mm) = 0x0000 No object detected = 0x7FFF
	0x02	Velocity	integer16		Assigned to the mapping object 0x1A00 by default	Relative velocity to the mea- sured object in cm/s 16-bit velocity value of -8000 cm/s +8000 cm/s "-" means object approaching *+" means object moving away Resolution: 1 cm/s (0.01 m/s) 0x7FFF = object in dead band 0x7FFF = No object detected
	0x03	Signal quality	unsigned 8	ro	Assigned to the mapping object 0x1A00 by default	Signal quality of the radar sig- nal reflected by the object. Possible values: 0x00 = no object detected 0x01 = insufficient signal qual- ity 0x14 = excellent signal quality
	0x04	Cyclic counter 16 bit	unsigned 16	ro	Not assigned to mapping object 0x1A00 by default	16-bit counter Cyclic counter increases after each measur- ing cycle, skips the zero (zero still no process data update) Possible values: 0x01 0xFFFF (1 65,535)
	0x05	Cyclic counter 8 bit	unsigned 8	ro	Assigned to the mapping object 0x1A00 by default	8-bit counter Cyclic counter increases after each measur- ing cycle, skips the zero (zero still no process data update) Possible values: 0x01 0xFF (1 255)

8.28 Object 0x2001 Operating Hours

Index	Subindex	Designation	Data Type	Attribute	Default Value
0x2001	0x00	Operating hours	unsigned 32	ro	0x00000000 Value changes over time Value in full hours, n+1 is incrementally cotttunted upward each time power is resupplied.

Table 8.30

8.29 Object 0x2010 Identification and Info

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x2010	0x00	Highest subin- dex supported	unsigned8	ro	0x09	
	0x01	Vendor name	string	ro	Pepperl+Fuchs	Vendor name
	0x02	Vendor text	string	ro	www.pepperl- fuchs.com	Website
	0x03	Product ID	string	ro	70134318-xxxxxx	Item number
	0x04	Product text	string	ro	Radar distance sensor	Product text
	0x05	Serial number	string	ro	Individually for each device	Serial number of the device
	0x06	Application- specific tag	string	rw	Your automation, our passion	Application-specific tag = free text
	0x07	Function tag	string	rw	***	Function tag = free text
	0x08	Location tag	string	rw	***	Location tag = free text
	0x09	Unique prod- uct ID	string	ro	https://pefu.de/ <ser ialnumber></ser 	Link to the device-specific product page

Parameterization Using the CANopen Engineering Tool with CANopen Objects

8.30 Object 0x4000 Measurement Configuration

Index	Subindex	Designation	Data Type	Attribute	Default Value	Meaning
0x4000	0x00	Highest subindex supported	unsigned8	ro	0x09	
	0x01	Measurement mode	unsigned8	rw	0x00	Sets the measurement mode for the radar sensor The possible settings are: 0x00 = closest distance 0x01 = best reflection 0x02 = fastest velocity
	0x02	Measurement rate	unsigned16	rw	50	Sets the sampling rate in Hz in "Operational mode" Possible values: 1, 2, 200 [Hz]
	0x03	Filter mode	unsigned8	rw	0x01	Sets the filter operating mode. Possible values: 0x00 = no filter 0x01 = Median Filter You can set the filter strength of the "Median Filter" in subindex 0x04.
	0x04	Filter strength	unsigned8	rw	0x02	Sets the filter strength for the "Median Filter". Possible values: 0x00 = very low (3) 0x01 = low (11) 0x02 = medium (21) 0x03 = high (51) 0x04 = very high (101)

Table 8.32

The median filter belongs to the subset of nonlinear filters. This filter is often used to eliminate outliers in signal processing. N readings (see object 0x4000, sub 0x04 filter strength) are stored in a sorted field and only the value at the middle position of the field is used. When a new reading is transferred to the Median Filter, the oldest reading is replaced with the new one and the list is re-sorted.

