Technical Data

General specifications
- Detection type: magnetic sampling
- Device type: Absolute encoders
- Linearity error: $\leq \pm 0.1 ^\circ$
- UL File Number: E223176 "For use in NFPA 79 Applications only", if UL marking is marked on the product.

Functional safety related parameters
- MTTF$_D$: 700 h at 40 °C
- Mission Time (T$_M$): 20 a
- t_{10}: 55 E+8 revolutions at 40/110 N axial/radial shaft load
- Diagnostic Coverage (DC): 0 %

Electrical specifications
- Operating voltage U_{SB}: 4.5 ... 30 V DC (SSI, SSI + RS422); 10 ... 30 V DC (SSI + Push/Pull)
- No-load supply current I_0: typ. 50 mA
- Power consumption P_0: approx. 1.5 W
- Time delay before availability t_{av}: < 450 ms
- Output code: Gray code, binary code
- Code course (counting direction): adjustable

Interface
- Interface type: SSI, SSI + incremental track
- Single turn: up to 16 Bit
- Multiturn: up to 16 Bit
- Overall resolution: up to 32 Bit
- Transfer rate: 0.1 ... 2 MBit/s
- Cycle time: $<$ 100 µs
- Standard conformity: RS 422

Input 1
- Input type: Selection of counting direction (cw/ccw)
- Signal voltage:
 - High: 4.75 V ... U_B (cw descending)
 - Low: 0 ... 2 V or unconnected (cw ascending)
- Input current: $<$ 6 mA
- Switch-on delay: $<$ 250 ms

Input 2
- Input type: zero-set (PRESET 1) with falling edge
- Signal voltage:
 - High: 4.75 V ... U_B
 - Low: 0 ... 2 V
- Input current: $<$ 6 mA
- Signal duration: ≥ 1.1 s

Output
- Output type: RS422, Push/Pull
- Signal output: A+/B+/A-/B
- Pulses: 1024, 2048, 4096

Connection
- Connector: M12 connector, 8-pin or M23 connector, 12-pin
- Cable: Ø7 mm, 6 x 2 x 0.14 mm², 1 m (cable length, see order code)

Standard conformity
- Degree of protection: DIN EN 60529, IP65 or IP67 (not for M23 device plug)
- Climatic testing: DIN EN 60668-2-3, no moisture condensation
- Emitted interference: EN 61000-4-2:2007
- Noise immunity: EN 61000-4-6:2005
- Shock resistance: DIN EN 60668-2-27, 200 g, 6 ms
- Vibration resistance: DIN EN 60668-2-6, 20 g, 10 ... 1000 Hz

Ambient conditions
- Operating temperature:
 - Cable, flexing: -5 ... 70 °C (23 ... 158 °F)
 - Cable, fixed: -30 ... 70 °C (22 ... 158 °F)
- Connector models: -40 ... 85 °C (-40 ... 185 °F)
- Storage temperature: -40 ... 85 °C (-40 ... 185 °F)
- Relative humidity: 98 %, no moisture condensation

Mechanical specifications
- Material:
 - Housing: nickel-plated steel, painted
 - Flange: Aluminum
 - Shaft: Stainless steel
- Mass: approx. 300 g, with cable
- Rotational speed: max. 12000 min$^{-1}$
- Moment of inertia: 50 g cm²
- Starting torque: < 5 Ncm
- Shaft load:
 - Axial: 40 N
 - Radial: 110 N

Approvals and certificates
- UL approval: cULus Listed, General Purpose, Class 2 Power Source, if UL marking is marked on the product.
Dimensions

Clamping flange

<table>
<thead>
<tr>
<th>L [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
</tr>
<tr>
<td>Singleturn</td>
</tr>
<tr>
<td>Multiturn</td>
</tr>
</tbody>
</table>

Servo flange

Connections

Dimensions in mm

Cable

Connector M12

Connector M23

Refer to "General Notes Relating to Pepperl+Fuchs Product Information".

Pepperl+Fuchs Group
USA: +1 330 486 0001
www.pepperl-fuchs.com
fa-info@us.pepperl-fuchs.com

Germany: +49 621 776 1111
fa-info@de.pepperl-fuchs.com

Singapore: +65 6779 9091
fa-info@sg.pepperl-fuchs.com

ENAB-IM-L-S***-SSI

Dimensions

3 x M3
6 deep

3 x M4
6 deep

30
\ø53
\ø58
\ø48
15°
\ø36f7
\ø10h8
1
18
3
20
10
3
3
3
4
L

3 x M4
6 deep

\ø58
\ø50f7
\ø6h7
4
3
3
3

3 x 120°

L [mm]

3 x M4
6 deep

3 x 120°

21

21

25

19

17.5

21

25

exit position axial

exit position radial

exit position axial

exit position radial

exit position axial

exit position radial
Electrical connection

<table>
<thead>
<tr>
<th>Signal</th>
<th>Cable, 12-core</th>
<th>Connector M12, 8-pin</th>
<th>Connector M23, 12-pin, cw</th>
<th>Connector M23, 12-pin, ccw</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND (encoder)</td>
<td>White</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Power supply</td>
</tr>
<tr>
<td>U_b (encoder)</td>
<td>Brown</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>Power supply</td>
</tr>
<tr>
<td>Clock (+)</td>
<td>Green</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Positive cycle line</td>
</tr>
<tr>
<td>Clock (-)</td>
<td>Yellow</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>Negative cycle line</td>
</tr>
<tr>
<td>Data (+)</td>
<td>Grey</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>Positive transmission data</td>
</tr>
<tr>
<td>Data (-)</td>
<td>Pink</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>Negative transmission data</td>
</tr>
<tr>
<td>A</td>
<td>Black</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>Incremental track A</td>
</tr>
<tr>
<td>V/R</td>
<td>Red</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>Input for selection of counting direction</td>
</tr>
<tr>
<td>PRESET 1</td>
<td>Blue</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>Zero-setting input</td>
</tr>
<tr>
<td>B</td>
<td>Grey/Pink</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>Incremental track B</td>
</tr>
<tr>
<td>A</td>
<td>Violet</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>Incremental track X</td>
</tr>
<tr>
<td>B</td>
<td>Red/Blue</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>Incremental track B</td>
</tr>
</tbody>
</table>

