
MANUAL

FACTORY AUTOMATION
IO-Link Master
ICE2 and ICE3 Models

REST API Addendum

With regard to the supply of products, the current issue of the following document is applicable: The General Terms of
Delivery for Products and Services of the Electrical Industry, published by the Central Association of the Electrical Industry

(Zentralverband Elektrotechnik und Elektroindustrie (ZVEI) e.V.) in its most recent version as well as the supplementary
clause: "Expanded reservation of proprietorship".

IO-Link Master ICE2 and ICE3 REST API Addendum

IO-Link Master ICE2 and ICE3 REST API Addendum
| | | |

20
24

-1
0

1

Table of Contents

1. REST API - HTTP API 2

1.1. Authentication 2
1.2. Paths 2
1.3. Configuration 3

1.3.1. Configuration Data Read/Write 3
1.3.2. Configuration Reset 3
1.3.3. Configuration Verify 4
1.3.4. Configuration Directory 4

1.4. Status and Diagnostics 4
1.4.1. Status and Diagnostics Data 4
1.4.2. Status and Diagnostics Clear 5
1.4.3. Status and Diagnostics Directory 5

1.5. Log Files 5
1.5.1. Log File Access 6
1.5.2. Log File Clear 6
1.5.3. Log File Directory 6

1.6. IODD Files 7
1.6.1. Config IODD Area 7
1.6.2. STD IODD Area 7
1.6.3. Operations 8
1.6.4. Curl Examples 8
1.6.5. Path Restrictions 9

1.7. Actions 9
1.8. Firmware 9

1.8.1. Images 9
1.8.2. Packages 10

1.9. ISDU 11
1.9.1. Request Format 11
1.9.2. Example Requests 12
1.9.3. Response Format 12

1.10. Data Storage 15
1.11. Security 16
1.12. Summary of Operations 17

IO-Link Master ICE2 and ICE3 REST API Addendum
Authentication
20
24

-1
0

1. REST API - HTTP API

The REST API is available starting with application base 1.5.37 for either PROFINET IO or EtherNet/IP.
In addition to providing a browser-based user-interface, there is an HTTP-based interface designed for use by
external programs such as PortVision DX. The general goal was to follow RESTful design principles as much as
is practical considering the underlying functionality and typical use cases.
• http://en.wikipedia.org/wiki/Representational state transfer
• http://developer.ibm.com/articles/ws-restful

1.1. Authentication

Authentication is handled via standard HTTP protocol methods using the same username/password settings as
those used by the browser-based UI.
The user and operator usernames have read-only access to all configuration, status, firmware, and log
information. The admin username has full access to read/write/clear/set-to-default configuration and status
information, all actions, and firmware upload/update operations.

1.2. Paths

The API URL paths all start with /api and are organized into nine trees:
/api/config
/api/status
/api/logs
/api/action
/api/firmware
/api/iodd
/api/isdu
/api/datastorage
/api/security
2

IO-Link Master ICE2 and ICE3 REST API Addendum
Configuration
20
24

-1
0

1.3. Configuration

Accessing/manipulating configuration data is done via the /api/config namespace which contains three
different sub-trees:

1.3.1. Configuration Data Read/Write
Configuration data values are accessed by using the data namespace:

/api/config/data[/<sub-tree>]
The <subtree> element is optional. If no sub-tree is present in the request, the entire configuration data tree is
accessed. Example URLs:

http://<host>/api/config/data
http://<host>/api/config/data/network
http://<host>/api/config/data/network/hostname

The following HTTP requests are implemented for the configuration data namespace:

1.3.2. Configuration Reset
The clear namespace can be used reset the specified data to default values.

/api/config/clear[/<sub-tree>]
A GET request will reset the specified data to factory settings. This is identical to sending a DELETE command
in the data namespace.

/ api/config/data Use to read/write configuration data itself.
/ api/config/clear Use to reset configuration data to factory default values.
/ api/config/verify Use to verify proposed configuration data without writing.
/ api/config/directory Use to obtain meta-information about the configuration data

tree structure.

GET Returns the specified configuration data tree as a JSON file.

PUT
Writes the supplied JSON data to the specified configuration data tree. The structure of the
supplied JSON file must match the existing configuration data structure exactly. The JSON data
sent with the request must not contain any extra fields and must not omit any fields. If the
supplied JSON tree does not match, or if any of the data values are invalid, the request will be
rejected and an error status and message will be returned.