Parameterization Using the CANopen Engineering Tool with CANopen Objects

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4000	0x05	Event configu- ration	unsigned8	rw	0x00 (disabled)	Allows you to configure an event that triggers an emer- gency message. Possible values: 0x00 = disabled 0x01 = "No object" triggers the emergency message
	0x06	Foreground suppression	unsigned16	rw	500	Foreground suppression: Distance value in mm for sup- pressing objects in the front sensing range. Possible values: 300 49,999 [mm]
	0x07	Background suppression	unsigned16	rw	25,000	Background suppression: Distance value in mm for sup- pressing objects in the back sensing range. Possible values: 301 50,000 [mm] Objects at distances greater than this value are not detected.
	0x08	Minimum velocity sup- pression	unsigned16	rw	0	Minimum velocity suppres- sion: Absolute velocity value in cm/s for suppressing objects below this value. Possible values: 0 7999 [cm/s]
	0x09	Maximum velocity sup- pression	unsigned16	rw	2000	Maximum velocity suppres- sion: Absolute velocity value in cm/s for suppressing objects above this value. Possible values: 1 8000 [cm/s]

Table 8.33

8.31 Object 0x4001 LED Configuration

Index	Subindex	Designation	Data Type	Attribute	Default Value	Meaning
0x4001	0x00	Highest subin- dex supported	unsigned 8	ro	0x01	
	0x01	LED configu- ration	bool	rw	0x00	Sets whether all LED indica- tors on the sensor are enabled or disabled. Possible values: 0x00 = all LEDs enabled 0x01 = all LEDs disabled

Table 8.34

8.32 Object 0x4100 Reflection Array List

This object contains up to ten reflections from objects. All reflections are output without the influence of filters or suppressions.

Each reflection indicates the following values:

- Distance in mm
- Velocity in cm/s
- Amplitude in digits

Note

If a reflection stops being detected or an extra reflection is detected while reading the sensor data, the following objects will move forward or backward. This may cause inconsistent data to appear when reading. The use of object 0x4100 is only recommended if all object reflections are read after a measurement before the next measurement starts.

We recommend using object 0x4100, Sub 0x1F instead. This object guarantees consistent reading of all reflections.

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x00	Highest subindex supported	unsigned8	ro	0x31	
	0x01	Reflection 1 Dis- tance	real32	ro	-	Contains the distance value of the first reflection in mm
	0x02	Reflection 1 Velocity	real32	ro	-	Contains the velocity value of the first reflection in cm/s
	0x03	Reflection 1 Ampli- tude	real32	ro	-	Contains the amplitude value of the first reflection in digits

Table 8.35

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x04	Reflection 2 Distance	real32	ro	-	Contains the distance value of the second reflection in mm
	0x05	Reflection 2 Velocity	real32	ro	-	Contains the velocity value of the sec- ond reflection in cm/s
	0x06	Reflection 2 Amplitude	real32	ro	-	Contains the amplitude value of the second reflection in digits

Table 8.36

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x07	Reflection 3 Distance	real32	ro	-	Contains the distance value of the third reflection in mm
	0x08	Reflection 3 Velocity	real32	ro	-	Contains the velocity value of the third reflection in cm/s
	0x09	Reflection 3 Amplitude	real32	ro	-	Contains the amplitude value of the third reflection in digits

Table 8.37

MWC25M-L2M-B16 Series

Parameterization Using the CANopen Engineering Tool with CANopen Objects

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x0A	Reflection 4 Distance	real32	ro	-	Contains the distance value of the fourth reflection in mm
	0x0B	Reflection 4 Velocity	real32	ro	-	Contains the velocity value of the fourth reflection in cm/s
	0x0C	Reflection 4 Amplitude	real32	ro	-	Contains the amplitude value of the fourth reflection in digits

Table 8.38

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x0D	Reflection 5 Distance	real32	ro	-	Contains the distance value of the fifth reflection in mm
	0x0E	Reflection 5 Velocity	real32	ro	-	Contains the velocity value of the fifth reflection in cm/s
	0x0F	Reflection 5 Amplitude	real32	ro	-	Contains the amplitude value of the fifth reflection in digits

Table 8.39

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x10	Reflection 6 Distance	real32	ro	-	Contains the distance value of the sixth reflection in mm
	0x11	Reflection 6 Velocity	real32	ro	-	Contains the velocity value of the sixth reflection in cm/s
	0x12	Reflection 6 Amplitude	real32	ro	-	Contains the amplitude value of the sixth reflection in digits

Table 8.40

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x13	Reflection 7 Distance	real32	ro	-	Contains the distance value of the sev- enth reflection in mm
	0x14	Reflection 7 Velocity	real32	ro	-	Contains the velocity value of the sev- enth reflection in cm/s
	0x15	Reflection 7 Amplitude	real32	ro	-	Contains the amplitude value of the seventh reflection in digits

Table 8.41

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x16	Reflection 8 Distance	real32	ro	-	Contains the distance value of the eighth reflection in mm
	0x17	Reflection 8 Velocity	real32	ro	-	Contains the velocity value of the eighth reflection in cm/s
	0x18	Reflection 8 Amplitude	real32	ro	-	Contains the amplitude value of the eighth reflection in digits

