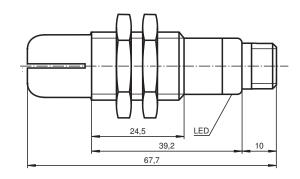
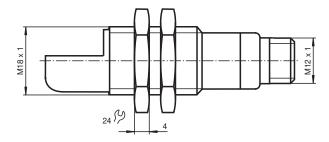


Ultraschallsensor

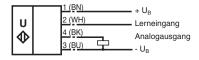

UB500-18GM40A-I-V1-Y70103911


- Kurze Bauform, 40 mm
- Rundum sichtbare Funktionsanzeige
- Analogausgang 4 mA ... 20 mA
- Messfenster einstellbar
- Lerneingang
- Temperaturkompensation
- Kundenspezifische Konfiguration

Einkopfsystem

Abmessungen

Technische Daten


Allgemeine Daten	
Erfassungsbereich	40 500 mm
Einstellbereich	40 500 mm
Blindzone	0 35 mm
Normmessplatte	100 mm x 100 mm
Wandlerfrequenz	ca. 390 kHz
Ansprechverzug	ca. 50 ms
Anzeigen/Bedienelemente	
LED grün	Power on

Technische Daten

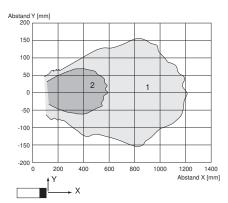
LED gelb permanent gelb: Objekt im Auswertebereich gelb blinkend: Lernfunktion, Objekt erkannt permanent rot: Störung rot blinkend: Lernfunktion, Objekt nicht erkannt LED rot **Elektrische Daten** 10 ... 30 V DC , Welligkeit 10 $\%_{\text{SS}}$ Betriebsspannung U_B Leerlaufstrom ≤ 20 mA I_0 Eingang Eingangstyp 1 Lerneingang untere Auswertegrenze A1: -U_B ... +1 V, obere Auswertegrenze A2: +4 V ... +U_B Eingangsimpedanz: > 4,7 k Ω , Lernimpuls: \geq 1 s **Ausgang** 1 Analogausgang 4 ... 20 mA, kurzschluss-/überlastfest Ausgangstyp Voreinstellung Auswertegrenze A1: 40 mm Auswertegrenze A2: 420 mm 0,4 mm bei max. Erfassungsbeich Auflösung Kennlinienabweichung ±2 % vom Endwert Reproduzierbarkeit ± 1 % vom Endwert 0 ... 300 Ω bei $U_B > 10 V$; Lastimpedanz 0 ... 500 Ω bei $U_B > 15 \text{ V}$ Temperatureinfluss ±3 % vom Endwert Normen- und Richtlinienkonformität Normenkonformität Normen EN IEC 60947-5-2:2020 IEC 60947-5-2:2019 EN 60947-5-7:2003 IEC 60947-5-7:2003 Zulassungen und Zertifikate **EAC-Konformität** TR CU 020/2011 TR CU 037/2016 cULus Listed, Class 2 Power Source **UL-Zulassung** Produkte, deren max. Betriebsspannung ≤36 V ist, sind nicht zulassungspflichtig und CCC-Zulassung daher nicht mit einer CCC-Kennzeichnung versehen. Umgebungsbedingungen Umgebungstemperatur -25 ... 50 °C (-13 ... 122 °F) -40 ... 85 °C (-40 ... 185 °F) Lagertemperatur **Mechanische Daten** Anschlussart Gerätestecker M12 x 1, 4-polig Gehäusedurchmesser 18 mm Schutzart IP67 Material Gehäuse Messing, vernickelt Wandler Epoxidharz/Glashohlkugelgemisch; Schaum Polyurethan, Deckel PBT Masse 25 g

Anschluss

Normsymbol/Anschluss: (Version I)

Adernfarben gemäß EN 60947-5-2.