POST
Writes the supplied JSON data to the specified configuration data tree. The supplied data may
be sparse (it may omit fields that are to be left unchanged). If any of the supplied data values
are invalid, the entire request will be rejected and an error status/message will be returned. If
the supplied data contains extra fields, they will be discarded, the remaining data (if it is valid)
will be written, and a warning message will be returned.

DELETE Causes the specified data tree to be reset to default values. [Identical to sending a GET request
in the clear namespace.]
3

IO-Link Master ICE2 and ICE3 REST API Addendum
Status and Diagnostics
20
24

-1
0

1.3.3. Configuration Verify
The verify namespace can be used to do a verify-only PUT or POST request.

/api/config/verify[/<sub-tree>]
The PUT and POST actions/replies are the same as for the /api/config/data resource name above, except
that after the tree/data is checked, no data is actually written.

1.3.4. Configuration Directory
A JSON representation of the device's configuration data tree structure can be obtained by sending a GET
request to the following resource path.

/ api/ config/ directory [/<depth>] [/<sub-tree>]
If present, the sub-tree element specifies the root of sub-tree to be returned. If it is not present, the directory will
begin at the root of the configuration data tree.
If the depth element is present, it will be a decimal number specifying the depth of the tree to be returned. No
depth value or a value of 0 will return the entire tree. A depth value of 1 will return a single-level list of elements
that are the immediate children of the specified sub-tree.
Examples:

1.4. Status and Diagnostics

Status and diagnostic data are accessed in a manner similar to configuration data using the /api/status
namespace which contains the following namespaces:

1.4.1. Status and Diagnostics Data
Status and diagnostics data values are accessed by using the data namespace:

/api/status/data[/<sub-tree>]
The <subtree> element is optional. Info sub-tree is present in the request, the entire status/diagnostics data tree
is accessed. Example URLs:

/api/status/data
/api/status/data/system
/api/status/data/system/MacAddress

/api/ config/ directory Returns the entire configuration data tree structure.
/ api/config/ directory/ 2 Returns a two-level list of the top-level elements in the

configuration data tree and their immediate children.
/ api/config/ directory/ network Returns the entire configuration data under network.
/ api/config/ directory/1/network Returns a single-level directory of the elements immediately

under network.

/ api/status/ data Use to read or clear status and diagnostic data.
/api/status/clear Use to clear status/diagnostic data.
/api/status/ directory Use to obtain meta-information about the status data tree structure.
4

IO-Link Master ICE2 and ICE3 REST API Addendum
Log Files
20
24

-1
0

For clear operations exactly one top level tree must be specified:

The following HTTP request is implemented for the status data namespace:

1.4.2. Status and Diagnostics Clear
Status and diagnostic data can be reset/cleared using the clear namespace:

/api/status/clear/<subsystem>
Sending a GET request to the clear namespace will reset/clear status/diagnostic values within the specified
subsystem. This is identical to send the DELETE command within the data namespace. The clear operation
can only be applied to a single top-level tree.

1.4.3. Status and Diagnostics Directory
A JSON representation of the device's status data tree structure can be obtained by sending a GET request to
the following resource path.

/api/config/directory [/<depth>][/<sub-tree>]
For additional details see Configuration Directory on Page 4.

1.5. Log Files

System log files (e.g. syslog, dmesg, etc.) can be accessed using the /api/logs namespace which is
organized into the following sub-trees:

DELETE /api/status/data/system
DELETE /api/status/clear/iolink
GET /api/status/clear/system
GET /api/status/clear/iolink

GET Returns the specified status/diagnostics data tree as a JSON file.

DELETE
Resets/clears any resettable status/diagnostic values in the specified top-level tree. Only a
single top-level tree is supported (the <sub-tree> element is required and can only contain
single name. Not all status/diagnostic values are resettable. Values reflecting current-state
will not be altered, but counters, error messages, sticky flags, etc. will be reset/cleared.
[Identical to using the GET command within the clear namespace.]

