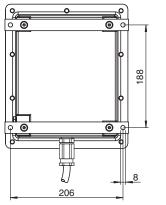
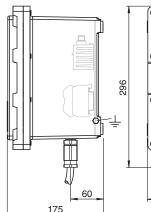
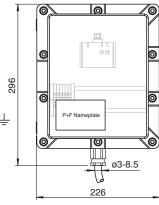


Sensor de inclinación INX360D-F99-I2E2-V15-Ex

- Carcasa de protección contra las explosiones
- Instalación en Zona 1 y Zona 21
- Aprobación de tipo E1
- Campo de medida 0 ... 360°
- Salida analógica de 4 mA ... 20 mA
- Límites de evaluación, memorizables
- 2 salidas de conmutación programables
- Alta resistencia a los golpes
- Resistencia incrementada a la pertubación 100 V/m



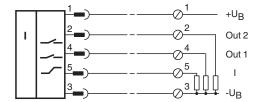




Dimensiones


Datos técnicos

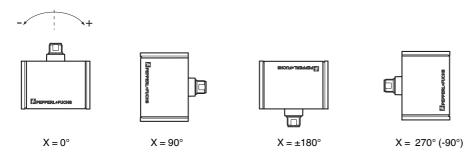
Datos generales	
Tipo	Sensor de inclinación, de 1 eje
Rango de medición	0 360 °
Precisión absoluta	≤ ± 0,5 °
Retardo de respuesta	≤ 20 ms
Resolución	≤ 0,1 °
Reproducibilidad	≤ ± 0,1 °
Influencia de la temperatura	≤ 0,027 °/K
Datos característicos de seguridad funciona	al
MTTF _d	300 a
Duración de servicio (T _M)	20 a
Factor de cobertura de diagnóstico (DC)	0 %
Elementos de indicación y manejo	
Indicación de trabajo	LED, verde
TEACH-IN indicación	2 LEDs amarillos (estado de conexión), intermitente
Pulsador	2 teclas (Aprendizaje del punto de conmutación , Teach-in del rango de evaluación)
Estado de conmutación	2 LEDs amarillos: Estado de conmutación (por cada salida)


Fecha de publicación: 2020-07-10 Fecha de edición: 2020-07-16 : 70112393_spa.pdf

Datos técnicos

Datos eléctricos 10 ... 30 V CC U_{B} Tensión de trabajo Corriente en vacío I_0 $< 25 \, \text{mA}$ Retardo a la disponibilidad ≤ 200 ms t, Salida de conmutación Tipo de salida 2 salidas de conmutación pnp, N.A., protegido, protegido contra cortocircuito Corriente de trabajo ≤ 100 mA Caída de tensión ≤3 V Salida analógica Tipo de salida 1 Salida de corriente 4 ... 20 mA Resistencia de carga $0 ... 200 \Omega con U_B = 10 ... 18 V$ $0 \dots 500 \Omega \text{ con } U_B = 18 \dots 30 \text{ V}$ Conformidad con Normas y Directivas Conformidad con la normativa Resistencia a choque e impacto 100 g según DIN EN 60068-2-27 EN 60947-5-2:2007 Estándares IEC 60947-5-2:2007 **Autorizaciones y Certificados** Autorización IECEx **IECEx INE 14.0029X** Homologación ATEX INERIS 14 ATEX 0022X Tipo de dispositivo: EJB4A.D.CP-INX360D-F99-I2E2 8 II 2 GD Ex db IIB+H $_2$ T6 Gb, II 2 GD Ex tb IIIC T85 $^{\circ}$ C Db Identificación Aprobación de tipo E1 10R-04 Condiciones ambientales Temperatura ambiente -40 ... 60 °C (-40 ... 140 °F) Temperatura de almacenaje -40 ... 60 °C (-40 ... 140 °F) Datos mecánicos Tipo de conexión Bornes de conexión, sección máx. del conductor 2,5 mm² 0,14 ... 2,5 mm² Sección transversal del conductor Roscado del cable > 10 x diámetro del cable 3 ... 8,5 mm Fijación de la cubierta Tornillos de cabeza hueca de acero inoxidable M6 **Tornillos** Material de la carcasa Aluminio resistente al agua marina Acabado revestimiento de epoxi RAL 7005 (gris) Grasa ignífuga Greasil MS4 o NEVER SEEZ para aplicaciones marinas Grado de protección IP66 Masa 9 kg Ajustes de fábrica Salida de conmutación 1 -30 ° ... 30 ° -30 ° ... 30 ° Salida de conmutación 2 Salida analógica -45 ° ... 45 °

Conexión



Montaje

Posición de montaje

En el estado de suministro, la posición cero de los ejes del sensor se alcanza cuando la conexión eléctrica del sensor apunta verticalmente hacia arriba.