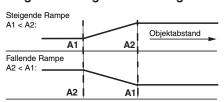
Anschlussbelegung



Adernfarben gemäß EN 60947-5-2

1	BN	(braun)
2	WH	(weiß)
3	BU	(blau)
4	BK	(schwarz)

Kennlinie


Charakteristische Ansprechkurve

Kurve 1: ebene Platte 100 mm x 100 mm

Kurve 2: Rundstab, Ø 25 mm

Programmierung der Auswertegrenzen

A1 -> ∞, A2 -> ∞: Detektion auf Objektanwesenheit

Objekt erkannt: 20 mA kein Objekt erkannt: 4 mA

Zubehör

Veröffentlichungsdatum: 2023-07-13 Ausgabedatum: 2023-07-14 Dateiname: 70103911_ger.pdf

UB-PROG2

Programmiergerät

OMH-04

Montagehilfe für Rundprofil ø 12 mm oder Flachprofil 1,5 mm ... 3 mm

Beachten Sie "Allgemeine Hinweise zu Pepperl+Fuchs-Produktinformationen".

BF 18 Befestigungsflansch, 18 mm BF 18-F Befestigungsflansch aus Kunststoff, 18 mm BF 5-30 Universal-Montagehalterung für zylindrischen Sensoren mit 5 ... 30 mm Durchmesser V1-G-2M-PVC Kabeldose M12 gerade A-kodiert, 4-polig, PVC-Kabel grau V1-W-2M-PUR Kabeldose M12 gewinkelt A-kodiert, 4-polig, PUR-Kabel grau

Programmierung

Programmierung

Der Sensor ist mit einem programmierbaren Analogausgang mit zwei programmierbaren Auswertegrenzen ausgestattet. Das Programmieren der Auswertegrenzen und der Betriebsart wird durch Anlegen der Spannung -U_B oder +U_B an den Lerneingang vorgenommen. Die Versorgungsspannung muss mindestens 1 s lang am Lerneingang anliegen. LEDs zeigen an, ob der Sensor das Zielobjekt während des Programmiervorgangs erkennt.

Hinweis:

Ein Einlernen der Auswertegrenzen ist nur unmittelbar nach dem Zuschalten der Spannungsversorgung möglich. Ein Zeitschloss sichert 5 Minuten nach dem letzten Einlernen die eingestellten Werte gegen ungewolltes Verändern. Sollen die Auswertegrenzen zu einem späteren Zeitpunkt verändert werden, so ist dies erst nach einem erneuten Power On möglich.

Hinweis:

Wenn ein Programmieradapter UB-PROG2 zur Programmierung verwendet wird, steht die Taste A1 für -U_B und die Taste A2 für +U_B.

Programmierung des Analogausgangs

Steigende Rampe

- 1. Positionieren Sie das Zielobjekt am nahen Ende des gewünschten Auswertebereichs
- 2. Programmieren Sie die Auswertegrenze durch Anlegen von -UB an den Lerneingang (gelbe LED blinkt)
- 3. Zum Speichern der Auswertegrenze trennen Sie den Lerneingang von -UB
- 4. Positionieren Sie das Zielobjekt am fernen Ende des gewünschten Auswertebereichs
- 5. Programmieren Sie die Auswertegrenze durch Anlegen von +U_B an den Lerneingang (gelbe LED blinkt)
- 6. Zum Speichern der Auswertegrenze trennen Sie den Lerneingang von +UB

Fallende Rampe

- 1. Positionieren Sie das Zielobjekt am fernen Ende des gewünschten Auswertebereichs
- 2. Programmieren Sie die Auswertegrenze durch Anlegen von -UR an den Lerneingang (gelbe LED blinkt)
- 3. Zum Speichern der Auswertegrenze trennen Sie den Lerneingang von -UR
- 4. Positionieren Sie das Zielobjekt am nahen Ende des gewünschten Auswertebereichs
- 5. Programmieren Sie die Auswertegrenze durch Anlegen von +UB an den Lerneingang (gelbe LED blinkt)
- 6. Zum Speichern der Auswertegrenze trennen Sie den Lerneingang von +U_B