/api/logs/file/ <filename> Use to read/clear system log files.
/api/logs/clear/ <filename> Use to clear system log files.
/api/logs/directory Use to obtain a list of available log files.
5

IO-Link Master ICE2 and ICE3 REST API Addendum
Log Files
20
24

-1
0

1.5.1. Log File Access
The actual log files are accessed using the file namespace:
/api/logs/file/<filename>
The <filename> element is required, and must be one of the available log files (e.g. syslog, dmesg, eventlog,
ps, top). The following HTTP request types are implemented:

1.5.2. Log File Clear
Log file(s) may be cleared by using the clear namespace:

/api/logs/clear/<filename>
Sending a GET request to the clear namespace will reset/clear the specified file. The <filename> element is
required and must be one of the supported filenames.

1.5.3. Log File Directory
A list of available log files can be obtained using the directory namespace:

/api/logs/directory
The following HTTP requests are implemented:

GET Returns the specified log file as an ASCII text file. The file format varies depending on
which file is requested.

DELETE
Clears the specified log file. This operation is not implemented for some files (e.g. ps and
dmesg), and will have no effect when specified for such files. [Identical to using a GET
command within the clear namespace.]

GET Returns a JSON array containing the names of available log files.
6

IO-Link Master ICE2 and ICE3 REST API Addendum
IODD Files
20
24

-1
0

1.6. IODD Files

The iodd namespace provides access to the areas of the filesystem that contain IO-Link IODD files and
associated data. These files exist into two separate areas: config and std.
The config iodd file area is empty when units are shipped from the factory and contains files (and derived
data) loaded by the user. The con.fig iodd file area also contains JSON and language files generated by the
Web UI code from the IODD .xml files found in the stdiodd file area.
The std iodd area contains the IODD files defined by the IO-Link standard which are shipped as part of the
application base image. It should generally be considered read-only.
The paths for these two areas are:

/api/iodd/config
/api/iodd/std

Each of these two paths can be treated much like a file system containing a tree of files/directories.

1.6.1. Config IODD Area
At the top level of the config area are the following:
• Numerical directories. Each of the numerical directory names is the decmial vendor id of one or more IODD

files that have been loaded by the user. Within each of the vendor id directories, there is another level of
numerical directories whose names correspond to the decimal device ids for the loaded IODD files. Within
each device id directory are the uploaded IODD XML file, the graphical image files, a config.json file
generated from the .xml file, and PHP language dictionaries generated from uploaded IODD language files.

• The ioddfile.json file. This is a catalog file listing some basic characteristics about each of the user-
loaded IODD files found under the numeric directories mentioned above.

• The language directory. This directory contains PHP language dictionaries generated from the std IODD
files.

• The JSON files generated from each of the standard IODD files found in the std area.
Note that though .xml files can be displayed by the Web UI, the webui only uses the JSON and PHP files during
routine operation. The XML files are only parsed once when they are uploaded.

1.6.2. STD IODD Area
The std iodd area contains only the standard IO-Link .xml files. For example:

These files should normally be considered as read-only and should be updated as part of the application base.
These files are parsed on an as-needed basis, and corresponding JSON and PHP files are generated in the
config area.
7

IO-Link Master ICE2 and ICE3 REST API Addendum
IODD Files
20
24

-1
0

1.6.3. Operations
The following operations are defined for the iodd areas:

Note: Using the above API it is possible to create and delete files/directories named . dir, .rdir, and .size.
Directory listings will show such files/directories. Such files will be returned as part of a get archive
request on a parent directory. But, it will not be possible to retrieve such files directly since a GET
request on such a path will be interpreted a request for meta-information about the parent path.

1.6.4. Curl Examples
Here is an example showing how to back up the user-loaded IODD files as a zip file (default format for GET is a
zip archive):

$ curl http://10.0.0.99/api/iodd/config >user-iodd.zip
Writing those files back to the IO-Link master device requires that you specify a content-type:

$ curl -H Expect: -H Content-Type:application/zip -T user-iodd.zip http://10.0.0.99/
api/iodd/config

If you want to get the files in a format other than a zip archive, you must specify an Accept: header in the GET
request:

$ curl -H Accept:application/x-tar-gz http://10.0.0.99/api/iodd/config >user-
iodd.tar.gz

When writing them back, you must again specify the format:
$ curl -H Expect: -H Content-Type:application/x-tar-gz -T user-iodd.tar.gz http:/
/10.0.0.99/api/iodd/config

Directory An HTTP GET request for a path that ends in /. dir will return a JSON array listing for the
directory/file specified by the request path preceding the trailing / .dir.