Orientación de X

Información adicional

Visualización de los LED

Las visualizaciones dependen del estado de funcionamiento	LED verde: alimentación	LED amarillo salida 1	LED amarillo salida 2
Aprendizaje de los puntos de conmutación (salida S1): Aprendizaje de los puntos de conmutación (salida S2):	apagado apagado	intermitente apagado	apagado intermitente
Activación del modo de aprendizaje para los límites analógicos: Aprendizaje de límites analógicos	apagado apagado	intermitente intermitente	intermitente apagado
Funcionamiento normal	encendido	estado deconmutaci ón	estado deconmutaci ón
Restablecimiento de los ajustes predeterminados: de 2 s a 10 s > 10 s: fin del proceso de restablecimiento A continuación, funcionamiento normal	apagado intermitente	intermitente apagado	intermitente apagado
Tensión baja	intermitente	apagado	apagado

Definición del eje

La definición del eje X se indica en la carcasa del sensor mediante una flecha doble impresa y etiquetada. La figura muestra la rotación en sentido de las agujas del reloj.

Aprendizaje de los puntos de conmutación (salida S1)

- 1. Pulse la tecla T1 > 2 s (consulte la visualización de los LED)
- 2. Ponga el sensor en la posición de conmutación 1
- 3. Pulse brevemente la tecla T1. El LED de "salida 1" se enciende durante 1,5 s a modo de confirmación. El punto de conmutación 1 se ha aprendido
- 4. Ponga el sensor en la posición de conmutación 2
- 5. Pulse brevemente la tecla T1. El LED de "salida 1" se enciende durante 1,5 s a modo de confirmación. El punto de conmutación 2 se ha aprendido
- 6. El sensor regresa a su funcionamiento normal (consulte la visualización de los LED)

El NC (estado de salida activo) siempre se define en el intervalo de la 1.ª posición configurada a la 2.ª posición configurada.

Por ejemplo:

Caso n.º 1: configure la posición 1 a +45 grados y la posición 2 a +90 grados; el

NC va de +45 a +90 en el sentido de las agujas del reloj

Caso n.º 2: configure la posición 1 a +90 grados y la posición 2 a +45 grados; el

NC va de +90 a +45 en el sentido de las agujas del reloj

Aprendizaje de los puntos de conmutación (salida S2)

Similar al proceso "Aprendizaje de los puntos de conmutación (salida S1)", pero con la tecla T2 en lugar de T1.

Aprendizaje de límites analógicos

- 1. Active el modo de aprendizaje para los límites analógicos; para ello, pulse simultáneamente las teclas T1 y T2 hasta que se apague el LED verde y parpadeen los dos LED amarillos. A continuación, suelte las teclas.
- 2. Pulse la tecla T1 > 2 s (consulte la visualización de los LED)
- 3. Ponga el sensor en la posición de límite de evaluación mínimo
- 4. Pulse brevemente la tecla T1. El LED de "salida 1" se enciende durante 1,5 s a modo de confirmación. Se ha aprendido el límite de evaluación

- mínimo. En esta posición, la salida analógica proporcionará su valor de salida mínimo.
- 5. Ponga el sensor en la posición de límite de evaluación máximo
- 6. Pulse brevemente la tecla T1. El LED de "salida 1" se enciende durante 1,5 s a modo de confirmación. Se ha aprendido el límite de evaluación máximo. En esta posición, la salida analógica proporcionará su valor de salida máximo.
- 7. El sensor regresa a su funcionamiento normal (consulte la visualización de los LED)

Si la inclinación del sensor supera uno de los límites analógicos, se conservará el último valor de la salida analógica.

Restablecimiento de los ajustes de fábrica del sensor

- 1. Pulse las teclas T1 y T2 > 10 s (consulte la visualización de los LED)
- 2. El sensor se habrá restablecido cuando el LED verde de "alimentación" vuelva a encenderse después de aprox. 10 s.

Detección de tensión baja

Si la tensión de alimentación desciende por debajo de aprox. 7 V, se desactivan todas las salidas y se apagan los LED amarillos. El LED verde de "alimentación" parpadea rápidamente. Si la tensión de alimentación desciende por debajo de aprox. 8 V, el sensor continúa con su funcionamiento normal.

Características técnicas

Propiedades de EMC

Inmunidad frente a interferencias conforme a

DIN ISO 11452-2: 100 V/m

Banda de frecuencias de 20 MHz a 2 GHz

Interferencia generada por la red eléctrica conforme a ISO 7637-2:

Pulso 2a 2h За 3h 4 Nivel de gravedad III Ш Ш Ш Ш Ш Criterio de fallo С Α С Α Α С EN 61000-4-2: CD: 8 kV AD: 15 kV Nivel de gravedad IV EN 61000-4-3: 30 V/m (80...2500 MHz)

Nivel de gravedad IV EN 61000-4-4: 2 kV Nivel de gravedad III

EN 61000-4-6: 10 V (0,01...80 MHz)

Nivel de gravedad III FN 55011: Clase A