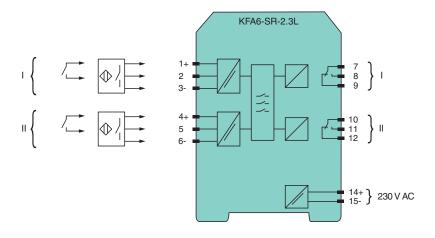


Switch Amplifier KFA6-SR-2.3L.FA

- 2-channel
- 115/230 V AC supply
- 3-wire PNP/NPN sensor or push-pull input
- Relay contact output
- DIP switch selectable functions
- Minimum/maximum control
- Up to SIL 2 acc. to IEC/EN 61508 / IEC/EN 61511

(€ SIL 2

Function

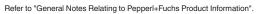

This signal conditioner provides the galvanic isolation between field circuits and control circuits.

The device transfers the status of 2-wire and 3-wire sensors to the relay contact output.

The device has 2 inputs and 2 relay contact outputs.

The device can be used either as dual channel signal conditioner or as a two-point level controller. The device is easily configured by the use of DIP switches. A fault is signalized by LEDs.

Connection


Technical Data

General specifications		
Signal type		Digital Input
Functional safety related parameters		
Safety Integrity Level (SIL)		SIL 2
Supply		
Connection		terminals 14, 15
Rated voltage	Ur	90 253 V AC , 45 65 Hz
Rated current	I _r	≤ 150 mA
Power dissipation		2.5 W
Power consumption		max. 7 W
Input		

Refer to "General Notes Relating to Pepperl+Fuchs Product Information"

Release date: 2023-01-03 Date of issue: 2023-01-03 Filename: 182509_eng.pdf

Technical Data Connection side field side Input I: terminals 1+, 2, 3-; Input II: terminals 4+, 5, 6-Connection Rated values 22 ... 24 V DC / 100 mA, see notes NPN sensor Switching point 4 ... 13 V PNP sensor 4 ... 13 V Switching point Short-circuit current 110 mA Switching point 0-signal: < 5 V 1-signal: > 13 V Output Connection side control side Connection output I: terminals 7, 8, 9 output II: terminals 10, 11, 12 Output I, II Contact loading 250 V AC / 4 A / $\cos \phi > 0.7$; 40 V DC / 2 A resistive load Energized/De-energized delay max. 6 ms Mechanical life 107 switching cycles **Transfer characteristics** Switching frequency ≤ 10 Hz **Galvanic** isolation Input/Output safe galvanic isolation per EN 50178, voltage peak value 253 V safe galvanic isolation per EN 50178, voltage peak value 253 V Input/power supply Output/power supply safe galvanic isolation per EN 50178, voltage peak value 253 V Output/Output basic insulation acc. to EN 50178, rated insulation voltage 253 $V_{\rm eff}$ Indicators/settings Display elements **LEDs** Labeling space for labeling at the front **Directive conformity** Electromagnetic compatibility Directive 2004/108/EC EN 61326-1:2006 Low voltage Directive 2006/95/EC EN 50178:1997 Conformity EN 50178 Galvanic isolation Electromagnetic compatibility NF 21 Degree of protection IEC 60529 **Ambient conditions** -20 ... 60 °C (-4 ... 140 °F) Ambient temperature Mechanical specifications IP20 Degree of protection Connection screw terminals Mass approx. 150 g **Dimensions** 20 x 119 x 115 mm (0.8 x 4.7 x 4.5 inch) (W x H x D), housing type B2 **General information** Supplementary information Observe the certificates, declarations of conformity, instruction manuals, and manuals where applicable. For information see www.pepperl-fuchs.com.

Accessories

	VAZ-CHAIN- BU/BN70MM/1,0-25	25-point wiring link for control cabinet modules with screw terminals
	KF-ST-5GN	Terminal block for KF modules, 3-pin screw terminal, green
*	KF-CP	Red coding pins, packaging unit: 20 x 6

Switch Amplifier KFA6-SR-2.3L.FA

Additional Information

Function

The device has two inputs and two relay outputs (change-over contact) and is usable either as dual channel isolated amplifier or as two-point control (min/max control).

The inputs are designed in a way, that the signals of sensors which have PNP or NPN output transistors as well as push-pull outputs, can be processed. In the case of sensors with push-pull outputs the switches S4 or S5 have to be set to position I. For sensors with PNP or NPN output transistors, the switches S4 or S5 have to be set to position II. The operating behaviour of the sensor can be selected: NO S1/S2 in position I; NC S1/S2 in position II.