Recursive
Directory

An HTTP GET request for a path that ends in /. rdir will return a recursive JSON array
listing for the directory/file specified by the request path preceding the trailing
 / . rdir. An rdir request on a file will behave the same as a dir request on a file.

Size
An HTTP GET request for a path that ends in /.size will return a single line of ascii text
containing a decimal number representing the disk usage (in units of K bytes) for the file
or directory specified by the request path preceding the trailing /.size. The size of a
directory will include disk space used by all contents under that directory.

Get File
An HTTP GET request for a path (excluding those with special suffixes described above)
that specifies an existing file will return the requested file. The response content-type will
be set according to the filename suffix if it is recognized (e.g. application/json,
application/xml, image/png, image/gif, etc.).

Get Archive
An HTTP GET request for a path that specifies a directory will return an archive of the
contents of the specified directory. The type of archive will be determined by the
request's HTTP Accept: header. The currently supported values are: application/zip,
application/x-tar, application/x-tar-gz. If no Accept: header is found in the request, or if it
has a value of*/*, then application/zip will be assumed.

Put Archive
An HTTP PUT or POST request with a content-type of application/zip,
application/x-tar, or application/x-tar-gz will create a directory (if needed)
with the specified path (creating parent directories as needed). The request data content
will be treated as an archive and will be uncompressed/unpacked within the specified
directory. Existing files will be overwritten as needed.

Put File
An HTTP PUT or POST request with a content-type other than the those listed above will
create a file with the specified path (creating parent directories as needed) and the
request data will be written to that file. Any existing file with that path will be overwritten.

Remove An HTTP DELETE request will remove the file or directory (and all contents) specified by
the specified path.
8

IO-Link Master ICE2 and ICE3 REST API Addendum
Actions
20
24

-1
0

1.6.5. Path Restrictions
Although the iodd server code has been designed to prevent any special treatment or shell evaluation of any
characters/strings found in file paths, the following characters are not permitted because they can cause
security issues when interpreted by a shell:
• tilde:~
• backslash: \
• star:*
• dollar: $
• parent directory strings: ../or/..

1.7. Actions

The action namespace can be used to perform a variety of miscellaneous operations on the device. All
require admin privileges.

/api/action/reboot
Sending the data string 1 with a PUT request will cause the device to reboot after replying to the message.

/ api/action/ identify
Sending the data string on or off, with a PUT request will turn identify (flash LED) mode on or off. A GET request
will return the data string on or off.

1.8. Firmware

The firmware namespace can be used to list, install, or update device firmware. There are two categories of
firmware: images and packages. Each has its own namespace:

/api/firmware/image
/api/firmware/package

1.8.1. Images
An image is a block of opaque binary data - usually with a ulmage header to allow identification and integrity
checking. An image is copied (either with or without the ulmage header) directly into a raw NANO flash
partition. It could be a file system image, a kernel+ rootfs image, U-Boot executable image, bootstrap
executable image, etc.
The following image paths are supported:

 api/firmware/image/ directory A GET request will return a text file containing a list of flash
partitions and version numbers of installed images

/api/firmware/image/<partition>
A PUT request will install the accompanying file in the
specified partition. The <partition> specification can be a
partition device name such as mtd3 or it can be a partition
label such as U-Boot-Code or ulmage-Primary.

/api/firmware/image/<partition> A DELETE request will erase the specified flash partition.
9

IO-Link Master ICE2 and ICE3 REST API Addendum
Firmware
20
24

-1
0

Here is an example of using the curl utility to update the OS/rootfs partition image:
curl -H Expect: -T system-1.00.uimage http://10.0.0.99/api/firmware/image/uimage-
Primary

The -H Expect: option is required to tell curl to send the data file without waiting for the web server to send a
100-continue response after receiving the initial part of the post.
A similar command can be used to update the application base:

curl -H Expect: -T application-base-eip-1.4.2.uimage http://10.0.0.99/api/firmware/
image/apps

A force option can be appended to the path to override restrictions based on model number, vendor, etc:
curl -H Expect: -T system-1.00.uimage http://10.0.0.99/api/firmware/image/uimage-
Primary/force

or
curl -H Expect: -T application-base-eip-1.4.2.uimage http://10.0.0.99/api/firmware/
image/apps/force