Table 8.42

MWC25M-L2M-B16 Series

Parameterization Using the CANopen Engineering Tool with CANopen Objects

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x19	Reflection 9 Distance	real32	ro	-	Contains the distance value of the ninth reflection in mm
	0x1A	Reflection 9 Velocity	real32	ro	-	Contains the velocity value of the ninth reflection in cm/s
	0x1B	Reflection 9 Amplitude	real32	ro	-	Contains the amplitude value of the ninth reflection in digits

Table 8.43

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x1C	Reflection 10 Distance	real32	ro	-	Contains the distance value of the tenth reflection in mm
	0x1D	Reflection 10 Velocity	real32	ro	-	Contains the velocity value of the tenth reflection in cm/s
	0x1E	Reflection 10 Amplitude	real32	ro	-	Contains the amplitude value of the tenth reflection in digits

Table 8.44

Index	Subin- dex	Designation	Data Type	Attri- bute	Default Value	Meaning
0x4100	0x1F	Get All	array8	ro		Contains all reflections at once. You need to convert the values from "Bytes" to the "Float" data type.

9 Maintenance and Repair

9.1 Maintenance Work

The sensor itself is maintenance-free. For this reason, it is not necessary to carry out regular adjustments or maintenance work on the sensor itself.

However, check that the sensor and connector are tight within the scope of routine maintenance intervals. You may also want to check that the connection cable is installed and intact.

9.2 Cleaning

Cleaning is only necessary in applications where the radome (lens) of the sensors is exposed to heavy dirt or build-up.

In general, the following applies as far as cleaning is concerned:

- Only use water without chemicals
- Only use a soft cloth
- No abrasive cleaning, scratching, or scrubbing

10 Troubleshooting

10.1 What to Do in Case of an Error

In case of a fault, use the following checklist to determine whether a malfunction with the sensor can be remedied.

If none of the information provided in the checklist solves the problem, contact Pepperl+Fuchs via your sales office for any queries. If possible, have the model number and firmware version of the sensor to hand.

Checklist

Error	Cause	Remedy
Green LED not lit	The power supply is switched off.	Check whether there is a reason why the power supply is switched off (installation or maintenance work, etc.). Switch on the power supply if necessary.
	The plug is not connected to the connector on the sensor.	Connect the plug to the sensor and tighten the cap nut by hand.
	Wiring error in the splitter or switch cabinet.	Check the wiring carefully and repair any errors with the wiring. Pay attention to the pinoutas the standard pinout (A-coded M12 plug) is different from the pinout of the CANopen specification.
	Supply cable to the sensor is damaged.	Replace the damaged cable.
	LEDs have been disabled in the parameter settings	Check the parameter settings under object 0x4001. The LEDs are disabled when parameterizing 0x01.
No CAN connection to the device	The sensor's communica- tion port is not connected to the CAN bus or, in the case of parameterization, to the CAN/USB con- verter-SUBD9.	Ensure that the communication port of the sensor is connected to the CAN bus/CAN/USB converter-SUBD9 and that a 5-pin cable has been used.
	No power supply	Check whether there is a reason for the absence of the power supply (installation or maintenance work, etc.). Switch on the power supply. Make sure that the correct pins are con- nected for CAN communication. (Pinout differs from standard pinout)
Target object is not detected even though the sensor is OK	There may be an obstruc- tion in the vicinity of the sensor	Check that the sensor is correctly aligned. Check the sensor parameterization and, if necessary, change the measurement mode. Information about various objects in the sensing range is provided by the object reflection list 0x4100 or in PACTware DTM in the "Reflections in Field of View" evalua- tion under the "Analysis" main menu.

Your automation, our passion.

Explosion Protection

- Intrinsic Safety Barriers
- Signal Conditioners
- FieldConnex[®] Fieldbus
- Remote I/O Systems
- Electrical Ex Equipment
- Purge and Pressurization
- Industrial HMI
- Mobile Computing and Communications
- HART Interface Solutions
- Surge Protection
- Wireless Solutions
- Level Measurement

Industrial Sensors

- Proximity Sensors
- Photoelectric Sensors
- Industrial Vision
- Ultrasonic Sensors
- Rotary Encoders
- Positioning Systems
- Inclination and Acceleration Sensors
- Fieldbus Modules
- AS-Interface
- Identification Systems
- Displays and Signal Processing
- Connectivity

Pepperl+Fuchs Quality Download our latest policy here:

www.pepperl-fuchs.com/quality

www.pepperl-fuchs.com © Pepperl+Fuchs · Subject to modifications / DOCT-8762