Dual channel switching amplifier for binary sensors or contacts

With this function (S3 in position I) contact or sensor signals from the input are transmitted to the relay output.

Parallel operation (1 input, 2 outputs)

A signal duplication can be realized by the following measures:

- Jumper terminal 2 to terminal 5.
- One sensor to input I or II.

Two-point control (min/max control) with storage of status

On this setting (S3 in position II) the information from the two inputs is combined.

When the supply voltage is switched on, relay 1 is energised until input 2 is activated (reset input). Input 1 works as an set input.

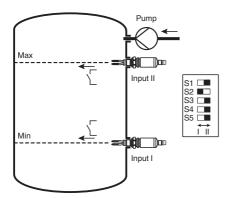
Truth table (min/max control)

Conditions	Inputs	Outputs		
	EI	EII	relay I and II	
Activation of the supply voltage	not activated	not activated	relay energised	
	activated	not activated	relay energised	
	activated	activated	relay de-energised	
Normal operation	activated	transition: not activated/activated	relay de-energising	
	transition: activated/not activated	not activated	relay energising	

Sensor connection

NPN output stage/contact

PNP output stage/contact

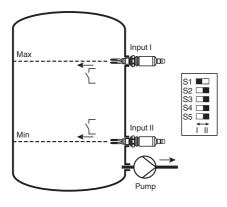

Push-pull output stage

Function of the DIP switches

Function	Switch function	Switch/position
Operating behaviour of the sensor input	input 1 is activated if sensor 1 is closed	S1/I
	input 1 is activated if sensor 1 is open	S1/II
	input 2 is activated if sensor 2 is closed	S2/I
	input 2 is activated if sensor 2 is open	S2/II
Dual channel or min/max	dual channel independent	S3/I
	min/max function with storage of the status	S3/II
Sensor type	input 1: push-pull output stage, NO	S4/I
	input 1: PNP/NPN, NO	S4/II
	input 2: push-pull output stage, NO	S5/I
	input 2: PNP/NPN, NO	S5/II

Min contact or min sensor is connected to input 1 (set), max contact or max sensor is connected to input 2 (reset). Switch S1 is in position I and switch S2 is in position II. A filling pump is connected to output 1 or 2 (terminals 7/8 or 10/11).

All data refer to NO sensors.


with vibration limit switch

When the supply voltage of the KFA6-SR-2.3L is switched on, the pump will also switched on as long as the Max contact is not activated. During operation the pump is switched off as soon as the level has reached max position. If the level reach min position, the pump is switched on. If the KFA6-SR-2.3L has no power supply, the pump is switched off.

Example 2: emptying of a vessel (two-point level control, S3 in position II)

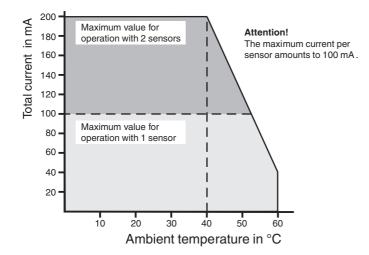
Max contact or max sensor is connected to input 1 (set), min contact or min sensor is connected to input 2 (reset). Switch S1 is in position II and switch S2 is in position I. An emptying pump is connected to output 1 or 2 (terminals 7/9 or 10/12).

All data refer to NO sensors

with vibration limit switch

When the supply voltage of the KFA6-SR-2.3L is switched on, the pump will also switched on, if max contact is activated. During operation the pump is switched off as soon as the level has reached min position. If the level reach max position, the pump switched on. If the KFA6-SR-2.3L has no power supply, the pump is switched on.

Comments:


- 1. NO with push-pull output stage means that the closing contact or transistor is connected to terminal 2 and 3 (5 and 6). NC with push-pull output stage means that the opening contact or transistor is connected to terminal 2 and 3 (5 and 6).
- 2. In dip switch position S3/I (dual channel, independent) an output relay is activated if the corresponding input is activated.

Derating of the sensor currents in dependence of the ambient temperature

The maximum value of the sensor currents is controlled by a thermal overload protection of the device.

The device determines its ambient temperature and limits the sensor currents accordingly (see figure). An inadmissibly high ambient temperature can limit the function of the sensors.