1.8.2. Packages
A package is a bundle of files for use with the ipkg package management utility (a derivative of Debian's dpkg
). The following package paths are supported:

Here is an example of using the curl utility to update/install a package:
curl -H Expect: -T iolink-driver 1.2.1.1 arm.ipk http://10.0.0.99/api/firmware/
package

A force option can be appended to the path to override restrictions based on model number, version number,
vendor, etc:

curl -H Expect: -T iolink-driver 1.2.1.1 arm.ipk http://10.0.0.99/api/firmware/
package/force

/ api/firmware/ package/
directory

A GET request will return a text file containing a list of installed packages
and their versions.

/ api/firmware/package A PUT request will install/update the accompanying .ipk package file.
/api/firmware/package/
<package-name> A DELETE request will uninstall the named package.
10

IO-Link Master ICE2 and ICE3 REST API Addendum
ISDU
20
24

-1
0

1.9. ISDU

The isdu namespace can be used to perform IOLink ISDU read and write operations on the devices. Requests
are sent as a JSON data array to the path below:

/api/isdu/request
The response will either be an HTTP error and associated mesage text if the request was not recognized as
valid JSON, or a JSON array in the case where the request was valid JSON.

1.9.1. Request Format
The request must consist of a single JSON array. Each element in the array is a JSON object containing a
single read or write request. Required fields for both read and write request objects:

req The req field must be a string with value of either read or write.
port The port field must be an integer ranging from 0-3 for a four-port IO-Link master unit or 0-7

for an eight-port IO-Link master unit.

index
The index field is the ISDU index and is an integer from 0-65535. Different IO-Link devices
implement different sets of indexes. In general, only index 0 and index 1 are guaranteed to
work for all IO-Link devices. Optional field for both read and write request objects.

subindex The subindex field is an optional integer value. If none is provided, a subindex of 0 will be
used in the request sent to the IO-Link device. Required field for write request objects.

data The data field is a string containing one or more white-space delimited hexadecimal byte
values.
11

IO-Link Master ICE2 and ICE3 REST API Addendum
ISDU
20
24

-1
0

1.9.2. Example Requests
The example below shows a request array containing a number of read and write requests:

1.9.3. Response Format
The response consists of a JSON array containing a response object for each request object that was present
in the request array.
If any of the request objects contained invalid data or was missing a required field, then the entire array of
requests is rejected and none of the requests will be executed. The response objects corresponding to
erroneous request objects contain a single status field containing an error message. The response objects
corresponding to valid request objects are empty.
12

IO-Link Master ICE2 and ICE3 REST API Addendum
ISDU
20
24

-1
0

It generates the following response array:

The first, valid, read request was not executed, so there is no error message or response status/data. The follow
request contains two valid requests:

It generates a response that looks like this:

Request objects that were executed will have req, port, index, subindex, code, and status fields. Read requests
may also have a data field. If the request was successful, the code field will be an integer telling how many bytes
were read or written, and the status field will be the string OK.
If the request object was executed but failed, then the code field will contain a negative number and the status
field will contain an error message. Responses to failed read requests will not contain a data field.
For example, both of the read request object below are valid, and get executed, but one is rejected by the
device and fails:
13

IO-Link Master ICE2 and ICE3 REST API Addendum
ISDU
20
24

-1
0

Response:

Likewise, write responses will contain status and code fields, but no data field.
14

IO-Link Master ICE2 and ICE3 REST API Addendum
Data Storage
20
24

-1
0

Response:

1.10. Data Storage

The datastorage namespace can be used to read, write, and delete the files used by the IOLink Data
Storage subsystem for storage of IO-Link device configuration data. The path used is

/api/datastorage/data
Operations are the same as for IODD files.
HTTP GET on /api/datastorage/data will return an archive (by default a zip file) containing all of the data
storage files.] There are typically one to eight files which are named port1 through port N. Each file will contain
an opaque blob of binary data sized from a few tens of bytes to a several hundred bytes. There are typically no
subdirectories.
15

IO-Link Master ICE2 and ICE3 REST API Addendum
Security
20
24

-1
0

1.11. Security

The security tree can be used to write or delete the various certificate and key files used by protocols that
support encryption and authentication.It can not be used to read certificates or keys from the IO-Link master.