![Cable Diagram](image1.png)

![Connector Diagram](image2.png)
Signal outputs

cw - with view onto the shaft
The Synchronous Serial Interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock bundle and the absolute encoder responds with the position value. Thus only 4 lines are required for the clock and data, no matter what the resolution of the rotary encoder is. The RS 422 interface is optically isolated from the power supply.

SSI signal course Standard

![SSI signal course Diagram](image)

- **D₁, ..., D_n:** Position data
- **S:** Special bit
- **MSB:** Most significant bit
- **LSB:** Least significant bit
- **T:** Duration of period of clock signal \(\leq 1 \text{ MHz} \)
- **T_m:** Monoflop time \(20 \mu s \pm 1 \mu s \)
- **T_p:** Clock pause \(\geq \) monoflop time \(T_m \)

SSI output format Standard

- At idle status signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data \(D_n \) and special bit \(S \)) is stored in the encoder is introduced.±
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time \(T_m \) has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause \(T_p \) has expired.
- After the clock sequence is complete, the monoflop time \(T_m \) is triggered with the last falling pulse edge.
- The monoflop time \(T_m \) determines the lowest transmission frequency.

SSI output format ring slide operation (multiple transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the possibility of detecting transmission errors.
- In multiple transmission, \(n \) bits are transferred per data word in standard format. The value \(n \) equals the total resolution of the encoder.
- As an example: a multiturn encoder with a resolution of 8192 steps/revolution (13 bit) and a max. number of 4096 revolutions (12 bit) has a total resolution of \(n = 25 \) bit.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first position transmission, the \(n+1 \) pulse controls data repetition. If the \(n+1 \) pulse follows after an amount of time greater than the monoflop time \(T_m \), a new current data word will be transmitted with the following pulses.

If the pulse line is exchanged, the data word is generated offset.

Block diagram

![Block diagram](image)

- **Logic**
- **Data +**
- **Data -**
- **Receiver**
- **Clock +**
- **Clock -**
- **Clock generator**

Line length

<table>
<thead>
<tr>
<th>Line length in m</th>
<th>Baudrate in kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>< 400</td>
</tr>
<tr>
<td>< 100</td>
<td>< 300</td>
</tr>
<tr>
<td>< 200</td>
<td>< 200</td>
</tr>
<tr>
<td>< 400</td>
<td>< 100</td>
</tr>
</tbody>
</table>
Push buttons on encoder with model characteristic SB2, SG2

In addition to the electrical preset function (PRESET 1) these models are equipped with 2 push buttons for manually setting the zero point of the rotary encoder.

Manually zero set

1. Simultaneously press and hold the push buttons A and B for 2 s.

After releasing the push buttons the rotary encoder sets the current position as zero point.

Model number

| ENA | 58 | I | L | - | - | - | - |

Connection type
- C1 Cable, 1 m
- C2 Cable, 2 m
- C5 Cable, 5 m
- CA Cable, 10 m
- AA M23 device plug, cw
- AB M23 device plug, ccw
- BE available with SSI + incremental track

Connection alignment
- A axial
- R radial

Electrical interface
- SG1 ... SIC see next page

Singleturn resolution
- 12 12 bit
- 13 13 bit
- 16 16 bit

Multiturn resolution
- 00 Singleturn rotary encoder
- 12 Multiturn rotary encoder, 12 bit
- 14 Multiturn rotary encoder, 14 bit
- 16 Multiturn rotary encoder, 16 bit

Degree of protection
- 5 IP65
- 7 IP67 (not for M23 device plug)

Flange
- CA Clamping flange
- SA Servo flange

Shaft diameter
- 06 6 mm
- 10 10 mm

Shaft type
- S Solid shaft

Version
- IL Industrial Line

Size
- 58 Housing diameter: 58 mm

Device type
- ENA Absolute rotary encoder
Electrical interface

- SG1: SSI Gray
- SB1: SSI binary
- SG2: SSI Gray, with push buttons
- SB2: SSI binary, with push buttons
- SI1: SSI Gray + 1024 pulses, Push/Pull
- SI2: SSI Gray + 2048 pulses, Push/Pull
- SI3: SSI Gray + 4096 pulses, Push/Pull
- SI4: SSI Gray + 1024 pulses, RS422
- SI5: SSI Gray + 2048 pulses, RS422
- SI6: SSI Gray + 4096 pulses, RS422
- SI7: SSI Binar + 1024 pulses, Push/Pull
- SI8: SSI Binar + 2048 pulses, Push/Pull
- SI9: SSI Binar + 4096 pulses, Push/Pull
- SIA: SSI Binar + 1024 pulses, RS422
- SIB: SSI Binar + 2048 pulses, RS422
- SIC: SSI Binar + 4096 pulses, RS422