These files are write/delete only.
They can be written via a PUT or POST to the file namespace:

They can be deleted via a DELETE request on the .file namespace, or via a GET request on the clear
namespace.

A JSON array containing the currently supported paths can be read via a GET request to the directory
namespace:

File Format Description

web/cert_key PEM cert+key Server certificate and privite key used by the web
server

opcua/server_cert PEM/DER cert Server certificate used by OPC UA server
opcua/server_key PEM/DER key Private key for OPC UA server certificate above
opcua/client_auth_cert1 PEM/DER cert Certificate used by OPC UA server to authenticate

client connections and sessions
opcua/client_auth_cert2 PEM/DER cert Certificate used by OPC UA server to authenticate

client connections and sessions
mqtt/client_cert PEM cert Certificate used by MQTI client to authenticate itself
mqtt/client_key PEM key Certificate used by MQTI client to authenticate itself
mqtt/server_auth_cert PEM cert Certificate used to authenticate MQTI server
16

IO-Link Master ICE2 and ICE3 REST API Addendum
Summary of Operations
20
24

-1
0

1.12. Summary of Operations

The table below summarizes the available namespaces and HTTP operations.
Namespace HTTP Requests

/ api/config/data[/ <sub-tree>] GET,PUT,POST,DELETE
/ api/config/clear[/sub-tree>] GET
/ api/config/verify PUT, POST
/ api/config/directory[/ <depth>][/ <sub-tree>] GET
/ api/status/data[/<sub-tree>] GET,DELETE
/ api/status/ clear[/ <tree>] GET
/ api/status/directory[/ <depth>][/ <sub-tree>] GET
/ api/logs/file/ <filename> GET,DELETE
/ api/logs/ directory GET
/ api/action/reset PUT
/ api/action/identify GET,PUT
/ api/firmware/image/directory GET
/ api/firmware/image/ <partition> PUT, DELETE
/ api/firmware/package/directory GET
/ api/firmware/package PUT
/ api/firmware/package/ <package> DELETE
/ api/iodd/ config GET,PUT,POST,DELETE
/ api/iodd/std GET,PUT,POST,DELETE
/ api/isdu/request PUT,POST
/ api/datastorage/data GET,PUT,POST,DELETE
/ api/security/file PUT,POST,DELETE
/ api/security/clear GET
/ api/security/directory GET
17

Subject to modifications
Copyright PEPPERL+FUCHS • Printed in Germany

www.pepperl-fuchs.com

FACTORY AUTOMATION –
SENSING YOUR NEEDS

Worldwide Headquarters
Pepperl+Fuchs Group
68307 Mannheim · Germany
Tel. +49 621 776-0
E-mail: info@de.pepperl-fuchs.com

USA Headquarters
Pepperl+Fuchs Inc.
Twinsburg, Ohio 44087 · USA
Tel. +1 330 4253555
E-mail: sales@us.pepperl-fuchs.com

Asia Pacific Headquarters
Pepperl+Fuchs Pte Ltd.
Company Registration No. 199003130E
Singapore 139942
Tel. +65 67799091
E-mail: sales@sg.pepperl-fuchs.com

TDOCT-9571
2024-10

	Table of Contents
	1. REST API - HTTP API
	1.1. Authentication
	1.2. Paths
	1.3. Configuration
	1.3.1. Configuration Data Read/Write
	1.3.2. Configuration Reset
	1.3.3. Configuration Verify
	1.3.4. Configuration Directory

	1.4. Status and Diagnostics
	1.4.1. Status and Diagnostics Data
	1.4.2. Status and Diagnostics Clear
	1.4.3. Status and Diagnostics Directory

	1.5. Log Files
	1.5.1. Log File Access
	1.5.2. Log File Clear
	1.5.3. Log File Directory

	1.6. IODD Files
	1.6.1. Config IODD Area
	1.6.2. STD IODD Area
	1.6.3. Operations
	1.6.4. Curl Examples
	1.6.5. Path Restrictions

	1.7. Actions
	1.8. Firmware
	1.8.1. Images
	1.8.2. Packages

	1.9. ISDU
	1.9.1. Request Format
	1.9.2. Example Requests
	1.9.3. Response Format

	1.10. Data Storage
	1.11. Security
	1.12. Summary of Operations

